

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Improving Brooks' theorem

Landon Rabern

Arizona State University

October 28, 2011

Outline

- 1 A prison problem
- 2 Some background
- 3 The Ore-degree
- 4 Rephrasing the problem
- 5 Solving the rephrased problem

Kierstead and Kostochka's proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring algorithm

- 6 A spectrum of generalizations

Generalizing maximum degree

The generalized bound

The lower bound on t_ϵ

What about Δ_0 ?

- 7 Further improvements

A prison problem

A prison problem

You are a warden in a prison with five large cells. You need to put all the inmates into the cells, but to prevent fighting you cannot put a pair of inmates that have fought before into the same cell. Each inmate in the prison has fought with at most six other inmates and none of the inmates who have fought with six others have fought with each other. Under what conditions can you complete your task?

A prison problem

A prison problem

You are a warden in a prison with five large cells. You need to put all the inmates into the cells, but to prevent fighting you cannot put a pair of inmates that have fought before into the same cell. Each inmate in the prison has fought with at most six other inmates and none of the inmates who have fought with six others have fought with each other. Under what conditions can you complete your task?

- plainly, if there is a group of six inmates who have all fought one another, then you cannot complete your task

A prison problem

A prison problem

You are a warden in a prison with five large cells. You need to put all the inmates into the cells, but to prevent fighting you cannot put a pair of inmates that have fought before into the same cell. Each inmate in the prison has fought with at most six other inmates and none of the inmates who have fought with six others have fought with each other. Under what conditions can you complete your task?

- plainly, if there is a group of six inmates who have all fought one another, then you cannot complete your task
- is this simple necessary condition sufficient?

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

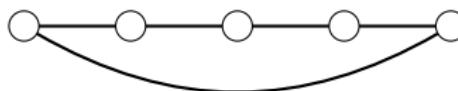
Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

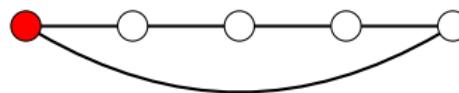
For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

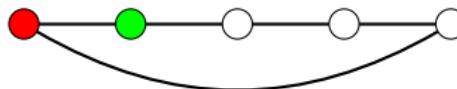
For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

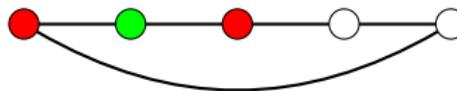
For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

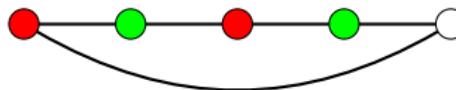
For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

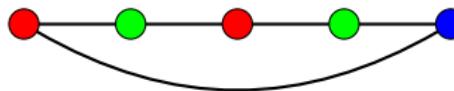
For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

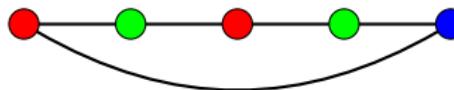
For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



Greedy coloring

- $C := \{c_1, c_2, c_3, \dots\}$ an infinite set of colors
- G has vertices ordered v_1, v_2, \dots, v_n
- go through the vertices in order, coloring v_i with the first color not used on a neighbor of v_i

For example, say $C := \{\text{red, green, blue, cyan, \dots}\}$ and G is the 5-cycle:



- if G has maximum degree k , then v_i has at most k colored neighbors, so greedy coloring uses at most $k + 1$ colors

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Brooks' theorem

- $\chi(G) :=$ the minimum number of colors needed to color the vertices of G so that adjacent vertices receive different colors

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Brooks' theorem

- $\chi(G) :=$ the minimum number of colors needed to color the vertices of G so that adjacent vertices receive different colors
- $\omega(G) :=$ the number of vertices in a largest complete subgraph of G

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Brooks' theorem

- $\chi(G) :=$ the minimum number of colors needed to color the vertices of G so that adjacent vertices receive different colors
- $\omega(G) :=$ the number of vertices in a largest complete subgraph of G
- $\Delta(G) :=$ the maximum degree of G

Brooks' theorem

- $\chi(G) :=$ the minimum number of colors needed to color the vertices of G so that adjacent vertices receive different colors
- $\omega(G) :=$ the number of vertices in a largest complete subgraph of G
- $\Delta(G) :=$ the maximum degree of G

Theorem (Brooks 1941)

Every graph with $\Delta \geq 3$ satisfies $\chi \leq \max\{\omega, \Delta\}$.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

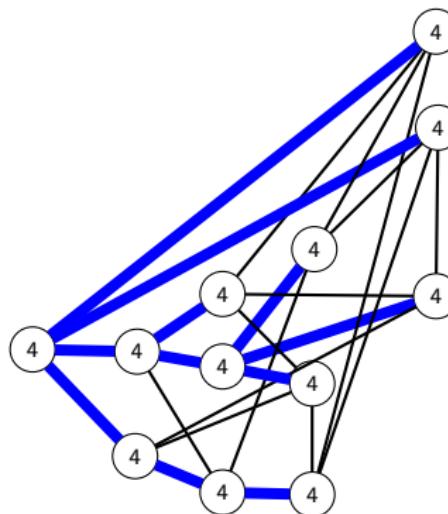
Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

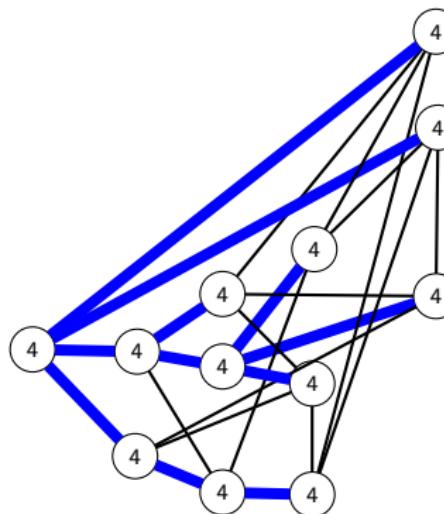
Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Proof sketch

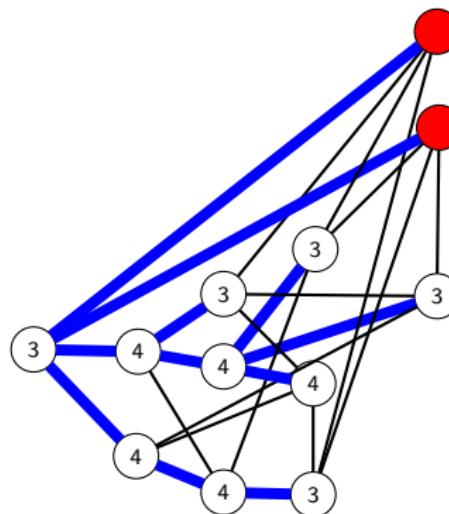
Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

Proof sketch

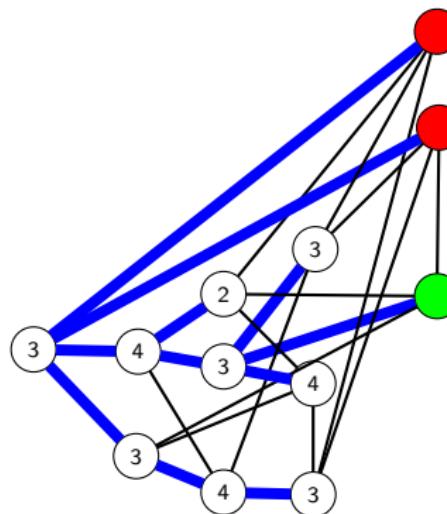
Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

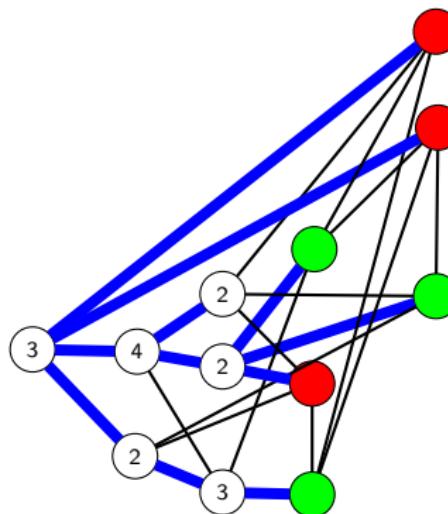
Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

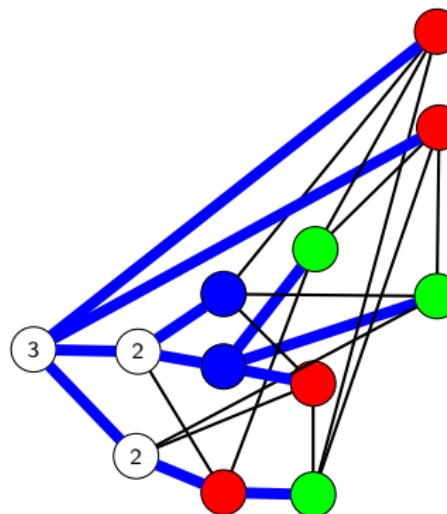
Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

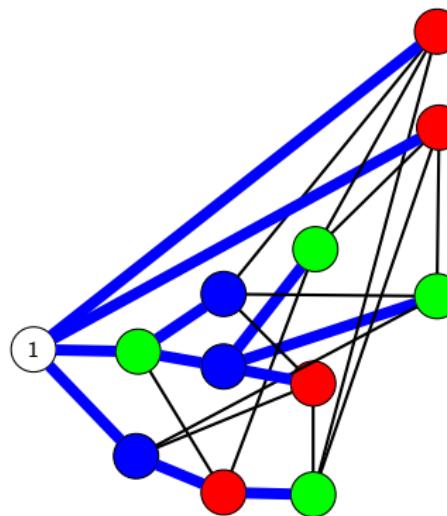
Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

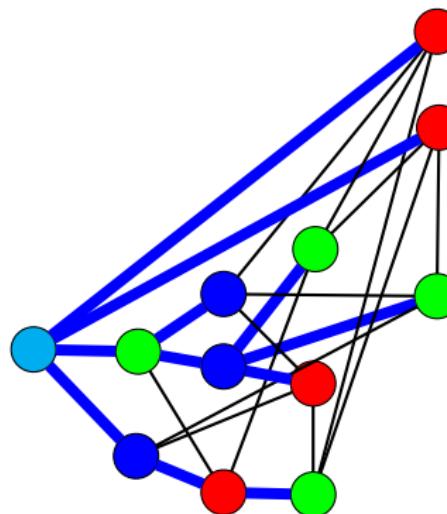
Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Proof sketch

Any incomplete 2-connected graph with $\Delta \geq 3$ has a spanning tree where the root has two nonadjacent leaves as neighbors.



Greedily coloring in leaf first order proves Brooks' theorem

The Ore-degree

Definition

The *Ore-degree* of an edge xy in a graph G is

$$\theta(xy) := d(x) + d(y).$$

The *Ore-degree* of a graph G is

$$\theta(G) := \max_{xy \in E(G)} \theta(xy).$$

The Ore-degree

Definition

The *Ore-degree* of an edge xy in a graph G is

$$\theta(xy) := d(x) + d(y).$$

The *Ore-degree* of a graph G is

$$\theta(G) := \max_{xy \in E(G)} \theta(xy).$$

- every graph satisfies $\lfloor \frac{\theta}{2} \rfloor \leq \Delta$

The Ore-degree

Definition

The *Ore-degree* of an edge xy in a graph G is

$$\theta(xy) := d(x) + d(y).$$

The *Ore-degree* of a graph G is

$$\theta(G) := \max_{xy \in E(G)} \theta(xy).$$

- every graph satisfies $\lfloor \frac{\theta}{2} \rfloor \leq \Delta$
- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \lfloor \frac{\theta}{2} \rfloor + 1$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \left\{ \omega, \left\lfloor \frac{\theta}{2} \right\rfloor \right\}$.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \left\{ \omega, \left\lfloor \frac{\theta}{2} \right\rfloor \right\}$.

Kierstead and Kostochka conjectured that the 12 could be reduced to 10. That this would be best possible can be seen from the following example which has $\theta = 9$, $\omega = 4$ and $\chi = 5$.

Kierstead and Kostochka's generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with $\theta \geq 12$ satisfies $\chi \leq \max \{\omega, \lfloor \frac{\theta}{2} \rfloor \}$.

Kierstead and Kostochka conjectured that the 12 could be reduced to 10. That this would be best possible can be seen from the following example which has $\theta = 9$, $\omega = 4$ and $\chi = 5$.

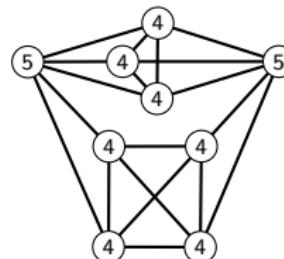


Figure: O_5 , a counterexample with $\theta = 9$.

Rephrasing the problem

Definition

A graph G is called *vertex critical* if $\chi(G - v) < \chi(G)$ for each $v \in V(G)$.

Rephrasing the problem

Definition

A graph G is called *vertex critical* if $\chi(G - v) < \chi(G)$ for each $v \in V(G)$.

Definition

Let G be a vertex critical graph. The *low vertex subgraph* $\mathcal{L}(G)$ is the graph induced on the vertices of degree $\chi(G) - 1$. The *high vertex subgraph* $\mathcal{H}(G)$ is the graph induced on the vertices of degree at least $\chi(G)$.

Rephrasing the problem

Definition

A graph G is called *vertex critical* if $\chi(G - v) < \chi(G)$ for each $v \in V(G)$.

Definition

Let G be a vertex critical graph. The *low vertex subgraph* $\mathcal{L}(G)$ is the graph induced on the vertices of degree $\chi(G) - 1$. The *high vertex subgraph* $\mathcal{H}(G)$ is the graph induced on the vertices of degree at least $\chi(G)$.

Problem

Prove that $K_{\Delta(G)+1}$ is the only vertex critical graph G with $\chi(G) \geq \Delta(G) \geq 6$ such that $\mathcal{H}(G)$ is edgeless.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's proof

- the proof is high-tech and clean, it uses both of the following

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's proof

- the proof is high-tech and clean, it uses both of the following
- Alon and Tarsi's algebraic list coloring theorem

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's proof

- the proof is high-tech and clean, it uses both of the following
- Alon and Tarsi's algebraic list coloring theorem
- a result of Stiebitz from 1982 proving a conjecture of Gallai stating that $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's proof

- the proof is high-tech and clean, it uses both of the following
- Alon and Tarsi's algebraic list coloring theorem
- a result of Stiebitz from 1982 proving a conjecture of Gallai stating that $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$
- using these it is basically just a counting argument

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Kierstead and Kostochka's proof

- the proof is high-tech and clean, it uses both of the following
- Alon and Tarsi's algebraic list coloring theorem
- a result of Stiebitz from 1982 proving a conjecture of Gallai stating that $\mathcal{H}(G)$ has at most as many components as $\mathcal{L}(G)$
- using these it is basically just a counting argument
- unfortunately, it only works for $\Delta \geq 7$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma
The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

To get down to $\Delta = 6$, go low-tech and get dirty.

To get down to $\Delta = 6$, go low-tech and get dirty.

Theorem (Rabern 2010)

$K_{\Delta(G)+1}$ is the only vertex critical graph G with
 $\chi(G) \geq \Delta(G) \geq 6$ and $\omega(\mathcal{H}(G)) \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor - 2$.

To get down to $\Delta = 6$, go low-tech and get dirty.

Theorem (Rabern 2010)

$K_{\Delta(G)+1}$ is the only vertex critical graph G with

$$\chi(G) \geq \Delta(G) \geq 6 \text{ and } \omega(\mathcal{H}(G)) \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor - 2.$$

- setting $\omega(\mathcal{H}(G)) = 1$ proves Kierstead and Kostochka's conjecture

To get down to $\Delta = 6$, go low-tech and get dirty.

Theorem (Rabern 2010)

$K_{\Delta(G)+1}$ is the only vertex critical graph G with
 $\chi(G) \geq \Delta(G) \geq 6$ and $\omega(\mathcal{H}(G)) \leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor - 2$.

- setting $\omega(\mathcal{H}(G)) = 1$ proves Kierstead and Kostochka's conjecture
- equivalently, as long as there is no group of six inmates who have all fought one another, you (the warden) can complete your inmate-cell-assignment task

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma
The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Proof outline

- start with a minimal counterexample G

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma
The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Proof outline

- start with a minimal counterexample G
- for any induced subgraph H , $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

Proof outline

- start with a minimal counterexample G
- for any induced subgraph H , $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

Proof outline

- start with a minimal counterexample G
- for any induced subgraph H , $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

- we need H to have large degrees to get large lists, so H will be “dense”

Proof outline

- start with a minimal counterexample G
- for any induced subgraph H , $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

- we need H to have large degrees to get large lists, so H will be “dense”
- first, use minimality of G to exclude some troublesome H 's

Proof outline

- start with a minimal counterexample G
- for any induced subgraph H , $\Delta - 1$ coloring $G - H$ leaves a list assignment L on H where $|L(v)| \geq \deg(v) - 1$

Goal

Construct a subgraph H for which such a list assignment can always be completed.

- we need H to have large degrees to get large lists, so H will be “dense”
- first, use minimality of G to exclude some troublesome H 's
- run the following recoloring algorithm to construct H

Partitioned colorings

Definition

Let G be a vertex critical graph. Let $a \geq 1$ and r_1, \dots, r_a be such that $1 + \sum_i r_i = \chi(G)$. By a **(r_1, \dots, r_a) -partitioned coloring** of G we mean a proper coloring of G of the form

$$\{\{x\}, L_{11}, L_{12}, \dots, L_{1r_1}, L_{21}, L_{22}, \dots, L_{2r_2}, \dots, L_{a1}, L_{a2}, \dots, L_{ar_a}\}.$$

Here $\{x\}$ is a singleton color class and each L_{ij} is a color class.

Mozhan's Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let $a \geq 1$ and r_1, \dots, r_a be such that $1 + \sum_i r_i = \chi(G)$. Of all (r_1, \dots, r_a) -partitioned colorings of G pick one minimizing

$$\sum_{i=1}^a \left\| G \left[\bigcup_{j=1}^{r_i} L_{ij} \right] \right\|.$$

Remember that $\{x\}$ is a singleton color class in the coloring. Put $U_i := \bigcup_{j=1}^{r_i} L_{ij}$ and let $Z_i(x)$ be the component of x in $G[\{x\} \cup U_i]$. If $d_{Z_i(x)}(x) = r_i$, then $Z_i(x)$ is complete if $r_i \geq 3$ and $Z_i(x)$ is an odd cycle if $r_i = 2$.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

**The recoloring
algorithm**

A spectrum of
generalizations

Further
improvements

The recoloring algorithm

- take a $(\lfloor \frac{\Delta-1}{2} \rfloor, \lceil \frac{\Delta-1}{2} \rceil)$ -partitioned coloring minimizing the above function

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

**The recoloring
algorithm**

A spectrum of
generalizations

Further
improvements

The recoloring algorithm

- take a $(\lfloor \frac{\Delta-1}{2} \rfloor, \lceil \frac{\Delta-1}{2} \rceil)$ -partitioned coloring minimizing the above function
- prove that we may assume that x is a low vertex

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

The recoloring algorithm

- take a $(\lfloor \frac{\Delta-1}{2} \rfloor, \lceil \frac{\Delta-1}{2} \rceil)$ -partitioned coloring minimizing the above function
- prove that we may assume that x is a low vertex
- by Mozhan's lemma, the neighborhood of x in each part induces a clique or an odd cycle

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

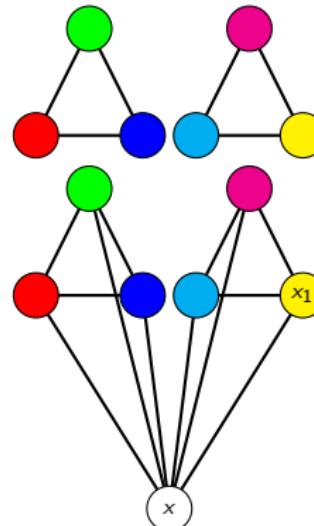
Mozhan's lemma

**The recoloring
algorithm**

A spectrum of
generalizations

Further
improvements

The recoloring algorithm



- swap x with a low vertex x_1 in the right part

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

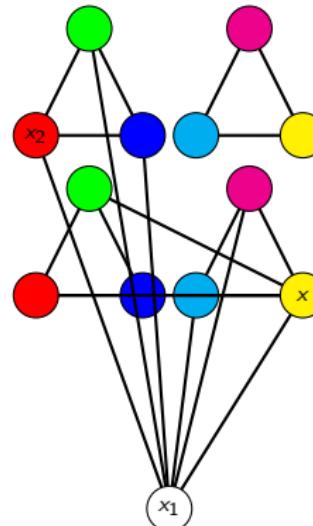
Mozhan's lemma

**The recoloring
algorithm**

A spectrum of
generalizations

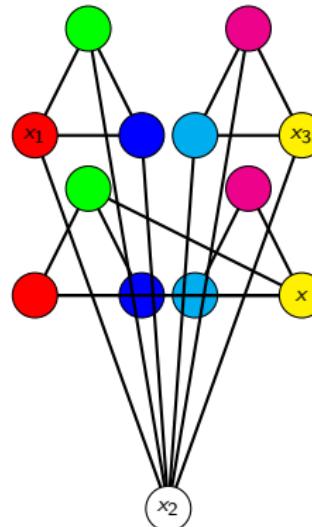
Further
improvements

The recoloring algorithm



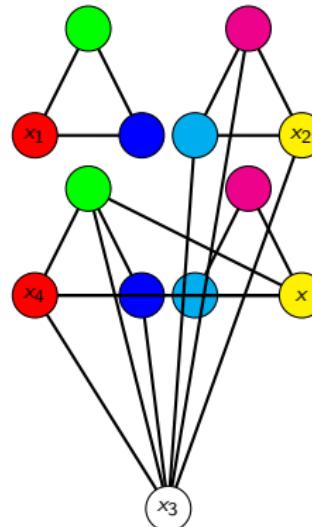
- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part

The recoloring algorithm



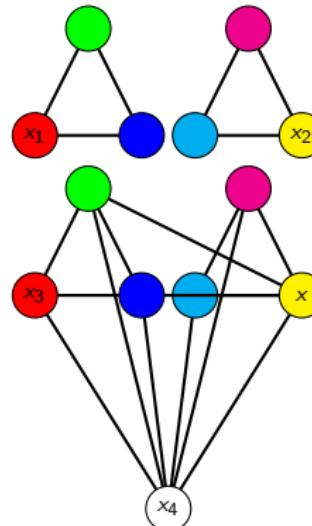
- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around

The recoloring algorithm



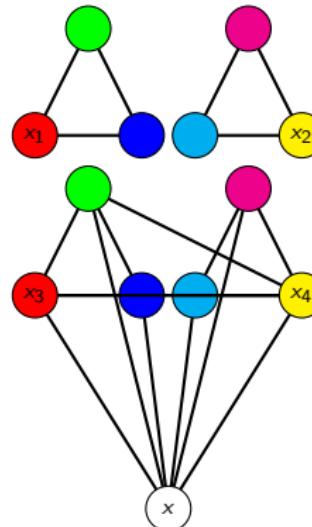
- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around

The recoloring algorithm



- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around

The recoloring algorithm



- swap x with a low vertex x_1 in the right part
- swap x_1 with a low vertex x_2 in the left part
- continue swapping back and forth until you wrap around

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

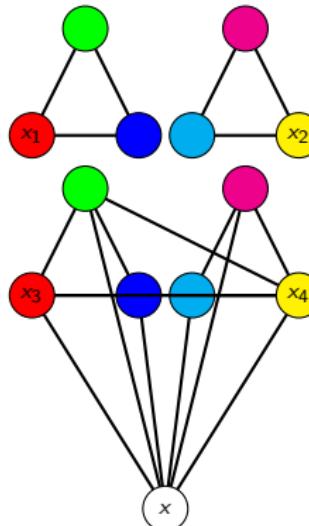
Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

The recoloring algorithm



- use the fact that you wrapped around to show that there are many edges between the two cliques

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved

Proof outline

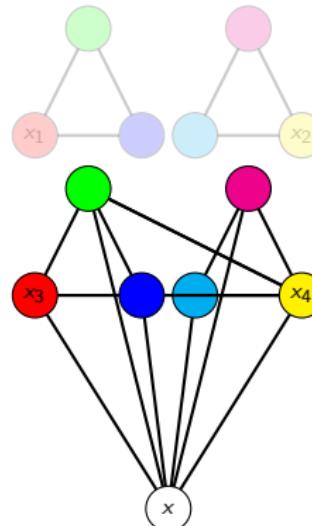
Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

The recoloring algorithm



- use the fact that you wrapped around to show that there are many edges between the two cliques
- we have now constructed the desired large “dense” subgraph

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree

The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

Generalizing maximum degree

Definition

For $0 \leq \epsilon \leq 1$, define $\Delta_\epsilon(G)$ as

$$\left\lceil \max_{xy \in E(G)} (1 - \epsilon) \min\{d(x), d(y)\} + \epsilon \max\{d(x), d(y)\} \right\rceil.$$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

Generalizing maximum degree

Definition

For $0 \leq \epsilon \leq 1$, define $\Delta_\epsilon(G)$ as

$$\left\lceil \max_{xy \in E(G)} (1 - \epsilon) \min\{d(x), d(y)\} + \epsilon \max\{d(x), d(y)\} \right\rceil.$$

Note that $\Delta_1 = \Delta$, $\Delta_{\frac{1}{2}} = \left\lfloor \frac{\theta}{2} \right\rfloor$.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree

**The generalized
bound**

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
**The generalized
bound**

The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ , the smallest t_ϵ that works

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ , the smallest t_ϵ that works
- that $t_1 = 3$ is smallest is Brooks' theorem

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ , the smallest t_ϵ that works
- that $t_1 = 3$ is smallest is Brooks' theorem
- the graph O_5 shows that $t_\epsilon = 6$ is smallest for $\frac{1}{2} \leq \epsilon < 1$

The generalized bound

Theorem (Rabern 2010)

For every $0 < \epsilon \leq 1$, there exists t_ϵ such that every graph with $\Delta_\epsilon \geq t_\epsilon$ satisfies $\chi \leq \max\{\omega, \Delta_\epsilon\}$.

- the proof uses a recoloring algorithm similar to the above
- it would be interesting to determine, for each ϵ , the smallest t_ϵ that works
- that $t_1 = 3$ is smallest is Brooks' theorem
- the graph O_5 shows that $t_\epsilon = 6$ is smallest for $\frac{1}{2} \leq \epsilon < 1$
- best known general bounds, $\frac{2}{\epsilon} + 1 \leq t_\epsilon \leq \frac{4}{\epsilon} + 2$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

The lower bound on t_ϵ

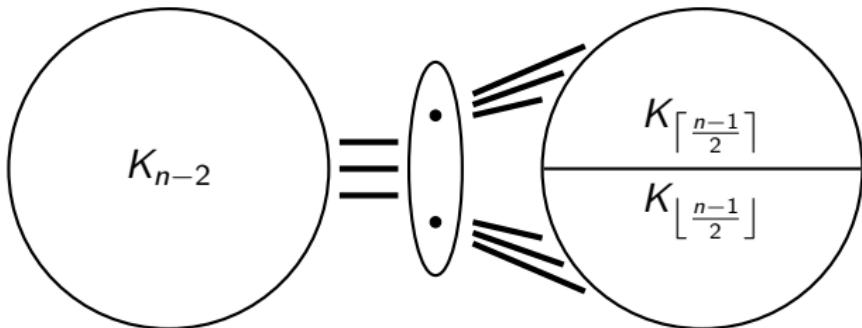


Figure: The graph O_n .

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

The lower bound on t_ϵ

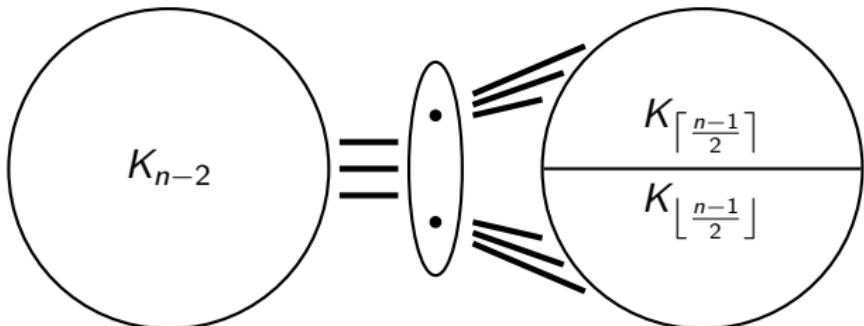
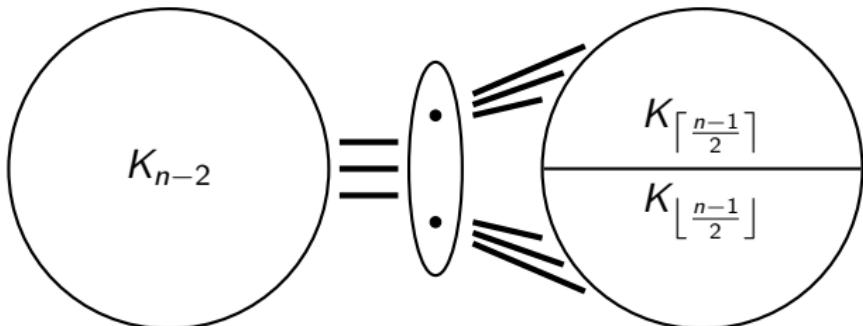


Figure: The graph O_n .

- $\chi(O_n) = n > \omega(O_n)$ and $\Delta(O_n) = \lceil \frac{n-1}{2} \rceil + n - 2$

The lower bound on t_ϵ Figure: The graph O_n .

- $\chi(O_n) = n > \omega(O_n)$ and $\Delta(O_n) = \lceil \frac{n-1}{2} \rceil + n - 2$
- $\mathcal{H}(O_n)$ is edgeless

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

The lower bound on t_ϵ

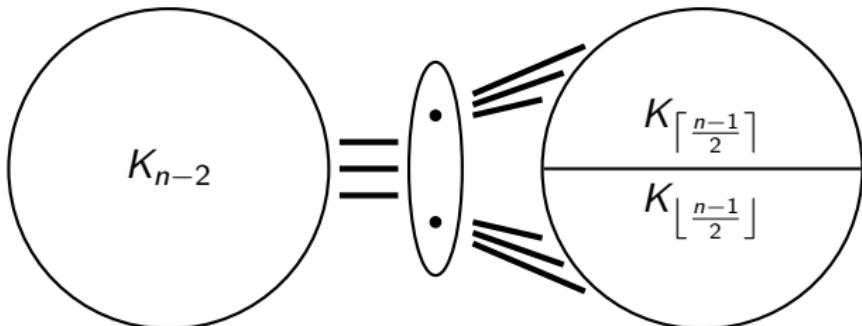


Figure: The graph O_n .

- $\chi(O_n) = n > \omega(O_n)$ and $\Delta(O_n) = \lceil \frac{n-1}{2} \rceil + n - 2$
- $\mathcal{H}(O_n)$ is edgeless
- computing Δ_ϵ gives $t_\epsilon \geq \frac{2}{\epsilon} + 1$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

What about Δ_0 ?

- the above proofs only work for $\epsilon > 0$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

What about Δ_0 ?

- the above proofs only work for $\epsilon > 0$
- what happens when $\epsilon = 0$?

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

What about Δ_0 ?

- the above proofs only work for $\epsilon > 0$
- what happens when $\epsilon = 0$?
- the parameter Δ_0 has already been investigated by Stacho
under the name Δ_2

What about Δ_0 ?

- the above proofs only work for $\epsilon > 0$
- what happens when $\epsilon = 0$?
- the parameter Δ_0 has already been investigated by Stacho
under the name Δ_2

Definition (Stacho 2001)

For a graph G define

$$\Delta_0(G) := \max_{xy \in E(G)} \min\{d(x), d(y)\}.$$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

Facts about Δ_0

- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \Delta_0 + 1$

Facts about Δ_0

- greedy coloring (in any order) shows that every graph satisfies $\chi \leq \Delta_0 + 1$
- for any fixed $t \geq 3$, the problem of determining whether or not $\chi(G) \leq \Delta_0(G)$ for graphs with $\Delta_0(G) = t$ is *NP*-complete (Stacho 2001)

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

A tempting thought

A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies
 $\chi \leq \max\{\omega, \Delta_0\}$.

A tempting thought

A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\epsilon \geq \frac{2}{\epsilon} + 1$, we see that $t_\epsilon \rightarrow \infty$ as $\epsilon \rightarrow 0$

A tempting thought

A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\epsilon \geq \frac{2}{\epsilon} + 1$, we see that $t_\epsilon \rightarrow \infty$ as $\epsilon \rightarrow 0$
- thus, t_0 does not exist and the tempting thought cannot hold

A tempting thought

A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\epsilon \geq \frac{2}{\epsilon} + 1$, we see that $t_\epsilon \rightarrow \infty$ as $\epsilon \rightarrow 0$
- thus, t_0 does not exist and the tempting thought cannot hold
- there is a cute algorithmic way to see this assuming $P \neq NP$

A tempting thought

A tempting thought

There exists t such that every graph with $\Delta_0 \geq t$ satisfies $\chi \leq \max\{\omega, \Delta_0\}$.

- since $t_\epsilon \geq \frac{2}{\epsilon} + 1$, we see that $t_\epsilon \rightarrow \infty$ as $\epsilon \rightarrow 0$
- thus, t_0 does not exist and the tempting thought cannot hold
- there is a cute algorithmic way to see this assuming $P \neq NP$
- we use Lovász's ϑ parameter which can be approximated in polynomial time and has the property that $\omega(G) \leq \vartheta(G) \leq \chi(G)$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound

The lower bound
on t_ϵ

What about
 Δ_0 ?

Further
improvements

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$
- if $x < \Delta_0 + \frac{1}{2}$, then $\omega \leq \vartheta < \Delta_0 + 1$, and hence $\omega \leq \Delta_0$

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$
- if $x < \Delta_0 + \frac{1}{2}$, then $\omega \leq \vartheta < \Delta_0 + 1$, and hence $\omega \leq \Delta_0$
- now, $\chi \leq \max\{\omega, \Delta_0\} \leq \Delta_0$

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$
- if $x < \Delta_0 + \frac{1}{2}$, then $\omega \leq \vartheta < \Delta_0 + 1$, and hence $\omega \leq \Delta_0$
- now, $\chi \leq \max\{\omega, \Delta_0\} \leq \Delta_0$
- we just gave a polynomial time algorithm to determine whether or not $\chi \leq \Delta_0$ for graphs with $\Delta_0 \geq t$

A polynomial-time algorithm

- assume the tempting thought holds for some $t \geq 3$
- take any arbitrary graph with $\Delta_0 \geq t$
- first, compute Δ_0 in polynomial time
- second, compute x such that $x - \frac{1}{2} < \vartheta < x + \frac{1}{2}$ in polynomial time
- if $x \geq \Delta_0 + \frac{1}{2}$, then $\chi \geq \vartheta > \Delta_0$ and hence $\chi = \Delta_0 + 1$
- if $x < \Delta_0 + \frac{1}{2}$, then $\omega \leq \vartheta < \Delta_0 + 1$, and hence $\omega \leq \Delta_0$
- now, $\chi \leq \max\{\omega, \Delta_0\} \leq \Delta_0$
- we just gave a polynomial time algorithm to determine whether or not $\chi \leq \Delta_0$ for graphs with $\Delta_0 \geq t$
- this is impossible unless $P=NP$

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree
The generalized
bound
The lower bound
on t_ϵ
What about
 Δ_0 ?

Further
improvements

What we can prove about Δ_0

Theorem (Rabern 2010)

Every graph with $\Delta \geq 3$ satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{5}{6}(\Delta + 1) \right\}.$$

What we can prove about Δ_0

Theorem (Rabern 2010)

Every graph with $\Delta \geq 3$ satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{5}{6}(\Delta + 1) \right\}.$$

- the proof uses a recoloring algorithm similar to the above

What we can prove about Δ_0

Theorem (Rabern 2010)

Every graph with $\Delta \geq 3$ satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{5}{6}(\Delta + 1) \right\}.$$

- the proof uses a recoloring algorithm similar to the above
- actually, all the above results about Δ_ϵ follow from this result

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

In joint work with Kostochka and Stiebitz similar techniques were used to improve the bounds further. Highlights:

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

In joint work with Kostochka and Stiebitz similar techniques were used to improve the bounds further. Highlights:

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with $\theta \geq 8$, except O_5 , satisfies $\chi \leq \max \{\omega, \lfloor \frac{\theta}{2} \rfloor \}$.

Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

In joint work with Kostochka and Stiebitz similar techniques were used to improve the bounds further. Highlights:

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with $\theta \geq 8$, except O_5 , satisfies $\chi \leq \max \left\{ \omega, \left\lfloor \frac{\theta}{2} \right\rfloor \right\}$.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{3}{4}(\Delta + 2) \right\}.$$

Conjecture

Every graph satisfies

$$\chi \leq \max \left\{ \omega, \Delta_0, \frac{2\Delta + 5}{3} \right\}.$$

The examples O_n above show that this would be tight.

- **M. Grötschel, L. Lovász, and A. Schrijver.**
The ellipsoid method and its consequences in combinatorial optimization.
Combinatorica, 1(2):169–197, 1981.
- **H.A. Kierstead and A.V. Kostochka.**
Ore-type versions of Brooks' theorem.
J. Combin. Theory Ser. B, 99(2):298–305, 2009.
- **A.V. Kostochka, L. Rabern, and M. Stiebitz.**
Graphs with chromatic number close to maximum degree.
Discrete Math, Forthcoming.
- **B. Rabern.**
Reformulation as a prison problem.
Private communication.
- **L. Rabern.**
An improvement on Brooks' theorem.
Submitted.
- **L. Rabern.**
On hitting all maximum cliques with an independent set.
J. Graph Theory, 66(1):32–37, 2011.
- **L. Rabern.**
 Δ -Critical graphs with small high vertex cliques.
J. Combin. Theory Ser. B, In Press.
- **L. Stacho.**
New upper bounds for the chromatic number of a graph.
J. Graph Theory, 36(2):117–120, 2001.
- **M. Stiebitz.**
Proof of a conjecture of T. Gallai concerning connectivity properties of colour-critical graphs.
Combinatorica, 2(3):315–323, 1982.