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A prison problem

You are a warden in a prison with five large cells. You need to
put all the inmates into the cells, but to prevent fighting you
cannot put a pair of inmates that have fought before into the
same cell. Each inmate in the prison has fought with at most
six other inmates and none of the inmates who have fought
with six others have fought with each other. Under what
conditions can you complete your task?

• plainly, if there is a group of six inmates who have all
fought one another, then you cannot complete your task

• is this simple necessary condition sufficient?
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Greedy coloring

• C := {c1, c2, c3, . . .} an infinite set of colors

• G has vertices ordered v1, v2, . . . , vn

• go through the vertices in order, coloring vi with the first
color not used on a neighbor of vi

For example, say C := {red, green, blue, cyan, . . .} and G is the
5-cycle:

• if G has maximum degree k, then vi has at most k colored
neighbors, so greedy coloring uses at most k + 1 colors
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Brooks’ theorem

• χ(G ) := the minimum number of colors needed to color
the vertices of G so that adjacent vertices receive different
colors

• ω(G ) := the number of vertices in a largest complete
subgraph of G

• ∆(G ) := the maximum degree of G

Theorem (Brooks 1941)

Every graph with ∆ ≥ 3 satisfies χ ≤ max{ω,∆}.
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Proof sketch

Any incomplete 2-connected graph with ∆ ≥ 3 has a spanning
tree where the root has two nonadjacent leaves as neighbors.

4

44

4

4

4

4

4

4

44

4

Greedily coloring in leaf first order proves Brooks’ theorem
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The Ore-degree

Definition

The Ore-degree of an edge xy in a graph G is

θ(xy) := d(x) + d(y).

The Ore-degree of a graph G is

θ(G ) := max
xy∈E(G)

θ(xy).

• every graph satisfies
⌊
θ
2

⌋
≤ ∆

• greedy coloring (in any order) shows that every graph
satisfies χ ≤

⌊
θ
2

⌋
+ 1
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Kierstead and Kostochka’s
generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with θ ≥ 12 satisfies χ ≤ max
{
ω,
⌊
θ
2

⌋}
.

Kierstead and Kostochka conjectured that the 12 could be
reduced to 10. That this would be best possible can be seen
from the following example which has θ = 9, ω = 4 and χ = 5.

4

4

4

5

4 4

4 4

5

Figure: O5, a counterexample with θ = 9.
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Rephrasing the problem

Definition

A graph G is called vertex critical if χ(G − v) < χ(G ) for each
v ∈ V (G ).

Definition

Let G be a vertex critical graph. The low vertex subgraph
L(G ) is the graph induced on the vertices of degree χ(G )− 1.
The high vertex subgraph H(G ) is the graph induced on the
vertices of degree at least χ(G ).

Problem

Prove that K∆(G)+1 is the only vertex critical graph G with
χ(G ) ≥ ∆(G ) ≥ 6 such that H(G ) is edgeless.
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Kierstead and Kostochka’s proof

• the proof is high-tech and clean, it uses both of the
following

• Alon and Tarsi’s algebraic list coloring theorem

• a result of Stiebitz from 1982 proving a conjecture of
Gallai stating that H(G ) has at most as many components
as L(G )

• using these it is basically just a counting argument

• unfortunately, it only works for ∆ ≥ 7
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To get down to ∆ = 6, go low-tech and get dirty.

Theorem (Rabern 2010)

K∆(G)+1 is the only vertex critical graph G with

χ(G ) ≥ ∆(G ) ≥ 6 and ω(H(G )) ≤
⌊

∆(G)
2

⌋
− 2.

• setting ω(H(G )) = 1 proves Kierstead and Kostochka’s
conjecture

• equivalently, as long as there is no group of six inmates
who have all fought one another, you (the warden) can
complete your inmate-cell-assignment task
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Proof outline

• start with a minimal counterexample G

• for any induced subgraph H, ∆− 1 coloring G − H leaves
a list assignment L on H where |L(v)| ≥ deg(v)− 1

Goal

Construct a subgraph H for which such a list assignment can
always be completed.

• we need H to have large degrees to get large lists, so H
will be “dense”

• first, use minimality of G to exclude some troublesome H’s

• run the following recoloring algorithm to construct H

12 / 27
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Further
improvements

Partitioned colorings

Definition

Let G be a vertex critical graph. Let a ≥ 1 and r1, . . . , ra be
such that 1 +

∑
i ri = χ(G ). By a (r1, . . . , ra)-partitioned

coloring of G we mean a proper coloring of G of the form

{{x}, L11, L12, . . . , L1r1 , L21, L22, . . . , L2r2 , . . . , La1, La2, . . . , Lara} .

Here {x} is a singleton color class and each Lij is a color class.
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Mozhan’s Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let a ≥ 1 and r1, . . . , ra be
such that 1 +

∑
i ri = χ(G ). Of all (r1, . . . , ra)-partitioned

colorings of G pick one minimizing

a∑
i=1

∥∥∥∥∥∥G

 ri⋃
j=1

Lij

∥∥∥∥∥∥ .
Remember that {x} is a singleton color class in the coloring.
Put Ui :=

⋃ri
j=1 Lij and let Zi (x) be the component of x in

G [{x} ∪ Ui ]. If dZi (x)(x) = ri , then Zi (x) is complete if ri ≥ 3
and Zi (x) is an odd cycle if ri = 2.
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The recoloring algorithm

• take a (
⌊

∆−1
2

⌋
,
⌈

∆−1
2

⌉
)-partitioned coloring minimizing

the above function

• prove that we may assume that x is a low vertex

• by Mozhan’s lemma, the neighborhood of x in each part
induces a clique or an odd cycle
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The recoloring algorithm

x1

x

• swap x with a low vertex x1 in the right part

• swap x1 with a low vertex x2 in the left part

• continue swapping back and forth until you wrap around
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The recoloring algorithm

x4x3

x2

x

x1

• use the fact that you wrapped around to show that there
are many edges between the two cliques

• we have now constructed the desired large “dense”
subgraph
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Generalizing maximum degree

Definition

For 0 ≤ ε ≤ 1, define ∆ε(G ) as

⌊
max

xy∈E(G)
(1− ε) min{d(x), d(y)}+ εmax{d(x), d(y)}

⌋
.

Note that ∆1 = ∆, ∆ 1
2

=
⌊
θ
2

⌋
.
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The generalized bound

Theorem (Rabern 2010)

For every 0 < ε ≤ 1, there exists tε such that every graph with
∆ε ≥ tε satisfies χ ≤ max{ω,∆ε}.

• the proof uses a recoloring algorithm similar to the above

• it would be interesting to determine, for each ε, the
smallest tε that works

• that t1 = 3 is smallest is Brooks’ theorem

• the graph O5 shows that tε = 6 is smallest for 1
2 ≤ ε < 1

• best known general bounds, 2
ε + 1 ≤ tε ≤ 4

ε + 2
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The lower bound on tε

Kn−2

Kd n−1
2 e

Kb n−1
2 c

Figure: The graph On.

• χ(On) = n > ω(On) and ∆(On) =
⌈
n−1

2

⌉
+ n − 2

• H(On) is edgeless

• computing ∆ε gives tε ≥ 2
ε + 1
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Figure: The graph On.

• χ(On) = n > ω(On) and ∆(On) =
⌈
n−1

2

⌉
+ n − 2

• H(On) is edgeless

• computing ∆ε gives tε ≥ 2
ε + 1
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What about ∆0?

• the above proofs only work for ε > 0

• what happens when ε = 0?

• the parameter ∆0 has already been investigated by Stacho
under the name ∆2

Definition (Stacho 2001)

For a graph G define

∆0(G ) := max
xy∈E(G)

min{d(x), d(y)}.

21 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree

The generalized
bound

The lower bound
on tε
What about
∆0?

Further
improvements

What about ∆0?

• the above proofs only work for ε > 0

• what happens when ε = 0?

• the parameter ∆0 has already been investigated by Stacho
under the name ∆2

Definition (Stacho 2001)

For a graph G define

∆0(G ) := max
xy∈E(G)

min{d(x), d(y)}.

21 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree

The generalized
bound

The lower bound
on tε
What about
∆0?

Further
improvements

What about ∆0?

• the above proofs only work for ε > 0

• what happens when ε = 0?

• the parameter ∆0 has already been investigated by Stacho
under the name ∆2

Definition (Stacho 2001)

For a graph G define

∆0(G ) := max
xy∈E(G)

min{d(x), d(y)}.

21 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree

The generalized
bound

The lower bound
on tε
What about
∆0?

Further
improvements

What about ∆0?

• the above proofs only work for ε > 0

• what happens when ε = 0?

• the parameter ∆0 has already been investigated by Stacho
under the name ∆2

Definition (Stacho 2001)

For a graph G define

∆0(G ) := max
xy∈E(G)

min{d(x), d(y)}.

21 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Generalizing
maximum degree

The generalized
bound

The lower bound
on tε
What about
∆0?

Further
improvements

Facts about ∆0

• greedy coloring (in any order) shows that every graph
satisfies χ ≤ ∆0 + 1

• for any fixed t ≥ 3, the problem of determining whether or
not χ(G ) ≤ ∆0(G ) for graphs with ∆0(G ) = t is
NP-complete (Stacho 2001)
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A tempting thought

A tempting thought

There exists t such that every graph with ∆0 ≥ t satisfies
χ ≤ max{ω,∆0}.

• since tε ≥ 2
ε + 1, we see that tε →∞ as ε→ 0

• thus, t0 does not exist and the tempting thought cannot
hold

• there is a cute algorithmic way to see this assuming P 6=NP

• we use Lovász’s ϑ parameter which can be appoximated in
polynomial time and has the property that
ω(G ) ≤ ϑ(G ) ≤ χ(G )
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Further
improvements

A polynomial-time algorithm

• assume the tempting thought holds for some t ≥ 3

• take any arbitrary graph with ∆0 ≥ t

• first, compute ∆0 in polynomial time

• second, compute x such that x − 1
2 < ϑ < x + 1

2 in
polynomial time

• if x ≥ ∆0 + 1
2 , then χ ≥ ϑ > ∆0 and hence χ = ∆0 + 1

• if x < ∆0 + 1
2 , then ω ≤ ϑ < ∆0 + 1, and hence ω ≤ ∆0

• now, χ ≤ max{ω,∆0} ≤ ∆0

• we just gave a polynomial time algorithm to determine
whether or not χ ≤ ∆0 for graphs with ∆0 ≥ t

• this is impossible unless P=NP
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What we can prove about ∆0

Theorem (Rabern 2010)

Every graph with ∆ ≥ 3 satisfies

χ ≤ max

{
ω,∆0,

5

6
(∆ + 1)

}
.

• the proof uses a recoloring algorithm similar to the above

• actually, all the above results about ∆ε follow from this
result
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In joint work with Kostochka and Stiebitz similar techniques
were used to improve the bounds further. Highlights:

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with θ ≥ 8, except O5, satisfies χ ≤ max
{
ω,
⌊
θ
2

⌋}
.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

χ ≤ max

{
ω,∆0,

3

4
(∆ + 2)

}
.

26 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

In joint work with Kostochka and Stiebitz similar techniques
were used to improve the bounds further. Highlights:

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with θ ≥ 8, except O5, satisfies χ ≤ max
{
ω,
⌊
θ
2

⌋}
.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

χ ≤ max

{
ω,∆0,

3

4
(∆ + 2)

}
.

26 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

In joint work with Kostochka and Stiebitz similar techniques
were used to improve the bounds further. Highlights:

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph with θ ≥ 8, except O5, satisfies χ ≤ max
{
ω,
⌊
θ
2

⌋}
.

Theorem (Kostochka, Rabern and Stiebitz 2010)

Every graph satisfies

χ ≤ max

{
ω,∆0,

3

4
(∆ + 2)

}
.

26 / 27



Improving
Brooks’
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

A spectrum of
generalizations

Further
improvements

Conjecture

Every graph satisfies

χ ≤ max

{
ω,∆0,

2∆ + 5

3

}
.

The examples On above show that this would be tight.
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