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You are a warden in a prison with five large cells. You need to
put all the inmates into the cells, but to prevent fighting you
cannot put a pair of inmates that have fought before into the
same cell. Each inmate in the prison has fought with at most
six other inmates and none of the inmates who have fought
with six others have fought with each other. Under what
conditions can you complete your task?
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You are a warden in a prison with five large cells. You need to
put all the inmates into the cells, but to prevent fighting you
cannot put a pair of inmates that have fought before into the
same cell. Each inmate in the prison has fought with at most
six other inmates and none of the inmates who have fought
with six others have fought with each other. Under what
conditions can you complete your task?

e plainly, if there is a group of six inmates who have all
fought one another, then you cannot complete your task

e is this simple necessary condition sufficient?

3/21
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Rab: . e
avem e C:={c1,,c3,...} an infinite set of colors

e G has vertices ordered vi, v, ..., Vv,
e go through the vertices in order, coloring v; with the first
color not used on a neighbor of v;

Some
background

For example, say C := {red, green, blue,cyan,...} and G is the
5-cycle:

o—8—0O

e if G has maximum degree k, then v; has at most k colored
neighbors, so greedy coloring uses at most k + 1 colors

427
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Rabern

Some ¢ x(G) := the minimum number of colors needed to color
bacieiud the vertices of G so that adjacent vertices receive different
colors

e w(G) := the number of vertices in a largest complete
subgraph of G

e A(G) := the maximum degree of G

Theorem (Brooks 1941)

Every graph with A > 3 satisfies x < max{w, A}.

5/27
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Proof sketch

Any incomplete 2-connected graph with A > 3 has a spanning
tree where the root has two nonadjacent leaves as neighbors.

Greedily coloring in leaf first order proves Brooks' theorem



Improving
Brooks'
theorem

Landon
Rabern

The
Ore-degree

7/27

The Ore-degree

Definition

The Ore-degree of an edge xy in a graph G is
0(xy) == d(x) + d(y).

The Ore-degree of a graph G is

0(G) := 0 .
(G) I (xy)
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Definition
The Ore-degree of an edge xy in a graph G is
0(xy) == d(x) + d(y).
The Ore-degree of a graph G is
0(G) := max_0(xy).

xy€E(G)

o every graph satisfies [£] < A
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The Ore-degree of an edge xy in a graph G is
The
Ore-degree H(Xy) = d(X) |- d(y)
The Ore-degree of a graph G is
0(G) := max_0(xy).

xy€E(G)

o every graph satisfies [£] < A
e greedy coloring (in any order) shows that every graph
satisfies xy < LgJ +1

7/27
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Theorem (Kierstead and Kostochka 2009)

Every graph with > 12 satisfies x < max{w, |£]}.

Kierstead and Kostochka conjectured that the 12 could be
reduced to 10. That this would be best possible can be seen
from the following example which has § =9, w =4 and x = 5.
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Kierstead and Kostochka's
generalization

Theorem (Kierstead and Kostochka 2009)

Every graph with 6 > 12 satisfies x < max {w, LgJ }

Kierstead and Kostochka conjectured that the 12 could be
reduced to 10. That this would be best possible can be seen
from the following example which has § =9, w =4 and x = 5.

Figure: Os, a counterexample with 6 = 9.
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Rephrasing the problem

A graph G is called vertex critical if x(G — v) < x(G) for each
ve V(G).
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A graph G is called vertex critical if x(G — v) < x(G) for each
ve V(G).

Rephrasing Def|n|t|0n

the problem

Let G be a vertex critical graph. The low vertex subgraph
L(G) is the graph induced on the vertices of degree x(G) — 1.
The high vertex subgraph H(G) is the graph induced on the
vertices of degree at least x(G).

9/27



Improving
Brooks'
theorem

Landon
Rabern

Rephrasing
the problem

9/27

Rephrasing the problem

A graph G is called vertex critical if x(G — v) < x(G) for each
ve V(G).

Definition
Let G be a vertex critical graph. The low vertex subgraph
L(G) is the graph induced on the vertices of degree x(G) — 1.

The high vertex subgraph H(G) is the graph induced on the
vertices of degree at least x(G).

Problem

Prove that Ka(g)+1 is the only vertex critical graph G with
X(G) > A(G) > 6 such that H(G) is edgeless.
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the proof is high-tech and clean, it uses both of the
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Alon and Tarsi's algebraic list coloring theorem

a result of Stiebitz from 1982 proving a conjecture of
Gallai stating that #(G) has at most as many components

as L(G)

using these it is basically just a counting argument
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Kierstead and Kostochka's proof

the proof is high-tech and clean, it uses both of the
following

Alon and Tarsi's algebraic list coloring theorem

a result of Stiebitz from 1982 proving a conjecture of
Gallai stating that #(G) has at most as many components
as L(G)

using these it is basically just a counting argument
unfortunately, it only works for A > 7
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Theorem (Rabern 2010)

Ka(6)+1 is the only vertex critical graph G with
X(G) > A(G) > 6 and w(H(G)) < [@J .

e setting w(#H(G)) = 1 proves Kierstead and Kostochka's
conjecture
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To get down to A = 6, go low-tech and get dirty.

Theorem (Rabern 2010)

Ka(6)+1 is the only vertex critical graph G with
X(G) > A(G) > 6 and w(H(G)) < [@J .

e setting w(#H(G)) = 1 proves Kierstead and Kostochka's
conjecture

e equivalently, as long as there is no group of six inmates
who have all fought one another, you (the warden) can
complete your inmate-cell-assignment task



Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem

Kierstead and
Kostochka's
proof

Problem solved
Proof outline
Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

12/27

Proof outline

e start with a minimal counterexample G



Improving

Brooks' .
theorem Proof outline
Landon
Rabern
e start with a minimal counterexample G
e for any induced subgraph H, A — 1 coloring G — H leaves
a list assignment L on H where |L(v)| > deg(v) — 1
Kierstead and
Kostochka's
proof

Problem solved
Proof outline
Mozhan's lemma

The recoloring
algorithm

12/27



Improving

Brooks' .
theorem Proof outline
Landon
Rabern
e start with a minimal counterexample G
e for any induced subgraph H, A — 1 coloring G — H leaves
a list assignment L on H where |L(v)| > deg(v) — 1
Construct a subgraph H for which such a list assignment can
always be completed.
Kierstead and
Kostochka's
proof

Problem solved
Proof outline
Mozhan's lemma

The recoloring
algorithm

12/27



Improving
Brooks'

theorem PI’OOf OUtllne

Landon
Rabern

e start with a minimal counterexample G

e for any induced subgraph H, A — 1 coloring G — H leaves
a list assignment L on H where |L(v)| > deg(v) — 1

Construct a subgraph H for which such a list assignment can
always be completed.

Kierstead and

Kostochka's

proof

Problem solved .

Proct outline e we need H to have large degrees to get large lists, so H
Mozhan's lemma

The recoloring will be “dense”

algorithm

12/27



Improving
Brooks'

theorem PI’OOf OUtllne

Landon
Rabern

e start with a minimal counterexample G

e for any induced subgraph H, A — 1 coloring G — H leaves
a list assignment L on H where |L(v)| > deg(v) — 1

Construct a subgraph H for which such a list assignment can
always be completed.

Kierstead and

Kostochka's

proof

Problem solved .

Proct outline e we need H to have large degrees to get large lists, so H
Mozhan's lemma - “ "

e s— will be “dense

algorithm

e first, use minimality of G to exclude some troublesome H's

12/27



Improving
Brooks'

theorem PI’OOf OUtllne

Landon
Rabern

e start with a minimal counterexample G

e for any induced subgraph H, A — 1 coloring G — H leaves
a list assignment L on H where |L(v)| > deg(v) — 1

Construct a subgraph H for which such a list assignment can
always be completed.

Kierstead and

Kostochka's

proof

Problem solved .

Proct outline e we need H to have large degrees to get large lists, so H
Mozhan's lemma - “ "

e s— will be “dense

algorithm

e first, use minimality of G to exclude some troublesome H's

e run the following recoloring algorithm to construct H

12/27
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Partitioned colorings

Definition

Let G be a vertex critical graph. Let a>1and nr1,...,r; be
such that 14+ . ri = x(G). By a (r1,. .., ra)-partitioned
coloring of G we mean a proper coloring of G of the form

{{X}, L117 L12, cey L1r17 L21, L22, ceey L2,—2, ooy Lala La2, cey Lara} ]

Here {x} is a singleton color class and each Lj; is a color class.
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Mozhan's Lemma

Lemma (Mozhan 1983)

Let G be a vertex critical graph. Let a>1 and ny,...,r, be
such that 1+ . ri = x(G). Of all (r1,..., ra)-partitioned
colorings of G pick one minimizing

a ri
2| |ULs
i=1 j=1
Remember that {x} is a singleton color class in the coloring.
Put U; := i, L;j and let Zi(x) be the component of x in
G[{x} U Ui]. If dz,1(x) = ri, then Zi(x) is complete if r; > 3
and Zj(x) is an odd cycle if rj = 2.



Improving
Brooks'
theorem

Landon
Rabern

A prison
problem

Some
background

The
Ore-degree

Rephrasing
the problem

Solving the
rephrased
problem
Kierstead and
Kostochka's
proof

Problem solved
Proof outline
Mozhan's lemma

The recoloring
algorithm

A spectrum of
generalizations

Further
improvements

15 /27

The recoloring algorithm

e take a (L%J , [%W )-partitioned coloring minimizing
the above function
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e take a (L%J , (%W )-partitioned coloring minimizing
the above function
e prove that we may assume that x is a low vertex
e e by Mozhan's lemma, the neighborhood of x in each part
Kowochia’s induces a clique or an odd cycle
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The recoloring algorithm

e swap x with a low vertex xj in the right part
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Proof outline
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The recoloring
algorithm

e use the fact that you wrapped around to show that there
are many edges between the two cliques
e we have now constructed the desired large “dense”
17)27 subgraph
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e the parameter Ag has already been investigated by Stacho
under the name A
Definition (Stacho 2001)
For a graph G define
The gnerales Ao(G) := max min{d(x),d .
0(6) = max min{d(x).d(y)}
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X < max{w, Ap}.

osincetez%+1,weseethatt6—>ooase—>0

e thus, tp does not exist and the tempting thought cannot
hold

e there is a cute algorithmic way to see this assuming P#£NP
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assume the tempting thought holds for some t > 3

take any arbitrary graph with Ag > ¢

first, compute Ag in polynomial time

second, compute x such that x — 3 <9 < x + 3 in
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whether or not xy < Ag for graphs with Ay > ¢
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A polynomial-time algorithm

assume the tempting thought holds for some t > 3
take any arbitrary graph with Ag > ¢
first, compute Ag in polynomial time

second, compute x such that x — % <9< x+ % in
polynomial time

ifx2A0+%,thean19>Ao and hence y = Apg+1
if x < Ag+ 3, then w <9 < Ag+ 1, and hence w < Ag
now, x < max{w,Ag} < Ay

we just gave a polynomial time algorithm to determine
whether or not xy < Ag for graphs with Ay > ¢

this is impossible unless P=NP
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Further X S max {w, AO, Z(A + 2)} o
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Every graph satisfies

2A
x < max {w,Ao, —1_5} .

3

The examples O, above show that this would be tight.
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