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Abstract

Cranston and Kim conjectured that if G is a connected graph with maximum degree A and
G is not a Moore Graph, then y,(G?) < A? —1; here Y, is the list chromatic number. We prove
their conjecture; in fact, we show that this upper bound holds even for online list chromatic
number.

1 Introduction

Graph coloring has a long history of upper bounds on a graph’s chromatic number x in terms of
its maximum degree A. A greedy coloring (in any order) gives the trivial upper bound x < A+1.
In 1941, Brooks [4] proved the following strengthening: If G is a graph with maximum degree
A > 3 and clique number w < A, then x < A. In 1977, Borodin and Kostochka [3] conjectured
the following further strengthening.

Conjecture 1 (Borodin-Kostochka Conjecture [3]). If G is a graph with A > 9 and w < A—1,
then x < A —1.

Figure 1: The hypothesis A > 9 in the Borodin—Kostochka Conjecture is best possible.

If true, this conjecture is best possible in two senses. First, the condition A > 9 cannot be
dropped (or even weakened), as shown by the following graph (See Figure . Let D; induce a
triangle for each ¢ € {1,...,5}; if |i — j| = 1 (mod 5), then add all edges between vertices of
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D; and D;. This yields an 8-regular graph on 15 vertices with clique number 6 and chromatic
number 8; it would be a counterexample to the conjecture if we weakened the hypothesis A > 9.
Similarly, even if we require w < A — 2, we cannot conclude that y < A — 2, as is show by
the join of a clique and a 5-cycle. For each A € {3,...,8}, examples are known [7| [I3] where
w < A —1 but x = A. Kostochka has informed us that already in 1977 when he and Borodin
posed Conjecture [, they believed the following stronger “list version” was true; however they
omitted this version from their paper, and it appeared in print [7] only in 2013. We define the
list chromatic number, denoted Xy, in Section 2 below.

Conjecture 2 (Borodin-Kostochka Conjecture (list version)). If G is a graph with A > 9 and
w<A-=-1, then xy <A—1.

The purpose of this paper is to prove the following conjecture of Cranston and Kim [5]. In
fact, we will prove this conjecture in the more general setting of online list coloring. It is easy
to show, as we do below, that Conjecture [2] implies Conjecture [3}

Conjecture 3 (Cranston-Kim [5]). If G is a connected graph with maximum degree A > 3, and
G is not a Moore graph, then xo(G?) < A% —1.

A Moore graph is a A-regular graph G on A? + 1 vertices such that G?> = Ka2,; the sole
example when A = 3 is the Petersen graph. Hoffman and Singleton [12] famously proved that
Moore graphs exist only when A € {2,3,7,57}. When A € {2,3,7} Moore graphs exist and are
known to be unique, and when A = 57 no Moore graph is known.

In 2008 Cranston and Kim [5] proved Conjecturevvhen A = 3, and suggested that a similar
but more detailed approach might prove the whole conjecture. As mentioned above, it is easy
to show that Conjecture [3]is implied by Conjecture 2] The key is the following easy lemma at
the end of [5]: If G is connected and is not a Moore graph and G has maximum degree A > 3,
then G2 has clique number at most A? — 1. The proof is short once we have a result of Erdds,
Fajtlowicz, and Hoffman [II] stating that a “near-Moore graph”, i.e., a A-regular graph such
that G2 = K2, exists only when A = 2. For details, see the start of the proof of the Main
Theorem.

We note that recently Conjecture [3] was generalized to higher powers. Let M denote the
maximum possible degree when a graph of maximum degree k is raised to the dth power, i.e.,
vertices are adjacent in G? if they are distance at most d in G. Miao and Fan [I4] conjectured
that if G is connected and G¢ is not K M+1, then we can save one color over the bound given
by Brooks Theorem, i.e., x(G?) < M — 1. This was proved by Bonamy and Bousquet [2] in the
more general context of online list coloring.

The following conjecture is due to Wegner [20], in the late 1970’s. It is a less well-known
variant of Wegner’s analogous conjecture when the class Gy is restricted to planar graphs.

Conjecture 4 (Wegner [20]). For each fized k, let Gy, denote the class of all graphs with max-
imum degree at most k and form G by taking the square G* of each graph G in Gy. Now
maxpegz X(H) = maxyegz w(H).

Wegner in fact posed a more general conjecture for all powers of Gi; however, here we
restrict our attention to Conjecture 4} specifically for small values of k. For each H € G2, we
have A(H) < k2, so Brooks’ Theorem implies that x(H) < k? unless some component of H is
Kj2.q1. For k = 1 Wegner’s Conjecture is trivial. For k € {2,3,7} it is easy; in each case Gi
contains a Moore graph G, and letting H = G2, we have H = K21, s0 x(H) = w(H) = k> +1.
Thus, the first two open cases of Conjecture [d] are k = 4 and k = 5. Our Main Theorem shows
that every graph G in G, satisfies x¢(G?) < 15 and every graph G in G5 satisfies x,(G?) < 24.
Matching lower bounds are shown in Figure 2: we have G; € G4 with w(G?) = 15 and G2 € G5
with w(G3) = 24. Both graphs were discovered by Elspas ([9] and p. 14 of [I5]) and are known to
be the unique graphs G with A € {4,5} and G2 = Ka>_;. This confirms Wegner’s Conjecture
when k =4 and k = 5.
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Figure 2: On the left is a 4-regular graph G such that G2 = K;s.
On the right is a 5-regular graph Go such that G3 = Ko.

Rather than coloring, or even list coloring, this paper is about online list coloring, a gener-
alization introduced in 2009 by Schauz [16] and Zhu [22], and the online list chromatic number,
Xp, also called the paint number. We give the definition in Section [2] but for now if you are
unfamiliar with y,,, you can substitute x, (or even x) and the Main Theorem remains true. Our
main result is the following.

Main Theorem. If G is a connected graph with mazimum degree A > 3 and G is not the
Peterson graph, the Hoffman-Singleton graph, or a Moore graph with A = 57, then x,(G?) <
A? —1.

We conclude this section with the following conjecture, which generalizes our Main Theorem
as well as Conjecture

Conjecture 5 (Borodin-Kostochka Conjecture (online list coloring version)). If G is a graph
with A >9 and w < A —1, then xp, <A —1.

The structure of the paper is as follows. In Section [2| we give background and definitions.
In Section 3] we prove the Main Theorem, subject to a number of lemmas about forbidden
subgraphs in a minimal counterexample. In Section 4] we prove the lemmas that we deferred in
Section[3} Finally, in Section[5] we generalize the online list chromatic number to the Alon-Tarsi
number, and extend our Main Theorem to that setting.

2 Preliminaries

Here we give definitions and background. Most of our terminology and notation is standard.
We write A\ B for AN B. If H is a subgraph of G, then G \ H means G[V(G) \ V(H)], that
is G with the vertices of H deleted. For graphs G and H, the join GV H is formed from the
disjoint union of G and H by adding all edges with one endpoint in each of V(G) and V(H).
For any undefined terms, see West [21].

A list size assignment f : V(G) — Z* assigns to each vertex in G a list size. An f-
assignment L assigns to each vertex v a subset of the positive integers L(v) with |L(v)| = f(v).
An L-coloring is a proper coloring ¢ such that ¢(v) € L(v) for all v. A graph G is f-list colorable
(or f-choosable) if G has an L-coloring for every f-assignment L. In particular, we are interested
in the case where f(v) = k for all v and some constant k. The list chromatic number of G or



choice number of G, denoted x¢(G), or simply x, when G is clear from context, is the minimum
k such that G is k-choosable. List coloring was introduced by Vizing [19] and Erdés, Rubin,
and Taylor [I0] in the 1970s. Both groups proved the following extension of Brooks’ Theorem.
If G is a graph with maximum degree A > 3 and clique number w < A, then y, < A.

The next idea we need came about 30 years later. In 2009, Schauz [16] and Zhu [22] inde-
pendently introduced the notion of online list coloring. This is a variation of list coloring, in
which the list sizes are determined (each vertex v gets f(v) colors), but the lists themselves are
provided online by an adversary.

We consider a game between two players, Lister and Painter. In round 1, Lister presents the
set of all vertices whose lists contain color 1. Painter must then use color 1 on some independent
subset of these vertices, and cannot change this set in the future. In each subsequent round
k, Lister chooses some subset of the uncolored vertices to contain color k in their lists, and
Painter chooses some independent subset of these vertices to receive color k. Painter wins if he
succeeds in painting all vertices. Alternatively, Lister wins if he includes a vertex v among those
presented on each of f(v) rounds, but Painter never paints v.

A graph is online k-list colorable (or k-paintable) if Painter can win whenever f(v) = k
for all v. The minimum k such that a graph G is online k-list colorable is its online list
chromatic number, or paint number, denoted x,. A graph is d;-paintable if it is paintable when
f(v) = d(v) — 1 for each vertex v. In [6], the authors introduced d;-choosable graphs, which
are the list-coloring analogue. Interest in d;-paintable graphs owes to the fact that none can be
induced subgraphs of a minimal graph with maximum degree A that is not (A — 1)-paintable.
In particular, if G is a minimal counterexample to our Main Theorem, then G2 contains no
induced d;-paintable subgraph.

Lemma 1. Let G be a graph with maximum degree A and H be an induced subgraph of G that
is dy-paintable. If G\ H is (A — 1)-paintable, then G is (A — 1)-paintable.

Proof. Let G and H satisfy the hypotheses. We give an algorithm for Painter to win the
online coloring game when f(v) = A — 1 for all v. Painter will simulate playing two games
simultaneously: a game on G \ H with f(v) = A — 1 and a game on H with f(v) =dg(v) — 1.
Let Sy denote the set of vertices presented by Lister on round k. Painter first plays round k
of the game on G \ H, pretending that Lister listed the vertices Sy \ H. Let I} denote the
independent set of these that Painter chooses to color k.

Let S}, = (Sx NV (H)) \ I, the vertices of H that are in Sj, and have no neighbor in I;. Now
Painter plays round k of the game on H, pretending that Lister listed S},. Each vertexin V/(G\H)
will clearly be listed A—1 times. Consider a vertex v in V(H). It will appear in Si\ S}, for at most
dg(v) —dp(v) rounds. So v will appear in S}, for at least (A —1) — (dg(v) —du(v)) > dg(v) —1
rounds. Now Painter will win both simulated games, and thus win the actual game on G. [

When the graph G in Lemmais a square, we immediately get that G\ H is (A—1)-paintable,
as we note in the next lemma.

Lemma 2. Let G be a graph with mazimum degree A and let H be an induced subgraph of G2.
If H is dy-paintable, then G? is dy-paintable. If there exists v with dg=(v) < A% —1, then G? is
(A% — 1)-paintable.

Proof. We prove the first statement first. Let V = V(G) and Vi = V(H). Clearly a graph is
di-paintable only if each component is. So we assume that G?[V;] is connected. For simplicity,
we assume also that G[V] is connected. If not, then some vertex v has neighbors in two or more
components of G[V4]. We simply add v to Vj, since we can color v first (when it still has at
least two uncolored neighbors).

Form G’ from G by contracting G[V1] to a single vertex r. Let T be a spanning tree in G’
rooted at r. Let o be an ordering of the vertices of G\ H by nonincreasing distance in 7" from r.



Each time that Lister presents a list of vertices, Painter chooses a maximal independent subset
of them, by greedily adding vertices in order o. Each vertex v € V' \ V; is followed in o by the
first two vertices on a path in T from v to r. Thus v will be colored. We now combine strategies
for G2\ H and H as in the proof of Lemma I}

Now we prove the second statement, which has a similar proof. Suppose there exists v with
dg2(v) < A? — 1. As before we order the vertices by nonincreasing distance in some spanning
tree T from v, and we put v and some neighbor u last in o. The difference now is that even for u
and v we are given A2 — 1 colors. Since dg2(v) < A% — 1, either (i) v lies on a 3-cycle or 4-cycle
or else (ii) dg(v) < A or v has some neighbor u with dg(u) < A; in Case (ii), by symmetry we
assume dg(v) < A. In Case (i), dg2(u) < A% — 1 for some neighbor u of v on the short cycle
and by assumption dg2(v) < A? — 1; so the two final vertices of o are u and v. In Case (ii), we
again have dg2(v) < A? — 1 and dg=(u) < A% — 1, so again u and v are last in o. O

The previous lemma implies that A% —1 < dg2(v) < A? for every vertex v in a graph G such
that G? is not (A? — 1)-paintable. A vertex v is high if dg=(v) = A2, and otherwise it is low.
The proof of Lemma [2] proves something slightly more general, which we record in the following
corollary.

Corollary 3. Let G be a graph with maximum degree A and let H be an induced subgraph of
G?. Let f(v) = d(v) — 1 for each high vertez of G* and f(v) = d(v) for each low vertex. If H
is f-paintable, then G? is (A% — 1)-paintable.

Now we will introduce the Alon-Tarsi Theorem, but we need a few definitions first. Let G be
a graph and let D be a digraph arising by orienting the edges of G. A circulation is a subgraph
of D in which each vertex has equal indegree and outdegree; circulations are also called eulerian
subgraphs. The parity of a circulation is the parity of its number of edges. For a digraph 5, let
EE(D) (resp. EO(D)) denote the set of circulations that are even (resp. odd).

Theorem A (Alon and Tarsi [1]). For a digraph D, if |[EE(D)| # |EO(D)|, then D is f-
choosable, where f(v) =1+ dp(v) for all v.

The proof that Alon and Tarsi gave was algebraic and not constructive. In their paper, they
asked for a combinatorial proof. This was provided by Schauz [1§], in the more general setting
of paintability. His proof relies on an elaborate inductive argument. The argument does yield
a constructive algorithm, although in general it may run in exponential time. In [I7], Schauz
proved an online version of the combinatorial nullstellensatz from which the paintability version
of Alon and Tarsi’s theorem can also be derived.

Theorem B (Schauz [I8]). For a digraph D, if |[EE(D)| # |EO(D)|, then D is f-paintable,
where f(v) =1+ dg(v) for all v.

Our main result relies heavily on forbidding d;-paintable subgraphs. For many of the smaller
di-paintable graphs that we need, we give direct proofs. However, for some of the larger d;-
paintable graphs, particularly the classes of unbounded size, our proofs of d;-paintability use
Theorem B.

3 Proof of Main Theorem

In this section we prove our main result, subject to a number of lemmas on forbidden sub-
graphs, which we defer to the next section. We typically prove that a subgraph is forbidden by
showing that it is dj-paintable. If a copy of a subgraph H in G2 contains low vertices, then
this configuration is reducible as long as H is f-paintable, where f(v) = dy(v) — 1 for each
high vertex v and f(w) = dg(w) for each low vertex w. For many of the graphs, we give an
explicit winning strategy for Painter. In contrast, for some of the graphs, particularly those



of unbounded size, we don’t give explicit winning strategies. Instead, we show that they are
di-paintable via Schauz’s extension of the Alon-Tarsi Theorem (Theorem Bj).

Main Theorem. If G is a connected graph with mazimum degree A > 3 and G is not the
Peterson graph, the Hoffman-Singleton graph, or a Moore graph with A = 57, then x,(G?) <
A% 1.

Proof. Let G be a connected graph with maximum degree A > 3, other than the graphs excluded
in the Main Theorem. Assume that G? is not (A? — 1)-paintable. By Lemma [2] if there exists
v € V(G) with dgz(v) < A% — 1, then G? is (A? — 1)-paintable. So G is A-regular and has
girth at least 4. Further, no vertex of G lies on two or more 4-cycles. It will be helpful in what
follows to show that w(G?) < A2 —1.

Clearly A(G?) < A?. Further, w(G?) = A? +1 only if G> = K2, ;. Hoffman and Singleton
[12] showed this is possible only if A € {2,3,7,57}; such a graph G is called a Moore graph.
When A € {2,3, 7}, the unique realizations are the 5-cycle, the Peterson graph, and the Hoffman-
Singleton graph. When A = 57, no realization is known. These are precisely the graphs excluded
from the theorem. Now we consider the case w(G?) = A% Erdés, Fajtlowicz, and Hoffman [I1]
showed that the only graph H such that H? = K a(m)? is Cy. Cranston and Kim noted that if
H? is not a clique on at least A? vertices, then in fact w(H?) < A% — 1. For completeness, we
reproduce the details.

Suppose that w(G?) = A2, and let U be the vertices of a maximum clique in G2. The result
of Erdos, Fajtlowicz, and Hoffman implies that U is not all of V. Choose v,w € V with v € U,
w ¢ U and v adjacent to w. Since dgz2(v) = A% and w ¢ U, every neighbor of w must be in U.
Applying the same logic to these neighbors, every vertex within distance 2 of w must be in U.
But now we can add w to U to get a larger clique in G2. This contradiction implies that in fact
w(G?) < A% -1.

Two vertices are linked if they are adjacent in G2, and otherwise they are unlinked. When
we write that vertices are adjacent or nonadjacent, we mean in G; otherwise we write linked or
unlinked. We write v <> w if v and w are adjacent, and v ¢ w otherwise.

Case 1: G has girth 4

Let C be a 4-cycle with vertices vy, ...,vs, and let C = V(C). It is helpful to note that
every v; is low. We need two lemmas. These were first proved in [§] for list coloring, and we
generalize them to online list coloring in Lemmas [5] and [} The following two configurations in
G? are reducible: (A) K, V Ky where some vertex w € V(Ky) is low and (B) K3 V Ky where
some vertices w € V(K3) and z € V(K>) are both low.

Note that G?[C] = K4. This implies that every w adjacent to some v; € C must be linked
to all of C. Suppose not, and let w be adjacent to vy and not linked to v3. Now G?[C U {w}] &
K3 V Ky, and every v; is low; this is (B), which is forbidden. Now suppose that w; and wy
are vertices adjacent to v; and v;, respectively. We must have w; linked to ws, since otherwise
G?[C U {wy,wo}] is (A), which is forbidden.

Now let x be a vertex at distance 2 from vy and not adjacent to any v;; let w; be a common
neighbor of v; and x. Since w; is linked to vs, they have a common neighbor ws3. Now x is linked
to v1, wy, and ws. To avoid configuration (B), x must be linked to all of C. Thus, all vertices
within distance 2 of v; must be linked to all of C. Now every pair of vertices = and y that are
both within distance 2 of v; must be linked; otherwise G2[C U {z,y}] is (A). So the vertices
within distance 2 of v1 induce in G2 a clique of size A%, which contradicts that w(G?) < A% —1.

Case 2: G has girth at least 5

Let g denote the girth of G. First suppose that g = 6, and let U be the vertices of a 6-cycle.
Note that G?[U] = Cg, since girth 6 implies there are no extra edges. Since C? is d;-paintable,
by Lemma [ we are done by Lemma [2}

Suppose g = 7. Let U denote the vertices of some 7-cycle in GG, with a pendant edge at
a single vertex of the cycle. Because G has girth 7, G?[U] has only the edges guaranteed by



its definition. We show in Lemma that G2%[U] is d;-paintable. So again, we are done by
Lemma 2

Suppose instead that g > 8. Let U = {v1,...,v4, w1, ws} be the vertices of some g-cycle
in G together with pendant edges viw; and vsws. If g > 9, then G?[U] has only the edges
guaranteed by its definition. If g = 8, then G?[U] has the edges guaranteed by its definition as
well as possibly the extra edge wiws. For each girth g at least 8, we show in Lemma and
Lemma [20| that G2[U] is d;-paintable. So again, we are done by Lemma

Now we consider girth 5. Our approach is similar to that for girth 4, but we must work harder
since we don’t necessarily have any low vertices. Let C be a 5-cycle with vertices vy, ..., vs.
Let k = A — 2. For each i, let V; denote the neighbors of v; not on C. Let C = V(C) and
let D = U2_,V;. Each vertex of D is linked to either 5, 4, or 3 vertices of C. We call these
By-vertices, Bj-vertices, and Bs-vertices, respectively (a B;-vertex is unlinked to i vertices of
C). We will consider four possibilities for the number and location of each type of vertex. In
each case we find a dq-paintable subgraph. Let L denote the subgraph G[D]. Since G has girth
5, we have A(L) < 2. Each vertex w with dr(w) = 2 — i is a B;-vertex (for ¢ € {0,1,2}).

Suppose that G has two Bj-vertices w; and wy and they are unlinked with distinct vertices
in C. Let H = G*[C U {wy,wsy}]. If wy and wy are linked, then H = K3V Cy D Ky V Cy, which
is dy-paintable, by Lemma If instead wy; and wy are unlinked, then H = K3 V Py, which is
also di-paintable, by Lemma So we assume that all Bi-vertices are unlinked with the same
vertex v € C. As a result, each Bj-vertex is an endpoint of a path of length 3 (mod 5) in L,
for otherwise the two endpoints of the path are unlinked with different vertices in C. Since the
number of odd degree vertices in any graph is even, here the number of Bj-vertices is even.

Case 2.1: G has a Bj-vertex w; and a By-vertex ws.

Let H = G?[C U {w1,ws2}]. Suppose the four vertices of C linked to w; include the three
vertices of C linked to ws. If wy and ws are linked, then H = K3V Py, and if wy and ws are
unlinked, then H = K3V (K7 + P3). In each case, H is d;-paintable, by Lemmas [11] and
respectively.

Suppose instead that the four vertices of C' linked to w; do not include all three vertices of
C linked to wy. If wq is linked with ws, then H D K5V Cy4, which is di-paintable by Lemma
If wy is unlinked with ws, then H is again d;-paintable, by Lemma Thus, G? cannot contain
both Bj-vertices and Bs-vertices.

Case 2.2: G has no Bj-vertices, but only some Bs-vertices, and possibly also
By-vertices.

Now L consists of disjoint cycles, each with length a multiple of 5. This implies that each
V; contains the same number of Bs-vertices; by assumption this number is at least 1. We call a
pair of Bs vertices with distinct cycle neighbors near if their cycle neighbors are adjacent and
far if their cycle neighbors are nonadjacent. If any pair of far By-vertices are linked, then G has
a dy-paintable subgraph, by Lemmal[I3] If any pair of near Ba-vertices are linked, then, together
with their adjacent cycle vertices, they induce K5 V Cy4, which is dj-paintable by Lemma
Thus, we consider the subgraph induced by C and 3 non-successive Ba-vertices, say with cycle
neighbors v1,vs,v4. Each such subgraph is d;-paintable, by Lemma Combining this with
Case 2.1, we conclude that G contains no Bs-vertices.

Case 2.3: G has Bj-vertices and possibly By-vertices.

Recall that G has an even number of Bj-vertices and they are all unlinked with the same
vertex. By symmetry, assume that G has Bj-vertices wy € Vo and w3 € V3 and they are both
unlinked with vs. We will find two disjoint pairs of nonadjacent vertices, such that all four are
linked with C — vs.

Since ws is a Bi-vertex, it is the endpoint of some path in L; let wy € V; be the neighbor of
ws on this path. We will show that w; is unlinked with some vertex in D.

Recall that |D| = 5k. Suppose that w; is linked to each vertex of D. Since dr(w;) = 2
and dr(ws) = 1, at most 3 of these 5k — 1 vertices linked with w; can be reached from w; by



following edges in L. Clearly w; is linked to the other k — 1 vertices of V3. Now for each vertex
w of the remaining (5k — 1) — 3 — (k — 1) = 4k — 3 vertices in D, w; must have a common
neighbor = with w and z ¢ D UC. Furthermore, each such common neighbor x can link u to
at most 4 of these vertices (at most one in each other V;, since the girth is 5). However, this
requires at least [#] = k additional neighbors of w;, but we have already accounted for 3
neighbors of wy. Thus, w is unlinked with some vertex y € D.

Let z be a By vertex distinct from y. Now z and vs are unlinked and w; and y are unlinked.
But every vertex of {w,vs,y, 2} is linked to C —vs. Thus G?[(C —vs)U{w1,vs,y,2}] = K4V H,
where H contains disjoint pairs of nonadjacent vertices. So K4V H is d;-paintable, by Lemma [7}

Case 2.4: D has only By-vertices.

Let H = G?[C UD]. We will show that if H is not a clique, then we can choose a different
5-cycle and be in an earlier case. Suppose that H is not a clique. Since D is linked to C and
G? [C] = K5, we must have wy, ws € D with wy and wy unlinked. By symmetry, we have only
two cases.

First suppose that w, € V; and wy € V5 and w; and ws are unlinked. Since w is a Bp-vertex,
we have wz € V3 with w; <> ws. Consider the 5-cycle wyvivavsws. Now wy is not linked to wy,
which makes ws not a By-vertex for that 5-cycle. So we are in Case 2.1, 2.2, or 2.3 above. Now
suppose instead that wy € Vi and ws € V3 and w; and w3 are unlinked. Now we pick some
wh € V3 with wy <> w} and consider the 5-cycle wyvivavsw}. Since ws and w; are unlinked, ws
is not a By-vertex for this 5-cycle, so we are in Case 2.1, 2.2, or 2.3 above. Hence G?[C U D]
must be a clique.

To link all vertices in D, we must have k(k — 1) additional vertices in G, at distance 2 from C;
call the set of them F. We see that |F| > k(k — 1) as follows. All (52k) pairs of vertices in D are

linked. The 5(]2“) pairs contained within a common V; are linked via vertices of C. Each of the
5k vertices is linked with exactly 4 vertices via edges of L. The remaining links all must be due
to vertices of F, and each vertex of F can link at most (g) = 10 pairs of vertices in D (at most
one vertex in each V;, since G has girth 5). Thus |F| > ((52k) - 5(];) - 5k(4)/2)/(g) =k(k—1).
If any vertex € F has fewer than exactly one neighbor in each V;, then some pair of vertices
in D will be unlinked. Thus, each x € F has exactly one neighbor in each V;. This implies that
F is linked to C, and hence that |F| = k(k — 1). We will show that every pair of vertices in
CUDU F is linked.

Suppose there exists w € D and z € F with w and z unlinked. By symmetry, we assume
w € V7. There exist wy € V7 and wy € Vo with <+ w; and x <> ws. Now consider the 5-cycle
Twvvaws. Since w and x are unlinked, w is not a By-vertex for that 5-cycle. This puts us in
Case 2.1, 2.2., or 2.3 above. So F must be linked to D.

Finally suppose there exist x1,x2 € F with 1 and x5 unlinked. Now there exist wy,ws € V3
with x1 <> wy and z9 <> wy. Since G has girth 5, we have z1 4 ws. And since z; is linked with
wa, they have some common neighbor y € D U F. Now consider the 5-cycle xjwyviwey. Since
x1 and xo are unlinked, x5 is not a By-vertex for this 5-cycle. Hence, we are in Case 2.1, 2.2, or
2.3.

Thus, all vertices of C UD U F are pairwise linked. Now |[CUDUF|=5+5k+k(k—1) =
k* + 4k +5 = (k+2)* +1 = A% + 1. This contradicts that w(G?) < A? — 1 and completes the
proof. O

We note that many of the cases of the above proof actually prove that G2 is d;-paintable,
and hence has paint number at most A(G?) — 1. In particular, this is true when G has girth 6,
7, or at least 9. Probably with more work, we could also adapt the proof to the case when G
has girth 8. The Conjecture that G2 is (A(G?) — 1)-paintable unless w(G?) > A(G?) is a special
case of Conjecture |5 The main obstacle to proving this stronger result is the case when G has
girth at most 5, particularly girth 3 or girth 4.



4 Proofs of forbidden subgraph lemmas

In what follows, we slightly abuse the terminology of high and low vertices defined earlier. Now
a vertex is high if its list size is one less than its degree and low if its list size equals its degree.
Note that if a vertex v is high (resp. low) in G by our old definition, then it will be high (resp.
low) in each induced subgraph H by our new definition. A vertex is very low if its list size is
greater than its degree. When a vertex v in a graph G is very low, we may say that we delete v.
If G — v is paintable from its lists, then so is G. On each round, we play the game on G — v and
consider v after all other vertices, coloring it only if its list contained the color for that round
and we have colored none of its neighbors on that round. Recall that Sy denotes the vertices
with lists containing color k. We write E}, for the empty graph on k vertices, i.e., Fy = K. In
what follows, all vertices not specified to be low are assumed to be high.

4.1 Direct proofs
For pictures of the graphs in Lemmas [4] through [T2] see Figures [J] and [I0]in Section

Lemma 4. If G is K, — e with one degree 8 vertex high and the other vertices low, then G is
f-paintable.

Proof. Let vy, vy denote the degree 3 vertices, with v, low, and let wi, ws denote the degree 2
vertices. If wi,wy € S7, then color them both with 1. Now the remaining vertices are low and
very low, so we can finish. Otherwise, color some v; with 1, choosing v, if possible. Now at least
one w; becomes very low and the uncolored vy, is low, so we can finish. O

Lemma 5. If G is K3V FEy with a low vertex in the K3 and a low vertex in the Ey, then G is
f-paintable.

Proof. Denote the vertices of the K3 by vy, vs,vs, with v; low, and the vertices of Fs by wy, wo,
with wy low. If wy,ws € Sy, then color them both 1. Now v; becomes very low and vy and v3
each become low, so we finish greedily, ending with vy and v;. Suppose ws € Sy. If vy € 57 (or
v3 € S1, by symmetry), then color vy with 1. Now w; becomes very low (since S; 2 {w1,ws}),
and v, remains low, so we can finish greedily. If instead vy € S7 and va,v3 ¢ S, then color vy
with 1. Again w; becomes very low and vy and v3 become low, so we can finish greedily. The
situation is similar if S; contains only a single w;. Thus, wy ¢ S;. Since S1 # {w; }, some v; is
in S7. Use color 1 on v;, choosing vy or vs if possible. What remains is Ky — e with one degree
3 vertex high and all others low (or very low). So we finish by Lemma O

Lemma 6. If G is K4V Fy with a low vertex in the Ky, then G is f-paintable.

Proof. Denote the vertices of the K4 by vy, ...,vs, with v; low and the vertices of Fs by w1, wo.
If wi,wy € S7, then color them both 1. Now v; becomes very low and the other v; become
low, so we can finish by coloring greedily, with v; last. So S; contains at most one w;, say ws.
Suppose S; contains a v; other than v;. Color v; with 1. Now w; becomes low, v; remains
low, and the other vertices remain high. So we can finish the coloring by Lemma [5| If the only
v; in Sy is vy, then color it 1. Now the other v; become low, so again we finish by Lemma @
Finally, if the only vertex in S7 is ws, then color it 1. Now vy becomes very low, and the other
v; become low, so again we can finish by coloring greedily, ending with a low vertex and a very
low vertex. O

Lemma 7. If G is K4V H with H containing two disjoint nonadjacent pairs, then G is dy-
paintable.



Proof. We may assume |H| = 4. Denote the vertices of K by v1,...,v4 and the vertices of H
by w1, ..., ws with wy ¢ we and ws ¥ wy. If wy,ws € S1, then color wy and we with 1. Now
every v; becomes low, so we can finish by Lemmal[6} Similarly, if ws,wy € Si.

If some v; is missing from Sy, then use 1 to color either some v; or some wy. In the first case,
we finish by Lemma [5] and in the second by Lemma[6] So color vy with 1. Now, by symmetry,
wa, wy ¢ S1, so they each become low. If wy,wy € Sa, then color them both with 2. Now every
v; becomes low, so we can finish by Lemma Similarly if ws, w4 € S2. So Sy contains at most
one of wy,ws and at most one of ws, ws. If So contains no v;, then we color some w; with 2.
This makes every v; low. Now we can finish by Lemma [5| So S; contains some v;, say vs.

Color vs with 1. Recall that S; was missing at least one of w1, w2 and at least one of w3, wy.
(i) If wo, wy ¢ So, then they both become very low, so we can delete them. This in turn makes
vy and v9 both very low, so we can finish greedily. (ii) If wq, w3 ¢ S, then wy becomes very low,
so we delete it. Now vy and vy become low; also w3 and wy4 are low. Since vy, v9, w3, w4 induce
K4 — e with all vertices low, we can finish by Lemma [4 By symmetry, this handles the case
wy,wy & So. (iil) If wy,ws ¢ Sa, then the uncolored vertices induce Ky V H, with all vertices
of H low. Now consider S3. If S5 contains a nonadjacent pair in H, then color them both
3. This makes v; and vy low, so what remains is K4 — e with all vertices low. We now finish
by Lemma (4] Similarly, if S3 contains no v;, then color some w; with 3, and we can finish by
Lemma @l So S3 contains some v;, say vs, and we color vy with 3. Now one of wy, ws becomes
very low and one of ws, w4 becomes very low. We can delete the very low vertices, which in
turn makes v; very low. We can now finish greedily, since what remains is a 3-vertex path with
two low vertices and a very low vertex. O

We won’t use Lemma [§] in the proof, but it is generally useful so we record it here.

Lemma 8. If G is K¢ V E3, then G is di-paintable.

Proof. Denote the vertices of K¢ by vy, ..., vs and the vertices of 3 by w1, we, ws. If wy, wa, w3 €
S1, then color wy,ws,ws all with 1. Now all v; are very low, so we finish greedily. If no v; ap-
pears in 57, then color some w; with 1. Now all the v; are low, so we can finish by Lemma @
So some v; is in S7, say vg. Color vg with 1. This makes some w; low, say ws. Repeating this
argument, we get by symmetry that vs € S and S5 is missing some w;. If S, is missing w3, then
color v with 2. Now w3 becomes very low, so we delete it. This in turn makes all uncolored
vk low. Now we can finish by Lemma @ So instead Ss is missing (by symmetry) wy. Again
repeating the argument, we must have vy € S3 and w; ¢ Ss; otherwise we finish by Lemma
or Lemma@ Now we color vy with 3. What remains is K3 V F3 with every w; low.

Now consider Sy. If wy,ws, w3 € Sy, then color them all with 3. Now all remaining vertices
become very low, so we finish greedily. Suppose instead that w; € Sy and v; ¢ S4. Color wy
with 4. What remains is K3 V Eo with both w; low and some v; low. So we can finish by
Lemma A similar approach works for any w; € Sy and v; ¢ Si. So instead, assume by
symmetry that v; € Sy and wy ¢ Sy. Color vy with 4. Now w; becomes very low, so we delete
it. This in turn makes vy and vs low. Now we can finish by Lemma [ O

Lemma 9. If G is CZ, then G is dy-paintable.

Proof. Denote the vertices of the 6-cycle by v1,...,vg in order. So wv; is adjacent to all but
V(i+3) mod 6- Comnsider Sy. If S; contains some nonadjacent pair, then color them with 1. What
remains is Cy with all vertices low, so we can complete the coloring since Cj is 2-paintable.
So assume that S; contains no nonadjacent pairs. Now without loss of generality, we assume
S1 = {v1,v2,v3}, since adding vertices to S; only makes things harder to color, as long as S;
induces a clique; we may also need to permute a nonadjacent pair. Color v; with 1.

Now v5 and vg become low. Consider Sy. Again, if S5 contains a nonadjacent pair, then we
color both vertices with 2 and can finish greedily since all remaining vertices are low, except
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for one that is very low. If vy, v3 € Ss, then color vy with 2. Now vg becomes very low and vs
remains low, so we can finish greedily. So S, misses at least one of vo,v3. Suppose vy € Ss.
Color vy with 3. What remains is C4. If vg,v3 ¢ So, then all vertices are low, and we can
finish since C} is 2-paintable. Otherwise, vs or vg becomes very low and the other remains low.
Now we can finish greedily. So vy ¢ So. If vo € So, then color ve with 2. Now vs and vy
become low, so we can finish by Lemma[4] An analogous argument works if v3 € Sy. So assume
V9, V3,04 & Sa. Now color vs or vg with 2. Again we can finish by Lemma O

Lemma 10. If G is Ky V Cy, then G is dy-paintable.

Proof. Denote the vertices of Ko by vy, vs and the vertices of Cy by wy,...wy4 in order. If Sy
contains a pair of nonadjacent vertices, then color them both 1. What remains is Ky — e, with
all vertices low. So we can finish by Lemma[d So S; misses at least one of wy, w3 and at least
one of ws,wy. By symmetry, say it misses wy and ws. Suppose vy, vs ¢ S1. Now by symmetry
wz € S1, so color wz with 1. This makes each of ws,v,vs low. So what remains is K3 V Fy
with two low vertices in the K3 and a low vertex in the E,. Hence, we can finish by Lemma [5]

So instead (by symmetry) ve € S;. Color ve with 1. What remains is K7 V Cy with w; and
ws low. Consider S;. Again if Sy contains a nonadjacent pair, then we color them both 2, and
we can finish greedily. Suppose that ws € Sy. If wy ¢ So, then we color w3 with 4; now wy
becomes low, so we can finish by Lemma 4| If instead wy € So, then we ¢ S2. Now when we
color w3 with 2, wy becomes very low, so we can finish greedily. So assume ws, wyq ¢ So. If
v1 € Sy, then color vy with 1. What remains is C; with all vertices low. Now we can finish the
coloring since Cy is 2-paintable. The proof is similar to that for 2-choosability, so we omit it.
So assume that v; ¢ S. By symmetry, we have w; € Sy. Color w; with 2. What remains is
K4 — e with only w3 high. Hence we can finish by Lemma [ O

Lemma 11. If G K3V Py, then G is dy-paintable.

Proof. Let vy,vs,v3 denote the vertices of K3 and w1, ..., w4 denote the vertices of the P, in
order. If wy,ws € Si, then color them both 1. Now what remains is K3 V Fy with all but
one vertex low, so we can finish by Lemma An analagous strategy works if wg,wy € S7.
So assume S; misses at least one of wy, w3 and at least one of wy,wy. If S; misses vy, then
use color 1 on some w;, choosing wy or ws if possible. Again, we can finish by Lemma So
assume v; € S1. Now color v3 with 1. What remains is K5 V Py with at least two vertices of
the Py low. Consider Sy. If wy, w3 € Sy (or (wa, wy € S3), then color them both 2, and we can
finish greedily since all vertices are low except for one that is very low. If vy € Sy, then color it
with 2. Now in each case we can finish by repeatedly deleting very low vertices, possibly using
Lemma 4l So vy ¢ Sy (and by symmetry vz ¢ S). If possible use color 2 on w; or wy. This
leaves K3V E5 with enough low vertices to finish by Lemma |5} Finally, if wy, w4 ¢ Sa, then by
symmetry wg € S, so color so with 2. What remains contains a K4 — e with all vertices low,
so we can finish by Lemma [4] O

Lemma 12. If G is K3V (K + Ps), then G is di-paintable.

Proof. Let v1,v9,v3 denote the vertices of K3; let wy, wo, w3 denote the vertices of P3 in order,
and let wy be the K. If wi, w3 € S1, then color them both 1 and we can finish by Lemma
If instead wo,ws € S, then color them both 1, and again we can finish by Lemma If
Sy = {wy}, then color wy with 1. What remains is K3 V P; with all vertices of the K5 low.
Since K3V Py = K4V E5, we can finish by Lemma@ If wy; € S1 (or we € Sy or wy € S7) and
v3 ¢ S1, then color wy with 1. Again we can finish by Lemma [5| This implies that v € Sy.
Since v € S7, color vz with 1. Now at least one of w;,ws becomes low and at least one
of wy, ws becomes low. What remains is Ky V (K7 + P3), and by symmetry either (i) w; and
wq are low or (ii) w; and wy are low. Consider (i). If we ignore wy, then what remains is
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K>V P32 K3V Ey. Since wy and ws are low, we can finish by Lemma Instead consider (ii).
If wy,ws € Sy, then color them both with 2. What remains is K4 — e and all vertices are low,
so we finish by Lemma [l Suppose instead that ws,wy € S2. Color them both with 2, which
makes v; and ve low. If wy became very low, then we finish greedily. Otherwise w3 became low,
so we finish by Lemma[d] Now suppose v1 € S, and color v; with 2. We have four possibilities.
If we and w3 become low, then we can finish by Lemma [4] Similarly, if wy becomes very low,
we delete it; now vs becomes low, so we can finish by Lemma@ In the two remaining cases, we
can finish greedily by repeatedly deleting very low vertices. O

4.2 Proofs via the Alon-Tarsi Theorem

Our goal in each of the next lemmas is to prove that a certain graph is d;-paintable. For a
digraph D, we write diff(B) to denote \EE(B)| - |EO(%| In each case we find an orientation
such that each vertex has indegree at least 2 and diff (D) # 0. Now the Alon-Tarsi Theorem,
specifically the generalization in proves the graph is dj-paintable. To compute
diff (D), we typically want to avoid calculating |EE(B)| and \EO(éﬂ explicitly. Rather, we
look for a parity-reversing bijection that pairs elements of EE (D) with elements of EO(D). In
computing diff (D), we can ignore all circulations paired by such a bijection. We also use the
following trick to reduce our work. We explain it via an example, but it holds more generally.
Let contain a 5-clique and two other vertices w; and ws such that for each v either
dt(v) <3 or dt(v) =4 and wy,ws € NT(v). In computing diff(B), we want to restrict the
difference to the set of circulations in which d*(w;) > 1 and d*(ws) > 1; call this diﬂ:"'(B). By
inclusion-exclusion, we have diff'(B) =diff (D) —diff (D —wq) —diff (D —ws) +diff (D —wq —ws).
So it suffices to show that the final three terms on the right side are 0. If any term were nonzero,
then, by the Alon-Tarsi Theorem, we would be able to color the corresponding subgraph from
lists of size at most 4. However, the subgraph contains a 5-clique, making this impossible. Thus,
each term is 0, and we have the desired equality. (In some cases we use a slight variation of this
approach, instead concluding that the induced subgraph H with diff(H) # 0 is d;-paintable.)
Finally, we combine this technique with the parity-reversing bijection mentioned above, by
restricting the bijection only to the set of circulations where d*(w;) > 1 and d*(wsz) > 1.

Figure 3: The orientation for Lemma
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Lemma 13. Let H be a 5-cycle vy, ...,vs with pendant edges at vy and vy, leading to vertices
wy and wy, respectively, and let wy and wy have a common neighbor x (off the cycle). Let
G = H? — z; now G is dy-paintable.

Proof. We orient G to form D with the following out-neighborhoods: N7¥t(v1) = {vg,v3},
N+(U2) = {wg, V4, 1}5}, N+(w2) = {Ul, w4}, N+(’U3) = {’Ug, wa, Wy, 1]5}, N+(’U4) = {’Ul, Vs, 1}5},
N*(wy) = {v4,v5}, N*(v5) = {v1}. See Figure 3]

We will show that diff(D) # 0. Since each vertex has at least two in-edges, this proves
that G is dj-paintable. Let R = {vzws,v3wy}. For any nonempty subset S of R, we must have
diff (D \ R) = 0. This is because each vertex on the 5-cycle has outdegree at most 3, so will
get a list of size at most 4. And clearly, we cannot always color K5 from lists of size at most
4. Thus, it suffices to count the difference, when restricted to the set A of circulations ? such
that vsws,vz3wy € T'.

Let be such a circulation. Note that vsvs, v3vs & ?, and thus vivs,v4vg € ? Now we
consider the 8 possible subsets of {w4vy, wavs,v4vs} in T. Clearly d*(wy) > 1 and d™~ (vs) < 1.
Also, we can pair the case wyv4,v4v5 € and wyvs ¢ with the case coming from its
complement. Thus, we can restrict to the case when wyvy € ? and vqvs ¢ (and we’re not
specifying whether wyvs is in or out). Now consider the directed triangle vivg, vovy, v4v1. We

can pair the cases when all or none of these edges are in ? Thus we may assume that either
exactly 1 or exactly 2 of these edges are in. Considering indegree and outdegree of vy shows

that we must have vivy € and vovy,vqv; ¢ T'. This implies wovy,v5v1 € T. Now we have
two ways to complete T'. We can have vows, wowy, wavs € T and vevy ¢ T or vice versa. Each
of these gives |E(?)| odd; thus, we get |diff(D)| = 2. O

!

Figure 4: The orientation for Lemma
Lemma 14. Let H be a 5-cycle vy, ...,vs with pendant edges at va, vy, and vs, leading to
vertices wy, wy, and ws, respectively. Let G = H?; now G is dy-paintable.
Proof. We orient G to form B with the following out-neighborhoods: N*(v1) = {va, wa, vs, w5},

N*t(v2) = {wz,v3,v5}, N*(wa) = {vz}, N*(v3) = {v1,v4}, NT(va) = {v1,v2,ws}, N (wy) =
{vs}, N*(v5) = {v3,v4, ws, w5}, N*(ws) = {vs}. See Figure [4]
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We will show that diff(B) # 0. Since each vertex has at least two in-edges, this proves
that G is di-paintable. If diff(B — wq) # 0, then we are done, since B — wsy is dj-paintable.

Thus, we can assume that diff (D — wq) = 0. Similarly, we can assume that diff(D \ S) = 0 for
every S C {ws, ws,ws}. Thus, it suffices to count the difference, when restricted to the set A of
circulations such that d™(ws) = 1, d*(wy) = 1, and d™(ws) = 1. Let T be such a circulation.
So wav3, wavs, wsvy € T'. Now dT(v3) = 2, so v3v1,v3v4 € T and vavs,vsvs ¢ T . In particular,
d=(v1) > 1,50 d"(vy) > 1.

Now we will pair some circulations in A via a parity-reversing bijection. Consider the paths
viwg and vive, vowsy. If a circulation contains all edges in one path and none in the other,
then we can pair it via a bijection. The same is true for the paths vyws and vivs5, v5ws. Since
1 <d*(v1) <2, and also d~(wz) = d~ (ws) = 1, the only way that 7' can avoid these cases is
if either (i) vive,viwe € T or (i) vivs,viws € T'. Before we consider these cases, note that in
each case vqv; € T'.

Case (i): Now we must have vyws, v1vs ¢ ? Note that vows ¢ ?, which implies vqvy ¢ ?
Also vovs € ? Further, d~(ws) = 1 implies vsws € T, which in turn yields vsvg, vswy ¢ T .
Finally, vqwy € T'. Thus, we have a unique (with an odd number of edges).

Case (ii): Now we must have viws, v1ve ¢ and also vsws ¢ T'. Note that vows € ?,
which implies that vsve € and also that vovs ¢ T'. Now we get that either (a) vsvs € T,
and thus vaws € ? and vswy ¢ ? or else (b) vswy € ? and vsvg,vawy ¢ T. Again, by a
parity-reversing bijection, we see that together these circulations contribute nothing to diff (A)
(in fact there is only one of each). Now combining Cases (i) and (ii), we get that |diff (4)| =1,

and in fact \diff(B)| = 1. Thus, G is d;-paintable. O

@%%5@
Q)

Figure 5: The orientation for Lemma

Lemma 15. Let H be a 5-cycle vy, ...,vs with pendant edges at vo and vs, leading to vertices
wy and ws, respectively, and let ws and vs have a common neighbor x (off the cycle). Let
G = H? — z; now G is dy-paintable.

Proof. We orient G to form D with the following out-neighborhoods: N (v1) = {va, wa, vs, ws},
N7T(vg) = {wa,vq,v5}, NT(ws) = {v3}, NT(v3) = {v1,v2, w5}, NT(vg) = {v1,v3,v5}, NT(v5) =
{vs}, N*(ws) = {vs,v5}. See Figure [5]

We will show that diff (D) # 0. Since each vertex has at least two in-edges, this proves that G
is dy-paintable. Note that for each nonempty subset S C {waq, w5}, we have diff (D \S) = 0, since
otherwise we can color the corresponding subgraph from lists of size 4, even though it contains
a 5-clique. So by inclusion-exclusion, we can restrict our count of diff to the set of circulations
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A where wo and ws each have positive indegree. Consider the paths vyws and vivg, vows. Let

be a circulation in A. If T' contains all edges of one path and none of the other, then we can
pair it via a parity-reversing bijection. So we assume we are not in these situations. Since 1%

has positive indegree, and hence indegree 1, we either have (i) vyws,vive € T and vows ¢
or (ii) vowsy € ? and viws, v1v0 ¢ T .
Case (i): viwa,vivg € and vowg ¢ ? Clearly wovs € ? Since d*(v1) = 2, we have

v3vy,v4v1 € T and vivs, viws ¢ T'. Suppose vsve € T'. Now also vavy, vavs, vsvs € T . Finally,
since ws has positive indegree, v3ws, wsvy, v4vz € T. The resulting circulation is even. Suppose
instead that vgvy ¢ T. If vous € T, then we get vsvs, v3ws, wsvy € T . The resulting circulation

is odd. If instead vovs ¢ T' and vovy € T', then we have three possibilities to ensure d* (ws) > 0.
Either vzws, wsvy, v4v5, V503 € OT V3Ws, W5Vyq, V4V3 € ? or v3ws, wsvs, vsvz € 1. Two of the
resulting circulations are odd and one is even. Thus in total for Case (i), we have one more odd
circulation than even.

Case (ii): vowy € ? and vjwa, vV1ve & ? We have vows € ?, which implies wovz € ?
and vzve € T'. This further yields vovy, vovs ¢ ? Again we will pair some of the circulations
in A via a parity-reversing bijection. Consider the paths vsws and v3vi,viws. If a circulation
contains all edges in one path and none in the other, then we can pair it via a bijection. Since
1 < d~(ws), the only way that T can avoid these cases is if either (a) viws € T and vzvy ¢
or (b) vgv; € T and vyws ¢ ? (and thus vsws € ? or (¢) vavy,viws,vsws € T'. Consider (a).
viws € implies v4v, € T, and thus wsvy € T'. We also have the option of all or none of
V3Ws, W5Vs, V5V3 1N % One of the resulting circulations is odd and the other is even. Consider
(b). Now wvzv; € and viws ¢ imply vivs € T, and thus vsvs € ? Now d*(ws) > 0

implies vsws, wsvy,v4v3 € T. The resulting circulation is odd. Consider (¢). Now we get
wsvs € T, which implies vsvg € T'. We also get wsvy € T, which implies vyvi € T'. The

resulting circulation is even. Thus in total for Case (ii), we have the same number of even and
odd circulations.

So combining Cases (i) and (ii), we have one more odd circulation than even. Thus diff(B) #
0, so G is dp-paintable. O

Form }?n> from (P,)? by orienting all edges from left to right. Number the vertices as vy, . .., v,
from left to right. A subgraph ? C ]?,z is weakly eulerian if each vertex w ¢ {v1,v,} satisfies
dt(w) = d (w) and d*(vy) = d (v,) = i for some i € {1,2}. Let EFE;(P,) (resp. FO;(Py))
denote the set of even (resp. odd) weakly eulerian subgraphs where d¥(vi) = d~(v,) = .
Finally, let fi(n) = |EE;(P,)| — |EO;(P,)|. We will not apply the following lemma directly
to find d;-paintable subgraphs. However, it will be helpful in the proof for the remaining d;-
paintable graph, which includes cycles of arbitrary length.

Lemma 16. If n = 3k + j for some positive integer k and j € {—1,0,1}, then fi(n) = j and
forn >4 also fa(n) = —f1(n — 2), with f;(n) as defined above.

Proof. Rather than directly counting weakly eulerian subgraphs, we again use a parity-reversing
bijection. We first prove that fa(n) = —fi(n — 2). The complement of each De EEQ(E}) u
EOQ(P_);) has d*(v2) = d (v,—1) = 1 and d™ (w) = d~(w) for each w ¢ {v1,v2,vy_1,v,} (and
dt(v1) =d (vp) =d (v2) = dt(v,—1) = 0). Since ]77: has 2n — 3 edges, each digraph has parity
opposite its complement; so fao(n) = —f1(n — 2).

Now we determine f(n). Let T be a weakly eulerian subgraph with d*(v;) = 1. Consider
the directed paths vivs and vive,vovg. If contains all of one path and none of the other,
then we can pair 7' with its complement, which has opposite parity. If neither of these cases
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holds, then we must have vyvo, vovy € ? and v1v3, vovs ¢ ? This yields fi(n) = fi(n —3). It
remains only to check that f1(2) = —1, f1(3) =0, and f1(4) = 1. O

Figure 6: The orientation for Lemma [17| with n = 7.

Lemma 17. Cycle + one pendant edge: Let J, consist of an n-cycle on vertices v1,...,v, (in

clockwise order) with a pendant edge at v1 leading to vertex u. Form D, by squaring J, and
orienting the edges as follows. Orient edges v;v;+1 and V;vi2 away from v; (with subscripts
modulo n). Orient uv,, away fgm u and viu and vou toward u. We will show that diff (D,,) # 0
when n # 2 mod 3 (or else f(D, —u) #0).
— . . 5 . .

Proof. Form D,, as in the lemma. We will show that diff(D,,) # 0, and thus J? is d;-paintable.
We may assume that diff(D,, — u) # 0, for otherwise D,, — u is d;-paintable. Thus, restricting
our count to the set A of circulations with d*(u) = 1 does not affect the difference. Let T be a
circulation in A. Consider the directed paths viu and vive, vou. If ? contains all edges of one
path and none of the other, then we can pair % via a parity-reversing bijection. So we assume
we are not in one of those cases. Clearly ? contains u_vn> and exactly one of vyu and vou. Thus

either (i) vou € ? and viu,vivg € T or (i) viu,vivg € T and vou & T

Case (i): vou € T and viu,vivg € T . Since vou € 7 and v1ve ¢ ?, we must have v,vy € ?
and vqus,vovy ¢ T. By removi% edges uv,, v,v2,V2u, we see that these circulations are in
bijection with the circulations in D,, —u —wvy (with the parity of each subgraph reversed). If we

exclude the empty graph, these circulations are in bijection with those counted by fi(n—1), since
d*(v1) =1 and d~ (v3) = 1. Adding 1 for the empty subgraph, this difference is 1 — fi(n — 1),
and when we account for removing edges uv,,, v,vs, vou, the difference is —1 4+ f1(n — 1).

Case (ii): viu, v1v9 € ? and vou ¢ ? Since viu, v1v9 € ?, we must have v,,_1v1, v,v1 €
and vivg € T. After removing edges v, v1, v1u, uv,, we see that these circulations are in bijection
with the circulations in D,, —u —v,v1 —v1vs that contain edges v,,_1v1 and vive. We will count
the difference of these even and odd circulations, then multiply the total by —1 (to account for
removing edges viu, uvy,, v,v1) before adding to the total above.

We consider two subcases: v,v3 ¢ T and v,ve € T'. In the first case, these circulations are
in bijection with circulations of D,,_1 —u — vy (since d*(v,) = 0 and v; may be suppressed).
This difference is counted by fi(n —2). In the second case, the difference is counted by — fa(n),
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since we may think of deleting vive and replacing v,vs with v,v1; our path now starts at vs
and runs through v, to v; (and the parity is changed when accounting for vyvs).

Thus, the total difference in Case (ii) is counted by f1(n—2)— fa(n). Thus, the total difference
overall is counted by —1+ fi(n—1)— fi(n—2)+ fa(n) = =1+ f1(n—1) —2f1(n—2). Substituting
values from Lemma [I6] shows that this expression is non-zero when n # 2 mod 3. O

’8) N

N4

Figure 7: The orientation for Lemma |18 with n = 8.

Lemma 18. Cycle + two pendant edges: For n > 7, let J, consist of an n-cycle on vertices
V1,...,0p (in clockwise order) with pendant edges at v and vy leading to vertices wy and ws.
Form D, by squaring J, and orienting the edges as follows. Orient edges v;v;11 and v;v;4o
away from v; (with subscripts modulo n). Orient wiv, away from wr and viwy and vewq
toward wq; similarly, orient wsvy away from ws and vsws and vews toward ws. We will show

that f(Dy) # 0 (or else f(D_Tz \ B) # 0 for some subset B C {wy,ws}).

Proof. Form D—; as in the lemma. We will show that diff(m) # 0, and thus J?2 is d;-paintable.

For each nonempty B C {ws, w5}, we may assume that diff (D,, \ B) = 0, for otherwise D—n> \ B
is dj-paintable. Thus, restricting our count to the set A of circulations with d*(w;) = 1 and
d*(ws) = 1 does not affect the difference.

Let be a circulation in A. Clearly ? contains wyv,, and exactly one of nwi and vaw;.
Consider the directed paths viwy and vyve, vowy. If T' contains all edges of one path and none
of the other, then we can pair % via a parity-reversing bijection. So we assume we are not in
one of those cases. Thus either (i) vow; € and viwy, vivy ¢ or (i) viwy,v1ve € ? and
V2W1 ¢ ?

Now we consider the directed paths vsws and vsvg, vgws. Among those circulations, within

Cases (i) and (ii), where T' contains all of one path and none of the other we again pair 7' via a
parity-reversing bijection, by removing the edges of one path and adding the edges of the other.
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Thus, we need only consider two subcases in each case: (1) vgws € ? and vsws, v5Ug ¢ ? and
(2) vsws, v5U6 € ? and vews ¢ ?

Case (i.1): vowy € and viwy, v1ve ¢ ? and also vgws € ? and vsws, vsvg ¢ ? Since
vowy € T, we must have v,ve € and also vous,vovy ¢ T'. Similarly, since vgws € T,
we must have vgvg € and also vgvr,vgvg € T'. Since both triangles wyv,ve and vqvgws
must be included in every circulation under consideration, we may remove w1, v2, w5, vg without
changing the total difference. Now any non-empty circulation must contain both vivs and vsvy.
But we have a parity reversing bijection between those circulations containing vsvs and those
containing v3vy, v4vs5, so for non-empty circulations the difference is zero. Thus after adding in
the empty circulation, we see that the total difference is 1 for this case.

Case (i.2): vowy € and viwy, v1v2 ¢ ? and also vsws, vsvg € ? and vgws ¢ ? Since
vowy € ?, we must have v,vy € T and hence vovs, vovy & T'. Since the triangle wy v, vy must be
included in every circulation under consideration, we may remove w1, v2 at the cost of negating
the difference. Since vsws, vsvg € T, we must have wsvy, V3vs, V405 € and vsv; € T'. But
then vzvy ¢ ? and hence vqvg € T'. Now we may remove ws and v4 at the cost of negating the
difference again. Now removing vz and vs we lose three edges that must be in every circulation
and the resulting difference is counted by fi(n — 4); the paths run from vg through v,, to v;.
Hence this case contributes — f1(n — 4) to the difference.

Case (ii.1): viwy,v1ve € and vow; ¢ T and also vgws € ? and vsws, v5vg ¢ ? Since

viwy,v1v2 € T, we get v,v1,v,—1v1 € T'. Since vgws € and vsvg ¢ T, we get vqvs € and
veUr,veUs & T . Since we have v,_1v1 € T', we must also have vsvy € T'. Since vgur, veug ¢
and vsvy € T', we get d™(vy) = 1. This also implies d*(v,_1) = 1. Now when n > 9 our

difference is counted by — f1(3) f1(n — 7). Here f1(3) accounts for the edges of the path from vy
to vs and fi(n — 7) accounts for the edges of the path from v; to v,_1 (and the —1 accounts
for the 9 edges that are present but not on either of these paths). Since f1(3) = 1, the total for
this case is —f1(n — 7). When n = 8 the total is —f1(3) = —1 and when n = 7 the total is 0,
since v,_1 = vs. Now by Lemma [I6] together with checking the cases n =7 and n = 8, we get
that this case is counted by —%‘1(n —4).

and vow; ¢ ? and also vsws, vsvg € ? and vgws ¢ ? Since

viwy, v1v2 € T, we must have wiv,, v,v1, V101 € and vivg € T'. Since vsws,vsve € T,

Case (ii.2): viwy,v1v2 €

we must have wsvy, v3v5, V4v5 € and vsv; € T. Suppose v,va € T. Now vovy ¢ T, so
d" (v4) = 1. Now our problem reduces to computing — f1(n — 6); the f(n — 6) accounts for the
edges on the path from vg to v,—1 and the —1 accounts for the 11 other edges that are present.
Suppose instead that v,vy € T'. Now our problem reduces to computing fa(n — 4), accounting
for the edges on the two paths from to vy (after replacing v, v2 by v,v1) and the 12 edges present
but not on these paths.

So, combining the contributions from all cases we get that the difference is 1 — f1(n —4) —
filn—4) = fi(n — 6) + fo(n — 4). By Lemma [16] this is 1 — 2(fi(n — 4) + fi(n — 6)) # 0 when
n > 8. When n = 7 the difference is 1 — 2f1(3) — 1 + f2(3) = —1. O

_>
For n > 4, a subgraph T C P, is extra weakly eulerian if each vertex w ¢ {v1,v2,vp—1,0n}

satisfies d*(w) = d™ (w), d+(’01l>: d=(vp) =1,d"(vz) =d (v2)+1and d~ (v,_1) = d (vp_1)+
1 Let EE*(P,) (resp. EO*(P,)) denote the set of even (resp. odd) extra weakly eulerian

— —
subgraphs. Finally, let g(n) = |[EE*(P,)| — |EO*(P,)|. Lemma is analogous to Lemma
but for extra weakly eulerian subgraphs.

Lemma 19. Ifn =3k + j > 4 for a positive integer k and j € {—1,0,1}, then g(n) = —j.

H
Proof. Let ? C P, be extra weakly eulerian. Consider the directed paths vivs and vivs, vovs. If
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? contains all of one path but none of the other, then we can pair ? with its complement which
has opposite parity. If neither of these cases holds, then we must have either vyvs, vovg €

and vivy ¢ or v1vy € and v1vs,vovz ¢ T'. The latter case is impossible, so suppose we
have vivs3, vov3 € % and vive ¢ T. Then vsvy, v3vs € and vovy ¢ T . Hence the difference
is counted by g(n — 3). It remains only to check that g(4) = —1, g(5) =1 and g(6) = 0. O

.

Figure 8: The orientation for Lemma

Lemma 20. 8-cycle + two pendant edges + extra edge: Let Jg consist of an 8-cycle on vertices
v1,...,0s (in clockwise order) with pendant edges at v1 and vs leading to vertices wy and ws.

Form Dg by squaring Jg, adding the edge wyws and orienting the edges as follows. Orient edges
VU111 and v;vi12 away from v; (with subscripts modulo 8). Orient wivs away from wi and
viwy and vowy toward wy; similarly, orient wsvy away_ﬁ;om ws and vsws ﬂ)zd vews toward ws.
Finally, orient wswy toward wy. We will show that f(Dg) # 0 (or else f(Dg\ B) # 0 for some
subset B C {wy,ws}).

Proof. Form DZ as in the lemma. Suppose f(DZ \ B) = 0 for each subset ) # B C {w,ws}.
Then by Lemma we have diff(ﬁg — wswy) # 0. Hence it will suffice to show that the
circulations of Dg containing wsw; are half odd and half even.

Let be a circulation of Dg containing wsw;. Then wyvg € ? and viwy, vow; ¢ ? After
suppressing wi, we are looking at all circulations containing wsvsg.

Consider the directed paths vsws and vsvg, vews. If contains all edges of one path and
none of the other, then we can pair 7' via a parity-reversing bijection. So we assume we are not
in one of those cases. Thus either (i) vgws € and vsws,vsvg € T', (ii) vsws, V5V € 7 and
vews ¢ ?, (iii) vsws, v5vg, vews € T or (iv) vews,vsws € T and vsvg ¢ T .

Case (i): vgws € T and vsws, vsvg ¢ T'. Then vyvg € T and wsvy, VU7, VeUs ¢ ? Now we
can suppress vg and ws. First suppose vsvy ¢ T'. Now vy, v5 ¢ T and what remains is counted
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by — f1(5). Instead suppose vsvy € ? Then the difference is counted by ¢(7); the path is from
v7 to vs. Hence the total difference is g(7) — f1(5) = -1 — (=1) = 0.

Case (ii): vsws, v5v6 € and vgws ¢ ? Then vzvs, v4vs € ? and wyvg, vsv7 & ? Now
we can suppress ws. First suppose vqvg € 1. There is only one possible circulation and it
contains all edges except vyvg; this circulation is odd, hence the difference is —1. Now suppose
v4Ug & ? If vgvy € T', then vgug ¢ ? and the difference is counted by —g(6); the path is from

vy to vg. If vgur ¢ T', then vgug, vgvy, vgva € and vy ¢ T'. Now the difference is counted by
—g(4); the path is from vy to vs. Hence the total difference is —1 — g(6) — g(4) = 0.

Case (iii): vsws,v5v6, vews € T'. Then wsvy, v3v5,v4v5 € T and vsvy ¢ ? If vyvg, VU7 €

, then the difference is counted by ¢(6); the path is from v; to vs. Since vgv; € and
V4V ¢ ? is impossible, we may assume either vivg € and veuy ¢ ? or v4vg, Vg7 & ?
Suppose we are in the former case. Then vgug, vgvy, vgvs € and vy ¢ T'. This difference
is counted by g(4); the path is from v; to vy. Now suppose vqvg,vsv7 ¢ T. Then vy ¢
and vgug ¢ 1. This difference is counted by f;(4); the path is from vg to v3. Hence the total
difference is g(6) + g(4) + f1(4) = 0.

Case (iv): vews, vsws € and vsvg ¢ ? Then wsvy, v4v6 € ? and vgvy, vgvs ¢ ? If
vsUr & ?, then vy ¢ ? and the difference is counted by%‘l (6) = 0; the path is from vg to

vs. Hence we may assume vsvy € T'. Then vsvs, v4v5 €
g(6) = 0; the path is from vy to vy.

So in each of the four cases, half the circulations are even and half are odd. Thus, the
difference is not affected by the circulations that use edge wsw;. Now by Lemma I (B) #0,

SO B is dq-paintable. O

and the difference is counted by

5 Generalizing to Alon-Tarsi number

Excepting the direct proofs of paintability in Section we’ve actually proved that all the
excluded subgraphs have a good Alon-Tarsi orientation. This suggests that the main theorem
might hold more generally for the Alon-Tarsi number AT(G)—the least k for which G has an
orientation D with AT(D) < k—1 and EE(D) # EO(D). Here we show that this is indeed the

case.

Main Theorem for AT. If G is a connected graph with mazimum degree A > 3 and G is
not the Peterson graph, the Hoffman-Singleton graph, or a Moore graph with A = 57, then
AT(G?) < A? —1.

The proof is identical to the paintability proof except we need to replace all the auxiliary
lemmas with their AT counterparts. First the two subgraph lemmas; these are actually easier
to prove in the AT context.

Lemma 21. Let G be a graph with mazimum degree A and H be an induced subgraph of G that
is di-AT. If G\ H is (A —1)-AT, then G is (A —1)-AT.

Proof. Let G and H satisfy the hypotheses. Take an orientation of G\ H demonstrating that
it is (A — 1)-AT and an orientation of H demonstrating that it is di-AT. Now orient all the
edges between H and G \ H into G \ H. Call the resulting oriented graph D. Then D satisfies
the outdegree requirements of being (A — 1)-AT since the outdegree of the vertices in G \ H
haven’t changed and the outdegree of each v € V(H) has increased by dg(v) — dg(v). Since no
directed cycle in D has vertices in both H and ﬁ\H , the circulations of D are just all pairings of
circulations of H and D\ H. Therefore EE(D)—EO(D) = EE(H)EE(D\ H)+EO(H)EO(D\
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H)—(EE(H)EO(D\H)+EO(H)EE(D\H)) = (EE(H)—EO(H))(EE(D\H)—EO(D\H)) #
0. Hence G is (A — 1)-AT. O

Lemma 22. Let G be a graph with mazimum degree /A and let H be an induced subgraph of G2.
If H is di-AT, then G? is d1-AT. If there exists v with dgz(v) < A?2—1, then G? is (A% —1)-AT.

Proof. We prove the first statement first. Form G’ from G by contracting V(H) to a single
vertex r. Let T be a spanning tree in G’ rooted at r. Let o be an ordering of the vertices of
G \ H by nonincreasing distance in 7' from r. Take an orientation of H demonstrating that it
is di-AT; direct all edges between H and G\ H towards G\ H and direct all other edges of G?
toward the vertex that comes earlier in . Call the resulting oriented graph D. By construction,
all circulations in D are contained in H and hence EE(D) # EO(D). It is clear that every
vertex in D has indegree at least two and hence G2 is d;-AT.

Now we prove the second statement, which has a similar proof. Suppose there exists v with
dg=(v) < A? — 1. As before we order the vertices by nonincreasing distance in some spanning
tree T from v, and we put v and some neighbor u last in o. Since dg=(v) < A? — 1, either (i) v
lies on a 3-cycle or 4-cycle or else (ii) dg(v) < A or v has some neighbor v with dg(u) < A; in
Case (ii), by symmetry we assume dg(v) < A. In Case (i), dgz=(u) < A? — 1 for some neighbor
u of v on the short cycle and by assumption dgz2(v) < A% — 1; so the two final vertices of o are
u and v. In Case (ii), we again have dgz(v) < A% — 1 and dg=(u) < A% — 1, so again u and v
are last in o. O

The proof of Lemma [22] proves something slightly more general, which we record in the
following corollary.

Corollary 23. Let G be a graph with maximum degree A and let H be an induced subgraph of
G?. Let f(v) = d(v) — 1 for each high vertex of G* and f(v) = d(v) for each low vertex. If H
is f-AT, then G* is (A% —1)-AT.

Now each of Lemmas [I3] [16] and [I§] was already proved for AT. It remains
to prove the lemmas in Section 1] for AT. We do this by exhibiting in Figures [J] and [I0] a
good Alon-Tarsi orientation for each. For brevity, we will not prove here that the counts differ;
instead we give the actual even/odd circulation counts for the reader to check at her leisure.
Each vertex will be labeled with its indegree for easy checking. Note that three of the cases in
Lemma [7| are handled by Lemmas and [12| (none of which depend on Lemma .

We conclude by generalizing the conjectures we mentioned in the introduction to the Alon-
Tarsi number.

Conjecture 6 (Borodin-Kostochka Conjecture (Alon-Tarsi version)). If G is a graph with A > 9
and w < A —1, then AT(G) < A —1.

@ ~
(a) Lemma [f} EE=2, EO=1 (b) Lemma[f} EE=4, EO=3 (c) Lemmal6} EE=16, EO=17

Figure 9: Good orientations for the AT versions of Lemmas and @
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(e) Lemmal[th: EE=751, EO=750  (f) Lemma[fk: EE=1097, EO=1096

(g) Lemmal 8} EE=4394, EO=4393 (h) Lemma [0} EE=22, EO=16

Figure 10: Good orientations for the AT versions of Lemmas El, and
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