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Abstract

Brooks’ Theorem implies that if a graph has A > 3 and and x > A, then w = A+1.
Borodin and Kostochka conjectured that if A > 9 and y > A, then w > A. We show
that if A > 13 and y > A, then w > A — 3. For a graph G, let H(G) denote the
subgraph of G induced by vertices of degree A. We also show that if y > A, then
w>AorwH(G))>A-5.

1 Introduction

Our goal in this paper is to prove the following two main results. For a graph G,
we write A(G), w(G), and x(G) to denote the maximum degree, clique number, and
chromatic number of G. When the context is clear, we simply write A, w, and ¥.

Theorem 1. If G is a graph with x > A > 13, then w > A — 3.

Theorem 2. Let G be a graph and let H(G) denote the subgraph of G induced by
vertices of degree A. If x > A, then w > A or w(H(G)) > A — 5.

The proofs of Theorems 1 and 2, are both somewhat detailed, so we first prove
Theorem 3, which plays a central role in proving our two main theorems. (For a less
formal and less notationally dense presentation of these results, see an earlier version
of this paper [11].) Brooks’ Theorem states that if G is connected and y > A, then
w=A+1or G is an odd cycle; so if A > 3, then xy > A implies w = A + 1. Thus, the
interesting case of Theorems 1 and 2 is when x = A.

Theorem 3. If G is a critical graph with x > A, then w > A —3 if A =1 (mod 3))
and w > A — 4 otherwise.

When A = 13, Theorem 3 implies that either G is 12-colorable or G' contains a K.
This result will serve as the base case for a proof of Theorem 1 by induction on A. To
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prove Theorem 2, we will further analyze the proof of Theorem 3, and show that we
can continue a certain recoloring process unless H(G) contains a big clique.

Borodin and Kostochka [5] conjectured in 1977 that if G is a graph with A > 9
and w < A — 1, then y < A — 1. The hypothesis A > 9 is needed, as witnessed by
the following example. Form G from five disjoint copies of K3, say D1,...,Ds5, by
adding edges between v and v if w € D;, v € Dj, and i — j = 1 mod 5. This graph is
8-regular with w = 6 and x > [15/2] = 8, since each color is used on at most 2 of the
15 vertices; by Brooks’ Theorem G is 8-colorable, so x(G) = 8. Various other examples
with x = A and w < A are known for A < 8 (see for example [12]). The Borodin-
Kostochka Conjecture has been proved for various families of graphs. Reed [30] used
probabilistic arguments to prove it for graphs with A > 10*. The present authors [12]
proved it for claw-free graphs (those with no induced K 3).

The contrapositive of the conjecture states that if y > A > 9, then w > A. The
first result in this direction was due to Borodin and Kostochka [5], who proved that
w > |2 when y > A. Subsequently, Mozhan [25] improved this to w > L%j
when A > 10 and Kostochka [20] showed that y > A implies that w > A —28. Finally,
Mozhan proved that w > A — 3 when x > A > 31 (this result was in his Ph.D. thesis,
which unfortunately is not readily accessible [30]). Theorem 1 strengthens Mozhan’s
result, by weakening the condition to A > 13. Work in the direction of Theorem 2
began in [16], where Kierstead and Kostochka proved that if y > A > 7andw < A—1,
then w(H(G)) > 2. This was strengthened in [21] to the conclusion w(H(G)) > L%J
We further strengthen the conclusion to w(H(G)) > A — 5. We give more background
in the introduction to Section 3.

Most of our notation is standard, as in [32]. We write K; and F; to denote the com-
plete and empty graphs on ¢ vertices, respectively. We write [n] to denote {1,...,n}.
The join of disjoint graphs G and H, denoted G V H, is formed from the disjoint union
of G and H by adding all edges with one endpoint in each of G and H. For a vertex v
and a set S (containing v or not) we write dg(v) to denote |S N N(v)|. When vertices
x and y are adjacent, we write x <> y; otherwise z ¢ y. If Z is a set of graphs, we
let V(Z) = Ugez V(G). A graph G is k-critical if x(G) = k and x(H) < k for every
proper subgraph H. A vertex v in a graph G is critical if x(G \ {v}) < x(G). Note
that in a A-critical graph, every vertex has degree A or A — 1. A vertex v is high if
d(v) = A and low otherwise.

2 Mozhan’s Partitioned Colorings

In [25], Mozhan used a partition of a graph into groups of color classes to prove bounds
on the chromatic number in terms of the degree and clique number. These ideas trace
all the way back to the 1966 paper of Lovész [22] where he proves that if G is a graph and
1, € N with 32,0007 = A(G) + 1 =k, then V(G) has a partition {Vi,...,Vi}
where A(G[V;]) < r; for all i € [k]. The proof idea is simple; just take a partition
minimizing the number of edges within parts (with an appropriate weighting depending
on ;). In [7], Catlin took this idea further by starting with such a minimum partition
and then moving vertices around (while preserving minimality) until he achieved a
desired property. To get the ability to move vertices around like this, he needed to



strengthen the condition on the r; to >;cpy i = A(G) +2 — k.

Mozhan’s idea is very similar to Catlin’s, but not equivalent. As we will see below,
Mozhan considers partitions of V' (G) minimizing the number of edges within parts, just
like Lovasz and Catlin, but he adds the restriction that each part is the disjoint union
of color classes in some fixed x(G)-coloring of G. With this added restriction we get a
weaker bound on the degrees within parts, but more information about the coloring.
Because of this trade-off Mozhan’s method excels when all we care about is coloring
the parts, but if we require the parts to have more structure (for example, for them
to be degenerate as in Borodin’s result [4]), we need to use Catlin’s method or some
other technique (see [6] for example). There are some cases where either technique will
work; Mozhan’s method was used in [28] and [21], but the same results were derived
in [29] using Catlin’s method. The results in this paper require the use of Mozhan’s
more restrictive partitions, which we define now.

Our proofs only use the partition in the following definition when G is critical.
We include non-critical graphs as well because the more general concept is needed to
extract an efficient algorithm from our proof. We discuss algorithmic considerations in
the final section of the paper.

Definition 1. For s € N>g and 71,...,75 € N>3, an (r1,...,rs)-partition P of a graph
G is a partition (P, ..., Ps) of V(G) such that

(1) there is j € [s] such that x(G[P;]) = r; for all i € [s] \ {j}; and
(2) there is v € P; so that x(G[P;] \ {v}) <rj.
We refer to j and v by j(P) and v(P) respectively.

For example, if G is 13-critical, then we get a (3, 3, 3, 3)-partition of G' by removing
any v € V(G), partitioning the color classes of a 12-coloring of G — v into four equal
parts and then adding v to one part.

We are interested in (71, ..., 7s)-partitions that minimize the total number of edges
within parts (without v(P)). More precisely, for an (ry,...,7s)-partition P of a graph
G, let o(P) = ||G[Pjp)] \ {v(P)}| + ey IGP][l; here | H|| denotes the num-
ber of edges in subgraph H. A minimum (ri,...,rs)-partition of G is an (ry,...,rs)-
partition P minimizing o(P).

Lemma 4. If P is a minimum (r1,...,rs)-partition of a graph G with x(G) = A(G) =
1+ e i then
(1) G[Pjp)| has a component A(P), called the active component, that is Ky, 11 and
X(G[Pjp] \ V(A(P))) < rjp); and
(2) for each u € V(A(P)) and i € [s]\{j(P)} with dp,(u) = r;, the graph G[P;U{u}]
has a Ky, 41 component (which contains u); and
(3) for each uw € V(A(P)) and i € [s] \ {j(P)}, if u has at least dp,(u) + 1 — r;
neighbors in the same component D of G|P;], then x(G[V (D) U {u}]) = r; + 1;
and
(4) if uw € V(G) and a € [s] so that dp,(u) > rq + 1, then there is i € [s] where

dp,(u) < r;. In particular, any r;-coloring of G[P;] can be extended to an r;
coloring of G[P; U{u}]; and



(5) for each uw € V(A(P)) and i € [s]\ {j(P)}, we have dp,(u) < r; + 1.

Proof. Let P be a minimum (ry,...,7s)-partition of a graph G with x(G) = A(G) =
1+ eiri- Let j = j(P) and v = v(P). Let A(P) be the component of G[P}]
containing v. By construction, G[P; \ {v}] has an rj-coloring. So we may assume
that x(A(P)) = r; + 1, since otherwise we get an rj-coloring of G[P;], and hence a
(A — 1)-coloring of G.

To prove (1), it suffices to show that A(P) is K,;11. By Brooks’ Theorem, it is
enough to show that A(A(P)) < r;. Suppose instead that there exists u € V(A(P))
with d 4py(u) > 7;; choose u to minimize the distance in A(P) from u to v. Uncolor
the vertices on a shortest path @ in A(P) from u to v; move u to some Pj where it
has at most 7, neighbors. Color the vertices of @), starting at v and working along Q;
this is possible since each vertex of @ has at most r; — 1 colored neighbors in A(P)
when we color it. The resulting new partition R has fewer edges within color classes,
since we lost at least 7; + 1 edges incident to u and gained at most r; incident to v
(note that v(R) = u). This contradiction implies that A(A(P)) < rj, so A(P) must
be K, 11 by Brooks” Theorem. Thus (1) holds.

Now we prove (2). Choose such a vertex u € V(A(P)) and such an ¢ € [s] \ {j}.
Form a new partition R by deleting v from P; and add it to P; (now u = v(R)); this
maintains the total number of edges within parts, so R is another minimum (71, ..., rs)-
partition. By the above proof of (1), u lies in a component of G[FP;] that is K, 1. Thus,
(2) holds.

If (3) is false, then u has at most r; — 1 neighbors in G[P;] \ D, so we may choose
an r;-coloring of G[P;] \ D so that the neighbors of w in P; \ V(D) each get a color
in [r; — 1]. Together with an r;-coloring of G[V (D) U {u}] where u is colored r;, this
gives an r;-coloring of G[V (P;) U {u}]. But then we have a (x(G) — 1)-coloring of G, a
contradiction.

(4) is immediate, since dg(u) <1+ 3 07

If (5) is false, then apply (4) and move u to P; to get a (x(G) — 1)-coloring of G, a
contradiction. O

Definition 2. A move is a quadruple (P, v, i, P') where
(1) Pisan (ry,...,rs)-partition of a graph G; and
(2) ve V(A(P)); and
(3) i € [s]\ {j(P)} with dp,(v) = r; and
(4) P'is obtained from P by moving v from P;jp) to P;.

In the proof of part (2) of Lemma 4, we showed that if P is a minimum (r1,...,7,)-
partition and (P, v,4, P') is a move, then P’ is a minimum (r1, ..., rs)-partition as well.
Moreover, for each k € [s], the number of components in G[P] equals the number of
components in G[P/].

Definition 3. Let P be an (r1,...,rs)-partition of a graph G. A move sequence start-
ing at P is a sequence of moves ((P!,vy,i1, P?),...,(P% vy, iq, P11)) where P! = P.



Definition 4. Let P be an (r1,...,rs)-partition of a graph G and
S = ((PY,v1,i1, P?),..., (P% vy, iq, P1TY))

a move sequence starting at P. For each i € [s] and component X of G[P;], let the
club of X, written Cs(X), be the sequence (X1, X2, X3,..., Xq41) where X; = X and

for t € [q] \ {1}
e X;=X; 1\ {v_1} if X; 1 is the active component in P!~!; otherwise
o X; =Xy 1U{v;1}if G[V(Xy—1)U{vs_1}] is the active component in P?; otherwise
o X;=X;_1.
Also, if Y € Cs(X), then we let Cs(Y) = Cs(X). When the move sequence is clear
from context, we write C(X) in place of Cs(X). We say R is a club of S if R = Cs(X)

for a component X of G[P;] for some i € [s]. For a club R, we write R; for the t-th
element of R.

Definition 5. Let P be a minimum (r1,...,rs)-partition of a graph G with x(G) =
A(G) =143 cq i Let

S = ((PY,v1,i1, P?),..., (P vy, ig, PT))

be a move sequence starting at P. A club R of S is full if R; is complete and |R¢| > (g,
for all t € [¢+ 1].

We observe a few basic facts about clubs; we omit formal proofs by induction, which
are easy exercises.

Observation 1. Let P be a minimum (11, ...,7s)-partition of a graph G with x(G) =

S = ((P',v1,i1, P?),...,(P% vy, ig PT))

is a move sequence starting at P, then for a club R of S, we have
(1) if V(Ry) C PL, then V(R;) C P! for allt € [q+ 1]. We call this i the part of R,
written ps(R) (or p(R) when context allows).
(2) if a,b € [q+ 1], then R, is complete if and only if Ry is complete,
(3) if R is full, then |Ry| = 7,r) + 1 when R, is active and otherwise |Ry| = 7,(R)-

Lemma 5. Let H be a graph with induced subgraphs Ay, ..., Ay such that {V(A1),...,V(Ak)}
partitions V(H) and x(H) = > ;cpq x(Ai) where x(A1) = 4 and x(A;) = 3 for all
ielk]\{1}.
(a) Suppose w € V(A1) with x(A1 —u) < x(A1). For each i € [k] \ {1}, there is a
component T; of A; such that dy g,y (u) > x(A;). Let Ty be u’s component in Aj.

(b) Suppose dy(1,)(u) = x(Ax) and dy(a,)(u) < x(Ap)+1. Put A* =V ({A,..., Ag1})
and T* = V({Th,...,Tk—1}). Further suppose there is v € N(u) NV (Ty) with
da=(v) <1+ 3 ep-1 X(Ai) and dp=(v) = 3. Then there exists q € [k — 1] such
that dV(Tq)(v) > X(AJ



Figure 1: The partition in Claim 2 of Lemma 5. To form B, Bs, and Bj
from Ay, As, and Aj (respectively), the vertices circled with dotted lines
(and shown in gray) have now been moved to other parts, where they are
shown above the T}’s.

(c) If T* induces a clique, Ty, is complete, and da-(w) < |T*| for all w € T*, then
T* U{v} induces a clique.

Proof. First we prove (a). Pick ¢ € [k]\ {1}. Since x(A4;1\ {u}) < x(A1), we must have
X(AL) = x(A4;) + 1, where A} = G[V(4;) U{u}]. So, u has at least x(A;) neighbors in
some component T; of A;, for otherwise we get a x(4;)-coloring of A from a x(A;)-
coloring of A; by permuting colors in components of A;. This proves (a).

Now we prove (b). Since x(A1 \ {u}) < x(A1), we must have x(4}) = x(A4;) +1
and wu is critical in Aj. Then v is also critical in A since dy (g, )(u) = x(Ax) and
dy(a,)(u) < 2x(Ag). In particular, dy(4,)(v) > x(A4;) for each i € [k —1].

Put A} = G[V(A; \ {u}) U{v}] and A, = G [V (4;) U{v}] for each i € [k — 1]\ {1}.
Since x (A% \ {v}) < x(A4}), we must have x(A7) > x(A41) and x(A4]) > x(4;) +1
for i € [k — 1]\ {1}. In particular, v is critical in A} for each i € [k — 1]. Note that
dy(a,)(v) < x(Ai) +1 for each i € [k — 1] since da-(v) < 143,17 X(Ai). Moreover,
there is at most one i € [k — 1] for which dy(4,)(v) = x(4;) + 1. Now the remainder of
(b) consists of the following claim.

Claim 1. There exists q € [k — 1] such that dy (1, (v) > x(Ag)-
Pick w,z € N(v) NT* \ {u}. First, suppose there is i € [k — 1] with w,z € V(T;).



Since v is critical in A}, it has at least x(A}) — 1 neighbors in some component C' of
Aj\ {v}. Since v has two neighbors in T;, our bounds on dy(4,)(v) and x(Aj) imply
that C' = T;. Since x(A}) > x(A4;) +1fori e [k —1]\ {1} (and if i = 1, v gets u as an
extra neighbor), the claim is satisfied.

So, we may assume there are different 4, j € [k — 1] with w € V(T;) and = € V(T}).
Since there is at most one p € [k — 1] for which dy(4,)(v) = x(4p) +1, by symmetry we
may assume that dy(4,)(v) = x(A4;). Since v is critical in A’, it has at least x(A}) — 1
neighbors in some component C' of A; \ {v}. Since v has at least one neighbor in 7},
our bounds on dy(4;)(v) and X(A}) imply that C' = T;. This proves the claim, and
completes the proof of (b).

Now we prove (c), which we restate as the following claim.

Claim 2. If T* induces a clique, T} is complete, and da-(w) < |T*| for all w € T*,
then T* U {v} induces a clique.

Suppose otherwise that 7 induces a clique, T}, is complete, and d g« (w) < |T™*| for
all w € T* but T* U {v} does not induce a clique. By (b) we have ¢ € [k — 1] such that
dy(1,)(v) > x(Ag). If u & V(Ay), then we could move u into A, without violating any
hypotheses. So, we may assume that ¢ = 1. Since T U {v} does not induce a clique,
there is some A, to which v is not joined. By considering only the indices 1,p, k we
can assume that k = 3 and p = 2.

By hypothesis dy(7;)(v) > x(A1) and T1 is complete, so v must be joined to T}
(otherwise we move v to A; and get a good coloring of G). Pick y € V(T3) \ N(v)
and z € V(T1 \ {u}). Let By = G[A1 U{v,y} \{u,z}], Bo = G[A2U{z} \ {y}], and
Bs = G[A3U{u} \ {v}]. We derive a contradiction by showing that x(B1) < x(41)
and x(Bz) < x(Az2) and x(Bs) < x(43).

We have dy(p,)(2) < x(Az2) since da«(z) < |T*| and z <> y. Since z has exactly
X(A2) — 1 neighbors in 75 \ {y}, we see that z has at most x(A3) — 1 neighbors in each
component of By \ {2} and hence x(Bz2) < x(Az). Since, by assumption, dy(4,)(u) <
X(Ag) + 1 and T} is complete, the proof that x(Bs) < x(As) is nearly identical.

Suppose x(B1) > x(A1). Since {u, z} is joined to {v,y}, we see that dy(p,)(v) <
x(A1) — 1 and dy(p,)(y) < x(A1) — 1. Let K = G [T1 U{v,y} \ {u,z}]. Then K is a
copy of K, (4,) with the edge vy deleted. First, color By \ V(K) with x(A1) — 1 colors.
Since v and y each have at most one neighbor outside of K in By and x(A;) > 4, we
can finish the coloring on K by choosing the same color for v and y, different from the
colors used on their at most 2 (collective) neighbors in B; \ V(K), and then coloring
K\ {v,y} with the x(A;) — 2 other colors (see Figure 1). O

In proving our next few lemmas, we repeatedly use the following helper lemma,
which is an easy corollary of Lemma 5.

Lemma 6. Let P be a minimum (ry,...,rs)-partition of a graph G with x(G) =
A(G) =14 Zie[s] Ti. Let

S = (P, v1,i1, P?),..., (P vy, i4, PTT))

be a move sequence starting at P. Let R and S be full clubs of S and t € [q+ 1]. If
Ry = A(PY), then



(a) if u € V(R;) and u has at least 2 neighbors in Sy, then u is joined to Sy.

(b) if u € V(R) and v € V(S;) and u has at least 2 neighbors in Sy and v has at
least 2 neighbors in Ry \ {u}, then v is joined to Ry.

Proof. First we prove (a). By symmetry, assume that V (R;) C P} and V(S;) C P}. We
apply Lemma 5 (a) with A; = G[P!] for i € [2], H = G[V(A1) UV (A2)] and Ty = R;.
By Lemma 4, x(H) = r1 +rp + 1 = x(A1) + x(A42) and x(A; — ) < x(4;) for all
x € V(I1). Also by Lemma 4, da,(z) < x(A2) + 1 for all z € V(T1). By Lemma 5, u
has at least x(As2) neighbors in some component 75 of As. Since da,(u) < x(A42) + 1
and u has at least two neighbors in S;, we must have Ty = S;. Since S is a K (4,) this
proves (a).

Now we prove (b). If da,(v) > x(A1) + 1, then there exists some part P} with
dpr (v) < r. By moving v to P} and any vertex in T} to P}, we get a (x(G)—1)-coloring
of G, a contradiction. So dy,(v) < x(A1) + 1. By (a), |[N(u) NV (T3)| = x(A2) and
v € N(u)NV(T3). So, we may apply Lemma 5 (b) to conclude that [N (v) NV (11)| >
X(A1). Since Ty is a K (4, this proves (b). O

Lemma 7. Let P be a minimum (ry,...,rs)-partition of a graph G with x(G) =
A(G) =14 ¢ ri- Let S be a move sequence starting at P and let R and S be full
clubs of S. Then, for any t1,t2 > 1, we have Ry, s joined to Sy, if and only if Ry, is
joined to St,.

Proof. Suppose the lemma is false and let
S = ((P',v1,i1, P?),..., (P% vy, iq, P1TY))

be the shortest move sequence for which it fails. There must be a t € [¢] such that
either R; is not joined to S¢, but R4 is joined to Sy or else Ry is joined to Sy, but
Ri41 is not joined to S;y1. If ¢ > 1, then by starting the move sequence at P! instead
of P!, we get a shorter counterexample. Hence S = ((P*,v1,i1, P?)). Since the reverse
sequence (P2, v1,j(P'), P') is also a counterexample, we may assume that R; is not
joined to St, but Ry is joined to Ss.

By symmetry between R and S, we may assume that R; is the active component.
Since R; is not joined to Sp, but Ry is joined to Sa, it must be that Ry = Ry \ {v1} is
joined to S = S and there is u € V(51) with v1 ¢ u. Pick w € V(R; \ {v1}). Now
applying Lemma 6(b) to w and u shows that S; is joined to Ri, a contradiction. [

Lemma 7 makes it possible for us to talk about full clubs R and S being joined or
not joined.

Definition 6. Let P be a minimum (r1,...,rs)-partition of a graph G. For a club R
of a move sequence

S = ((Pl,l)l,’il,P2), ceey (Pq,vz,iQ,Pq+1))

starting at P, we say that R is active k times if the number of ¢ € [¢ + 1] such that R;
is active is k.



Lemma 8. Let P be a minimum (ry,...,rs)-partition of a graph G with x(G) =
A(G) =14 Zie[s] Ti. Let

S = ((P',v1,i1, P?),...,(P% vy, ig PT))

be a move sequence and S a full club of S that is active at least once. If R and T are
different full clubs of S such that R is joined to S and S is joined to W, then R is
joined to W.

Proof. Pick t such that S; is active and let P = P, Ty = S;, Ty = R; and T3 = W;. By
symmetry, we assume that V(T1) C P, V(Ty) C Py, and V(T3) C P;. We will apply
Lemma 5 with A; = G[P;] for all i € [3] and H = G[V (A1) UV (A2) UV (A3)].

Pick u € V(T1). By Lemma 4, x(H) = r1+ra+7r3+1 = x(A1) +x(A2) +x(A3) and
x(A1\ {u}) < x(41). Also by Lemma 4, dy(a,)(u) < x(A3) + 1. Since T3 is a Ky, we
also have dy (p,)(u) = x(As3). For any v € V(T3), we have da-(v) < 1+ x(A1) + x(Az2),
for otherwise there exists some part P, with dp (v) < ry. By moving v to P, and u
to P3, we get a (x(G) — 1)-coloring of G, a contradiction. Also, dp«(v) > 3 since T3 is
joined to T3. Additionally, 7™ induces a clique and T} is complete. To apply Lemma
5, it remains to check that da«(w) < |T*| for all w € T*. If not, then we could move
w to some part P, with dp, (w) < ry and get a (x(G) — 1)-coloring of G. So, we apply
Lemma 5 with each v € V(73) and conclude that T3 is joined to 7% as desired. O

Definition 7. Let P be a minimum (ry,...,rs)-partition of a graph G. For a club R
of a move sequence S starting at P, the spread of R is the set of indices of parts to
which R sends vertices; more formally,

sps(R) = {i ] (Q,v,i,Q") € S with C(A(Q)) = R} .
The spread of S is sp(S) = maxpg |sp(R)| where the max is over all clubs R of S.

Lemma 9. Let P be a minimum (ri,...,rs)-partition of a graph G with x(G) =

S = ((Pl’vl,il’ P2)’ . (Pq,vq,iq, Pq+1))
is a move sequence with sp(S) < 2, then one of the following holds:

(1) v; = vj for different i,j € [q + 1] (i.e. some vertex moves more than once); or

(2) there is t € [q] such that the active component in P is joined to the active
component in PT1; or

(3) every club of S is active at most 3 times.
Proof. Suppose the lemma is false and choose a move sequence
S = ((PYv1,i1, P?), ..., (P% vy, iq, P1TY))

for which it fails minimizing ¢. By minimality of ¢, we have a length three subsequence
(P, v1, i1, P?), (P, vy, iy, PPTY), (P9, 0,44, P1T1)) of S such that



(i) C(A(P")) = C(A(P)) = C(A(P™")) and C(A(P?)) = C(A(P")); and
(ii) there is at most one (P? vg,iq, P4T1) in S with 1 < d < b such that C(A(P?)) =
C(A(P')); and
(iii) C(A(P?)) is active at most 3 times.
Let X = C(A(P')) and Y = C(A(P?)). We will show that X is joined to Y, which
gives a contradiction, since we are assuming (2) does not hold. To simplify notation,

let ¢ = ¢ 4 1. If there does not exist (P¢,vq,iq, P¥!) in S with 1 < d < b such that
C(A(P%) = C(A(P')), then let d = b.
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Figure 2: The six key partitions X;,Y; in the proof of Lemma 9. In each
partition, the next vertex that will move is marked in bold, and the vertex
that most recently moved is marked in semi-bold. If a vertex is unnamed in
the proof, we denote it as a; or b; based on whether it appears in X; or Y;.

Claim 1. {vp} is joined to V(Yy).

Since Y becomes active at most once (by (iii)) between move d and move b+ 1, we
have [V (Yy) NV (Y3)| > 2. One vertex in this intersection is vy, and another is vpiq
(since no vertex is moved twice, by (1)). So v, is adjacent to v; and w41, since
01, U, V1 € V(Ypq1) and Y is full. Applying Lemma 6(a) to X and Y with ¢ = d,
shows that vy is joined to V(Yy), since vy, vp1 € V(Yy).

Claim 2. {v1} is joined to V(Xy).

10



Since |V (Xq) NV(X1)| > 3, v1 has at least 3 neighbors in X3. Now by Claim 1, vy is
joined to V(Xg) by Lemma 6(b) applied to X and Y with ¢ = d.

Claim 3. {v1} is joined to V(Xp).
Since Y is full, v, is joined to V(Y}). Since |V(Xy) NV (Xp)| > 3 and v; is joined to

V(Xg), v1 has at least 3 neighbors in X3. So vy is joined to V(X;) by Lemma 6(b)
applied to X and Y with ¢t = b.

Claim 4. V(Xp41) is joined to V(Y2).

Since V(Xp41) C V(Xp), Claim 3 shows that {vi,vp} is joined to V(Xp41). But,
{vi, v} C V(Y¢), so applying Lemma 6(a) to X and Y with ¢ = ¢ shows that V(X;1;)
is joined to V (Y;).

Claim 5. V(X.) is joined to V(Y.). In particular, X is joined to Y.

Since |Xp41| > 3, Claim 4 and an application of and Lemma 6(b) to X and Y with
t = ¢ shows that V(X,) is joined to V(Y¢). O

Theorem 3. If G is a critical graph with x(G) > A(G), then w(G) > A(G) — 3 if
A(G) =1 (mod 3)) and w(G) > A(G) — 4 otherwise.

Proof. By Brooks’ Theorem, we may assume x(G) = A(G). Let s = [%J and
T1,-..,1s € {3,4} such that A(G) =143,y ri- Then G has an (rq,. .., rs)-partition,
so we can let P be a minimum (71, ..., rs)-partition of G. Let

S = ((PY,v1,i1, P?),..., (P vy, i4 PTT))

be a move sequence starting at P with sp(S) < 2 of maximum length such that v; # v;
for different 4, € [¢ + 1] and for each t € [q] the active component in P! is not joined
to the active component in P, Let A = A(P4%1). Then by Lemma 9, C(A) is active
at most 3 times in S. Since r;, > 3, there is x € V(A) such that = & {v; | t € [q]}, i.e.,
x has never moved during S.

Let T' = sp(C(A)). If there is ¢ € T with de“(x) = r;, then we have a move
(P91 2,i,@Q%) and by the maximality condition on S, it must be that A is joined
to A(QY). But, by assumption, A is not joined to A(Q?) for any i € T, so this is
impossible.

Since dg(z) < 1+ Zie[s} ri and x has exactly r;, neighbors in Pglﬂ, there is at
most one i € [s] \ {ig} for which dpet1(x) > r;. So, |T| < 1 and if [T = 1, then T
contains the one i with d Piq+1(x) > 7. By the maximality condition on S, it must be
that A is joined to clubs in Piqul for all but one ¢ € [s] \ {i4}. Since r; =3 if A(G) =1
(mod 3)) and r; < 4 otherwise, we have the desired large clique by Lemma 8. O

Since any graph G with x(G) > A(G) = 13, contains a critical subgraph H with
X(H) > A(H) = 13, as an immediate consequence of Theorem 3, we get the following
corollary.

Corollary 9. If G is a graph with x(G) > A(G) = 13, then G contains Kyp.
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3 The First Main Theorem

A hitting set is an independent set that intersects every maximum clique. If I is
a hitting set and also a maximal independent set, then A(G —I) < A(G) — 1 and
X(G —I) > x(G) — 1. (In our applications, we can typically assume that A(G —I) =
A(G) —1, since otherwise we get a good coloring or a big clique from Brooks’ Theorem.
We give more details in the proof of Theorem 1.) So if G — I has a clique of size
A(G — I) — t, for some constant ¢, then also G has a clique of size A(G) —t. We
repeatedly remove hitting sets to reduce a graph with A > 13 to one with A = 13.
Since we proved in Corollary 9 that every graph with xy > A = 13 contains Ko, this
repeated removal of hitting sets allow us to prove that every G with x > A > 13
contains Ka_3.

This idea is not new. Kostochka [20] proved that every graph with w > A — \/Z+%
has a hitting set. Rabern [27] extended this result to the case w > 2(A + 1), and
King [17] strengthened his argument to prove that G has a hitting set if w > %(A +1).
This condition is optimal, as illustrated by the lexicographic product of an odd cycle
and a clique. Finally, King’s argument was refined by Christofides, Edwards, and
King [8] to show that these lexicographic products of odd cycles and cliques are the
only sharpness examples; that is, G has a hitting set if w > %(A + 1) and G is not
the lexicographic product of an odd cycle and a clique. Hitting set reductions have
application to other vertex coloring problems. Using this idea (and others), King and
Reed [18] gave a short proof that there exists € > 0 such that x < [(1—¢€)(A+1)+ew].

To keep this paper largely self-contained, we prove our own hitting set lemma. In
the present context, it suffices to find a hitting set when G is a minimal counterexample
to Theorem 1 with A > 14. Such a G is A-critical, which facilitates a shorter proof.
In [10], we proved a number of results about so called dj-choosable graphs (defined
below), which are certain graphs that cannot appear as induced subgraphs in a A-
critical graph. We leverage these dj-choosability results to prove our hitting set lemma,
then use the hitting set lemma to reduce to the case A = 13, which we proved in
Corollary 9. Since the proofs of the dj-choosability results in [10] are lengthy, we give
a short proof of the special case that we need here.

A list assignment L is an assignment L(v) of a set of allowable colors to each
vertex v € V(G). An L-coloring is a proper coloring such that each vertex v is colored
from L(v). An f-assignment is a list assignment L such that |L(v)| = f(v) for all
v € V(G). In particular, a dj-assignment is an f-assignment with f(v) = d(v) — 1
for all v. A graph G is f-choosable if G has an L-coloring for every f-assignment L.
No A-critical graph contains an induced dj-choosable subgraph H (by criticality, color
G \ H, then extend the coloring to H, since it is dj-choosable). For a list assignment
L, let Pot(L) = Uyey (@) L(v). The following lemma is central in proving each of our
di-choosability results.

Lemma 10 (Small Pot Lemma, [15, 31]). For a list size function f : V(G) —
{0,...,|G| — 1}, a graph G is f-choosable iff G is L-colorable for each list assignment
L such that |L(v)| = f(v) for allv € V(G) and }Uvev(g)L(v)‘ < |G].

Proof. Fix G and f. The “only if” direction is true by definition. Now we prove
the “if” direction. Assume that G is L-colorable for each list assignment L such
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that |L(v)| = f(v) for all v and |Uv€V(G)L(v)‘ < |G|. For any U C V(G) and any
list assignment L, let L(U) denote UyeyL(v). Let L be an f-assignment such that
|L(V)| > |G| and G is not L-colorable. For each U C V(G), let g(U) = |U| — |L(U)].
Let B be a bipartite graph, where one part consists of vertices in V(G) and the other
part consists of colors in Pot(L), and a vertex v is adjacent to a color ¢ if ¢ € L(v).
Since G is not L-colorable, B has no matching saturating V(G), so Hall’s Theorem
implies there exists U with g(U) > 0. Choose U to maximize g(U). Let A be an
arbitrary set of |G| — 1 colors containing L(U). Construct L' as follows. For v € U,
let L'(v) = L(v). Otherwise, let L'(v) be an arbitrary subset of A of size f(v). Now
|L'(V)| < |G, so by hypothesis, G has an L’-coloring. This gives an L-coloring of U.
By the maximality of g(U), for all W C (V(G)\U), we have |[L(W)\ L(U)| > |W|. Let
B' = B\ (Uyep{u} U Np(u)). Thus, by Hall’s Theorem B’ has a matching saturating
V(G) \ U; so we can extend the L-coloring of U to all of V. O

Lemma 11 ([10]). Fort >4, K;V B is not dy-choosable iff w(B) > |B| — 1; ort =4
and B is E3 or K13; ort =15 and B is E3.

Proof. If w(B) > |B|—1, then assign each v € V(K; V B) asubset of {1,...,t+|B|—2};
since w(K;V B) > t+|B|—1, clearly G is not colorable from this list assignment. Now
let G = K5V E3, and note that K4V K13 = K5V E3. Consider the following list
assignment L for G: each dominating vertex has list {1,...,6} and the three other
vertices get distinct lists among {1,2,3,4},{1,2,5,6},{3,4,5,6}. If G has a proper
L-coloring, then the dominating vertices use five distinct colors; this leaves only one
color for the three remaining vertices, but no color appears in all three lists. Hence,
G has no L-coloring. Now form G’ from G by deleting one dominating vertex (note
that G’ = K4V E3), and let L'’ = L\ {6}. Since G has no L-coloring, also G’ has no
L’-coloring. This proves one direction of the lemma; now we consider the other.

Suppose the lemma is false, and let G and L be a minimal counterexample, where
G = K;V B and L is a dj-assignment. If w(B) < |B| — 2, then B contains either (i)
an independent set S = {x1,x9, 23} or (ii) a set S = {x1, 9, x3, x4} With z1x9, z324 ¢
E(B). If B contains only (i), then S = E3 and ¢t > 6 (by moving any dominating
vertices from B to K;). Let T'= V(K;) and denote T by {y1,...,y:}. In Cases (i) and
(ii) we assume by minimality that ¢ = 6 and ¢ = 4, respectively. Also by minimality,
we assume that V(B) = S (we can greedily color vertices not in S). By definition
|L(v)| = d(v) — 1; specifically, |L(z;)| = ds(x;) +t — 1 and |L(y;)| = |S| +t — 2 for all
z; € S and y; € T. When we have 4, j, k with z; ¢ x; and |L(x;)| + |L(z;)] > |L(yk)|,
we often use the following technique, called saving a color on y;, via x; and x;. If there
exists ¢ € L(x;) N L(x;), then use ¢ on z; and x;. Otherwise, color just one of x; and
xj with some ¢ € (L(z;) U L(x;)) \ L(yg). For a set U, let L(U) = Uyer L(v).

Case (i) By the Small Pot Lemma, assume that |L(G)| < 8. This implies |L(z;) N
L(z;)| > 2 for all 4,5 € [3]. If there exist z; and yi with L(z;) € L(yx), then color
x; to save a color on yi. Color the remaining z’s with a common color; this saves an
additional color on each y. Now finish greedily, ending with y. Thus, we have L(x;) C
L(yy) for all i € [3] and k € [6]. This gives |U_; L(z;)| < 7. Since 325, |L(z;)| = 15 >
2| U3_, L(wg)|, we have a color ¢ € N?_; L(x;). Use c on every z; and finish greedily.

Case (ii) By the Small Pot Lemma, assume that |L(G)| < 7. If S induces at least
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two edges, then |L(z1)| + |L(z2)| > 8. So L(z1) N L(z2) # 0. Color x; and xo with a
common color c. If |L(y1) \ {c}| < 5, then save a color on y; via x3 and 4. Now finish
greedily, ending with .

Suppose S induces exactly one edge; by symmetry, say it is x1x3. Suppose that
L(z1) N L(x2) # (0. Similar to the previous argument, use a common color on z; and
xo, possibly save on y; via x3 and x4, then finish greedily. So instead, assume that
L(z1) N L(z2) = 0. Since |L(G)| <7 and L(x1) N L(z2) = 0, by symmetry (between x;
and x3 and also between x5 and x4), we may assume that L(x1) = L(z3) = {a,b,c,d}
and L(ze) = L(z4) = {e, f,g}. Also by symmetry, a or e is missing from L(y;). So
color x1 with a and x5 and x4 with e and x3 arbitrarily; this saves one color on each
y; and a second color on y;. Now finish greedily, ending with y;.

So instead G[S] = E4. If a common color appears on 3 vertices of S, use it there,
then finish greedily. If not, then by pigeonhole, at least 5 colors appear on pairs of
vertices; so, two colors appear on disjoint pairs. Color two such disjoint pairs, each
with a common color. Now finish the coloring greedily. O

The following lemma of King enables us to find an independent transversal.

Lemma 12 (Lopsided Transversal Lemma [17]). Let H be a graph and Vi U---UV, a
partition of V(H). If there exists s > 1 such that for each i € [r| and each v € V; we
have d(v) < min{s, |V;| — s}, then H has an independent transversal I of Vi,...,V,.

Now we have all the tools to prove our hitting set lemma.
Lemma 13. Every A-critical graph with x > A > 14 and w = A — 4 has a hitting set.

Proof. Suppose the lemma is false, and let G be a counterexample minimizing |G|.
Consider distinct intersecting maximum cliques A and B. Since a vertex in their
intersection has degree at most A, we have [ANB| > |A|+|B|—(A+1)=A—-9 > 5.
Since G contains no induced di-choosable subgraph, letting AN B = K; in Lemma 11
implies that w(G[AU B]) > |[AU B| — 1. Hence |[ANB| =w —1= A — 5. Suppose
C is another maximum clique intersecting A; let U = AUBUC and J = ANBNC.
We use inclusion-exclusion to bound |U| and |J|. First, |U| =|AUBUC| = |AU B|+
|IC\(AUB)|<|AUB|+|C\ A = |AUB|+|C|—|CNA < (A=5+1+4+1)+(A—4)—
(A—5)=A—2. Second, |J| = |ANB|+|C|-|[(AnB)UC|>|ANB|+|C|—|U| >
(A=5)+(A—-4)—(A-2)=A-T7>T.

Since |J| > 7, by Lemma 11, w(G[U]) > |U|-1;s0 C = Aor C = B, a contradiction.
Thus, every maximum clique intersects at most one other maximum clique. Hence we
can partition the union of the maximum cliques into sets D1, ..., D, such that either
D; is a (A —4)-clique C; or D; = C;U{x;} for a (A —4)-clique C;, where z; is adjacent
to all but one vertex of C;.

For each Dy, if D; = Cj, then let K; = C;. If D; = C;U{z;}, then let K; = C;NN (x;).
Consider the subgraph F' of G formed by taking the subgraph induced on the union of
the K; and then making each K; independent. We apply Lemma 12 to F' with s = %—2.
We have two cases to check, when K; = C; and when K; = C; N N (x;). In the former
case, |K;| = A —4 and for each v € K; we have dr(v) < A(G) +1— (A —4) = 5.

Hence dp(v) < & —2 =min{§ —2,A—4— (5 —2)} since A > 14. In the latter
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case, we have |K;| = A — 5 and since every v € K; is adjacent to z; and to the vertex
in C; \ K;, neither of which is in F', we have dp(v) < A — (A —4) = 4. This gives
dp(v) < § —3=min {5 —2,A—5— (5 —2)} since A > 14. Now Lemma 12 gives
an independent transversal I of the K, which is a hitting set. O

Now we can prove the first of our two main results. For convenience, we restate it.
Theorem 1. FEvery graph with x > A > 13 contains Ka_3.

Proof. Let G be a counterexample minimizing |G|; note that G is vertex critical. By
Corollary 9, we have A > 14. If w < A — 4, let I be any maximal independent set;
otherwise let I be a hitting set given by Lemma 13 expanded to a maximal independent
set. Now w(G —I) < A(G) =4, A(G—-1) < A(G)—1,and x(G—-1I) > x(G) — 1. If
A(G—1) < A(G) -3, then greedy coloring gives x(G—1) < A(G—-1)+1 < A(G) -2,
so x(G) < A(G) —1. If A(G—-1) = A(G) — 2, then x(G — 1) < A(G — 1) by
Brooks’ Theorem (since w(G — I) < A(G) —4), so x(G) < A(G) — 1. So instead
AG-1)=A(G)—1. Now x(G—-I) > A(G-I)>13 and w(G—-I) < A(G—-1)—-3
contradicting the minimality of |G|. O

We suspect that Theorem 1 holds for all A. By Theorem 3 and Theorem 1, the
following conjecture is only open when A € {6,8,9,11,12}.

Conjecture 1. Every graph with x > A contains Ka_3.

We conclude this section with a nice application of Theorem 1 to the Borodin-
Kostochka conjecture for vertex-transitive graphs. Suppose G is a vertex-transitive
graph with x(G) > A(G) > 15. Then w(G) > A(G) — 3 by Theorem 1. Since G is
vertex-transitive, every vertex of G is in a Ka(g)—3. In [26], it was proved that the
Borodin-Kostochka conjecture holds for graphs where every vertex is in a K 2A(G) 2

Now A(G) —3 > 2A(G) + 2 since A(G) > 15, so we have proved the following.
Corollary 14. FEvery vertex-transitive graph with x > A > 15 contains K.

Corollary 14 should hold for A > 9 and this may be much easier to prove than the
full Borodin-Kostochka conjecture. In a short note [9], we explore these ideas further
and prove Corollary 14 for A > 13. A more general conjecture comes out of these
considerations which is worth mentioning because it implies Corollary 14 for A > 9.

Conjecture 2. Every vertex-transitive graph satisfies y < max {w, (5%43} }.

4 The Second Main Theorem

In this section, we prove our second main theorem. First, we prove a lemma that
follows from [10] about list coloring (we use it to forbid a certain subgraph in a A-
critical graph).

Lemma 15 ([10]). Let G = K3V Ey. If L is a list assignment such that |L(v)| >
d(v) — 1 for all v € V(G) and for some w € V(K3) and some x € V(E2) we have
|L(w)| > d(w) and |L(x)| > d(z), then G has an L-coloring.
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Proof. Denote V(E3) by {z,y}. By the Small Pot Lemma, we assume |Pot(L)| < 4 <
5 < |L(x)|+|L(y)|. After coloring = and y the same, finish greedily, ending with w. [

In the rest of this section, we extend and refine the ideas in Section 2.

Definition 8. Let P be a minimum (r1,...,rs)-partition of a graph G with x(G) =
A(G) =143 ¢ 7i- Let S be a move sequence starting at P. For a full club S with
respect to S, the clubgroup Gs(S) of S is the set consisting of S and the full clubs to
which S is joined.

When the move sequence is clear from context, we write G(S) in place of Gs(5).
Clearly if R and S are full clubs and R € G(S5), then S € G(R). By Lemma 8, we know
that if R, S, and T are full clubs, and R € G(S) and S € G(T), then R € G(T). So,
the set of full clubs with respect to S is partitioned into clubgroups. We need a way
of differentiating moves that are internal to a clubgroup and moves that go from one
clubgroup to another. This motivates the following definition of internal and external
moves.

With the notation we have at this point, referring to objects like “the clubgroup of
the club of the active component” is a bit unwieldy. So, we allow ourselves to write

Gs(A) in place of Gs(Cs(A)).

Definition 9. Let P be a minimum (ry,...,rs)-partition of a graph G with x(G) =
A(G) =1+ 3 e mi- Let S be a move sequence starting at P. Let M = (P, v, 1, P?)
be a move in S, A% the active component in P* and A the active component in PP.
Then move M is internal if Gs(A®) = Gs(AP). Otherwise, M is external. We write
E(S) for the subsequence of S consisting of all the external moves of S.

Definition 10. Let P be a minimum (71,...,rs)-partition of a graph G with x(G) =
A(G) =1+ > ciqri- Let § = (P, v1,d1, P?),..., (P, vy, iq, PI1)) be a move se-
quence starting at P. Let R be a full club of S. We say that the clubgroup Gs(R) is acti-
vated at least k times if there is a subsequence ((P%, vy, ,iq,, PP, ... (P%, v, , i, , P*T1)
of £(S) where the active club in P%*! is in Gs(R) for i € [k].

Definition 11. Let P be a minimum (71,...,rs)-partition of a graph G with x(G) =
A(G) =1+ ZiG[S] ri. Let S = ((PY, 1,41, P?),..., (P, vy, iq, P11)) be a move se-
quence starting at P. Let R be a full club of S. The external spread of R is

esps(R) = {i | (Q,v,,Q") € E(S) with C(A(Q)) € Gs(R)} .

The external spread of S is esp(S) = maxp, |esp(R)| where the max is over all full clubs
R of S.

In an (71,...,rs)-partition of a graph G a clubgroup containing s — 1 clubs is called
a big clubgroup. A clubgroup with fewer than s —1 clubs is small. Our next big lemma
will be an analogue of Lemma 9. Intuitively, it says that clubgroups can be thought of
much like clubs: in a move sequence with external spread at most 2 (and each vertex
moved at most once), each clubgroup is activated at most 3 times. The proof is similar
to that of Lemma 9. Not suprisingly, we must first prove an analogue of the helper
lemma that played a key role in that proof. This is Lemma 16 which follows quickly
from Lemma 5.
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Lemma 16. Let P be a minimum (r1,...,rs)-partition of a graph G with x(G) =
A(G) =1 + Zie[s] Ti. Let

S = ((P'v1,i1, P?),..., (P9, vg,iq, PTT))
be a move sequence starting at P. Let R and S be full clubs of S and t € [q¢+ 1]. If
Ry = A(PY), then
(a) if u € V(R:) and u has at least 2 neighbors in S, then w is joined to Sy.
(b) if u € V(Ry) and v € V(Sy) and u has at least 2 neighbors in Sy and v has at
least 2 neighbors in V(G(Ry)) \ {u}, then v is joined to V(G(Ry)).

Proof. (a) is the same as (a) in Lemma 6; we only restate it here for convenience.

(b): By symmetry, we may assume that V(G(R;)) intersects each of P},..., P},
and none of P},..., P!. Moreover, we assume that V(S;) C P{. Let A, = G [Pf] for
i €[k]. Let H=G[V({A1,...,A,})] and let T1 be the component of A; containing
u. Plainly, x(H) = > ;e X(4i). By Lemma 4, x(A1 \ {u}) < x(A41) and da,(uv) <
X(Ag)+1. By Lemma 5 (a), vertex u has at least x(Aj) neighbors in some component
Ty, of Ag. Since dy, (u) < x(Ag) + 1 and u has at least two neighbors in S;, we must
have T}, = S;.

If da-(v) > 143 1) x(Ai), then there exists some part P} with dpt(v) < rq.
By moving v to P} and u to P}, we get a (x(G) — 1)-coloring of G, a contradiction. So
da+(v) <1+ 3 ey X(Ai) < [T7|. Similarly, da-(w) < |T™ for all w € T*. To finish
the proof of (b), we now apply Lemma 5 (c), with 7 = V(G(Ry)). O

Lemma 17. Let P be a minimum (r1,...,rs)-partition of a graph G with x(G) =

S = ((P',v1,i1, P?),...,(P% v, i4 PT))

is a move sequence with esp(S) < 2 and v; # v; for different i,j € [q+ 1], then:
(1) every clubgroup of S is activated at most 3 times; and

(2) every big clubgroup of S is activated at most 2 times.

Proof. Suppose the lemma is false and choose a move sequence
S = ((PY,v1,i1, P?),..., (P vy, ig, PTT))

for which it fails minimizing ¢. By minimality of ¢ (and since esp(S) < 2), we have a
length three subsequence ((P!,vy,i1, P?), (P®, vy, ip, P**1), (P, vy, 4, P1T1)) of S such
that

(i) GLA(PY)) = GA(P)) = G(A(PT*!)) and C(A(P?)) = C(A(P"*!)); and

(ii) there is at most one (P%,vg, 44, P%T!) in S with 1 < d < b such that G(A(P?)) =
G(A(P)); and

(iii) C(A(P?)) is active at most 3 times.
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Let X = G(A(P')) and Y = C(A(P?)). We will show that X is joined to Y; this
gives a contradiction, since we are assuming Y is not in the clubgroup of X. To simplify
notation, let ¢ = ¢ + 1. If there does not exist (P%, vg,ig, P¥1) in S with 1 < d < b
such that C(A(P?)) = C(A(P')), then let d = b. The proof of (1) is nearly identical to
the proof of Lemma 9. The only difference is that each instance of Lemma 6 in that
proof is now replaced by Lemma 16; so we omit the proof.

Now for the proof of (2). If a clubgroup is big, then each of its external moves goes to
the same part X; of the partition. Thus, if a big clubgroup becomes active 3 times, then
we again have the move subsequence (P!, vy, i1, P2), (P, vp, iy, P**1), (P9, vy, 44, PIT1)),
with properties (i), (ii), and (iii) above. Hence, the proof of (1) is also valid in this
context, and yields a proof of (2). O

Now we can prove our second main theorem (we restate it for convenience), which
strengthens Theorem 18 for A > 10.

Theorem 18 (Kostochka, Rabern, and Stlebltz [21]). If G is a critical graph with
X(G) > A(G) and w(G) < A(G), then w(H [ AG)-1 J .

Theorem 2. If G is a critical graph with x(G) > A(G) and w(G) < A(G), then
w(H(G)) > A(G) —4 if A(G) =1 (mod 3)) and w(H(G)) > A(G) — 5 otherwise.

Proof. Suppose the theorem is false and let G be a critical graph with x(G) > A(G),
w(G) < A(G) and w(H(G)) < A(G)—4if A(G) =1 (mod 3)) and w(H(G)) < A(G)—
otherwise. By Brooks’ Theorem, we have x(G) = A(G). By Theorem 18, A(G) > 10.

Let s = L%J and ri,...,rs € {3,4} such that A(G) =1+ Zie[s] r;. Then
G has an (rq,...,7s)-partition, so we can let P be a minimum (71, ..., 7s)-partition of
G. Let 8 = ((PY,v1,i1, P?),...,(P% vy, i4, PT1)) be a move sequence starting at P
with esp(S) < 2 having the maximum number of external moves such that v; # v; for
different i,j € [¢ + 1]. Let A = A(PIT1).

Suppose G(C(A)) is small. By Lemma 17, G(C(A)) is activated at most 3 times in
S. Since r;, > 3, there is x € V(A) such that x & {v; |t € [¢]}, i.e., since A has at
least 4 vertices, some x € V(A) has not yet moved. Since G(C(A)) is small, there is
an external move (P4t z io q, P172). If i441 € esp(C(A)), then by maximality of S,
we see that C(A) is joined to a club outside its clubgroup, giving a contradiction by
Lemma 8. Since this is true for any such external move, we must have [esp(C(A))| < 1.
But then appending the move (P9t x,i,.1, P472) to S violates the maximality of S,
a contradiction.

Hence G(C(A)) is big. By Lemma 17, G(C(A)) is activated at most 2 times in S.
Consider K = zcgc(ay) V(Zg+1)- Since G(C(A)) is big, K is a clique that has vertices
in all but one part of P?t!. By renumbering if necessary, we may assume that K has
vertices in each of P{T, ... PIT! Then |K| =1+ Y ic[s—1) Ti- Hence [K| = A(G) —3
if A(G) =1 (mod 3) and |K| > A(G) —4 otherwise. In either case, K has at least two
low vertices by our conditions on w(H(G)).

If K contains a low vertex x that has not moved, i.e., z € K\ {v; | t € [¢]}, then we
have an external move (P4t i, 1, P*2) and hence C(A) is joined to a club outside
its clubgroup, giving a contradiction by Lemma 8. So, since G(C(A)) is activated at
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most 2 times in S, K has exactly two low vertices v and w. Moreover, S contains ex-
ternal moves (P, v,1i4,, P11 and (P9, w,i4,, P®*!) and in both P4+ and pe2+!
the clubgroup G(C(A)) contains the active club (possibly different each time). By
symmetry, assume a; < ag and so az = q.

Let B be the active component in P9. Since w € V(B) and w is adjacent to at
least A(G) — 5 vertices in K, we see that C(B)’s clubgroup is {C(B)} (otherwise w
would be adjacent to more than 5 vertices coming from C(B)’s clubgroup, which is too
many). Suppose that V(B) contains a high vertex that is unmoved, i.e., z € V(B) \
{v¢ | t € [¢ —1]}. Since A(G) > 10, we have s > 3. So there is an external move M =
(P9, z,1,Q) where i € [s — 1]. Consider the move sequence formed from S by removing
the last move and appending M. By our considerations in the previous paragraph, this
move sequence can be extended (the active club now contains an unmoved low vertex,
since the last vertex moved is high), contradicting the maximality condition on S. So,
every z € V(B) \ {v | t € [¢ — 1]} is low.

Since w is low, for every move (Q, 2,1, Q") in S where C(B) is active in @), we must
have z € K; otherwise w would have at least A neighbors. In particular, there are
at most two such moves since G(C(A)) is activated at most twice. So B contains an
unmoved vertex, i.e., |[V(B) \ {v: |t € [¢]}] > 1.

Let (P9, u,i4,, P%%1) be the first external move in S after (P™,v,4,,, P®H1).
Let A’ be the active component in P* and consider K’ = UZeg(C(A')) V(Zas). Since
|K'| = |K|, as we saw before for K, also K’ has at least two low vertices v, w’. If u is
high, then K would contain low vertices v, w,w’, a contradiction. So u is low; in fact,
u=w.

We show that C(A(P%*1)) = C(B). Since v is low, we have the move M’ =
(P*,v,s,Q"). Let B = A(Q’) \ {v}. Since v is adjacent to w (and v is low), we must
have w € V(B'). So C(B) = C(B'). Since C(B’) is active at most twice, v has at least
|B'|—2 > 0 neighbors in C(B’)441. Since v is low, we have the move M = (Pt v, 5, Q).
Now Lemma 4, part (2) shows that {v} UV (C(B’)4+1) induces a K, y1. But u € patt
and v is adjacent to u, so u € V(C(B')411). Therefore, C(A(P%11)) = C(B') = C(B).

Now we have the K3 on {u,v,w} joined to a set of vertices T with |T'| = A(G) — 3.
Namely, T' = (V(K)\{v, w})U(V(B)\{u}). Moreover, since |V(B) \ {v; | t € [¢]}| > 1,
there is a low vertex in V(B \ {vg,u}) and V(B \ {vg,u}) € T. So, by Lemma 15,
{u,v,w} UT induces a Kx(g), a contradiction. O

We conjecture that the previous theorem actually holds with w(H(G)) > A -5
replaced by w(H(G)) > A — 4. In [28], the second author proved this result for A = 6;
later in [21] it was proved for A = 7. The condition w(#H(G)) > A — 4 would be tight
since the graph Os in Figure 3 is a counterexample to w(#H(G)) > A — 3 when A = 5.
In fact, it was shown in [21] that Os is the only counterexample to w(H(G)) > A —3
when A = 5.

Conjecture 3. Let G be a graph. If x > A, then w > A or w(H(G)) > A — 4.
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Figure 3: The graph Oj is a A-critical graph with A = 5 and w(H(G)) = 1.

5 Algorithms

All of our coloring proofs do translate into algorithms to construct the colorings. How-
ever these algorithms cannot obviously be made to run in polynomial time. Attempts
to do so encounter two main obstacles. The first comes in our proof of Theorem 3,
when we consider a critical subgraph H of our given graph G. We do not know an effi-
cient algorithm to find such a critical subgraph; however, we will see how to overcome
this difficulty. Our second obstacle comes from King’s Lopsided Transversal Lemma.
While his proof is constructive, the algorithm it implies may require exponential time.
We are not aware of any workaround to efficiently find our hitting set; however, when
A is sufficiently large, we can use an idea of Alon instead. We implement a modified
version of the algorithm from Theorem 3.

Theorem 19. There is a O(V2E?) time graph algorithm that finds either a (A —1)-
coloring or a clique on A — 4 vertices (A — 3 vertices if A =1 (mod 3)).

Proof. Let G be an n-vertex graph with A > 10, and let I be a maximal independent
set in G. Let Gy = G — I, and note that A(Gp) < A(G) — 1. Lovész’s proof of Brooks’
theorem [23] can be implemented in time O(V + E) (see [3]). Applying this to Gy we
either get a A(G) clique or a (A(G) — 1)-coloring of Gp. In the former case, we are
done, so suppose we have a (A(G) — 1)-coloring ¢ of Gj.

Let v be an arbitrary vertex in I and put G; = G[V(Gp) U {v}]. We give an
algorithm that either finds a (A(G) — 1)-coloring of G or a clique on A(G) —4 vertices

(A(G) — 3 vertices if A(G) =1 (mod 3)). Iterating this gives the desired algorithm.
A(G)—1
3

Note that G; has an (rq,...,rs)-partition P, where s = [ J and 71,...,75 €
{3,4}; choose an arbitrary such partition which respects the color classes of ¢. Now
we will construct a move sequence as in the proof of Theorem 3, treating the resulting
partitions as if they were minimum partitions. For each partition arising from the move
sequence, we check whether any property in Lemma 4 is violated; if some property is
violated for a partition P, then we can modify P to form a new partition P’ such
that P’ has fewer edge within parts, i.e., o(P") < o(P). When this happens, we begin
our move sequence anew, starting from P’. Eventually, we will reach a partition and
a move sequence that does not allow us to reduce the number of edges within parts.
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Such a move sequence will terminate with either (1) a clique on A(G) — 4 vertices
(A(G) — 3 vertices if A(G) =1 (mod 3)) or (2) a (A(G) — 1)-coloring of G1. In the
case of (1), our algorithm halts. In the case of (2), we add a new vertex v from I\ {v}
and continue.

So, we need only analyze the running time. Each move sequence has length at most
n, since each vertex moves at most once. After adding a vertex, we can reduce the
number of edges within parts at most |E(G)| times. Hence, after we add a new vertex
from I to our partition, we need at most n | E(G)| moves until we find either a big clique
or a (A(G) — 1)-coloring. After each move, we can verify that the resulting partition
satisfies all the properties of Lemma 4 (or doesn’t) and find a vertex to swap with in
O(V + E) time. Since we need to do this at most n|I||E(G)| times, the running time
of the algorithm is O(V2E?). O

When A # 1 (mod 3), Theorem 19 only finds a Ka_4; but Theorem 1 guarantees a
Ka_3 when A > 13. To get an algorithmic version of this result, we need to efficiently
find a hitting set when xy = A and w = A — 4. We will show how to do this when A
is sufficiently large. The proof we present here works for A > 37. We also sketch how
to refine this idea to work for A > 33. Further, using a result of Kolipaka, Szegedy
and Xu [19], we show how to get down to A > 26. The general idea is to find a set of
disjoint cliques A = {A;, Aa,...} such that |4,| is large for all i and each maximum
clique contains some A;. Following an idea of Alon, we choose one vertex uniformly
at random from each A; and use the Lovasz Local Lemma to prove that with positive
probability the chosen vertices form an independent set. Our proof uses one classical
lemma each from Hajnal [13] and Kostochka [20].

Lemma 20 (Hajnal [13]). If S is a collection of mazimum cliques in a graph G, then

‘US’JF)QS‘ > 2.

Proof. We use induction on |S|; the base case |S| = 1 is trivial. Let S; € S and
§' =8 — 51. Consider the set (NS"\ S1) U (51 N (US")), which induces a clique. Since
S is a maximum clique, |S1| > [(NS\ S1) U (S1 N (US"))], which yields S \ (US")| >
|(NS’) \ S1|. By hypothesis, |[US’| + |NS’| > 2w. Adding this to the previous inequality
gives the desired result. O

Now we need the following definition. Given a collection S of sets, the intersection
graph Xs has one vertex for each set of S and two vertices are adjacent if their sets
intersect.

Lemma 21 (Kostochka [20]). Let G be a graph with w(G) > %(A(G) +1). IfSisa
collection of mazimum cliques in G and the intersection graph Xs is connected, then

(NS = 2w(G) = (A(G) +1).

Proof. We use induction on |S|; the base case |S| = 1 is trivial. The key is to show that
INS] >0, for then ||JS| < A(G)+1, so the lemma follows directly from Lemma 20. Let
S1 € S be a noncutvertex of Xs, and choose Sz € S that intersects S1. Lemma 20 for
the set {S1,S2} implies |S1 \ S2| = |S1] — |S1 N S2| S w(G) — 2w(G) — (A(G) + 1)) =
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A(G)+1—-w(G). Let 8" =S — 5. Now Xg is connected, so by hypothesis, the
lemma holds for §’. Choose v € (§'. Now |JS&'| < dg(v) +1 < A(G) + 1. Thus,
US| < US|+ 151\ 82| < (A(G)+1) + (A(G) +1 - w(G)) < 2w(G). By Lemma 20,
INS] > 0, so the lemma follows. O

In [20], Kostochka used Lemma 20 and Lemma 21 to prove that a hitting set always
exists when w > A —|— s — \F Using an independent transversal result of Haxell [14],
this was improved to w > 3(A+1) in [27] and finally to the best possible w > 2(A+1)

in [17]. Using an 1ndependent transversal result of Alon [1] (see also [2], p. 70) we get
w > %21; (A +1). Since Alon’s proof is based on the Local Lemma, we can use the

efficient algorithms developed by Moser and Tardos [24].

Lemma 22. If G is a graph with w > geié(A + 1), then G contains an independent

set I such that I intersects every mazximum clique in G.

Proof. Let S be the set of maximum cliques in G and let S; be the set of vertices in one
component C; of Xs. For each i, Lemma 21 gives 1S = 2w — (A+1) = ZH(A+1).

Let k = [ £7(A+1)]. For each component Cj, let A; be a set of k vertices that lie
in every clique of C;. Use the Local Lemma (see 2], p. 64-65) to choose the desired
independent set. From each A;, choose a vertex uniformly at random. For each edge
wv with v € A; and v € A; (and i # j), let E,, be the bad event that both u and v
are chosen for I; event E,, occurs with probability p = 1/(|4;||4,|) = k=2, Each E,
is independent of all other bad events except for those corresponding to edges with an
endpoint in A; or A;. Since each v has at least w — 1 neighbors in §; and v has at
least w — 1 neighbors in §;, the degree d of E,, in the dependency graph is at most
(A+1-w)(|Ai]+|Aj]) -1 < 25 (A+1)—1 = K (A+1)—1. This gives ep(d+1) < 1,
so the desired independent set I exists. O

Corollary 23. If G is a graph with A > 37 and w = A — 4, then G contains an
independent set I such that I intersects every mazximum clique in G. Furthermore, 1
can be found in polynomial time.

Proof. If A > 37, then we have w = A —4 > gzi% (A +1), so we can apply Lemma 22.
All that remains is to show that we can implement its proof in polynomial time. We
can find the set of all maximum cliques by considering each (A — 4)-element subset
of the closed neighborhood of each vertex. We use a union-find algorithm to find the
components of the intersection graph of this set of maximum cliques. Now consider
a set S of maximum cliques such that the intersection graph Xg is connected. We
can slightly modify the union-find algorithm so that it also returns NS. To now find
our hitting set, we apply the algorithm for the Local Lemma from Moser and Tardos

[24]. O

With a more complicated algorithm we can do better. Specifically, instead of using
Lemma 20 and Lemma 21, we use Lemma 11 as in the proof of Lemma 13. Basically,
we just need to do a preprocessing step where we find and remove all dj-choosable
induced subgraphs on at most 9 vertices (we can color them after coloring the rest).
Once we have a graph with none of these d;-choosable induced subgraphs, we know, as
in the proof of Lemma 13, that the components of Xs have at most two vertices. So,
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we can replace our estimate |[)S;| > 2w — (A + 1) with | S;| > w — 1. This improves
the needed condition in Lemma 22 to w > 2346r1A + 1 and thus allows Corollary 23 to
work for A > 33.

Using a recent result of Kolipaka, Szegedy and Xu [19] we can do a bit better. The
idea is that the local lemma can be strengthened when the dependency graph has nice
structure. In our case, the dependency graph is the line graph of a multigraph (the
multigraph formed by contracting all the A; in G [|J; 4;]). Because of this structure,
we may apply the Clique Lovasz Local Lemma from [19] to prove Lemma 22 with
w > %A + 1. Since there is an efficient algorithm for the Clique Lovasz Local Lemma

as well, we get Corollary 23 for A > 26. So, we can prove the following conjecture for
A > 25.

Conjecture 4. For A > 13, there is a polynomial time graph algorithm that finds
either a (A — 1)-coloring or a clique on A — 3 vertices.
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