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Abstract

Brooks’ Theorem implies that if a graph has ∆ ≥ 3 and and χ > ∆, then ω = ∆+1.
Borodin and Kostochka conjectured that if ∆ ≥ 9 and χ ≥ ∆, then ω ≥ ∆. We show
that if ∆ ≥ 13 and χ ≥ ∆, then ω ≥ ∆ − 3. For a graph G, let H(G) denote the
subgraph of G induced by vertices of degree ∆. We also show that if χ ≥ ∆, then
ω ≥ ∆ or ω(H(G)) ≥ ∆− 5.

1 Introduction

Our goal in this paper is to prove the following two main results. For a graph G,
we write ∆(G), ω(G), and χ(G) to denote the maximum degree, clique number, and
chromatic number of G. When the context is clear, we simply write ∆, ω, and χ.

Theorem 1. If G is a graph with χ ≥ ∆ ≥ 13, then ω ≥ ∆− 3.

Theorem 2. Let G be a graph and let H(G) denote the subgraph of G induced by
vertices of degree ∆. If χ ≥ ∆, then ω ≥ ∆ or ω(H(G)) ≥ ∆− 5.

The proofs of Theorems 1 and 2, are both somewhat detailed, so we first prove
Theorem 3, which plays a central role in proving our two main theorems. (For a less
formal and less notationally dense presentation of these results, see an earlier version
of this paper [11].) Brooks’ Theorem states that if G is connected and χ > ∆, then
ω = ∆ + 1 or G is an odd cycle; so if ∆ ≥ 3, then χ > ∆ implies ω = ∆ + 1. Thus, the
interesting case of Theorems 1 and 2 is when χ = ∆.

Theorem 3. If G is a critical graph with χ ≥ ∆, then ω ≥ ∆− 3 if ∆ ≡ 1 (mod 3))
and ω ≥ ∆− 4 otherwise.

When ∆ = 13, Theorem 3 implies that either G is 12-colorable or G contains a K10.
This result will serve as the base case for a proof of Theorem 1 by induction on ∆. To
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prove Theorem 2, we will further analyze the proof of Theorem 3, and show that we
can continue a certain recoloring process unless H(G) contains a big clique.

Borodin and Kostochka [5] conjectured in 1977 that if G is a graph with ∆ ≥ 9
and ω ≤ ∆ − 1, then χ ≤ ∆ − 1. The hypothesis ∆ ≥ 9 is needed, as witnessed by
the following example. Form G from five disjoint copies of K3, say D1, . . . , D5, by
adding edges between u and v if u ∈ Di, v ∈ Dj , and i − j ≡ 1 mod 5. This graph is
8-regular with ω = 6 and χ ≥ d15/2e = 8, since each color is used on at most 2 of the
15 vertices; by Brooks’ Theorem G is 8-colorable, so χ(G) = 8. Various other examples
with χ = ∆ and ω < ∆ are known for ∆ ≤ 8 (see for example [12]). The Borodin-
Kostochka Conjecture has been proved for various families of graphs. Reed [30] used
probabilistic arguments to prove it for graphs with ∆ ≥ 1014. The present authors [12]
proved it for claw-free graphs (those with no induced K1,3).

The contrapositive of the conjecture states that if χ ≥ ∆ ≥ 9, then ω ≥ ∆. The
first result in this direction was due to Borodin and Kostochka [5], who proved that
ω ≥ b∆+1

2 c when χ ≥ ∆. Subsequently, Mozhan [25] improved this to ω ≥ b2∆+1
3 c

when ∆ ≥ 10 and Kostochka [20] showed that χ ≥ ∆ implies that ω ≥ ∆−28. Finally,
Mozhan proved that ω ≥ ∆− 3 when χ ≥ ∆ ≥ 31 (this result was in his Ph.D. thesis,
which unfortunately is not readily accessible [30]). Theorem 1 strengthens Mozhan’s
result, by weakening the condition to ∆ ≥ 13. Work in the direction of Theorem 2
began in [16], where Kierstead and Kostochka proved that if χ ≥ ∆ ≥ 7 and ω ≤ ∆−1,
then ω(H(G)) ≥ 2. This was strengthened in [21] to the conclusion ω(H(G)) ≥ b∆−1

2 c.
We further strengthen the conclusion to ω(H(G)) ≥ ∆− 5. We give more background
in the introduction to Section 3.

Most of our notation is standard, as in [32]. We write Kt and Et to denote the com-
plete and empty graphs on t vertices, respectively. We write [n] to denote {1, . . . , n}.
The join of disjoint graphs G and H, denoted G∨H, is formed from the disjoint union
of G and H by adding all edges with one endpoint in each of G and H. For a vertex v
and a set S (containing v or not) we write dS(v) to denote |S ∩N(v)|. When vertices
x and y are adjacent, we write x ↔ y; otherwise x 6↔ y. If Z is a set of graphs, we
let V (Z) =

⋃
G∈Z V (G). A graph G is k-critical if χ(G) = k and χ(H) < k for every

proper subgraph H. A vertex v in a graph G is critical if χ(G \ {v}) < χ(G). Note
that in a ∆-critical graph, every vertex has degree ∆ or ∆ − 1. A vertex v is high if
d(v) = ∆ and low otherwise.

2 Mozhan’s Partitioned Colorings

In [25], Mozhan used a partition of a graph into groups of color classes to prove bounds
on the chromatic number in terms of the degree and clique number. These ideas trace
all the way back to the 1966 paper of Lovász [22] where he proves that ifG is a graph and
r1, . . . , rk ∈ N with

∑
i∈[k] ri ≥ ∆(G) + 1 − k, then V (G) has a partition {V1, . . . , Vk}

where ∆(G[Vi]) ≤ ri for all i ∈ [k]. The proof idea is simple; just take a partition
minimizing the number of edges within parts (with an appropriate weighting depending
on ri). In [7], Catlin took this idea further by starting with such a minimum partition
and then moving vertices around (while preserving minimality) until he achieved a
desired property. To get the ability to move vertices around like this, he needed to
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strengthen the condition on the ri to
∑

i∈[k] ri ≥ ∆(G) + 2− k.
Mozhan’s idea is very similar to Catlin’s, but not equivalent. As we will see below,

Mozhan considers partitions of V (G) minimizing the number of edges within parts, just
like Lovász and Catlin, but he adds the restriction that each part is the disjoint union
of color classes in some fixed χ(G)-coloring of G. With this added restriction we get a
weaker bound on the degrees within parts, but more information about the coloring.
Because of this trade-off Mozhan’s method excels when all we care about is coloring
the parts, but if we require the parts to have more structure (for example, for them
to be degenerate as in Borodin’s result [4]), we need to use Catlin’s method or some
other technique (see [6] for example). There are some cases where either technique will
work; Mozhan’s method was used in [28] and [21], but the same results were derived
in [29] using Catlin’s method. The results in this paper require the use of Mozhan’s
more restrictive partitions, which we define now.

Our proofs only use the partition in the following definition when G is critical.
We include non-critical graphs as well because the more general concept is needed to
extract an efficient algorithm from our proof. We discuss algorithmic considerations in
the final section of the paper.

Definition 1. For s ∈ N≥2 and r1, . . . , rs ∈ N≥3, an (r1, . . . , rs)-partition P of a graph
G is a partition (P1, . . . , Ps) of V (G) such that

(1) there is j ∈ [s] such that χ(G[Pi]) = ri for all i ∈ [s] \ {j}; and

(2) there is v ∈ Pj so that χ(G[Pj ] \ {v}) ≤ rj .
We refer to j and v by j(P ) and v(P ) respectively.

For example, if G is 13-critical, then we get a (3, 3, 3, 3)-partition of G by removing
any v ∈ V (G), partitioning the color classes of a 12-coloring of G − v into four equal
parts and then adding v to one part.

We are interested in (r1, . . . , rs)-partitions that minimize the total number of edges
within parts (without v(P )). More precisely, for an (r1, . . . , rs)-partition P of a graph
G, let σ(P ) =

∥∥G[Pj(P )] \ {v(P )}
∥∥+

∑
i∈[s]\{j(P )} ‖G[Pi]‖; here ‖H‖ denotes the num-

ber of edges in subgraph H. A minimum (r1, . . . , rs)-partition of G is an (r1, . . . , rs)-
partition P minimizing σ(P ).

Lemma 4. If P is a minimum (r1, . . . , rs)-partition of a graph G with χ(G) = ∆(G) =
1 +

∑
i∈[s] ri, then

(1) G[Pj(P )] has a component A(P ), called the active component, that is Krj(P )+1 and
χ(G[Pj(P )] \ V (A(P ))) ≤ rj(P ); and

(2) for each u ∈ V (A(P )) and i ∈ [s]\{j(P )} with dPi(u) = ri, the graph G[Pi∪{u}]
has a Kri+1 component (which contains u); and

(3) for each u ∈ V (A(P )) and i ∈ [s] \ {j(P )}, if u has at least dPi(u) + 1 − ri
neighbors in the same component D of G[Pi], then χ(G[V (D) ∪ {u}]) = ri + 1;
and

(4) if u ∈ V (G) and a ∈ [s] so that dPa(u) > ra + 1, then there is i ∈ [s] where
dPi(u) < ri. In particular, any ri-coloring of G[Pi] can be extended to an ri
coloring of G[Pi ∪ {u}]; and
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(5) for each u ∈ V (A(P )) and i ∈ [s] \ {j(P )}, we have dPi(u) ≤ ri + 1.

Proof. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) = ∆(G) =
1 +

∑
i∈[s] ri. Let j = j(P ) and v = v(P ). Let A(P ) be the component of G[Pj ]

containing v. By construction, G[Pj \ {v}] has an rj-coloring. So we may assume
that χ(A(P )) = rj + 1, since otherwise we get an rj-coloring of G[Pj ], and hence a
(∆− 1)-coloring of G.

To prove (1), it suffices to show that A(P ) is Krj+1. By Brooks’ Theorem, it is
enough to show that ∆(A(P )) ≤ rj . Suppose instead that there exists u ∈ V (A(P ))
with dA(P )(u) > rj ; choose u to minimize the distance in A(P ) from u to v. Uncolor
the vertices on a shortest path Q in A(P ) from u to v; move u to some Pk where it
has at most rk neighbors. Color the vertices of Q, starting at v and working along Q;
this is possible since each vertex of Q has at most rj − 1 colored neighbors in A(P )
when we color it. The resulting new partition R has fewer edges within color classes,
since we lost at least rj + 1 edges incident to u and gained at most rj incident to v
(note that v(R) = u). This contradiction implies that ∆(A(P )) ≤ rj , so A(P ) must
be Krj+1 by Brooks’ Theorem. Thus (1) holds.

Now we prove (2). Choose such a vertex u ∈ V (A(P )) and such an i ∈ [s] \ {j}.
Form a new partition R by deleting u from Pj and add it to Pi (now u = v(R)); this
maintains the total number of edges within parts, so R is another minimum (r1, . . . , rs)-
partition. By the above proof of (1), u lies in a component of G[Pi] that is Krj+1. Thus,
(2) holds.

If (3) is false, then u has at most ri − 1 neighbors in G[Pi] \D, so we may choose
an ri-coloring of G[Pi] \ D so that the neighbors of u in Pi \ V (D) each get a color
in [ri − 1]. Together with an ri-coloring of G[V (D) ∪ {u}] where u is colored ri, this
gives an ri-coloring of G[V (Pi)∪ {u}]. But then we have a (χ(G)− 1)-coloring of G, a
contradiction.

(4) is immediate, since dG(u) ≤ 1 +
∑

i∈[s] ri
If (5) is false, then apply (4) and move u to Pi to get a (χ(G)− 1)-coloring of G, a

contradiction.

Definition 2. A move is a quadruple (P, v, i, P ′) where

(1) P is an (r1, . . . , rs)-partition of a graph G; and

(2) v ∈ V (A(P )); and

(3) i ∈ [s] \ {j(P )} with dPi(v) = ri; and

(4) P ′ is obtained from P by moving v from Pj(P ) to Pi.

In the proof of part (2) of Lemma 4, we showed that if P is a minimum (r1, . . . , rs)-
partition and (P, v, i, P ′) is a move, then P ′ is a minimum (r1, . . . , rs)-partition as well.
Moreover, for each k ∈ [s], the number of components in G[Pk] equals the number of
components in G[P ′k].

Definition 3. Let P be an (r1, . . . , rs)-partition of a graph G. A move sequence start-
ing at P is a sequence of moves ((P 1, v1, i1, P

2), . . . , (P q, vq, iq, P
q+1)) where P 1 = P .
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Definition 4. Let P be an (r1, . . . , rs)-partition of a graph G and

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

a move sequence starting at P . For each i ∈ [s] and component X of G[Pi], let the
club of X, written CS(X), be the sequence (X1, X2, X3, . . . , Xq+1) where X1 = X and
for t ∈ [q] \ {1}
• Xt = Xt−1 \ {vt−1} if Xt−1 is the active component in P t−1; otherwise

• Xt = Xt−1∪{vt−1} if G[V (Xt−1)∪{vt−1}] is the active component in P t; otherwise

• Xt = Xt−1.

Also, if Y ∈ CS(X), then we let CS(Y ) = CS(X). When the move sequence is clear
from context, we write C(X) in place of CS(X). We say R is a club of S if R = CS(X)
for a component X of G[Pi] for some i ∈ [s]. For a club R, we write Rt for the t-th
element of R.

Definition 5. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

be a move sequence starting at P . A club R of S is full if Rt is complete and |Rt| ≥ rρ(R)

for all t ∈ [q + 1].

We observe a few basic facts about clubs; we omit formal proofs by induction, which
are easy exercises.

Observation 1. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. If

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

is a move sequence starting at P , then for a club R of S, we have

(1) if V (R1) ⊆ P 1
i , then V (Rt) ⊆ P ti for all t ∈ [q + 1]. We call this i the part of R,

written ρS(R) (or ρ(R) when context allows).

(2) if a, b ∈ [q + 1], then Ra is complete if and only if Rb is complete,

(3) if R is full, then |Ra| = rρ(R) + 1 when Ra is active and otherwise |Ra| = rρ(R).

Lemma 5. Let H be a graph with induced subgraphs A1, . . . , Ak such that {V (A1), . . . , V (Ak)}
partitions V (H) and χ(H) =

∑
i∈[k] χ(Ai) where χ(A1) ≥ 4 and χ(Ai) ≥ 3 for all

i ∈ [k] \ {1}.
(a) Suppose u ∈ V (A1) with χ(A1 − u) < χ(A1). For each i ∈ [k] \ {1}, there is a

component Ti of Ai such that dV (Ti)(u) ≥ χ(Ai). Let T1 be u’s component in A1.

(b) Suppose dV (Tk)(u) = χ(Ak) and dV (Ak)(u) ≤ χ(Ak)+1. Put A∗ = V ({A1, . . . , Ak−1})
and T ∗ = V ({T1, . . . , Tk−1}). Further suppose there is v ∈ N(u) ∩ V (Tk) with
dA∗(v) ≤ 1 +

∑
i∈[k−1] χ(Ai) and dT ∗(v) ≥ 3. Then there exists q ∈ [k − 1] such

that dV (Tq)(v) ≥ χ(Aq).
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Figure 1: The partition in Claim 2 of Lemma 5. To form B1, B2, and B3

from A1, A2, and A3 (respectively), the vertices circled with dotted lines
(and shown in gray) have now been moved to other parts, where they are
shown above the Ti’s.

(c) If T ∗ induces a clique, Tk is complete, and dA∗(w) ≤ |T ∗| for all w ∈ T ∗, then
T ∗ ∪ {v} induces a clique.

Proof. First we prove (a). Pick i ∈ [k] \ {1}. Since χ(A1 \ {u}) < χ(A1), we must have
χ(A′i) = χ(Ai) + 1, where A′i = G[V (Ai) ∪ {u}]. So, u has at least χ(Ai) neighbors in
some component Ti of Ai, for otherwise we get a χ(Ai)-coloring of A′i from a χ(Ai)-
coloring of Ai by permuting colors in components of Ai. This proves (a).

Now we prove (b). Since χ(A1 \ {u}) < χ(A1), we must have χ(A′k) = χ(Ak) + 1
and u is critical in A′k. Then v is also critical in A′k since dV (Tk)(u) = χ(Ak) and
dV (Ak)(u) < 2χ(Ak). In particular, dV (Ai)(v) ≥ χ(Ai) for each i ∈ [k − 1].

Put A′1 = G [V (A1 \ {u}) ∪ {v}] and A′i = G [V (Ai) ∪ {v}] for each i ∈ [k − 1]\{1}.
Since χ(A′k \ {v}) < χ(A′k), we must have χ(A′1) ≥ χ(A1) and χ(A′i) ≥ χ(Ai) + 1
for i ∈ [k − 1] \ {1}. In particular, v is critical in A′i for each i ∈ [k − 1]. Note that
dV (Ai)(v) ≤ χ(Ai)+1 for each i ∈ [k − 1] since dA∗(v) ≤ 1+

∑
i∈[k−1] χ(Ai). Moreover,

there is at most one i ∈ [k − 1] for which dV (Ai)(v) = χ(Ai) + 1. Now the remainder of
(b) consists of the following claim.

Claim 1. There exists q ∈ [k − 1] such that dV (Tq)(v) ≥ χ(Aq).

Pick w, x ∈ N(v) ∩ T ∗ \ {u}. First, suppose there is i ∈ [k − 1] with w, x ∈ V (Ti).
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Since v is critical in A′i, it has at least χ(A′i) − 1 neighbors in some component C of
A′i \ {v}. Since v has two neighbors in Ti, our bounds on dV (Ai)(v) and χ(A′i) imply
that C = Ti. Since χ(A′i) ≥ χ(Ai) + 1 for i ∈ [k − 1] \ {1} (and if i = 1, v gets u as an
extra neighbor), the claim is satisfied.

So, we may assume there are different i, j ∈ [k − 1] with w ∈ V (Ti) and x ∈ V (Tj).
Since there is at most one p ∈ [k − 1] for which dV (Ap)(v) = χ(Ap)+1, by symmetry we
may assume that dV (Aj)(v) = χ(Aj). Since v is critical in A′j , it has at least χ(A′j)− 1
neighbors in some component C of A′j \ {v}. Since v has at least one neighbor in Tj ,
our bounds on dV (Aj)(v) and χ(A′j) imply that C = Tj . This proves the claim, and
completes the proof of (b).

Now we prove (c), which we restate as the following claim.

Claim 2. If T ∗ induces a clique, Tk is complete, and dA∗(w) ≤ |T ∗| for all w ∈ T ∗,
then T ∗ ∪ {v} induces a clique.

Suppose otherwise that T ∗ induces a clique, Tk is complete, and dA∗(w) ≤ |T ∗| for
all w ∈ T ∗ but T ∗ ∪{v} does not induce a clique. By (b) we have q ∈ [k − 1] such that
dV (Tq)(v) ≥ χ(Aq). If u 6∈ V (Aq), then we could move u into Aq without violating any
hypotheses. So, we may assume that q = 1. Since T ∗ ∪ {v} does not induce a clique,
there is some Ap to which v is not joined. By considering only the indices 1, p, k we
can assume that k = 3 and p = 2.

By hypothesis dV (T1)(v) ≥ χ(A1) and T1 is complete, so v must be joined to T1

(otherwise we move v to A1 and get a good coloring of G). Pick y ∈ V (T2) \ N(v)
and z ∈ V (T1 \ {u}). Let B1 = G [A1 ∪ {v, y} \ {u, z}], B2 = G [A2 ∪ {z} \ {y}], and
B3 = G [A3 ∪ {u} \ {v}]. We derive a contradiction by showing that χ(B1) < χ(A1)
and χ(B2) ≤ χ(A2) and χ(B3) ≤ χ(A3).

We have dV (B2)(z) ≤ χ(A2) since dA∗(z) ≤ |T ∗| and z ↔ y. Since z has exactly
χ(A2)− 1 neighbors in T2 \ {y}, we see that z has at most χ(A2)− 1 neighbors in each
component of B2 \ {z} and hence χ(B2) ≤ χ(A2). Since, by assumption, dV (Ak)(u) ≤
χ(Ak) + 1 and Tk is complete, the proof that χ(B3) ≤ χ(A3) is nearly identical.

Suppose χ(B1) ≥ χ(A1). Since {u, z} is joined to {v, y}, we see that dV (B1)(v) ≤
χ(A1) − 1 and dV (B1)(y) ≤ χ(A1) − 1. Let K = G [T1 ∪ {v, y} \ {u, z}]. Then K is a
copy of Kχ(A1) with the edge vy deleted. First, color B1 \V (K) with χ(A1)− 1 colors.
Since v and y each have at most one neighbor outside of K in B1 and χ(A1) ≥ 4, we
can finish the coloring on K by choosing the same color for v and y, different from the
colors used on their at most 2 (collective) neighbors in B1 \ V (K), and then coloring
K \ {v, y} with the χ(A1)− 2 other colors (see Figure 1).

In proving our next few lemmas, we repeatedly use the following helper lemma,
which is an easy corollary of Lemma 5.

Lemma 6. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

be a move sequence starting at P . Let R and S be full clubs of S and t ∈ [q + 1]. If
Rt = A(P t), then
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(a) if u ∈ V (Rt) and u has at least 2 neighbors in St, then u is joined to St.

(b) if u ∈ V (Rt) and v ∈ V (St) and u has at least 2 neighbors in St and v has at
least 2 neighbors in Rt \ {u}, then v is joined to Rt.

Proof. First we prove (a). By symmetry, assume that V (Rt) ⊆ P t1 and V (St) ⊆ P t2. We
apply Lemma 5 (a) with Ai = G[P ti ] for i ∈ [2], H = G[V (A1) ∪ V (A2)] and T1 = Rt.
By Lemma 4, χ(H) = r1 + r2 + 1 = χ(A1) + χ(A2) and χ(A1 − x) < χ(A1) for all
x ∈ V (T1). Also by Lemma 4, dA2(x) ≤ χ(A2) + 1 for all x ∈ V (T1). By Lemma 5, u
has at least χ(A2) neighbors in some component T2 of A2. Since dA2(u) ≤ χ(A2) + 1
and u has at least two neighbors in St, we must have T2 = St. Since St is a Kχ(A2) this
proves (a).

Now we prove (b). If dA1(v) > χ(A1) + 1, then there exists some part P tk with
dP t

k
(v) < rk. By moving v to P tk and any vertex in T1 to P t2, we get a (χ(G)−1)-coloring

of G, a contradiction. So dA1(v) ≤ χ(A1) + 1. By (a), |N(u) ∩ V (T2)| = χ(A2) and
v ∈ N(u) ∩ V (T2). So, we may apply Lemma 5 (b) to conclude that |N(v) ∩ V (T1)| ≥
χ(A1). Since T1 is a Kχ(A1) this proves (b).

Lemma 7. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let S be a move sequence starting at P and let R and S be full

clubs of S. Then, for any t1, t2 ≥ 1, we have Rt1 is joined to St1 if and only if Rt2 is
joined to St2.

Proof. Suppose the lemma is false and let

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

be the shortest move sequence for which it fails. There must be a t ∈ [q] such that
either Rt is not joined to St, but Rt+1 is joined to St+1 or else Rt is joined to St, but
Rt+1 is not joined to St+1. If q > 1, then by starting the move sequence at P t instead
of P 1, we get a shorter counterexample. Hence S = ((P 1, v1, i1, P

2)). Since the reverse
sequence (P 2, v1, j(P

1), P 1) is also a counterexample, we may assume that R1 is not
joined to S1, but R2 is joined to S2.

By symmetry between R and S, we may assume that R1 is the active component.
Since R1 is not joined to S1, but R2 is joined to S2, it must be that R2 = R1 \ {v1} is
joined to S2 = S1 and there is u ∈ V (S1) with v1 6↔ u. Pick w ∈ V (R1 \ {v1}). Now
applying Lemma 6(b) to w and u shows that S1 is joined to R1, a contradiction.

Lemma 7 makes it possible for us to talk about full clubs R and S being joined or
not joined.

Definition 6. Let P be a minimum (r1, . . . , rs)-partition of a graph G. For a club R
of a move sequence

S = ((P 1, v1, i1, P
2), . . . , (P q, v2, i2, P

q+1))

starting at P , we say that R is active k times if the number of t ∈ [q + 1] such that Ri
is active is k.

8



Lemma 8. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

be a move sequence and S a full club of S that is active at least once. If R and T are
different full clubs of S such that R is joined to S and S is joined to W , then R is
joined to W .

Proof. Pick t such that St is active and let P = P t, T1 = St, T2 = Rt and T3 = Wt. By
symmetry, we assume that V (T1) ⊆ P1, V (T2) ⊆ P2, and V (T3) ⊆ P3. We will apply
Lemma 5 with Ai = G[Pi] for all i ∈ [3] and H = G[V (A1) ∪ V (A2) ∪ V (A3)].

Pick u ∈ V (T1). By Lemma 4, χ(H) = r1 +r2 +r3 +1 = χ(A1)+χ(A2)+χ(A3) and
χ(A1 \ {u}) < χ(A1). Also by Lemma 4, dV (A3)(u) ≤ χ(A3) + 1. Since T3 is a Kr3 , we
also have dV (T3)(u) = χ(A3). For any v ∈ V (T3), we have dA∗(v) ≤ 1 +χ(A1) +χ(A2),
for otherwise there exists some part Pq with dPq(v) < rq. By moving v to Pq and u
to P3, we get a (χ(G)− 1)-coloring of G, a contradiction. Also, dT ∗(v) ≥ 3 since T1 is
joined to T3. Additionally, T ∗ induces a clique and Tk is complete. To apply Lemma
5, it remains to check that dA∗(w) ≤ |T ∗| for all w ∈ T ∗. If not, then we could move
w to some part Pq with dPq(w) < rq and get a (χ(G)− 1)-coloring of G. So, we apply
Lemma 5 with each v ∈ V (T3) and conclude that T3 is joined to T2 as desired.

Definition 7. Let P be a minimum (r1, . . . , rs)-partition of a graph G. For a club R
of a move sequence S starting at P , the spread of R is the set of indices of parts to
which R sends vertices; more formally,

spS(R) =
{
i | (Q, v, i,Q′) ∈ S with C(A(Q)) = R

}
.

The spread of S is sp(S) = maxR |sp(R)| where the max is over all clubs R of S.

Lemma 9. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. If

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

is a move sequence with sp(S) ≤ 2, then one of the following holds:

(1) vi = vj for different i, j ∈ [q + 1] (i.e. some vertex moves more than once); or

(2) there is t ∈ [q] such that the active component in P t is joined to the active
component in P t+1; or

(3) every club of S is active at most 3 times.

Proof. Suppose the lemma is false and choose a move sequence

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

for which it fails minimizing q. By minimality of q, we have a length three subsequence
((P 1, v1, i1, P

2), (P b, vb, ib, P
b+1), (P q, vq, iq, P

q+1)) of S such that
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(i) C(A(P 1)) = C(A(P b)) = C(A(P q+1)) and C(A(P 2)) = C(A(P b+1)); and

(ii) there is at most one (P d, vd, id, P
d+1) in S with 1 < d < b such that C(A(P d)) =

C(A(P 1)); and

(iii) C(A(P 2)) is active at most 3 times.

Let X = C(A(P 1)) and Y = C(A(P 2)). We will show that X is joined to Y , which
gives a contradiction, since we are assuming (2) does not hold. To simplify notation,
let c = q + 1. If there does not exist (P d, vd, id, P

d+1) in S with 1 < d < b such that
C(A(P d)) = C(A(P 1)), then let d = b.

a1

vb

vd

v1

b1

vb+1

v2

X1 Y1

a1

vb

vd

b1

vb+1

v2

v1

X2 Y2

⇒

a1

vb

vd

a2

b′1

vb+1

v1

Xd Yd

=⇒

a1

vb

a2

a3

b′′1

vb+1

v1

Xb Yb

=⇒

a1

a2

a3

b′′1

vb+1

v1

vb

Xb+1 Yb+1

⇒

a1

a2

a3

a4

b′′′1

v1

vb

Xc Yc

=⇒

Figure 2: The six key partitions Xi, Yi in the proof of Lemma 9. In each
partition, the next vertex that will move is marked in bold, and the vertex
that most recently moved is marked in semi-bold. If a vertex is unnamed in
the proof, we denote it as ai or bi based on whether it appears in Xj or Yj.

Claim 1. {vb} is joined to V (Yd).

Since Y becomes active at most once (by (iii)) between move d and move b + 1, we
have |V (Yd) ∩ V (Yb)| ≥ 2. One vertex in this intersection is v1, and another is vb+1

(since no vertex is moved twice, by (1)). So vb is adjacent to v1 and vb+1, since
v1, vb, vb+1 ∈ V (Yb+1) and Y is full. Applying Lemma 6(a) to X and Y with t = d,
shows that vb is joined to V (Yd), since v1, vb+1 ∈ V (Yd).

Claim 2. {v1} is joined to V (Xd).
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Since |V (Xd) ∩ V (X1)| ≥ 3, v1 has at least 3 neighbors in Xd. Now by Claim 1, v1 is
joined to V (Xd) by Lemma 6(b) applied to X and Y with t = d.

Claim 3. {v1} is joined to V (Xb).

Since Y is full, vb is joined to V (Yb). Since |V (Xd) ∩ V (Xb)| ≥ 3 and v1 is joined to
V (Xd), v1 has at least 3 neighbors in Xb. So v1 is joined to V (Xb) by Lemma 6(b)
applied to X and Y with t = b.

Claim 4. V (Xb+1) is joined to V (Yc).

Since V (Xb+1) ⊂ V (Xb), Claim 3 shows that {v1, vb} is joined to V (Xb+1). But,
{v1, vb} ⊂ V (Yc), so applying Lemma 6(a) to X and Y with t = c shows that V (Xb+1)
is joined to V (Yc).

Claim 5. V (Xc) is joined to V (Yc). In particular, X is joined to Y .

Since |Xb+1| ≥ 3, Claim 4 and an application of and Lemma 6(b) to X and Y with
t = c shows that V (Xc) is joined to V (Yc).

Theorem 3. If G is a critical graph with χ(G) ≥ ∆(G), then ω(G) ≥ ∆(G) − 3 if
∆(G) ≡ 1 (mod 3)) and ω(G) ≥ ∆(G)− 4 otherwise.

Proof. By Brooks’ Theorem, we may assume χ(G) = ∆(G). Let s =
⌊

∆(G)−1
3

⌋
and

r1, . . . , rs ∈ {3, 4} such that ∆(G) = 1+
∑

i∈[s] ri. Then G has an (r1, . . . , rs)-partition,
so we can let P be a minimum (r1, . . . , rs)-partition of G. Let

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

be a move sequence starting at P with sp(S) ≤ 2 of maximum length such that vi 6= vj
for different i, j ∈ [q + 1] and for each t ∈ [q] the active component in P t is not joined
to the active component in P t+1. Let A = A(P q+1). Then by Lemma 9, C(A) is active
at most 3 times in S. Since riq ≥ 3, there is x ∈ V (A) such that x 6∈ {vt | t ∈ [q]}, i.e.,
x has never moved during S.

Let T = sp(C(A)). If there is i ∈ T with d
P q+1
i

(x) = ri, then we have a move

(P q+1, x, i, Qi) and by the maximality condition on S, it must be that A is joined
to A(Qi). But, by assumption, A is not joined to A(Qi) for any i ∈ T , so this is
impossible.

Since dG(x) ≤ 1 +
∑

i∈[s] ri and x has exactly riq neighbors in P q+1
iq

, there is at

most one i ∈ [s] \ {iq} for which d
P q+1
i

(x) > ri. So, |T | ≤ 1 and if |T | = 1, then T

contains the one i with d
P q+1
i

(x) > ri. By the maximality condition on S, it must be

that A is joined to clubs in P q+1
i for all but one i ∈ [s] \ {iq}. Since ri = 3 if ∆(G) ≡ 1

(mod 3)) and ri ≤ 4 otherwise, we have the desired large clique by Lemma 8.

Since any graph G with χ(G) ≥ ∆(G) = 13, contains a critical subgraph H with
χ(H) ≥ ∆(H) = 13, as an immediate consequence of Theorem 3, we get the following
corollary.

Corollary 9. If G is a graph with χ(G) ≥ ∆(G) = 13, then G contains K10.
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3 The First Main Theorem

A hitting set is an independent set that intersects every maximum clique. If I is
a hitting set and also a maximal independent set, then ∆(G − I) ≤ ∆(G) − 1 and
χ(G− I) ≥ χ(G)− 1. (In our applications, we can typically assume that ∆(G− I) =
∆(G)−1, since otherwise we get a good coloring or a big clique from Brooks’ Theorem.
We give more details in the proof of Theorem 1.) So if G − I has a clique of size
∆(G − I) − t, for some constant t, then also G has a clique of size ∆(G) − t. We
repeatedly remove hitting sets to reduce a graph with ∆ ≥ 13 to one with ∆ = 13.
Since we proved in Corollary 9 that every graph with χ ≥ ∆ = 13 contains K10, this
repeated removal of hitting sets allow us to prove that every G with χ ≥ ∆ ≥ 13
contains K∆−3.

This idea is not new. Kostochka [20] proved that every graph with ω ≥ ∆−
√

∆+ 3
2

has a hitting set. Rabern [27] extended this result to the case ω ≥ 3
4(∆ + 1), and

King [17] strengthened his argument to prove that G has a hitting set if ω > 2
3(∆ + 1).

This condition is optimal, as illustrated by the lexicographic product of an odd cycle
and a clique. Finally, King’s argument was refined by Christofides, Edwards, and
King [8] to show that these lexicographic products of odd cycles and cliques are the
only sharpness examples; that is, G has a hitting set if ω ≥ 2

3(∆ + 1) and G is not
the lexicographic product of an odd cycle and a clique. Hitting set reductions have
application to other vertex coloring problems. Using this idea (and others), King and
Reed [18] gave a short proof that there exists ε > 0 such that χ ≤ d(1−ε)(∆+1)+εωe.

To keep this paper largely self-contained, we prove our own hitting set lemma. In
the present context, it suffices to find a hitting set when G is a minimal counterexample
to Theorem 1 with ∆ ≥ 14. Such a G is ∆-critical, which facilitates a shorter proof.
In [10], we proved a number of results about so called d1-choosable graphs (defined
below), which are certain graphs that cannot appear as induced subgraphs in a ∆-
critical graph. We leverage these d1-choosability results to prove our hitting set lemma,
then use the hitting set lemma to reduce to the case ∆ = 13, which we proved in
Corollary 9. Since the proofs of the d1-choosability results in [10] are lengthy, we give
a short proof of the special case that we need here.

A list assignment L is an assignment L(v) of a set of allowable colors to each
vertex v ∈ V (G). An L-coloring is a proper coloring such that each vertex v is colored
from L(v). An f -assignment is a list assignment L such that |L(v)| = f(v) for all
v ∈ V (G). In particular, a d1-assignment is an f -assignment with f(v) = d(v) − 1
for all v. A graph G is f -choosable if G has an L-coloring for every f -assignment L.
No ∆-critical graph contains an induced d1-choosable subgraph H (by criticality, color
G \H, then extend the coloring to H, since it is d1-choosable). For a list assignment
L, let Pot(L) = ∪v∈V (G)L(v). The following lemma is central in proving each of our
d1-choosability results.

Lemma 10 (Small Pot Lemma, [15, 31]). For a list size function f : V (G) →
{0, . . . , |G| − 1}, a graph G is f -choosable iff G is L-colorable for each list assignment
L such that |L(v)| = f(v) for all v ∈ V (G) and

∣∣∪v∈V (G)L(v)
∣∣ < |G|.

Proof. Fix G and f . The “only if” direction is true by definition. Now we prove
the “if” direction. Assume that G is L-colorable for each list assignment L such
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that |L(v)| = f(v) for all v and
∣∣∪v∈V (G)L(v)

∣∣ < |G|. For any U ⊆ V (G) and any
list assignment L, let L(U) denote ∪v∈UL(v). Let L be an f -assignment such that
|L(V )| ≥ |G| and G is not L-colorable. For each U ⊆ V (G), let g(U) = |U | − |L(U)|.
Let B be a bipartite graph, where one part consists of vertices in V (G) and the other
part consists of colors in Pot(L), and a vertex v is adjacent to a color c if c ∈ L(v).
Since G is not L-colorable, B has no matching saturating V (G), so Hall’s Theorem
implies there exists U with g(U) > 0. Choose U to maximize g(U). Let A be an
arbitrary set of |G| − 1 colors containing L(U). Construct L′ as follows. For v ∈ U ,
let L′(v) = L(v). Otherwise, let L′(v) be an arbitrary subset of A of size f(v). Now
|L′(V )| < |G|, so by hypothesis, G has an L′-coloring. This gives an L-coloring of U .
By the maximality of g(U), for all W ⊆ (V (G)\U), we have |L(W )\L(U)| ≥ |W |. Let
B′ = B \ (∪u∈U{u} ∪ NB(u)). Thus, by Hall’s Theorem B′ has a matching saturating
V (G) \ U ; so we can extend the L-coloring of U to all of V .

Lemma 11 ([10]). For t ≥ 4, Kt ∨B is not d1-choosable iff ω(B) ≥ |B| − 1; or t = 4
and B is E3 or K1,3; or t = 5 and B is E3.

Proof. If ω(B) ≥ |B|−1, then assign each v ∈ V (Kt ∨B) a subset of {1, . . . , t+|B|−2};
since ω(Kt ∨B) ≥ t+ |B|−1, clearly G is not colorable from this list assignment. Now
let G = K5 ∨E3, and note that K4 ∨K1,3

∼= K5 ∨E3. Consider the following list
assignment L for G: each dominating vertex has list {1, . . . , 6} and the three other
vertices get distinct lists among {1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}. If G has a proper
L-coloring, then the dominating vertices use five distinct colors; this leaves only one
color for the three remaining vertices, but no color appears in all three lists. Hence,
G has no L-coloring. Now form G′ from G by deleting one dominating vertex (note
that G′ = K4 ∨E3), and let L′ = L \ {6}. Since G has no L-coloring, also G′ has no
L′-coloring. This proves one direction of the lemma; now we consider the other.

Suppose the lemma is false, and let G and L be a minimal counterexample, where
G = Kt ∨B and L is a d1-assignment. If ω(B) ≤ |B| − 2, then B contains either (i)
an independent set S = {x1, x2, x3} or (ii) a set S = {x1, x2, x3, x4} with x1x2, x3x4 /∈
E(B). If B contains only (i), then S = E3 and t ≥ 6 (by moving any dominating
vertices from B to Kt). Let T = V (Kt) and denote T by {y1, . . . , yt}. In Cases (i) and
(ii) we assume by minimality that t = 6 and t = 4, respectively. Also by minimality,
we assume that V (B) = S (we can greedily color vertices not in S). By definition
|L(v)| = d(v)− 1; specifically, |L(xi)| = dS(xi) + t− 1 and |L(yj)| = |S|+ t− 2 for all
xi ∈ S and yj ∈ T . When we have i, j, k with xi 6↔ xj and |L(xi)|+ |L(xj)| > |L(yk)|,
we often use the following technique, called saving a color on yk via xi and xj . If there
exists c ∈ L(xi) ∩ L(xj), then use c on xi and xj . Otherwise, color just one of xi and
xj with some c ∈ (L(xi) ∪ L(xj)) \ L(yk). For a set U , let L(U) = ∪v∈UL(v).

Case (i) By the Small Pot Lemma, assume that |L(G)| ≤ 8. This implies |L(xi) ∩
L(xj)| ≥ 2 for all i, j ∈ [3]. If there exist xi and yk with L(xi) 6⊆ L(yk), then color
xi to save a color on yk. Color the remaining x’s with a common color; this saves an
additional color on each y. Now finish greedily, ending with yk. Thus, we have L(xi) ⊂
L(yk) for all i ∈ [3] and k ∈ [6]. This gives

∣∣∪3
i=1L(xi)

∣∣ ≤ 7. Since
∑3

i=1 |L(xi)| = 15 >
2| ∪3

k=1 L(xk)|, we have a color c ∈ ∩3
i=1L(xi). Use c on every xi and finish greedily.

Case (ii) By the Small Pot Lemma, assume that |L(G)| ≤ 7. If S induces at least
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two edges, then |L(x1)| + |L(x2)| ≥ 8. So L(x1) ∩ L(x2) 6= ∅. Color x1 and x2 with a
common color c. If |L(y1) \ {c}| ≤ 5, then save a color on y1 via x3 and x4. Now finish
greedily, ending with y1.

Suppose S induces exactly one edge; by symmetry, say it is x1x3. Suppose that
L(x1) ∩ L(x2) 6= ∅. Similar to the previous argument, use a common color on x1 and
x2, possibly save on y1 via x3 and x4, then finish greedily. So instead, assume that
L(x1)∩L(x2) = ∅. Since |L(G)| ≤ 7 and L(x1)∩L(x2) = ∅, by symmetry (between x1

and x3 and also between x2 and x4), we may assume that L(x1) = L(x3) = {a, b, c, d}
and L(x2) = L(x4) = {e, f, g}. Also by symmetry, a or e is missing from L(y1). So
color x1 with a and x2 and x4 with e and x3 arbitrarily; this saves one color on each
yi and a second color on y1. Now finish greedily, ending with y1.

So instead G[S] = E4. If a common color appears on 3 vertices of S, use it there,
then finish greedily. If not, then by pigeonhole, at least 5 colors appear on pairs of
vertices; so, two colors appear on disjoint pairs. Color two such disjoint pairs, each
with a common color. Now finish the coloring greedily.

The following lemma of King enables us to find an independent transversal.

Lemma 12 (Lopsided Transversal Lemma [17]). Let H be a graph and V1 ∪ · · · ∪ Vr a
partition of V (H). If there exists s ≥ 1 such that for each i ∈ [r] and each v ∈ Vi we
have d(v) ≤ min {s, |Vi| − s}, then H has an independent transversal I of V1, . . . , Vr.

Now we have all the tools to prove our hitting set lemma.

Lemma 13. Every ∆-critical graph with χ ≥ ∆ ≥ 14 and ω = ∆− 4 has a hitting set.

Proof. Suppose the lemma is false, and let G be a counterexample minimizing |G|.
Consider distinct intersecting maximum cliques A and B. Since a vertex in their
intersection has degree at most ∆, we have |A ∩B| ≥ |A|+ |B| − (∆ + 1) = ∆− 9 ≥ 5.
Since G contains no induced d1-choosable subgraph, letting A ∩B = Kt in Lemma 11
implies that ω(G[A ∪ B]) ≥ |A ∪ B| − 1. Hence |A ∩B| = ω − 1 = ∆ − 5. Suppose
C is another maximum clique intersecting A; let U = A ∪ B ∪ C and J = A ∩ B ∩ C.
We use inclusion-exclusion to bound |U | and |J |. First, |U | = |A ∪B ∪ C| = |A ∪B|+
|C \ (A ∪B)| ≤ |A ∪B|+ |C \A| = |A ∪B|+ |C|−|C ∩A| ≤ (∆−5+1+1)+(∆−4)−
(∆− 5) = ∆− 2. Second, |J | = |A ∩B|+ |C| − |(A ∩B) ∪ C| ≥ |A ∩B|+ |C| − |U | ≥
(∆− 5) + (∆− 4)− (∆− 2) = ∆− 7 ≥ 7.

Since |J | ≥ 7, by Lemma 11, ω(G[U ]) ≥ |U |−1; so C = A or C = B, a contradiction.
Thus, every maximum clique intersects at most one other maximum clique. Hence we
can partition the union of the maximum cliques into sets D1, . . . , Dr such that either
Di is a (∆−4)-clique Ci or Di = Ci∪{xi} for a (∆−4)-clique Ci, where xi is adjacent
to all but one vertex of Ci.

For eachDi, ifDi = Ci, then letKi = Ci. IfDi = Ci∪{xi}, then letKi = Ci∩N(xi).
Consider the subgraph F of G formed by taking the subgraph induced on the union of
theKi and then making eachKi independent. We apply Lemma 12 to F with s = ∆

2 −2.
We have two cases to check, when Ki = Ci and when Ki = Ci ∩N(xi). In the former
case, |Ki| = ∆ − 4 and for each v ∈ Ki we have dF (v) ≤ ∆(G) + 1 − (∆ − 4) = 5.
Hence dF (v) ≤ ∆

2 − 2 = min
{

∆
2 − 2,∆− 4− (∆

2 − 2)
}

since ∆ ≥ 14. In the latter
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case, we have |Ki| = ∆− 5 and since every v ∈ Ki is adjacent to xi and to the vertex
in Ci \ Ki, neither of which is in F , we have dF (v) ≤ ∆ − (∆ − 4) = 4. This gives
dF (v) ≤ ∆

2 − 3 = min
{

∆
2 − 2,∆− 5− (∆

2 − 2)
}

since ∆ ≥ 14. Now Lemma 12 gives
an independent transversal I of the Ki, which is a hitting set.

Now we can prove the first of our two main results. For convenience, we restate it.

Theorem 1. Every graph with χ ≥ ∆ ≥ 13 contains K∆−3.

Proof. Let G be a counterexample minimizing |G|; note that G is vertex critical. By
Corollary 9, we have ∆ ≥ 14. If ω < ∆ − 4, let I be any maximal independent set;
otherwise let I be a hitting set given by Lemma 13 expanded to a maximal independent
set. Now ω(G − I) < ∆(G) − 4, ∆(G − I) ≤ ∆(G) − 1, and χ(G − I) ≥ χ(G) − 1. If
∆(G− I) ≤ ∆(G)−3, then greedy coloring gives χ(G− I) ≤ ∆(G− I)+1 ≤ ∆(G)−2,
so χ(G) ≤ ∆(G) − 1. If ∆(G − I) = ∆(G) − 2, then χ(G − I) ≤ ∆(G − I) by
Brooks’ Theorem (since ω(G − I) < ∆(G) − 4), so χ(G) ≤ ∆(G) − 1. So instead
∆(G− I) = ∆(G)− 1. Now χ(G− I) ≥ ∆(G− I) ≥ 13 and ω(G− I) < ∆(G− I)− 3
contradicting the minimality of |G|.

We suspect that Theorem 1 holds for all ∆. By Theorem 3 and Theorem 1, the
following conjecture is only open when ∆ ∈ {6, 8, 9, 11, 12}.

Conjecture 1. Every graph with χ ≥ ∆ contains K∆−3.

We conclude this section with a nice application of Theorem 1 to the Borodin-
Kostochka conjecture for vertex-transitive graphs. Suppose G is a vertex-transitive
graph with χ(G) ≥ ∆(G) ≥ 15. Then ω(G) ≥ ∆(G) − 3 by Theorem 1. Since G is
vertex-transitive, every vertex of G is in a K∆(G)−3. In [26], it was proved that the
Borodin-Kostochka conjecture holds for graphs where every vertex is in a K 2

3
∆(G)+2.

Now ∆(G)− 3 ≥ 2
3∆(G) + 2 since ∆(G) ≥ 15, so we have proved the following.

Corollary 14. Every vertex-transitive graph with χ ≥ ∆ ≥ 15 contains K∆.

Corollary 14 should hold for ∆ ≥ 9 and this may be much easier to prove than the
full Borodin-Kostochka conjecture. In a short note [9], we explore these ideas further
and prove Corollary 14 for ∆ ≥ 13. A more general conjecture comes out of these
considerations which is worth mentioning because it implies Corollary 14 for ∆ ≥ 9.

Conjecture 2. Every vertex-transitive graph satisfies χ ≤ max
{
ω, d5∆+3

6 e
}

.

4 The Second Main Theorem

In this section, we prove our second main theorem. First, we prove a lemma that
follows from [10] about list coloring (we use it to forbid a certain subgraph in a ∆-
critical graph).

Lemma 15 ([10]). Let G = K3 ∨E2. If L is a list assignment such that |L(v)| ≥
d(v) − 1 for all v ∈ V (G) and for some w ∈ V (K3) and some x ∈ V (E2) we have
|L(w)| ≥ d(w) and |L(x)| ≥ d(x), then G has an L-coloring.
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Proof. Denote V (E2) by {x, y}. By the Small Pot Lemma, we assume |Pot(L)| ≤ 4 <
5 ≤ |L(x)|+ |L(y)|. After coloring x and y the same, finish greedily, ending with w.

In the rest of this section, we extend and refine the ideas in Section 2.

Definition 8. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let S be a move sequence starting at P . For a full club S with

respect to S, the clubgroup GS(S) of S is the set consisting of S and the full clubs to
which S is joined.

When the move sequence is clear from context, we write G(S) in place of GS(S).
Clearly if R and S are full clubs and R ∈ G(S), then S ∈ G(R). By Lemma 8, we know
that if R, S, and T are full clubs, and R ∈ G(S) and S ∈ G(T ), then R ∈ G(T ). So,
the set of full clubs with respect to S is partitioned into clubgroups. We need a way
of differentiating moves that are internal to a clubgroup and moves that go from one
clubgroup to another. This motivates the following definition of internal and external
moves.

With the notation we have at this point, referring to objects like “the clubgroup of
the club of the active component” is a bit unwieldy. So, we allow ourselves to write
GS(A) in place of GS(CS(A)).

Definition 9. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let S be a move sequence starting at P . Let M = (P a, v, i, P b)

be a move in S, Aa the active component in P a and Ab the active component in P b.
Then move M is internal if GS(Aa) = GS(Ab). Otherwise, M is external. We write
E(S) for the subsequence of S consisting of all the external moves of S.

Definition 10. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let S = ((P 1, v1, i1, P

2), . . . , (P q, vq, iq, P
q+1)) be a move se-

quence starting at P . Let R be a full club of S. We say that the clubgroup GS(R) is acti-
vated at least k times if there is a subsequence ((P a1 , va1 , ia1 , P

a1+1), . . . , (P ak , vak , iak , P
ak+1)

of E(S) where the active club in P ai+1 is in GS(R) for i ∈ [k].

Definition 11. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let S = ((P 1, v1, i1, P

2), . . . , (P q, vq, iq, P
q+1)) be a move se-

quence starting at P . Let R be a full club of S. The external spread of R is

espS(R) =
{
i | (Q, v, i,Q′) ∈ E(S) with C(A(Q)) ∈ GS(R)

}
.

The external spread of S is esp(S) = maxR |esp(R)| where the max is over all full clubs
R of S.

In an (r1, . . . , rs)-partition of a graph G a clubgroup containing s−1 clubs is called
a big clubgroup. A clubgroup with fewer than s−1 clubs is small. Our next big lemma
will be an analogue of Lemma 9. Intuitively, it says that clubgroups can be thought of
much like clubs: in a move sequence with external spread at most 2 (and each vertex
moved at most once), each clubgroup is activated at most 3 times. The proof is similar
to that of Lemma 9. Not suprisingly, we must first prove an analogue of the helper
lemma that played a key role in that proof. This is Lemma 16 which follows quickly
from Lemma 5.
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Lemma 16. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. Let

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

be a move sequence starting at P . Let R and S be full clubs of S and t ∈ [q + 1]. If
Rt = A(P t), then

(a) if u ∈ V (Rt) and u has at least 2 neighbors in St, then u is joined to St.

(b) if u ∈ V (Rt) and v ∈ V (St) and u has at least 2 neighbors in St and v has at
least 2 neighbors in V (G(Rt)) \ {u}, then v is joined to V (G(Rt)).

Proof. (a) is the same as (a) in Lemma 6; we only restate it here for convenience.
(b): By symmetry, we may assume that V (G(Rt)) intersects each of P t1, . . . , P

t
k−1

and none of P tk, . . . , P
t
s . Moreover, we assume that V (St) ⊆ P tk. Let Ai = G

[
P ti
]

for
i ∈ [k]. Let H = G [V ({A1, . . . , Ak})] and let T1 be the component of A1 containing
u. Plainly, χ(H) =

∑
i∈[k] χ(Ai). By Lemma 4, χ(A1 \ {u}) < χ(A1) and dAk

(u) ≤
χ(Ak) + 1. By Lemma 5 (a), vertex u has at least χ(Ak) neighbors in some component
Tk of Ak. Since dAk

(u) ≤ χ(Ak) + 1 and u has at least two neighbors in St, we must
have Tk = St.

If dA∗(v) > 1 +
∑

i∈[k−1] χ(Ai), then there exists some part P tq with dP t
q
(v) < rq.

By moving v to P tq and u to P tk, we get a (χ(G)− 1)-coloring of G, a contradiction. So
dA∗(v) ≤ 1 +

∑
i∈[k−1] χ(Ai) ≤ |T ∗|. Similarly, dA∗(w) ≤ |T ∗| for all w ∈ T ∗. To finish

the proof of (b), we now apply Lemma 5 (c), with T ∗ = V (G(Rt)).

Lemma 17. Let P be a minimum (r1, . . . , rs)-partition of a graph G with χ(G) =
∆(G) = 1 +

∑
i∈[s] ri. If

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

is a move sequence with esp(S) ≤ 2 and vi 6= vj for different i, j ∈ [q + 1], then:

(1) every clubgroup of S is activated at most 3 times; and

(2) every big clubgroup of S is activated at most 2 times.

Proof. Suppose the lemma is false and choose a move sequence

S = ((P 1, v1, i1, P
2), . . . , (P q, vq, iq, P

q+1))

for which it fails minimizing q. By minimality of q (and since esp(S) ≤ 2), we have a
length three subsequence ((P 1, v1, i1, P

2), (P b, vb, ib, P
b+1), (P q, vq, iq, P

q+1)) of S such
that

(i) G(A(P 1)) = G(A(P b)) = G(A(P q+1)) and C(A(P 2)) = C(A(P b+1)); and

(ii) there is at most one (P d, vd, id, P
d+1) in S with 1 < d < b such that G(A(P d)) =

G(A(P 1)); and

(iii) C(A(P 2)) is active at most 3 times.
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Let X = G(A(P 1)) and Y = C(A(P 2)). We will show that X is joined to Y ; this
gives a contradiction, since we are assuming Y is not in the clubgroup of X. To simplify
notation, let c = q + 1. If there does not exist (P d, vd, id, P

d+1) in S with 1 < d < b
such that C(A(P d)) = C(A(P 1)), then let d = b. The proof of (1) is nearly identical to
the proof of Lemma 9. The only difference is that each instance of Lemma 6 in that
proof is now replaced by Lemma 16; so we omit the proof.

Now for the proof of (2). If a clubgroup is big, then each of its external moves goes to
the same part Xi of the partition. Thus, if a big clubgroup becomes active 3 times, then
we again have the move subsequence ((P 1, v1, i1, P

2), (P b, vb, ib, P
b+1), (P q, vq, iq, P

q+1)),
with properties (i), (ii), and (iii) above. Hence, the proof of (1) is also valid in this
context, and yields a proof of (2).

Now we can prove our second main theorem (we restate it for convenience), which
strengthens Theorem 18 for ∆ ≥ 10.

Theorem 18 (Kostochka, Rabern, and Stiebitz [21]). If G is a critical graph with

χ(G) ≥ ∆(G) and ω(G) < ∆(G), then ω(H(G)) ≥
⌊

∆(G)−1
2

⌋
.

Theorem 2. If G is a critical graph with χ(G) ≥ ∆(G) and ω(G) < ∆(G), then
ω(H(G)) ≥ ∆(G)− 4 if ∆(G) ≡ 1 (mod 3)) and ω(H(G)) ≥ ∆(G)− 5 otherwise.

Proof. Suppose the theorem is false and let G be a critical graph with χ(G) ≥ ∆(G),
ω(G) < ∆(G) and ω(H(G)) < ∆(G)−4 if ∆(G) ≡ 1 (mod 3)) and ω(H(G)) < ∆(G)−5
otherwise. By Brooks’ Theorem, we have χ(G) = ∆(G). By Theorem 18, ∆(G) ≥ 10.

Let s =
⌊

∆(G)−1
3

⌋
and r1, . . . , rs ∈ {3, 4} such that ∆(G) = 1 +

∑
i∈[s] ri. Then

G has an (r1, . . . , rs)-partition, so we can let P be a minimum (r1, . . . , rs)-partition of
G. Let S = ((P 1, v1, i1, P

2), . . . , (P q, vq, iq, P
q+1)) be a move sequence starting at P

with esp(S) ≤ 2 having the maximum number of external moves such that vi 6= vj for
different i, j ∈ [q + 1]. Let A = A(P q+1).

Suppose G(C(A)) is small. By Lemma 17, G(C(A)) is activated at most 3 times in
S. Since riq ≥ 3, there is x ∈ V (A) such that x 6∈ {vt | t ∈ [q]}, i.e., since A has at
least 4 vertices, some x ∈ V (A) has not yet moved. Since G(C(A)) is small, there is
an external move (P q+1, x, iq+1, P

q+2). If iq+1 ∈ esp(C(A)), then by maximality of S,
we see that C(A) is joined to a club outside its clubgroup, giving a contradiction by
Lemma 8. Since this is true for any such external move, we must have |esp(C(A))| ≤ 1.
But then appending the move (P q+1, x, iq+1, P

q+2) to S violates the maximality of S,
a contradiction.

Hence G(C(A)) is big. By Lemma 17, G(C(A)) is activated at most 2 times in S.
Consider K =

⋃
Z∈G(C(A)) V (Zq+1). Since G(C(A)) is big, K is a clique that has vertices

in all but one part of P q+1. By renumbering if necessary, we may assume that K has
vertices in each of P q+1

1 , . . . , P q+1
s−1 . Then |K| = 1 +

∑
i∈[s−1] ri. Hence |K| = ∆(G)− 3

if ∆(G) ≡ 1 (mod 3) and |K| ≥ ∆(G)−4 otherwise. In either case, K has at least two
low vertices by our conditions on ω(H(G)).

If K contains a low vertex x that has not moved, i.e., x ∈ K \{vt | t ∈ [q]}, then we
have an external move (P q+1, x, iq+1, P

q+2) and hence C(A) is joined to a club outside
its clubgroup, giving a contradiction by Lemma 8. So, since G(C(A)) is activated at
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most 2 times in S, K has exactly two low vertices v and w. Moreover, S contains ex-
ternal moves (P a1 , v, ia1 , P

a1+1) and (P a2 , w, ia2 , P
a2+1) and in both P a1+1 and P a2+1

the clubgroup G(C(A)) contains the active club (possibly different each time). By
symmetry, assume a1 < a2 and so a2 = q.

Let B be the active component in P q. Since w ∈ V (B) and w is adjacent to at
least ∆(G) − 5 vertices in K, we see that C(B)’s clubgroup is {C(B)} (otherwise w
would be adjacent to more than 5 vertices coming from C(B)’s clubgroup, which is too
many). Suppose that V (B) contains a high vertex that is unmoved, i.e., z ∈ V (B) \
{vt | t ∈ [q − 1]}. Since ∆(G) ≥ 10, we have s ≥ 3. So there is an external move M =
(P q, z, i, Q) where i ∈ [s− 1]. Consider the move sequence formed from S by removing
the last move and appending M . By our considerations in the previous paragraph, this
move sequence can be extended (the active club now contains an unmoved low vertex,
since the last vertex moved is high), contradicting the maximality condition on S. So,
every z ∈ V (B) \ {vt | t ∈ [q − 1]} is low.

Since w is low, for every move (Q, z, i, Q′) in S where C(B) is active in Q, we must
have z ∈ K; otherwise w would have at least ∆ neighbors. In particular, there are
at most two such moves since G(C(A)) is activated at most twice. So B contains an
unmoved vertex, i.e., |V (B) \ {vt | t ∈ [q]}| ≥ 1.

Let (P a3 , u, ia3 , P
a3+1) be the first external move in S after (P a1 , v, ia1 , P

a1+1).
Let A′ be the active component in P a3 and consider K ′ =

⋃
Z∈G(C(A′)) V (Za3). Since

|K ′| = |K|, as we saw before for K, also K ′ has at least two low vertices v, w′. If u is
high, then K would contain low vertices v, w,w′, a contradiction. So u is low; in fact,
u = w′.

We show that C(A(P a3+1)) = C(B). Since v is low, we have the move M ′ =
(P a3 , v, s,Q′). Let B′ = A(Q′) \ {v}. Since v is adjacent to w (and v is low), we must
have w ∈ V (B′). So C(B) = C(B′). Since C(B′) is active at most twice, v has at least
|B′|−2 > 0 neighbors in C(B′)q+1. Since v is low, we have the moveM = (P q+1, v, s,Q).

Now Lemma 4, part (2) shows that {v} ∪ V (C(B′)q+1) induces a Krs+1. But u ∈ P q+1
s

and v is adjacent to u, so u ∈ V (C(B′)q+1). Therefore, C(A(P a3+1)) = C(B′) = C(B).
Now we have the K3 on {u, v, w} joined to a set of vertices T with |T | = ∆(G)− 3.

Namely, T = (V (K)\{v, w})∪(V (B)\{u}). Moreover, since |V (B) \ {vt | t ∈ [q]}| ≥ 1,
there is a low vertex in V (B \ {vq, u}) and V (B \ {vq, u}) ⊆ T . So, by Lemma 15,
{u, v, w} ∪ T induces a K∆(G), a contradiction.

We conjecture that the previous theorem actually holds with ω(H(G)) ≥ ∆ − 5
replaced by ω(H(G)) ≥ ∆− 4. In [28], the second author proved this result for ∆ = 6;
later in [21] it was proved for ∆ = 7. The condition ω(H(G)) ≥ ∆− 4 would be tight
since the graph O5 in Figure 3 is a counterexample to ω(H(G)) ≥ ∆− 3 when ∆ = 5.
In fact, it was shown in [21] that O5 is the only counterexample to ω(H(G)) ≥ ∆− 3
when ∆ = 5.

Conjecture 3. Let G be a graph. If χ ≥ ∆, then ω ≥ ∆ or ω(H(G)) ≥ ∆− 4.
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Figure 3: The graph O5 is a ∆-critical graph with ∆ = 5 and ω(H(G)) = 1.

5 Algorithms

All of our coloring proofs do translate into algorithms to construct the colorings. How-
ever these algorithms cannot obviously be made to run in polynomial time. Attempts
to do so encounter two main obstacles. The first comes in our proof of Theorem 3,
when we consider a critical subgraph H of our given graph G. We do not know an effi-
cient algorithm to find such a critical subgraph; however, we will see how to overcome
this difficulty. Our second obstacle comes from King’s Lopsided Transversal Lemma.
While his proof is constructive, the algorithm it implies may require exponential time.
We are not aware of any workaround to efficiently find our hitting set; however, when
∆ is sufficiently large, we can use an idea of Alon instead. We implement a modified
version of the algorithm from Theorem 3.

Theorem 19. There is a O(V 2E2) time graph algorithm that finds either a (∆− 1)-
coloring or a clique on ∆− 4 vertices (∆− 3 vertices if ∆ ≡ 1 (mod 3)).

Proof. Let G be an n-vertex graph with ∆ ≥ 10, and let I be a maximal independent
set in G. Let G0 = G− I, and note that ∆(G0) ≤ ∆(G)− 1. Lovász’s proof of Brooks’
theorem [23] can be implemented in time O(V + E) (see [3]). Applying this to G0 we
either get a ∆(G) clique or a (∆(G) − 1)-coloring of G0. In the former case, we are
done, so suppose we have a (∆(G)− 1)-coloring φ of G0.

Let v be an arbitrary vertex in I and put G1 = G[V (G0) ∪ {v}]. We give an
algorithm that either finds a (∆(G)−1)-coloring of G1 or a clique on ∆(G)−4 vertices
(∆(G)− 3 vertices if ∆(G) ≡ 1 (mod 3)). Iterating this gives the desired algorithm.

Note that G1 has an (r1, . . . , rs)-partition P , where s =
⌊

∆(G)−1
3

⌋
and r1, . . . , rs ∈

{3, 4}; choose an arbitrary such partition which respects the color classes of φ. Now
we will construct a move sequence as in the proof of Theorem 3, treating the resulting
partitions as if they were minimum partitions. For each partition arising from the move
sequence, we check whether any property in Lemma 4 is violated; if some property is
violated for a partition P , then we can modify P to form a new partition P ′ such
that P ′ has fewer edge within parts, i.e., σ(P ′) < σ(P ). When this happens, we begin
our move sequence anew, starting from P ′. Eventually, we will reach a partition and
a move sequence that does not allow us to reduce the number of edges within parts.
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Such a move sequence will terminate with either (1) a clique on ∆(G) − 4 vertices
(∆(G) − 3 vertices if ∆(G) ≡ 1 (mod 3)) or (2) a (∆(G) − 1)-coloring of G1. In the
case of (1), our algorithm halts. In the case of (2), we add a new vertex v′ from I \ {v}
and continue.

So, we need only analyze the running time. Each move sequence has length at most
n, since each vertex moves at most once. After adding a vertex, we can reduce the
number of edges within parts at most |E(G)| times. Hence, after we add a new vertex
from I to our partition, we need at most n |E(G)| moves until we find either a big clique
or a (∆(G) − 1)-coloring. After each move, we can verify that the resulting partition
satisfies all the properties of Lemma 4 (or doesn’t) and find a vertex to swap with in
O(V + E) time. Since we need to do this at most n|I| |E(G)| times, the running time
of the algorithm is O(V 2E2).

When ∆ 6≡ 1 (mod 3), Theorem 19 only finds a K∆−4; but Theorem 1 guarantees a
K∆−3 when ∆ ≥ 13. To get an algorithmic version of this result, we need to efficiently
find a hitting set when χ = ∆ and ω = ∆ − 4. We will show how to do this when ∆
is sufficiently large. The proof we present here works for ∆ ≥ 37. We also sketch how
to refine this idea to work for ∆ ≥ 33. Further, using a result of Kolipaka, Szegedy
and Xu [19], we show how to get down to ∆ ≥ 26. The general idea is to find a set of
disjoint cliques A = {A1, A2, . . .} such that |Ai| is large for all i and each maximum
clique contains some Ai. Following an idea of Alon, we choose one vertex uniformly
at random from each Ai and use the Lovasz Local Lemma to prove that with positive
probability the chosen vertices form an independent set. Our proof uses one classical
lemma each from Hajnal [13] and Kostochka [20].

Lemma 20 (Hajnal [13]). If S is a collection of maximum cliques in a graph G, then∣∣∣⋃S∣∣∣+
∣∣∣⋂S∣∣∣ ≥ 2ω.

Proof. We use induction on |S|; the base case |S| = 1 is trivial. Let S1 ∈ S and
S ′ = S − S1. Consider the set (∩S ′ \ S1) ∪ (S1 ∩ (∪S ′)), which induces a clique. Since
S1 is a maximum clique, |S1| ≥ |(∩S ′ \ S1) ∪ (S1 ∩ (∪S ′))|, which yields |S1 \ (∪S ′)| ≥
|(∩S ′) \ S1|. By hypothesis, |∪S ′|+ |∩S ′| ≥ 2ω. Adding this to the previous inequality
gives the desired result.

Now we need the following definition. Given a collection S of sets, the intersection
graph XS has one vertex for each set of S and two vertices are adjacent if their sets
intersect.

Lemma 21 (Kostochka [20]). Let G be a graph with ω(G) > 2
3(∆(G) + 1). If S is a

collection of maximum cliques in G and the intersection graph XS is connected, then
|
⋂
S| ≥ 2ω(G)− (∆(G) + 1).

Proof. We use induction on |S|; the base case |S| = 1 is trivial. The key is to show that
|
⋂
S| > 0, for then |

⋃
S| ≤ ∆(G)+1, so the lemma follows directly from Lemma 20. Let

S1 ∈ S be a noncutvertex of XS , and choose S2 ∈ S that intersects S1. Lemma 20 for
the set {S1, S2} implies |S1 \ S2| = |S1| − |S1 ∩ S2| ≤ ω(G)− (2ω(G)− (∆(G) + 1)) =
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∆(G) + 1 − ω(G). Let S ′ = S − S1. Now XS′ is connected, so by hypothesis, the
lemma holds for S ′. Choose v ∈

⋂
S ′. Now |

⋃
S ′| ≤ dG(v) + 1 ≤ ∆(G) + 1. Thus,

|
⋃
S| ≤ |

⋃
S ′|+ |S1 \ S2| ≤ (∆(G) + 1) + (∆(G) + 1− ω(G)) < 2ω(G). By Lemma 20,

|
⋂
S| > 0, so the lemma follows.

In [20], Kostochka used Lemma 20 and Lemma 21 to prove that a hitting set always
exists when ω ≥ ∆ + 3

2 −
√

∆. Using an independent transversal result of Haxell [14],
this was improved to ω ≥ 3

4(∆+1) in [27] and finally to the best possible ω > 2
3(∆+1)

in [17]. Using an independent transversal result of Alon [1] (see also [2], p. 70), we get
ω ≥ 2e+1

2e+2(∆ + 1). Since Alon’s proof is based on the Local Lemma, we can use the
efficient algorithms developed by Moser and Tardos [24].

Lemma 22. If G is a graph with ω ≥ 2e+1
2e+2(∆ + 1), then G contains an independent

set I such that I intersects every maximum clique in G.

Proof. Let S be the set of maximum cliques in G and let Si be the set of vertices in one
component Ci of XS . For each i, Lemma 21 gives |

⋂
Si| ≥ 2ω− (∆ + 1) ≥ e

e+1(∆ + 1).
Let k = d e

e+1(∆ + 1)e. For each component Ci, let Ai be a set of k vertices that lie
in every clique of Ci. Use the Local Lemma (see [2], p. 64–65) to choose the desired
independent set. From each Ai, choose a vertex uniformly at random. For each edge
uv with u ∈ Ai and v ∈ Aj (and i 6= j), let Euv be the bad event that both u and v
are chosen for I; event Euv occurs with probability p = 1/(|Ai| |Aj |) = k−2. Each Euv
is independent of all other bad events except for those corresponding to edges with an
endpoint in Ai or Aj . Since each u has at least ω − 1 neighbors in Si and v has at
least ω − 1 neighbors in Sj , the degree d of Euv in the dependency graph is at most
(∆+1−ω)(|Ai|+ |Aj |)−1 ≤ 2k

2e+2(∆+1)−1 = k
e+1(∆+1)−1. This gives ep(d+1) ≤ 1,

so the desired independent set I exists.

Corollary 23. If G is a graph with ∆ ≥ 37 and ω = ∆ − 4, then G contains an
independent set I such that I intersects every maximum clique in G. Furthermore, I
can be found in polynomial time.

Proof. If ∆ ≥ 37, then we have ω = ∆− 4 ≥ 2e+1
2e+2(∆ + 1), so we can apply Lemma 22.

All that remains is to show that we can implement its proof in polynomial time. We
can find the set of all maximum cliques by considering each (∆ − 4)-element subset
of the closed neighborhood of each vertex. We use a union-find algorithm to find the
components of the intersection graph of this set of maximum cliques. Now consider
a set S of maximum cliques such that the intersection graph XS is connected. We
can slightly modify the union-find algorithm so that it also returns ∩S. To now find
our hitting set, we apply the algorithm for the Local Lemma from Moser and Tardos
[24].

With a more complicated algorithm we can do better. Specifically, instead of using
Lemma 20 and Lemma 21, we use Lemma 11 as in the proof of Lemma 13. Basically,
we just need to do a preprocessing step where we find and remove all d1-choosable
induced subgraphs on at most 9 vertices (we can color them after coloring the rest).
Once we have a graph with none of these d1-choosable induced subgraphs, we know, as
in the proof of Lemma 13, that the components of XS have at most two vertices. So,
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we can replace our estimate |
⋂
Si| ≥ 2ω − (∆ + 1) with |

⋂
Si| ≥ ω − 1. This improves

the needed condition in Lemma 22 to ω ≥ 2e
2e+1∆ + 1 and thus allows Corollary 23 to

work for ∆ ≥ 33.
Using a recent result of Kolipaka, Szegedy and Xu [19] we can do a bit better. The

idea is that the local lemma can be strengthened when the dependency graph has nice
structure. In our case, the dependency graph is the line graph of a multigraph (the
multigraph formed by contracting all the Ai in G [

⋃
iAi]). Because of this structure,

we may apply the Clique Lovász Local Lemma from [19] to prove Lemma 22 with
ω ≥ 4

5∆ + 1. Since there is an efficient algorithm for the Clique Lovász Local Lemma
as well, we get Corollary 23 for ∆ ≥ 26. So, we can prove the following conjecture for
∆ ≥ 25.

Conjecture 4. For ∆ ≥ 13, there is a polynomial time graph algorithm that finds
either a (∆− 1)-coloring or a clique on ∆− 3 vertices.
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