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Theorem 1 (Brooks 1941). Every graph G with χ(G) = ∆(G) + 1 ≥ 4 contains K∆(G)+1.

Proof. Suppose the theorem is false and choose a counterexample G minimizing |G|. Put
∆ := ∆(G). Using minimality of |G|, we see that χ(G − v) ≤ ∆ for all v ∈ V (G). In
particular, G is ∆-regular.

Let M be a maximal independent set in G. Since ∆(G −M) < ∆ and χ(G −M) ≥ ∆,
minimality of |G| shows that G−M has an induced subgraph T where T = K∆ or T is an
odd cycle if ∆ = 3. Suppose G contains K∆+1 less an edge, say K∆+1 − xy = D ⊆ G. Then
we may ∆-color G−D and extend the coloring to D by first coloring x and y the same and
then finishing greedily on the rest.

Since K∆+1 6⊆ G we have |N(T )| ≥ 2. So, we may take different x, y ∈ N(T ) and put
H := G−T if x is adjacent to y and H := (G−T ) +xy otherwise. Then, H doesn’t contain
K∆+1 as G doesn’t contain K∆+1 less an edge. By minimality of |G|, H is ∆-colorable. That
is, we have a ∆-coloring of G − T where x and y receive different colors. We can easily
extend this partial coloring to all of G since each vertex of T has a set of ∆ − 1 available
colors and some pair of vertices in T get different sets. �
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