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Abstract

We prove that every k-list-critical graph (k > 7) on n > k + 2 vertices has at least

3 (k -1+ Wﬁ) n edges where ¢ = (k — 3) <% — m) This improves
the bound established by Kostochka and Stiebitz [13]. The same bound holds for online
k-list-critical graphs, improving the bound established by Riasat and Schauz [16]. Both
bounds follow from a more general result stating that either a graph has many edges or

it has an Alon-Tarsi orientable induced subgraph satisfying a certain degree condition.

1 Introduction

A k-coloring of a graph G is a function 7: V(G) — [k] such that 7(z) # 7w(y) for each
xy € E(G). The least k for which G' has a k-coloring is the chromatic number x(G) of
G. We say that G is k-chromatic when x(G) = k. A graph G is k-critical if G is not
(k — 1)-colorable, but every proper subgraph of G is (k — 1)-colorable. A k-critical graph
G is k-chromatic since for any vertex v, a (k — 1)-coloring of G — v extends to a k-coloring
of G by giving v a new color. If GG is k-chromatic, then any minimal k-chromatic subgraph
of (G is k-critical. In this way, many questions about k-chromatic graphs can be reduced to
questions about k-critical graphs which have more structure. The study of critical graphs
was initiated by Dirac [4] in 1951. It is easy to see that a k-critical graph G must have
minimum degree at least £k — 1 and hence 2 ||G|| > (k — 1) |G|. The problem of determining
the minimum number of edges in a k-critical graph has a long history. First, in 1957, Dirac
[5] generalized Brooks’ theorem [3] by showing that any k-critical graph G' with k£ > 4 and
|G| > k + 2 must satisfy

2G| > (k—=1)|G| + k — 3.

In 1963, this bound was improved for large |G| by Gallai [7]. Put

k-3
ge(n, €) := (k_1+(k—c)(k—1)+k—3)n
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Gallai showed that every k-critical graph G with k£ > 4 and |G| > k + 2 satisfies 2||G|| >
(|G| ,0). In 1997, Krivelevich [I4] improved Gallai’s bound by replacing gx(|G|,0) with
(|G| ,2). Then, in 2003, Kostochka and Stiebitz [13] improved this by showing that a
k-critical graph with & > 6 and |G| > k + 2 must satisfy 2 |G| > gx(|G], (k — 5)ax) where

1 1
2 (k—1(k-2)
Table 1] gives the values of these bounds for small k. In 2012, Kostochka and Yancey [11]

achieved a drastic improvement by showing that every k-critical graph G with k£ > 4 must
satisfy

Qp =

Gl > W +1)(k —2(3€)|_G1|>— k(k — 3)} |

Moreover, they show that their bound is tight for £ = 4 and n > 6 as well as for infinitely
many values of |G| for any k& > 5. This bound has many interesting coloring applications
such as a very short proof of Grotsch’s theorem on the 3-colorability of triangle-free planar
graphs [10] and short proofs of the results on coloring with respect to Ore degree in [9, [15] 12].

Given the applications to coloring theory, it makes sense to investigate the same problem
for more general types of coloring. In this article, we obtain improved lower bounds on the
number of edges for both the list coloring and online list coloring problems. To state our
results we need some definitions.

List coloring was introduced by Vizing [19] and independently Erdés, Rubin and Taylor
[6]. Let G be a graph. A list assignment on G is a function L from V(G) to the subsets of N.
A graph G is L-colorable if there is 7: V(G) — N such that w(v) € L(v) for each v € V(G)
and 7w(x) # 7w(y) for each zy € E(G). A graph G is L-critical if G is not L-colorable, but
every proper subgraph H of G is L}V( H)-colorable. For f: V(G) — N, a list assignment L is
an f-assignment if |L(v)| = f(v) for each v € V(G). If f(v) = k for all v € V(G), then we
also call an f-assignment a k-assignment. We say that G is f-choosable if G is L-colorable
for every f-assignment L. We say that G is k-list-critical if G' is L-critical for some k-list
assignment L. The best, known-lower bound on the number of edges in a k-list-critical
graph, was given by Kostochka and Stiebitz [13] in 2003. It states that for k£ > 9 and every
graph G # Ky, if G is a k-list-critical graph, then 2 ||G|| > gx(|G|, 5(k — 4)ay). We improve
their bound to 2 |G| > gx (|G|, (k — 3)ay) for k > 7 (see Table [1)).

Online list coloring was independently introduced by Zhu [20] and Schauz [17] (Schauz
called it paintability). Let G be a graph and f: V(G) — N. We say that G is online f-
choosable if f(v) > 1 for all v € V(G) and for every S C V(G) there is an independent set
I C S such that G — I is online f’-choosable where f'(v) := f(v) for v € V(G) — S and
f'(v) := f(v) =1 for v € S — 1. Observe that if a graph is online f-choosable then it is
f-choosable. When f(v) := k—1 for all v € V(G), we say that G is online k-list-critical if G
is not online f-choosable, but every proper subgraph H of G is online f ‘V( H)—choosable. In

2012, Riasat and Schauz [16] showed that Gallai’s bound 2 ||G|| > gx(|G], 0) holds for online

k-list-critical graphs. We improve this for £ > 7 by proving the same bound as we have for
list coloring: 2 ||G|| > gr(|G|, (k — 3)a).



Our main theorem shows that a graph either has many edges or an induced subgraph
which has a certain kind of good orientation. To describe these good orientations we need a
few definitions. A subgraph H of a directed multigraph D is called Eulerian if di(v) = df;(v)
for every v € V(H). We call H even if ||H]|| is even and odd otherwise. Let EF(D) be the
number of even, spanning, Eulerian subgraphs of D and EO(D) the number of odd, spanning,
Eulerian subgraphs of D. Note that the edgeless subgraph of D is even and hence we always
have EE(D) > 0.

Let G be a graph and f: V(G) — N. We say that G is f-Alon-Tarsi (for brevity, f-AT)
if G has an orientation D where f(v) > df,(v) + 1 for all v € V(D) and EE(D) # EO(D).
One simple way to achieve EE(D) # FEO(D) is to have D be acyclic since then we have
EE(D) = 1 and EO(D) = 0. In this case, ordering the vertices so that all edges point
the same direction and coloring greedily shows that G is f-choosable. If we require f to be
constant, we get the familiar coloring number col(G); that is, col(G) is the smallest k for
which G has an acyclic orientation D with k > d},(v) + 1 for all v € V(D). Alon and Tarsi
[1] generalized from the acyclic case to arbitrary f-AT orientations.

Lemma 1.1. If a graph G is f-AT for f: V(G) — N, then G is f-choosable.
Schauz [I§] extended this result to online f-choosability.
Lemma 1.2. If a graph G is f-AT for f: V(G) — N, then G is online f-choosable.

For a graph G, we define dy: V(G) — N by do(v) := dg(v). The dy-choosable graphs were
first characterized by Borodin [2] and independently by Erdds, Rubin and Taylor [6]. The
connected graphs which are not dy-choosable are precisely the Gallai trees (connected graphs
in which every block is complete or an odd cycle). The generalization to a characterization
of dop-AT graphs was first given in [§] by Hladky, Kral and Schauz.

We prove the following general theorem saying that either a graph has many edges or
has an induced fy-AT subgraph H where fy basically gives the number of colors we would
expect the vertices to have left in their lists after §(G)-coloring G — H.

Definition 1. A graph G is AT-reducible to H if H is a nonempty induced subgraph of
G which is fy-AT where fy(v) := §(G) + dg(v) — dg(v) for all v € V(H). If G is not
AT-reducible to any nonempty induced subgraph, then it is AT-irreducible.

Theorem 4.4l If G is an AT-irreducible graph with §(G) > 4 and w(G) < §(G), then
2||G|| = gs@)+1(|G|.c) where ¢ := (6(G) — 2)asg)+1 when §(G) > 6 and ¢ = (6(G) —
3)asc)+1 when 6(G) € {4,5}.

The Alon-Tarsi number of a graph AT(G) is the least k such that G is f-AT where
f(v) =k for all v € V(G). We have x(G) < ch(G) < chor(G) < AT(G) < col(G). We say
that G is k-AT-critical if AT(G) > k and AT(H) < k for all proper induced subgraphs H of
G. From Theorem we can conclude the following.

Corollary [5.3| For k > 5 and G # Ky, a k-AT-critical graph, we have 2 |G| > gx(|G|, c)
where ¢ := (k — 3)oy, when k> 7 and ¢ := (k — 4)ay, when k € {5,6}.

Similarly, applying Lemma [1.1] gives the following.
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k-Critical G k-ListCritical G
Gallai [7] | Kriv [14] | KS [13] | KY [I1] | KS [13] Here

k|l dG)> | dG) > | dG) > | dG) > | dG) > ]| dG) >
4] 30769 | 3.1429 — [ 33333 — —

5 4.0909 | 4.1429 — | 45000 | — | 4.0984
6 | 50009 | 51304 | 5.0976 | 5.6000 | — | 5.1053
7| 6.0870 | 6.1176 | 6.0990 | 6.6667 | — | 6.1149
8 | 7.0820 | 7.1064 | 7.0980 | 7.7143 | — | 7.1128
9 | 80769 | 8.0968 | 8.0959 | 8.7500 | 8.0838 | 8.1094

10 | 9.0722 9.0886 9.0932 | 9.7778 | 9.0793 | 9.1055
15| 14.05641 | 14.0618 | 14.0785 | 14.8571 | 14.0610 | 14.0864
20 | 19.0428 | 19.0474 | 19.0666 | 19.8947 | 19.0490 | 19.0719

Table 1: History of lower bounds on the average degree d(G) of k-critical and k-list-critical
graphs G.

Corollary For k > 5 and G # Ky a k-list-critical graph, we have 2 |G| > gx(|G],¢c)
where ¢ := (k — 3)ay, when k> 7 and ¢ := (k — 4)ay, when k € {5,6}.

This improves the bound given by Kostochka and Stiebitz in [13]; for k-list-critical graphs,
they have 2||G| > gi(|G|, 5(k — 4)oi) for k& > 9. Now, applying Lemma gives the
following.

Corollary For k > 5 and G # Ky an online k-list-critical graph, we have 2 ||G| >
gk(|G], ¢) where ¢ := (k — 3)ay, when k > 7 and ¢ := (k — 4)oy, when k € {5,6}.

2 Critical graphs are AT-irreducible

Instead of proving lower bounds on the number of edges in critical graphs directly, we prove
our bound for AT-irreducible graphs and show that graphs that are critical with respect
to choice number, online choice number and Alon-Tarsi number are all AT-irreducible. In
this section, we take on the easier task of proving that the various critical graphs are AT-
irreducible.

Lemma 2.1. If G is a k-list-critical graph, then G is AT-irreducible.

Proof. Suppose G is AT-reducible to H. Let L be a (k — 1)-assignment on G such that
G is L-critical. Let m be a coloring of G — H from L and let L' be the list assignment
on H defined by L'(v) := L(v) — n(N(v) N V(G — H)) for v € V(H). Then |L'(v)| >
|L(v)| = (dg(v) — dy(v)) = k — 1+ dg(v) — dg(v). By Lemma 1.1} H is fy-choosable and
hence H is L'-colorable. Therefore GG is L-colorable, a contradiction. O

For online list coloring, we use the following lemma from [I7] allowing us to patch together
online list colorability of parts into online list colorability of the whole.



Lemma 2.2. Let G be a graph and f: V(G) — N. If H is an induced subgraph of G
such that G — H 1is online f‘V(G_H)-choosable and H is online fr-choosable where fr(v) 1=

f(v) +du(v) — dg(v), then G is online f-choosable.
Lemma 2.3. If G is an online k-list-critical graph, then G is AT-irreducible.
Proof. Immediate from Lemma [2.2] and Lemma [I.2] O

To prove that k-AT-critical graphs are AT-irreducible, we need a lemma that serves the
same purpose as Lemma for orientations.

Lemma 2.4. Let G be a graph and f: V(G) — N. If H is an induced subgraph of G such

that G — H is f’v( -AT and H is fy-AT where fy(v) := f(v) +dy(v) — dg(v), then G
1s f-AT.

G—H)

Proof. Take an orientation of G — H demonstrating that it is f |V( a H)—AT and an orientation
of H demonstrating that it is fyz-AT. Now orient all the edges between H and G — H into
G — H. Call the resulting oriented graph D. Then D satisfies the out degree requirements of
being f-AT since the out degree of the vertices in G — H haven’t changed and the out degree
of each v € V(H) has increased by dg(v) —dg(v). Since no directed cycle in D has vertices in
both H and D — H, the Eulerian subgraphs of D are just all pairings of Eulerian subgraphs
of H and D — H. Therefore EE(D)— EO(D) = EE(H)EE(D—H)+FO(H)EO(D—H) —
(EE(H)EO(D—H)+EO(H)EE(D—H)) = (EE(H)-EO(H))(EE(D—H)—EO(D—H)) #
0. Hence G is f-AT. O

Lemma 2.5. If G is a k-AT-critical graph, then G is AT-irreducible.
Proof. Immediate from Lemma [2.4] O

3 Extending Alon-Tarsi orientations

In [13] Kostochka and Stiebitz gave a method for extending list colorings into Gallai trees.
We generalize these ideas in terms of extensions of orientations. Let T be the Gallai trees
with maximum degree at most k — 1, excepting Kj. For a graph G, let W*(G) be the set of
vertices of (G that are contained in some K;_; in G.

Lemma 3.1. Let G be a multigraph without loops and f: V(G) — N. If there are F C G
and Y C V(G) such that:

1. any multiple edges in G are contained in G[Y]; and
f(v) > dg(v) for allv e V(G) =Y, and

f(v) > dgy(v) +dp(v) +1 for allv € Y; and

> Lo e

For each component T of G=Y there are different x1,xo € V(T) where Ny[z1] = Np|xs]
and T' — {1, x5} is connected such that either:

(a) there are x1y1, xoys € E(F) where y1 # yo and N(x;) VY = {y;} fori € [2]; or
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(b) |N(z2) NY| =0 and there is x1y; € E(F) where N(z1)NY = {y1},
then G is f-AT.

Proof. Suppose not and pick a counterexample (G, f, F,Y) minimizing |G — Y|. If |G = Y| =
0, then Y = V(G) and thus f(v) > dg(v) + 1 for all v € V(G) by (3). Pick an acyclic
orientation D of G. Then FE(D) = 1, EO(D) = 0 and dj(v) < dg(v) < f(v) — 1 for all
v € V(D). Hence G is f-AT. So, we must have |G — Y| > 0.

Pick a component T" of G—Y and pick x1, s € V(T') as guaranteed by (4). First, suppose
(4a) holds. Put G’ := (G —T) +y1yp, F' .= F —T,Y' :=Y and let f’ be f restricted
to V(G'). Then G’ has an orientation D’ where f'(v) > dj,(v) + 1 for all v € V(D') and
EE(D") # EO(D'), for otherwise (G', f', F',Y") would contradict minimality. By symmetry
we may assume that the new edge v,y is directed toward 5. Now we use the orientation
of D’ to construct the desired orientation of D. First, we use the orientation on D' — y;ys
on G —T. Now, order the vertices of T" as x1, T2, 21, 29, . . . S0 that every vertex has at least
one neighbor to the right. Orient the edges of T' left-to-right in this ordering. Finally, we
use Y11 and xoy, and orient all other edges between T and G — T away from T'. Plainly,
f(v) > d5(v) + 1 for all v € V(D). Since y;z; is the only edge of D going into T, any
Eulerian subgraph of D that contains a vertex of 7" must contain y;x;. So, any Eulerian
subgraph of D either contains (i) neither y;x; nor xays, (ii) both yyz1 and xays, or (iii)
Y11 but not xoy,. We first handle (i) and (ii) together. Consider the function h that maps
an Eulerian subgraph @ of D’ to an Eulerian subgraph h(Q) of D as follows. If @ does
not contain y1ys, let h(Q) = ¢(Q) where +(Q) is the natural embedding of D" — yjys in
D. Otherwise, let h(Q) = 1(Q — y1y2) + {y171, x122, T2y2}. Then h is a parity-preserving
injection with image precisely the union of those Eulerian subgraphs of D in (i) and (ii).
Hence if we can show that exactly half of the Eulerian subgraphs of D in (iii) are even, we
will conclude EE(D) # EO(D), a contradiction. To do so, consider an Eulerian subgraph
A of D containing ;1 and not xoys. Since x; must have in-degree 1 in A, it must also have
out-degree 1 in A. We show that A has a mate A" of opposite parity. Suppose x5 ¢ A and
x121 € A; then we make A’ by removing x;z; from A and adding x1292;. If 25 € A and
T1T9z1 € A, we make A’ by removing x179z; and adding x,2z;. Hence exactly half of the
Eulerian subgraphs of D in (iii) are even and we conclude EFE(D) # EO(D), a contradiction.

Now suppose (4b) holds. Put G' :== G —T, F' := F —T,Y’ :=Y and define f’ by
f'(v) = f(v) for all v € V(G" —y1) and f'(y1) = f(y1) — 1. Then G’ has an orientation
D' where f'(v) > d},(v) + 1 for all v € V(D') and EE(D') # EO(D'), for otherwise
(G', f', F',Y") would contradict minimality. We orient G — T" according to D, orient T as in
the previous case, again use y;z; and orient all other edges between T and G'— T away from
T. Since we decreased f'(y;) by 1, the extra out edge of y; is accounted for and we have
f(v) > df(v) + 1 for all v € V(D). Again any additional Eulerian subgraph must contain
121 and since xo has no neighbor in G — T" we can use x5 as before to build a mate of
opposite parity for any additional Eulerian subgraph. Hence EE(D) # EO(D) giving our
final contradiction. O

Lemma 3.2. Letr >0, k > r+4 and G # K}, be a graph with © € V(G) such that:
1. G—x €T and



2. dg(x) >r+2; and
3. |N(z) " WH(G — )| > 1; and
4. dg(v) <k —1 forallve V(G —x).
Then G is f-AT where f(x) = dg(z) —r and f(v) = dg(v) for allv € V(G — ).

Proof. Suppose not and choose a counterexample minimizing |G|. Let @ be the set of
non-separating vertices in G — x. Suppose we have y € ) such that G — y satisfies all
the hypotheses of the theorem. Then minimality of |G| shows that G — y is f’-AT where
f'(v) == f(v) + dg—y(v) — dg(v) for v € V(G). Create an orientation D of G from the
orientation of G — y by directing all edges incident to y into y. These new edges are on no
cycle and thus the Eulerian subgraph counts did not change. Also, we have increased the
out degree of any vertex v by at most dg(v) — dg—,(v). Hence G is f-AT, a contradiction.
Therefore G — y must fail some hypothesis for each y € @; note that it is only possible for
G —y to fail (2) or (3).

We show that @ C N(z). Suppose otherwise that we have y € @ — N(z). Since
(2) is satisfied for G — y, (3) must fail and hence y is contained in a Kj_;, call it B, in
G — z such that N(x) N B # (. Pick z € N(x) N B. Since dg(z) < k — 1 we must have
Ng_.(z) € B and hence z € Q). Since y € Q and G — x € T, we must have Ng_.(y) C B.
But then the conditions of Lemma are satisfied with ' := G|z, z] and Y := {z} since
f(x) > da(x) —r > 2 = dgy)(x) + dp(x) + 1. This is a contradiction and hence we must
have @ C N(x).

Now, by (3), G — z has at least one Kj_i, call it B, such that N(z) N V(B) # 0. If
V(G—xz) = B, then B=Q C N(z) and G = K}, impossible. Hence we may pick y € Q) — B.
Then G —y satisfies (3) and hence must not satisfy (2). We conclude that dg(x) = r+2 and
hence |Q| < r+2. But |Q| > A(G —z) = k — 1 and hence k < r + 3, a contradiction. [J

We will need to know what happens when we patch two dy-choosable graphs together
at a vertex. To determine this we first need to understand the structure of dy-choosable
graphs. The do-choosable graphs were first characterized by Borodin [2] and independently
by Erdés, Rubin and Taylor [6]. The generalization to a characterization of dp-AT graphs
was first given in [§] by Hladky, Kral and Schauz. This generalization is easily derived from
the following lemma from [6] that is often referred to as “Rubin’s Block Theorem”.

Lemma 3.3 (Rubin [6]). A 2-connected graph is either complete, an odd cycle or contains
an induced even cycle with at most one chord.

Lemma 3.4. For a connected graph G, the following are equivalent:
1. G is not a Gallai tree,
2. G contains an even cycle with at most one chord,
3. G is dy-choosable,
4. G is dy-AT,



5. G has an orientation D where dg(v) > df(v) + 1 for allv € V(D), FE(D) € {2,3}
and EO(D) € {0, 1}.

Proof. That (1), (2) and (3) are equivalent is the characterization of dy-choosable graphs in
[2] and [6]. Since (5) implies (4) and (4) implies (3) it will suffice to show that (2) implies (5).
The proof we give of (5) is the same as in [§]. Suppose (2) holds and let H be an induced even
cycle with at most one chord in G. Orient the even cycle in H clockwise and the (possible)
other edge arbitrarily. Contract H to a single vertex xy to form H’ and take a spanning
tree T of H' with root . Orient the remaining edges in G away from the root in this tree
to get D. Then every vertex has in degree at least 1 in D and hence dg(v) > dj(v) + 1 for
all v € V(D). Also, since the orientation of D — H is acyclic, the only spanning Eulerian
subgraphs of D are the edgeless graph, the graph with just the edges from the even cycle in
H and possibly one other using the chord in H. Hence EE(D) € {2,3} and EO(D) € {0, 1},
thus (5) holds. O

Lemma 3.5. If {A, B} is a separation of G such that G[A] and G[B] are connected dy-AT
graphs and AN B = {z}, then G is f-AT where f(v) = dg(v) for all v € V(G) — x and
f(x) = do(x) — 1.

Proof. By Lemma we may choose an orientation Dy of A with d*(v) < d(v) for all
v € V(Dy) and FE(Ds) # EO(Dy) and an orientation Dp of B with dt(v) < d(v)
for all v € V(Dg) and EE(Dg) # EO(Dpg). Together these give the desired orientation
D of G since no cycle has vertices in both A — 2 and B — x and thus FE(D) — FO(D) =
EB(D4)BE(Ds) +EO(D.4)EO(Ds5)~(EE(D4) EO(Dy5)+ EO(D.4) EE(Dy)) = (EE(D.1)~
EO(Da))(EE(Dp) — EO(Dg)) # 0. O

Lemma|3.2|restricts the interaction of a high vertex and a single low component. Similarly
to [13] we’ll use the following lemma to restrict a high vertex’s interaction with two low
components.

Lemma 3.6. Let k > 4 and let G be a graph with x € V(G) such that:
1. G — = has two components Hy, Hy € Ty,; and
2. |IN(z)NV(H;)| =2 forie€ [2]; and
3. |N(z) nWH(H;)| > 1 fori e [2].
Then G is f-AT where f(x) = dg(x) — 1 and f(v) = dg(v) for allv € V(G — z).

Proof. Using Lemma [3.5 we just need to show that Q; := G [{z} UV (H;)] is do-AT for
i € [2]; that is show that Q; is not a Gallai tree. If @; is a Gallai tree, then x’s two neighbors
in H; must be in the same block in H; and this block must be a Kj;_;, but this creates a
diamond since k£ > 4, impossible. O

Combining Lemma [3.2] and Lemma [3.6] gives the following.
Lemma 3.7. Let k > 5 and let G be a graph with x € V(G) such that:
1. Ky € G; and



2. G —x hast components Hy, Ho, ..., H;, and all are in Ty; and
3. dg(v) <k —1 for allv e V(G —x); and
4. |N(@) N W (H;)| > 1 fori € [t]; and
5. dg(x) >t +2.
Then G is f-AT where f(x) = dg(x) — 1 and f(v) = dg(v) for allv € V(G — z).

Proof. Since dg(x) > t + 2, either x has 3 neighbors in some H; or = has two neighbors in
each of H;, H;. In either case, let C,...,C, be the other components of G — z. For each

€ [ql, pick z; € N(x) N V(C; ) Then order the vertices of C; with z; first and orient all the
edges in C; to the right with respect to this ordering. Now orient all edges between C; and
G — C; into C;. Note that each vertex in C; has in-degree at least one and no cycle passes
through C;. Hence we can complete the orientation using one of Lemma or Lemma
to get our desired orientation D of G. [

To deal with more than one high vertex we need to define the following auxiliary bipartite
graph. For a graph G, {X,Y} a partition of V(G) and k > 4, let B (X,Y) be the bipartite
graph with one part Y and the other part the components of G[X]|. Put an edge between
y € Y and a component T of G[X] iff N(y) N W*(T) # 0. Lemma 3.9] gives the substantive
improvement over [I3] on the lower bound on the number of edges in a list critical graph.
Before proceeding we need a lemma about orientations.

Let G = (V,E) be a multigraph. A function A : V' — p(F) is called an incidence
preference. Set d(v, A) = dg(v, A) = |E(v) N A(v)|. Call an edge uv A-good (or just good)
if uv € A(u) N A(v), and let A(G) be the set of good edges of G. If D is an orientation of
G, set d (v, A) = [{(u,v) € E(D) : {u,v} € A(v)}|.

Lemma 3.8. Let G be a graph with incidence preference A, S C V(G) and g: S — N. Then
G has an orientation such that d~ (v, A) > g(v) for all v € S iff for every H < G[S]

Z d(v, A) — |[A(H)| > Y g(v).
veV(H veV (H)

Proof. First, suppose G has such an orientation D with d~(v,A) > g(v) for all v € S.
Consider any H<G|[S]. Then the second sum in (1f) equals [{uv € E(D) veV(H)anduv €
A(v)}|, and the third sum equals [{uv € E(G) : v € V(H) and uv € A(v)}|.

3 ZdUA > dv, A) — |A(H)|. (1)

veV (H) veV(H veV(H)

For the other direction, pick an orientation D of G minimizing

0= ZmaX{Og (v,A)}.

veES

It suffices to show © = 0. If not then there is xy € S with d~(x¢) < g(zo). Put

X ={veV(G): (3P, :=xozy ... 2 With v = z)(Vi € [t])[vi_1v; € E(D) N A(vi—1)]}.
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Every v € X satisfies d~ (v, A) < g(v) for otherwise reversing all the edges on P, violates the
minimality of ©. By definition, all edges vw € E(G) N A(v) with v € X and w € G — X are
directed into X, so with H := G[X] we have the contradiction

S dw A —[AH)| = Y d (v, A) <glm)+ Y, d(v,A)< Y gr). O

veX VeV (H) veV (H)—zo veV (H)
For a graph G, let S(G) be the subset of non-separating vertices of G.
Lemma 3.9. Let k > 7 and let G be a graph with Y C V(G) such that:
1. Ky € G; and
2. the components of G —Y are in Ti; and
3. dg(v) <k—1 forallve V(G-Y); and
4. with B := B (V(G —=Y),Y) we have §(B) > 3.

Then G has an induced subgraph G' that is f-AT where f(y) = de/(y) — 1 fory € Y and
f(v) =deg/(v) forallve V(G =Y).

Proof. Suppose not and pick a counterexample G minimizing |G|. Note that ||w, Y|, < 1 for
every w € WH(T), and if |w,Y |, =1 then w € S(T); so if y € Y and T is a component of
G —Y then N(y)NW*(T) C S(T). By Lemma , lly, Tl < 2 for each edge yT" of B since
otherwise G’ = G[Nply|] satisfies the conclusion of the lemma. Call an edge yT" of B heavy
if [y, Tl = 2. Let H be the set of heavy edges, and H = J, 1y {yz € E(G) : x € V(T)}.
For v € S C V(B), set h(v) = |Eg(v) NH| and h(S) = > s h(v). By Lemma 3.7, h(y) <1
for all y € Y since otherwise G’ = G[Np|y|] satisfies the conclusion of the lemma.

Suppose a component T of G —Y has an endblock B with B # Kj,_; or E(S(B),Y) = 0.
Then G/ := G — S(B) still satisfies the hypotheses of the theorem since the degrees in B
are not affected. Hence, by minimality of |G|, there is an induced subgraph G” C G’ that
is f-AT where f(y) = dg(y) — 1 for y € Y and f(v) = dgr(v) for all v € V(G” —Y). But
G" is also an induced subgraph of G, a contradiction. Hence every endblock B of every
component T of G —Y is a K;_; and E(S(B),Y) = 0. Let xpys € E(S(B),Y).

To each component T of G —Y we associate a set of edges u(T) C E(W*(T),Y) as well
as a type, where type(T') € {1,2a,2b,2¢,3}. Call a block B of T' saturated if ||v,Y]|| # 0 for
all v € S(B). For each component T of G — Y, order the endblocks of T" as By, ..., B; so

that the saturated blocks come first. Define u(T") and type(T') as follows:
1. Bj is saturated.
(a) t=1
e put u(7) = E(T,Y) and type(T) = 2a.
(b) t>2
i. By is saturated

e put u(T) = E(S(B,U By),Y) and type(T) = 3.
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ii. B, is unsaturated
e put u(T) = E(S(B,),Y) U {xp,yn,} and type(T) = 20.

2. Every endblock is unsaturated.

(a) t=1
e since 0(B) > 3, there are three edges e, eq,e3 € E(T,Y) with distinct ends
inY, put u(T) = {e1, e2,e3} and type(T) = 1.
(b) t =2
i. for some i € [2], there are two edges e;, ey € E(S(B;),Y) with distinct ends
inY
e put u(7) = {61762,$B3,iy33,i} and type(T) = 1.
ii. otherwise, since §(B) > 3, there is an internal block By = Kj;_; with an edge

rp,Ys, € E(S(B),Y —yp, —ys,)
A. By is saturated
o put u(T) = {zB,Ys,, TB,Ys, } U E(S(By),Y) and type(T) = 2c.
B. By is unsaturated
e put u(T) = {ZB,YB,, TB,YB,> TB,YB, } and type(T) = 1.
(c) t>3
e put u(T) = {xp,Yn,, TB,YB,, LB Y, } and type(T) = 1.

Every type other than type 1 results from a unique case of this definition. If type(T) €
{2a,2b, 2c} we also say type(T) = 2 (but type 2 vertices arise in three cases). If type(T) =i
then any i-set of independent edges of u(7") either contains an edge ending in an unsaturated
block or two edges ending in the same block.

Let H(T) ={e=yT € H: Ec(y,T) Nu(T) # 0} and '(T) = |H(T)|. For SC B-Y,
let W/(S) = > reg M'(T). A component T' of G —Y is heavy if type(T) < W'(T); else T is
light. Define a function

g:V(B) — N
2—h(v) ifvey
v = Si—h(T) ifv=T, T islight and type(T) =i
0 if v="T and T is heavy.

Let A be an incidence preference for B with A(T) = {yT € E(B) : Eg(y,T)Nu(T)~ H # 0}
if T is light, A(T) = 0 if T' is heavy, and A(y) = {yT € E(B) : Eq(y,T)~ H # 0} ify €Y.
We claim:

There is an orientation D of B with dp(v, A) > g(v) for all v € V(B). (2)
By Lemma it suffices to show every induced subgraph B’ C B satisfies

ni= Yy ds(v,A) —|AB) = Y g(v) =0
)

veV (B! veV (B)
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Fix such a B'. Let Y/ =Y NV(B'), @ be the light vertices of type 1 in B’, P be the light
vertices of type 2 in B’ and R be the light vertices of type 3 in B’. Recall §(B) > 3. For a
light component T of G — Y,

|S(B(T))| — 20 (T) = k — 1 — 2K/ (T), if type(T) = 2a
|S(By(T))| =20 (T) + 1=k —1—2h(T), if type(T) = 2b
dp(T,A) =< _ _
|S(Bo(T))| =20 (T) +2=k —1—2h"(T), if type(T) = 2¢
|S(By(T)) US(By(T))| — 20/ (T) = 2k — 4 = 21/(T), if type(T) =3
So, if T' € P then dg(T,A) =k —1—2R(T) in B. Thus

Y odw,A) = D dw, A+ Y dv, A) (3)

veV (B') veY’ vEQUPUR
D d(w,A) = 3V - h(Y); (4)
veY’
Y. d(v,A) > 3|Q+ (k—1)|P|+ (2k — 4)|R| — 2W'(P U R); (5)
vEQUPUR

|A(B)| < mln{ZdvA > dvA} nd (6)

vey! vEQUPUR

S o) = 2V 1QI+ 2P|+ 3Rl — h(Y) — K(P)~ K(R). (7
veV(B’)

Using , , yields
no= Y, dw,A-]AB) - > gv)

VeV (B') veV(B')
> Y[ —=[Q = 2P| = 3|R| + (P UR). (8)
Replacing with yields
n>=2lY'| +2|Q| + (k — 3)|P| + (2k — 7)|R| + h(Y') — h'(P U R). (9)

Adding twice (16]) to ( . 17)) yields

30 > (k — 7)|P| + 2(k — 6.5)|R| + h(Y") + K (P UR).

Since k > 7, this implies n > 0. So there exists an orientation D satisfying [10}

Finally we use D to construct the subgraph F' C G needed in Lemma [3.1l For an edge
e=yT € A(T) UH(T), there is an edge ¢’ € Eg(y,T) such that ¢ € u(T) if e is light. If e
is heavy then there is another edge ¢” € Eg(y,T). Let

F={e:e=yT € AT)and yT € E(D)}U{e' : e =yT € H}.

We claim F satisfies (4) of Lemma [3.1] Consider any component 7' € G — Y say
type(T) = ¢. Then there are at least i edges €] = z1y1,...,¢; = z;y; € F with y; € T.
Moreover, these edges are independent.
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Suppose i = 1. Then x; € S(B) for an unsaturated block B C T. As B is unsaturated,
there is a vertex x € S(B) — x; with no neighbor in Y. So N[z;] = Nlx], and €} and x
witness (4b).

Suppose i = 2. If type(T') = 2a, then T has only one block B;. So S(B;) = T, and ¢}
and e}, witness (4a). If type(T') € {2b,2c}, then (4a) is satisfied if x; and x5 are in the same
block of T'; else one of them ends in an unsaturated block, and (4b) is satisfied.

Finally, suppose i = 3. Then (4a) is satisfied since two of x1, x5, x3 are in the same block.

Also, as each y € Y satisfies d~(y, A) > 2 — h(y), we have —E(y, G —Y) \ F| > 2. Thus
fy) =dc(y) =1 = dey(y) + dr(y) + E(y, G = Y) \ E(F) — 1. So (3) holds. O

With a slightly simpler argument we get the following version with asymmetric degree
condition on B. The point here is that this works for £ > 5. As we’ll see in the next section,
the consequence is that we trade a bit in our size bound for the proof to go through with
ke {5,6}.

Lemma 3.10. Let k > 5 and let G be a graph with Y C V(G) such that:
1. Ky € G; and
the components of G —Y are in Ty; and

de(v) <k—1 forallve V(G-Y); and

with B := Bp(V(G = Y),Y) we have dg(y) > 4 for ally € Y and dg(T) > 2 for all
components T of G =Y.

Then G has an induced subgraph G' that is f-AT where f(y) = da/(y) — 1 fory € Y and
f() =dg(v) for allv e V(G' =Y.

Proof. Suppose not and pick a counterexample G minimizing |G|. Note that ||w, Y|, < 1 for
every w € WH(T), and if |w,Y |, =1 then w € S(T); so if y € Y and T is a component of
G —Y then N(y)NW*(T) C S(T). By Lemma , lly, Tl < 2 for each edge yT" of B since
otherwise G’ = G[Nply|] satisfies the conclusion of the lemma. Call an edge yT" of B heavy
if [y, Tl = 2. Let H be the set of heavy edges, and H = J, ;s {yr € E(G) : x € V(T)}.
For v € S C V(B), set h(v) = |Eg(v) NH| and h(S) =) s h(v). By Lemma 3.7, h(y) <1
for all y € Y since otherwise G’ = G[Np|y|| satisfies the conclusion of the lemma.

Suppose a component T of G —Y has an endblock B with B # Kj,_; or E(S(B),Y) = 0.
Then G’ := G — S(B) still satisfies the hypotheses of the theorem since the degrees in B
are not affected. Hence, by minimality of |G|, there is an induced subgraph G” C G’ that
is f-AT where f(y) = dgv(y) — 1 for y € Y and f(v) = dgr(v) for all v € V(G” —Y). But
G" is also an induced subgraph of G, a contradiction. Hence every endblock B of every
component T of G —Y is a K;_; and E(S(B),Y) = 0. Let xpys € E(S(B),Y).

To each component T of G —Y we associate a set of edges u(T) C E(W*(T),Y) as well
as a type, where type(T') € {1,2a,2b,3}. Call a block B of T saturated if ||v,Y]| # 0 for all
v € S(B). For each component T of G — Y, order the endblocks of T as B, ..., B; so that

the saturated blocks come first. Define w(T') and type(T) as follows:

1. B is saturated.
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(a) t=1
e put u(T) = E(T,Y) and type(T) = 2a.
(b) t >2
i. B, is saturated
e put u(T) = E(S(By U By),Y) and type(T) = 3.
ii. B, is unsaturated
e put u(T) = E(S(By),Y) U{zp,ys,} and type(T) = 20.

2. By is unsaturated.

(a) t=1
e since §(B) > 2, there are two edges e, es € E(T,Y) with distinct ends in Y,
put u(T") = {e1, ez} and type(T) = 1.
(b) t>2
e put u(7) = {xp,yB,, TB,Yn,} and type(T) = 1.
Every type other than type 1 results from a unique case of this definition. If type(T') €
{2a,2b} we also say type(T') = 2 (but type 2 vertices arise in three cases). If type(T') = i

then any i-set of independent edges of u(T') either contains an edge ending in an unsaturated
block or two edges ending in the same block.

Let H(T) ={e=yT € H: Eq(y,T)Nu(T) # 0} and W'(T) = |H(T)|. For S C B-Y,
let h/(S) = > regM'(T). A component T of G —Y is heavy if type(T) < W'(T); else T is
light. Define a function

g:V(B) — N
2—h(v) ifveY
v = Si—h(T) ifv=T, T islight and type(T) =i
0 if v="1T and T is heavy.
Let A be an incidence preference for B with A(T) = {yT € E(B) : Eg(y,T)Nu(T)~ H # 0}
if T is light, A(T) = 0 if T is heavy, and A(y) = {yT € E(B) : Eg(y,T)~H #0}ify €Y.

We claim:
There is an orientation D of B with dp(v, A) > g(v) for all v € V(B). (10)
By Lemma it suffices to show every induced subgraph B’ C B satisfies

ni= Y ds(v,A)—|AB) - D g(v)>0.
veV(B') veV (B)

Fix such a B'. Let Y/ =Y NV (B’), Q be the light vertices of type 1 in B’, P be the light
vertices of type 2 in B’ and R be the light vertices of type 3 in B’. Recall dg(y) > 4 for all
y € Y and dg(T) > 2 for all components T of G — Y. For a light component T of G — Y,

|S(By(T))| — 20 (T) = k — 1 —2h'(T), if type(T) = 2
ds(T, A) = { |S(BL(T))| — 20 (T) +1 =k — 1 — 210/ (T), if type(T) = 2b
|S(B1(T)) US(By(T))| — 20 (T) = 2k — 4 — 21/(T), if type(T) = 3.
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So, if T' € P then dg(T,A) =k —1—2R(T) in B. Thus

ZdvA :ZdvA Z d(v, A) (11)

veV (B') veY’ vEQUPUR
S dw,A) > Al - (YY) (12)
veY’
Y d(w,A) > 2(Q|+ (k—1)|P| + (2k — 4)|R| — 21/ (P U R); (13)
vEQUPUR

|A(B)| < mm{Zd’uA > dqu} nd (14)

vey”’ vEQUPUR

Y. 9w) = 2Y'[+|QI+2IP|+3|R| - h(Y') = W(P) — I(R). (15)

veV (B)
Using , , yields
no= Y dwA)—|AB) - Y gv)

VeV (B') VeV (B')
> 2lY'| —|Q| —2|P| — 3|R| + M'(P U R). (16)

Replacing with yields
n>=2lY'|+1Q|+ (k—3)|P|+ (2k — 7)|R| + h(Y') — (P UR). (17)

Adding to yields

o > (k — 5)|P| + 2(k — 5)|R| + h(Y").

Since k > 5, this implies 7 > 0. So there exists an orientation D satisfying [10}

Finally we use D to construct the subgraph F' C G needed in Lemma (3.1} For an edge
e=yT € A(T) UH(T), there is an edge € € Eg(y,T) such that € € u(T) if e is light. If e
is heavy then there is another edge ¢” € Eq(y,T). Let

F={c:e=yT € A(T) and yT € E(D)} U{e : e =yT € H}.

We claim F' satisfies (4) of Lemma (3.1} Consider any component 7' € G — Y; say
type(T') = i. Then there are at least ¢ edges €| = zy1,...,€, = x;y; € F with y; € T.
Moreover, these edges are independent.

Suppose i = 1. Then z; € S(B) for an unsaturated block B C T. As B is unsaturated,
there is a vertex x € S(B) — z; with no neighbor in Y. So N[z;] = Nlx], and €} and x
witness (4b).

Suppose i = 2. If type(T) = 2a, then T has only one block B;. So S(B;) = T, and ¢}
and e}, witness (4a). If type(T') = 2b, then (4a) is satisfied if x; and x5 are in the same block
of T'; else one of them ends in an unsaturated block, and (4b) is satisfied.

Finally, suppose ¢ = 3. Then (4a) is satisfied since two of x1, 25, x5 are in the same block.

Also, as each y € Y satisfies d~(y, A) > 2 — h(y), we have —E(y, G —Y) \ F| > 2. Thus
fy) =da(y) =1 = dayy(y) + dr(y) + E(y,G = Y) \ E(F) — 1. So (3) holds. O
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4 Main theorem: AT-irreducible graphs have many edges
The rest of the proof is basically taken verbatim from [I3]. We need the following definitions:

Lip(G) =Gz e V(GQ) |dg(x) < K],
Hi(G) = Gla € V(G) | dalx) > K,

@)= (k=24 25 ) 16(6)] - 26,

RGO =2 @+ (k-c- 1 27) X dat) ),

As proved in [13], a computation gives the following.

Lemma 4.1. Let G be a graph with § :== 6(G) >3 and 0 < ¢ < 6+1— 2. If 05:1(G) +
T+1.e(G) 2 ¢[Ho1(G)], then 2(|G|| = gs1 (|G, ).

We need the following degeneracy lemma.

Lemma 4.2. Let G be a graph and f: V(G) = N. If |G| > X cy(g) f(v), then G has an
induced subgraph H such that dg(v) > f(v) for each v € V(H).

Proof. Suppose not and choose a counterexample G minimizing |G|. Then |G| > 3 and we
have z € V(G) with dg(z) < f(z). But now [|G —zf| > }° oy g_p f(v), contradicting
minimality of |G|. O

We'll also need the following consequence of Lemma 2.3 in [I3] giving a lower bound on
o,(T) for T € T. Lemma 2.3 in [13] is only proved for & > 6, but we need our lemma to work
for k =5 as well, so we prove that here. Notice that when T' € Ty, we have L;(T) =T. We
also use the following simple fact (Lemma 2.1(b) in [I3]): if B is an endblock of T € T and
x is the unique cutvertex of T'in V(B), then 04 (T) = 04(T — (B —x)) +0(B) — (k—2+ 25).

Lemma 4.3. Let k > 5 and T € Ty,. If K1 C T, then or(T) > 2 4 q1(T); otherwise
or(T) > 2 — ap + q(T).

Proof. Suppose the lemma is false and choose a counterexample T' € Tj, minimizing |T'|. By
Lemma 2.3 in [I3], we have k = 5. Then a; = 2 and 2—a5 = 13. Also, 05(T) = Z|T|-2||T|
and ¢5(T) = 2 > vevienwse) (4 — dr(v)). Suppose T' has only one block. First, suppose
T = K, for t € {2,3}. Then o5(T) — ¢5(T) = 3t —t(t — 1) — 3t(5 —t) > 13, a contradiction.
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Also, T' # K, since then o5(T) = 2 and ¢5(7) = 0. If T is an odd cycle of length ¢, then
o5(T) — qs(T) = 30 — 5(20) = 2¢ > 33, a contradiction.

So, T must have at least two blocks. For an endblock B of T', let xp be the unique
cut vertex of 7" in V(B). Consider Tp := T — (B — z). Clearly (and by Lemma 2.1(b) in
[13]), we have o5(T) = 05(Ts) + 05(B) — L. Suppose B has an endblock B # K. Since
B # Ky, any K, in T is in T, so minimality of |T| yields o5(T5) > 2 + ¢5(Tg) if K, C T
and o5(Tp) > 2 — a5 + ¢5(Tp) otherwise. Since T is a counterexample, we must have

05(B) — I +¢5(Tg) < ¢5(T). Since B is regular, this gives
7 7 7
LBl —2|B| =L = o5(B) =~
1Bl 2B~ L = oa(B) — .
< a5 —dB(iL’B)+ Z 4—dB(U)
veV(B—zpR)
>

= 5 (FAB) + (1B] - )4 - A(B))).

Therefore,

2 (~AB) + (Bl - 1)(4 - AB)).

This simplifies to the following which is a contradiction since A(B) € {1,2}:

A(B)>?<1—ﬁ>.

Therefore, every endblock of T"is K. Choose an endblock B = K, of T. Then the other
block containing zp is a K», let y be the other vertex in this K,. Consider 77" =T — B.
Then K; C T’ since T had another endblock which must be K4. By minimality of |7,
we conclude o5(T") > 2 + ¢5(7”). Since T has 4 more vertices and 7 more edges than 77,
we have o5(T) = o5(1") + 4% — (2)(7) = o5(T"). Also, g5(T") = ¢5(T) if y is in a Ky,
and ¢5(7") = g5(T') + a5 otherwise (since all the vertices in B are in a Kj_q, they do not
contribute to ¢5(7")). Hence 05(T") = 05(T") > 2+ ¢5(1") > 2+ ¢5(T'), a contradiction. [

T(1B - 1)~ |BIA®B) <

We are now ready to prove the main theorem.

Theorem 4.4. If G is an AT-irreducible graph with 6(G) > 4 and w(G) < 6(G), then
2G| = gs)+1(|G|.c) where ¢ :== (6(G) — 2)asg)+1 when §(G) > 6 and ¢ = (6(G) —
3)ascy+1 when §(G) € {4,5}.

Proof. Put k := 6(G) + 1, £ := L,(G) and H = Hy(G). Plainly, ¢ < 6(G) + 1 — 555 So,
using Lemma 1.1 we just need to show that 04(G) + 74..(G) > c|H|. Put W = W*(L),
L':=V(L)\W and H :={v € V(H) : de(v) = k}. For y € V(H), put

o) = ) + (b= e 27 ) (olo) = )
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We have

yeV(H)

> _ -

> ) " duly) + (dﬂ(y)m c+k_1>
yeH’ yeV(H)\H'

> e+ = e
Z/EZ,;,dH(y)+(k C+k 1)|7-[ |

where the last inequality follows since ¢ < (k—3)ay, = (k—3) (% - m> < £ Therefore,
it will be sufficient to prove that S := 0y,(G) + >, c v du(y) > c|H'[.

Let D be the components of £ containing Kj_; and C the components of £ not containing
Kj_1. Then DUC C Ty, for otherwise some T' € DUC is dyp-AT and hence fr-AT and G is AT-
reducible. By Lemma 4.3 we have o4 (T) > 2+¢q(T) for if T € D and o3 (T) > 2—ay+qi(T)
if T € C. Hence, we have 04(G) = Y 7ep 0k(T) + D recok(T) > 2|D| + (2 — ay) [C] +

g Y pers (k=1 —de(v)).
Now we define an auxiliary bipartite graph F' with parts A and B where:

1. B= H' and A is the disjoint union of the following sets A;, A; and As,
2. Ay = D and each T € D is adjacent to all y € H' where N(y) N W*(T) # 0,

3. For each v € L', let As(v) be a set of |[N(v) N H'| vertices connected to N(v) N H' by
a matching in F'. Let Ay be the disjoint union of the Ay(v) for v € L/,

4. For each y € H', let A3(y) be a set of dy(y) vertices which are all joined to y in F.
Let A3 be the disjoint union of the A;(y) for y € H'.

Case 1. § > 6.

Define f: V(F) - N by f(v) =1 for all v € Ay U A3 and f(v) = 2 for all v € BU A;.
First, suppose [[F|| > >_ cy gy f(v). Then by Lemma , F has an induced subgraph @
such that dg(v) > f(v) for each v € V(Q). In particular, V(Q)) € BUA; and §(Q) > 3. Put
Y :=BNV(Q) and let X be Upcy(g)na, V(1) Now H := G[XUY] satisfies the hypotheses of
Lemma[3.9] so H has an induced subgraph G’ that is f-AT where f(y) = de/(y)—1fory € Y
and f(v) = dg(v) forv € X. Since Y C H and X C L, we have f(v) = 6(G)+dg (v)—dg(v)
for all v € V(G'). Hence, G is AT-reducible to G, a contradiction.

Therefore | F|| <37, cyp) f(v) = 2(|H'|+|D])+[A2[+|As]. By Lemma, foreachy € B
we have dp(y) > k—1. Hence | F|| > (k—1) |H’|. This gives (k—3) |H'| < 2|D|+|Aa|+]|As].
By our above estimate we have S > 2[D| + ay >, cp (k=1 —de(v)) + > cpdu(y) =
2|D| + ag |As| + |As] > ar(2|D] + |As| + |As]). Hence S > ax(k — 3) |H'|. Thus our desired
bound holds by Lemma

Case 2. § € {4,5}.
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Define f: V(F) - N by f(v) =1 forall v e A; UAyU Az and f(v) = 3 for all v € B.
First, suppose [[F| > >_ cy ) f(v). Then by Lemma , F has an induced subgraph @
such that dg(v) > f(v) for each v € V(Q). In particular, V(Q) C BU A, and dg(v) > 4
for v € BNV(Q) and dg(v) > 2 for v € A NV(Q). Put Y := BNV(Q) and let X be
Urevigyna, V(T). Now H := G[X UY] satisfies the hypotheses of Lemma , so H has an
induced subgraph G’ that is f-AT where f(y) = de/(y) — 1 for y € Y and f(v) = dg (v) for
v e X. Since Y C H and X C L, we have f(v) = 0(G) + dg/(v) — dg(v) for all v € V(G).
Hence, G is AT-reducible to G, a contradiction.

Therefore || F|| < 37,y ) f(v) = 3|H'|+|D[+]Az| +|A3]. By Lemma, for each y € B
we have dp(y) > k—1. Hence || F|| > (k—1)|H’|. This gives (k—4) |H'| < |D|+ |As| + |As5].
By our above estimate we have S > 2[D| + ay > o (k=1 —de(v)) + > cpdu(y) =
2|D| + ayg |Az| + |As| > ar(|D] + |Az] + |As]). Hence S > ag(k — 4) |H'|. Thus our desired
bound holds by Lemma |4.1] O]

We note a corollary of the above proof that will be useful in a later paper. When
Hi(G) is edgeless, Az is empty and S = o4 (G). Also from the proof, we have o(G) >
2|DI+(2— o) [C|+ o Y ey (k=1 —de(v) > ar(2|D]+|Az]) +2(1 — ax) [D]+ (2 —ax) [C].
We write ¢(G) for the number of components of G. Since (2 — ax) > 2(1 — ay), we have
oh(G) > (k — 3)ar [H(G)] +2(1 — ay)e(L(G)).

Corollary 4.5. If G is an AT-irreducible graph with ¢ :== §(G) > 6 and w(G) < 0 such that
Hs11(G) is edgeless, then 05:1(G) > (0 — 2)asy1 |Hos1(G)] + 2(1 — asy1)c(L(G)).

5 Corollaries: Critical graphs have many edges

Corollary 5.1. For k > 5 and G # Ky, a k-list-critical graph, we have 2 |G| > gx(|G|,¢)
where ¢ := (k — 3)ay, when k> 7 and ¢ := (k — 4)ay, when k € {5,6}.

Proof. Let L be a (k— 1)-assignment such that G is L-critical. Since G is L-critical, we have
G)>k—1>5.1f6(G) > k, then 2||G|| > k|G| > gx(|G|, k) and we are done. Hence we
may assume that §(G) = k — 1. Since G # K}, and G is L-critical, we have K541 € G. By
Lemma 2.1} G is AT-irreducible, so Lemma proves the corollary. O

Note that applying Lemma [2.2] where H has a single vertex shows that 6(G) > k — 1 for
an online k-list-critical graph.

Corollary 5.2. For k > 5 and G # K} an online k-list-critical graph, we have 2 ||G| >
9k(|G], ¢) where ¢ := (k — 3)ay, when k > 7 and ¢ := (k — 4)oy, when k € {5,6}.

Proof. Since G is online k-list-critical, we have §(G) > k —1 > 5. If §(G) > k, then
2G| > k|G| > gk(|G], k) and we are done. Hence we may assume that 6(G) = k — 1.
Since G # Kj, and G is online k-list-critical, we have Ksg)+1 € G. By Lemma , G is
AT-irreducible, so Lemma proves the corollary. ]

Note that applying Lemma [2.4] where H has a single vertex shows that 6(G) > k — 1 for
a k-AT-critical graph G.
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Corollary 5.3. For k > 5 and G # K a k-AT-critical graph, we have 2 (|G| > gr(|G], ¢)
where ¢ := (k — 3)ay, when k > 7 and ¢ := (k — 4)ay, when k € {5,6}.

Proof. Since G is k-AT-critical, we have 6(G) > k —1 > 5. If §(G) > k, then 2| G| >
k|G| > gx(|G|, k) and we are done. Hence we may assume that §(G) = k — 1. Since G # Kj,
and G is k-AT-critical, we have K541 € G. By Lemma , G is AT-irreducible, so Lemma,
proves the corollary. O
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