

A strengthening of Brooks' Theorem for line graphs

Landon Rabern

314 Euclid Way, Boulder CO

landon.rabern@gmail.com

Submitted: Feb 10, 2010; Accepted: Jun 20, 2011; Published: XX

Mathematics Subject Classification: 05C15

Abstract

We prove that if G is the line graph of a multigraph, then the chromatic number $\chi(G)$ of G is at most $\max\left\{\omega(G), \frac{7\Delta(G)+10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of G , respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if G is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then G contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.

1 Introduction

We define nonstandard notation when it is first used. For standard notation and terminology see [2]. The clique number of a graph is a trivial lower bound on the chromatic number. Brooks' Theorem gives a sufficient condition for this lower bound to be achieved.

Theorem 1 (Brooks [4]). *If G is a graph with $\Delta(G) \geq 3$ and $\chi(G) \geq \Delta(G) + 1$, then $\omega(G) = \chi(G)$.*

We give a much weaker condition for the lower bound to be achieved when G is the line graph of a multigraph.

Theorem 2. *If G is the line graph of a multigraph with $\chi(G) > \frac{7\Delta(G)+10}{8}$, then $\omega(G) = \chi(G)$.*

Combining this with an upper bound of Molloy and Reed [16] on the fractional chromatic number and partial results on the Goldberg Conjecture [8] yields yet another proof of the following result (see [14] for the original proof and [17] for further remarks and a different proof).

Theorem 3 (King, Reed and Vetta [14]). *If G is the line graph of a multigraph, then $\chi(G) \leq \left\lceil \frac{\omega(G)+\Delta(G)+1}{2} \right\rceil$.*

Reed [18] conjectures that the bound $\chi(G) \leq \left\lceil \frac{\omega(G) + \Delta(G) + 1}{2} \right\rceil$ holds for all graphs G . For further information about Reed's conjecture, see King's thesis [11] and King and Reed's proof of the conjecture for quasi-line graphs [13]. Back in the 1970's Borodin and Kostochka [3] conjectured the following.

Conjecture 4 (Borodin and Kostochka [3]). *If G is a graph with $\chi(G) \geq \Delta(G) \geq 9$, then G contains a $K_{\Delta(G)}$.*

In [19] Reed proved this conjecture for $\Delta(G) \geq 10^{14}$. The only known connected counterexample for the $\Delta(G) = 8$ case is the line graph of a 5-cycle where each edge has multiplicity 3 (that is, $G = L(3 \cdot C_5)$). We prove that there are no counterexamples that are the line graph of a multigraph for $\Delta(G) \geq 9$. This is tight since the above counterexample for $\Delta(G) = 8$ is a line graph of a multigraph.

Theorem 5. *If G is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then G contains a $K_{\Delta(G)}$.*

In [7], Dhurandhar proved the Borodin-Kostochka Conjecture for a superset of line graphs of *simple* graphs defined by excluding the claw, $K_5 - e$ and another graph D as induced subgraphs. Kierstead and Schmerl [10] improved this by removing the need to exclude D . We note that there is no containment relation between the line graphs of multigraphs and the class of graphs containing no induced claw and no induced $K_5 - e$.

2 The proofs

Lemma 6. *Fix $k \geq 0$. Let H be a multigraph and put $G = L(H)$. Suppose $\chi(G) = \Delta(G) + 1 - k$. If $xy \in E(H)$ is critical and $\mu(xy) \geq 2k + 2$, then xy is contained in a $\chi(G)$ -clique in G .*

Proof. Let $xy \in E(H)$ be a critical edge with $\mu(xy) \geq 2k + 2$. Let A be the set of all edges incident with both x and y . Let B be the set of edges incident with either x or y but not both. Then, in G , A is a clique joined to B and B is the complement of a bipartite graph. Put $F = G[A \cup B]$. Since xy is critical, we have a $\chi(G) - 1$ coloring of $G - F$. Viewed as a partial $\chi(G) - 1$ coloring of G this leaves a list assignment L on F with $|L(v)| = \chi(G) - 1 - (d_G(v) - d_F(v)) = d_F(v) - k + \Delta(G) - d_G(v)$ for each $v \in V(F)$. Put $j = k + d_G(xy) - \Delta(G)$.

Let M be a maximum matching in the complement of B . First suppose $|M| \leq j$. Then, since B is perfect, $\omega(B) = \chi(B)$ and we have

$$\begin{aligned} \omega(F) &= \omega(A) + \omega(B) = |A| + \chi(B) \\ &\geq |A| + |B| - j = d_G(xy) + 1 - j \\ &= \Delta(G) + 1 - k = \chi(G). \end{aligned}$$

Thus xy is contained in a $\chi(G)$ -clique in G .

Hence we may assume that $|M| \geq j+1$. Let $\{\{x_1, y_1\}, \dots, \{x_{j+1}, y_{j+1}\}\}$ be a matching in the complement of B . Then, for each $1 \leq i \leq j+1$ we have

$$\begin{aligned} |L(x_i)| + |L(y_i)| &\geq d_F(x_i) + d_F(y_i) - 2k \\ &\geq |B| - 2 + 2|A| - 2k \\ &= d_G(xy) + |A| - 2k - 1 \\ &\geq d_G(xy) + 1. \end{aligned}$$

Here the second inequality follows since $\alpha(B) \leq 2$ and the last since $|A| = \mu(xy) \geq 2k+2$. Since the lists together contain at most $\chi(G) - 1 = \Delta(G) - k$ colors we see that for each i ,

$$\begin{aligned} |L(x_i) \cap L(y_i)| &\geq |L(x_i)| + |L(y_i)| - (\Delta(G) - k) \\ &\geq d_G(xy) + 1 - \Delta(G) + k \\ &= j+1. \end{aligned}$$

Thus we may color the vertices in the pairs $\{x_1, y_1\}, \dots, \{x_{j+1}, y_{j+1}\}$ from L using one color for each pair. Since $|A| \geq k+1$ we can extend this to a coloring of B from L by coloring greedily. But each vertex in A has $j+1$ colors used twice on its neighborhood, thus each vertex in A is left with a list of size at least $d_A(v) - k + \Delta(G) - d_G(v) + j+1 = d_A(v) + 1$. Hence we can complete the $(\chi(G) - 1)$ -coloring to all of F by coloring greedily. This contradiction completes the proof. \square

Theorem 7. *If G is the line graph of a multigraph H and G is vertex critical, then*

$$\chi(G) \leq \max \left\{ \omega(G), \Delta(G) + 1 - \frac{\mu(H) - 1}{2} \right\}.$$

Proof. Let G be the line graph of a multigraph H such that G is vertex critical. Say $\chi(G) = \Delta(G) + 1 - k$. Suppose $\chi(G) > \omega(G)$. Since G is vertex critical, every edge in H is critical. Hence, by Lemma 6, $\mu(H) \leq 2k+1$. That is, $\mu(H) \leq 2(\Delta(G) + 1 - \chi(G)) + 1$. The theorem follows. \square

This upper bound is tight. To see this, let $H_t = t \cdot C_5$ (i.e. C_5 where each edge has multiplicity t) and put $G_t = L(H_t)$. As Catlin [6] showed, for odd t we have $\chi(G_t) = \frac{5t+1}{2}$, $\Delta(G_t) = 3t - 1$, and $\omega(G_t) = 2t$. Since $\mu(H_t) = t$, the upper bound is achieved.

We need the following lemma which is a consequence of the fan equation (see [1, 5, 8, 9]).

Lemma 8. *Let G be the line graph of a multigraph H . Suppose G is vertex critical with $\chi(G) > \Delta(H)$. Then, for any $x \in V(H)$ there exist $z_1, z_2 \in N_H(x)$ such that $z_1 \neq z_2$ and*

- $\chi(G) \leq d_H(z_1) + \mu(xz_1)$,

- $2\chi(G) \leq d_H(z_1) + \mu(xz_1) + d_H(z_2) + \mu(xz_2)$.

Lemma 9. *Let G be the line graph of a multigraph H . If G is vertex critical with $\chi(G) > \Delta(H)$, then*

$$\chi(G) \leq \frac{3\mu(H) + \Delta(G) + 1}{2}.$$

Proof. Let $x \in V(H)$ with $d_H(x) = \Delta(H)$. By Lemma 8 we have $z \in N_H(x)$ such that $\chi(G) \leq d_H(z) + \mu(xz)$. Hence

$$\Delta(G) + 1 \geq d_H(x) + d_H(z) - \mu(xz) \geq d_H(x) + \chi(G) - 2\mu(xz).$$

Which gives

$$\chi(G) \leq \Delta(G) + 1 - \Delta(H) + 2\mu(H).$$

Adding Vizing's inequality $\chi(G) \leq \Delta(H) + \mu(H)$ gives the desired result. \square

Combining this with Theorem 7 we get the following upper bound.

Theorem 10. *If G is the line graph of a multigraph, then*

$$\chi(G) \leq \max \left\{ \omega(G), \frac{7\Delta(G) + 10}{8} \right\}.$$

Proof. Suppose not and choose a counterexample G with the minimum number of vertices. Say $G = L(H)$. Plainly, G is vertex critical. Suppose $\chi(G) > \omega(G)$. By Theorem 7 we have

$$\chi(G) \leq \Delta(G) + 1 - \frac{\mu(H) - 1}{2}.$$

By Lemma 9 we have

$$\chi(G) \leq \frac{3\mu(H) + \Delta(G) + 1}{2}.$$

Adding three times the first inequality to the second gives

$$4\chi(G) \leq \frac{7}{2}(\Delta(G) + 1) + \frac{3}{2}.$$

The theorem follows. \square

Corollary 11. *If G is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 11$, then G contains a $K_{\Delta(G)}$.*

With a little more care we can get the 11 down to 9. Our analysis will be simpler if we can inductively reduce to the $\Delta(G) = 9$ case. This reduction is easy using the following lemma from [17] (it also follows from a lemma of Kostochka in [15]). Recently, King [12] improved the $\omega(G) \geq \frac{3}{4}(\Delta(G) + 1)$ condition to the weakest possible condition $\omega(G) > \frac{2}{3}(\Delta(G) + 1)$.

Lemma 12. *If G is a graph with $\omega(G) \geq \frac{3}{4}(\Delta(G) + 1)$, then G has an independent set I such that $\omega(G - I) < \omega(G)$.*

Proof of Theorem 5. Suppose the theorem is false and choose a counterexample F minimizing $\Delta(F)$. By Brooks' Theorem we must have $\chi(F) = \Delta(F)$. Suppose $\Delta(F) \geq 10$. By Lemma 12, we have an independent set I in F such that $\omega(F - I) < \omega(F)$. Expand I to a maximal independent set M and put $T = F - M$. Then $\chi(T) \geq \Delta(F) - 1$ and $\Delta(T) \leq \Delta(F) - 1$. Hence, by minimality of $\Delta(F)$ and Brooks' Theorem, $\omega(F) \geq \omega(T) + 1 \geq \Delta(F)$. This is a contradiction, hence $\chi(F) = \Delta(F) = 9$.

Let G be a 9-critical subgraph of F . Then G is a line graph of a multigraph. If $\Delta(G) \leq 8$, then G is K_9 by Brooks' Theorem giving a contradiction. Hence $\Delta(G) \geq 9$. Since G is critical, it is also connected.

Let H be such that $G = L(H)$. Then by Lemma 6 and Lemma 9 we know that $\mu(H) = 3$. Let $x \in V(H)$ with $d_H(x) = \Delta(H)$. Then we have $z_1, z_2 \in N_H(x)$ as in Lemma 8. This gives

$$9 \leq d_H(z_1) + \mu(xz_1), \quad (1)$$

$$18 \leq d_H(z_1) + \mu(xz_1) + d_H(z_2) + \mu(xz_2). \quad (2)$$

In addition, we have for $i = 1, 2$,

$$9 \geq d_H(x) + d_H(z_i) - \mu(xz_i) - 1 = \Delta(H) + d_H(z_i) - \mu(xz_i) - 1.$$

Thus,

$$\Delta(H) \leq 2\mu(xz_1) + 1 \leq 7, \quad (3)$$

$$\Delta(H) \leq \mu(xz_1) + \mu(xz_2) + 1. \quad (4)$$

Now, let $ab \in E(H)$ with $\mu(ab) = 3$. Then, since G is vertex critical, we have $8 = \Delta(G) - 1 \leq d_H(a) + d_H(b) - \mu(ab) - 1 \leq 2\Delta(H) - 4$. Thus $\Delta(H) \geq 6$. Hence we have $6 \leq \Delta(H) \leq 7$. Thus, by (3), we must have $\mu(xz_1) = 3$.

First, suppose $\Delta(H) = 7$. Then, by (4) we have $\mu(xz_2) = 3$. Let y be the other neighbor of x . Then $\mu(xy) = 1$ and thus $d_H(x) + d_H(y) - 2 \leq 9$. That gives $d_H(y) \leq 4$. Then we have vertices $w_1, w_2 \in N_H(y)$ guaranteed by Lemma 8. Note that $x \notin \{w_1, w_2\}$. Now $4 \geq d_H(y) \geq 1 + \mu(yw_1) + \mu(yw_2)$. Thus $\mu(yw_1) + \mu(yw_2) \leq 3$. This gives $d_H(w_1) + d_H(w_2) \geq 2\Delta(H) - 3 = 15$ contradicting $\Delta(H) \leq 7$.

Thus we must have $\Delta(H) = 6$. By (1) we have $d_H(z_1) = 6$. Then, applying (2) gives $\mu(xz_2) = 3$ and $d_H(z_2) = 6$. Since x was an arbitrary vertex of maximum degree and H is connected we conclude that $G = L(3 \cdot C_n)$ for some $n \geq 4$. But no such graph is 9-chromatic by Brooks' Theorem. \square

3 Some conjectures

The graphs $G_t = L(t \cdot C_5)$ discussed above show that the following upper bounds would be tight. Creating a counterexample would require some new construction technique that might lead to more counterexamples to Borodin-Kostochka for $\Delta = 8$.

Conjecture 13. *If G is the line graph of a multigraph, then*

$$\chi(G) \leq \max \left\{ \omega(G), \frac{5\Delta(G) + 8}{6} \right\}.$$

This would follow if the $3\mu(H)$ in Lemma 9 could be improved to $2\mu(H) + 1$. The following weaker statement would imply Conjecture 13 in a similar fashion.

Conjecture 14 (Examples exist showing that this is false). *If G is the line graph of a multigraph H , then*

$$\chi(G) \leq \max \left\{ \omega(G), \frac{\Delta(G) + 2}{2} + \mu(H) \right\}.$$

Since we always have $\Delta(H) \geq \frac{\Delta(G)+2}{2}$, this can be seen as an improvement of Vizing's Theorem for graphs with $\omega(G) < \chi(G)$.

Acknowledgments

Thanks to anonymous referee for helping to improve the readability of the paper.

References

- [1] L.D. Andersen, *On edge-colorings of graphs*, Math. Scand. **40** (1977), 161–175.
- [2] J.A. Bondy and U.S.R. Murty, *Graph theory*, Springer, 2008.
- [3] O.V. Borodin and A.V. Kostochka, *On an upper bound of a graph's chromatic number, depending on the graph's degree and density*, Journal of Combinatorial Theory, Series B **23** (1977), no. 2-3, 247–250.
- [4] R.L. Brooks, *On colouring the nodes of a network*, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 37, Cambridge Univ Press, 1941, pp. 194–197.
- [5] D. Cariolaro, *On fans in multigraphs*, Journal of Graph Theory **51** (2006), no. 4, 301–318.
- [6] P.A. Catlin, *Hajós graph-coloring conjecture: variations and counterexamples*, J. Combin. Theory Ser. B **26** (1979), no. 2, 268–274.
- [7] M. Dhurandhar, *Improvement on Brooks' chromatic bound for a class of graphs*, Discrete Mathematics **42** (1982), no. 1, 51–56.

- [8] L.M. Favrholdt, M. Stiebitz, and B. Toft, *Graph edge colouring: Vizing's theorem and goldberg's conjecture*, (2006).
- [9] M.K. Goldberg, *Edge-coloring of multigraphs: Recoloring technique*, Journal of Graph Theory **8** (1984), no. 1, 123–137.
- [10] H.A. Kierstead and J.H. Schmerl, *The chromatic number of graphs which induce neither $K_{1,3}$ nor $K_5 - e$* , Discrete mathematics **58** (1986), no. 3, 253–262.
- [11] A. King, *Claw-free graphs and two conjectures on omega, Delta, and chi*, Ph.D. thesis, McGill University, 2009.
- [12] A.D. King, *Hitting all maximum cliques with a stable set using lopsided independent transversals*, Journal of Graph Theory (In Press, 2010).
- [13] A.D. King and B.A. Reed, *Bounding χ in terms of ω and Δ for quasi-line graphs*, Journal of Graph Theory **59** (2008), no. 3, 215–228.
- [14] A.D. King, B.A. Reed, and A. Vetta, *An upper bound for the chromatic number of line graphs*, European Journal of Combinatorics **28** (2007), no. 8, 2182–2187.
- [15] A.V. Kostochka, *Degree, density, and chromatic number*, Metody Diskret. Anal. **35** (1980), 45–70.
- [16] M.S. Molloy and B.A. Reed, *Graph colouring and the probabilistic method*, Springer Verlag, 2002.
- [17] L. Rabern, *On hitting all maximum cliques with an independent set*, Journal of Graph Theory **66** (2011), no. 1, 32–37.
- [18] B. Reed, ω , Δ , and χ , Journal of Graph Theory **27** (1998), no. 4, 177–212.
- [19] _____, *A strengthening of Brooks' theorem*, Journal of Combinatorial Theory, Series B **76** (1999), no. 2, 136–149.