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Abstract

We improve the best known bounds on average degree of k-list-critical graphs for k ≥ 6. Specifically,
for k ≥ 7 we show that every non-complete k-list-critical graph has average degree at least k − 1 +

(k−3)2(2k−3)

k4−2k3−11k2+28k−14
and every non-complete 6-list-critical graph has average degree at least 5 + 93

766
. The

same bounds hold for online k-list-critical graphs.

1 Introduction

A graph G is k-list-critical if G is not (k−1)-choosable, but every proper subgraph of G is (k−1)-choosable.
For further definitions and notation, see [5, 2]. Table 1 shows some history of lower bounds on average degree
of k-list-critical graphs.

Main Theorem. For k ≥ 7, every non-complete k-list-critical graph has average degree at least

k − 1 +
(k − 3)2(2k − 3)

k4 − 2k3 − 11k2 + 28k − 14
.

Every non-complete 6-list-critical graph has average degree at least 5 + 93
766 .

The proof is similar to the 4-list-critical case in [10], but now we incorporate reducibility lemmas from
Kierstead and R. [5]. Basically, we show that the average degree of the subgraph induced on vertices of
degree k − 1 is small, which implies that the number of edges incident to the vertices of degree at least k
must be large, and hence the number of vertices of degree at least k must be large; that is, the graph must
have high average degree. That is how all known proofs of lower bounds on average degree of k-list-critical
graphs work. A tight bound on the average degree of the subgraph induced on vertices of degree k − 1 in a
k-list-critical graph was proved by Gallai [4]. The connected graphs in which each block is a complete graph
or an odd cycle are called Gallai trees. Gallai [4] proved that in a k-critical graph, the vertices of degree
k − 1 induce a disjoint union of Gallai trees. The same is true for k-list-critical graphs [1, 3]. Since Gallai’s
bound is tight, it may appear that there is no hope of improvement using the above method. While it is true
that the upper bound on average degree of Gallai trees cannot be improved in general, it can be improved
in the absence of certain bad properties. Let G be a k-list-critical graph and let L be the subgraph of G
induced on vertices of degree k−1. If the presence of bad properties in L could be shown to lead to reducible
configurations in G, we would have a pathway to improvement. Kostochka and Stiebitz [7] made the first
progress along these lines. Further improvements in [5], [2] and [10] follow the same general outline. As in
[2] and [10], it is convenient to have a measure of how bad L is. So, if b is a function measuring badness,
this could be realized as an upper bound of the form:

2 ‖L‖ ≤ s(k) |L|+ t(k)b(L).

Of course, we can measure badness along multiple axes (in badness space?). In our proof we use two badness
measures β(L) and q(L), so the upper bound looks like:

2 ‖L‖ ≤ s(k) |L|+ h(k)β(L) + z(k)q(L).

High β(L) badness leads to reducible configurations by kernel-perfect orientations and high q(L) badness
leads to reducible configurations by Alon-Tarsi orientations. That means the same proof shows that Main
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Gallai [4] KS [7] KR [5] CR [2] R [10] Here
k d(G) ≥ d(G) ≥ d(G) ≥ d(G) ≥ d(G) ≥ d(G) ≥
4 3.0769 — — — 3.1000 3.1000
5 4.0909 — 4.0984 4.1000 4.1176 4.1176
6 5.0909 — 5.1053 5.1076 5.1153 5.1214
7 6.0870 — 6.1149 6.1192 6.1081 6.1296
8 7.0820 — 7.1128 7.1167 7.1000 7.1260
9 8.0769 8.0838 8.1094 8.1130 8.0923 8.1213
10 9.0722 9.0793 9.1055 9.1088 9.0853 9.1162
15 14.0541 14.0610 14.0864 14.0884 14.0609 14.0930
20 19.0428 19.0490 19.0719 19.0733 19.0469 19.0762

Table 1: Lower bounds on average degree d(G) of a k-list-critical graph G.

Theorem holds for online k-list-critical graphs as well (in fact, for the larger class of OC-irreducible graphs
with δ(G) = k − 1 defined in section 5).

Let c∗k(L) be the number of components of L containing a copy of Kk−1. Let qk(L) be the number of
non-cut vertices in L that appear in copies of Kk−1. Let βk(L) be the independence number of the subgraph
of L induced on the vertices of degree k − 1. When k is defined in context, we just write c∗(L), q(L) and
β(L). The following upper bounds on q(L) and β(L) are likely to be reusable. More general versions of these
lemmas are stated and proved in sections 4 and 5.

Lemma 1.1. Let G be a non-complete k-list-critical graph where k ≥ 5. Let L be the subgraph of G induced
on (k − 1)-vertices, H− the subgraph of G induced on k-vertices and H+ the subgraph of G induced on
(k + 1)+-vertices. Then

q(L) ≤ c∗(L) + 4
∣∣H−∣∣+

∥∥H+,L
∥∥ ,

and if k ≥ 7, then
q(L) ≤ 2c∗(L) + 3

∣∣H−∣∣+
∥∥H+,L

∥∥ .
Lemma 1.2. Let G be a k-list-critical graph. Let L be the subgraph of G induced on (k− 1)-vertices and H
the subgraph of G induced on k+-vertices. If 2 ≤ λ ≤ 6(k−1)

k , then

β(L) ≤ 2

λ
‖H‖+

2 ‖G‖ − (k − 2) |G| −
(
k
2 + k−1

λ

)
|H| − 1

k − 1
.

2 General lower bounds on average degree

This is the counting portion of the proof, which is simpler and more general than the counting in [5] and [2].

Definition 1. A quadruple (p, h, z, f) of functions from N to R is r-Gallai if for every k ≥ r and Gallai tree
T 6= Kk with ∆(T ) ≤ k − 1, the following hold:

• if Kk−1 ⊆ T , then 2 ‖T‖ ≤ (k − 3 + p(k)) |T |+ h(k)q(T ) + z(k)β(T ) + f(k); and

• if Kk−1 6⊆ T , then 2 ‖T‖ ≤ (k − 3 + p(k)) |T |+ z(k)β(T ).

Theorem 2.1. Let (p, h, z, f) be 7-Gallai. If k ≥ 7 and 2 ≤ z(k) ≤ 6(k−1)
k , then for any non-complete

k-list-critical graph G,

d(G) ≥ k − 1 +
2− p(k)− z(k)

k−1 +
z(k)
k−1−(2h(k)+f(k))c

∗(L)
|G|

k + 1 + 3h(k)− p(k)− (k−2)z(k)
2(k−1)

,

where L is the subgraph of G induced on (k − 1)-vertices.
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Proof. Let H− the subgraph of G induced on k-vertices, H the subgraph of G induced on k+-vertices, H+

the subgraph of G induced on (k + 1)+-vertices and D the components of L containing Kk−1. Plainly, the
following bounds hold.

2 ‖G‖ ≥ k |G| − |L| (1)

2 ‖G‖ ≥ (k + 1) |G| −
∣∣H−∣∣− 2 |L| (2)

2 ‖G‖ ≥ k
∣∣H−∣∣+ (k − 1) |L|+

∥∥H+,L
∥∥ (3)

‖H,L‖ = (k − 1) |L| − 2 ‖L‖ (4)

Since (p, h, z, f) is 7-Gallai,

2 ‖L‖ ≤ (k − 3 + p(k)) |L|+ f(k) |D|+ h(k)q(L) + z(k)β(L) (5)

By Lemma 1.1,
q(L) ≤ 2 |D|+ 3

∣∣H−∣∣+
∥∥H+,L

∥∥ ,
plugging this into (5) gives

2 ‖L‖ ≤ (k − 3 + p(k)) |L|+ 3h(k)
∣∣H−∣∣+ h(k)

∥∥H+,L
∥∥+ z(k)β(L) + S1, (6)

where
S1 := (2h(k) + f(k)) |D| .

Now using (1) and (6),

2 ‖G‖ = 2 ‖H‖+ 2 ‖H,L‖+ 2 ‖L‖
= 2 ‖H‖+ 2((k − 1) |L| − 2 ‖L‖) + 2 ‖L‖
= 2 ‖H‖+ 2(k − 1) |L| − 2 ‖L‖
≥ 2 ‖H‖+ (k + 1− p(k)) |L| − 3h(k)

∣∣H−∣∣− h(k)
∥∥H+,L

∥∥− z(k)β(L)− S1 (7)

Adding h(k) times (3) to (7) gives

2 ‖G‖ ≥ 2 ‖H‖+ (k + 1 + (k − 1)h(k)− p(k)) |L|+ (k − 3)h(k) |H−| − z(k)β(L)− S1

1 + h(k)
(8)

Lemma 1.2 gives

β(L) ≤ 2

z(k)
‖H‖+

2 ‖G‖ − (k − 2) |G| −
(
k
2 + k−1

z(k)

)
|H| − 1

k − 1
.

Plugging this into (8) yields

2 ‖G‖ ≥
(k + 1 + (k − 1)h(k)− p(k)) |L|+ (k − 3)h(k) |H−|+ (k−2)z(k)

k−1 |G|+
(
kz(k)
2(k−1) + 1

)
|H|+ S2

1 + h(k) + z(k)
k−1

, (9)

where

S2 :=
z(k)

k − 1
− S1.

Now using |H| = |G| − |L| gives

2 ‖G‖ ≥

(
k + (k − 1)h(k)− p(k)− kz(k)

2(k−1)

)
|L|+ (k − 3)h(k) |H−|+

(
(3k−4)z(k)

2(k−1) + 1
)
|G|+ S2

1 + h(k) + z(k)
k−1

. (10)
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Now using (2) to get a lower bound on |H−| gives

2 ‖G‖ ≥

(
k − (k − 5)h(k)− p(k)− kz(k)

2(k−1)

)
|L|+

(
(k + 1)(k − 3)h(k) + (3k−4)z(k)

2(k−1) + 1
)
|G|+ S2

1 + (k − 2)h(k) + z(k)
k−1

. (11)

Using (1) to get a lower bound on |L| and simplifying gives

2 ‖G‖
|G|

≥
k2 + 3(k − 1)h(k)− kp(k) + 1− k2−3k+4

2(k−1) z(k) + S2

|G|

k + 1 + 3h(k)− p(k)− (k−2)z(k)
2(k−1)

. (12)

Now factoring out k − 1 gives the desired bound.

A nearly identical argument, using the other inequality in Lemma 1.1, proves a bound that holds for k ≥ 5.

Theorem 2.2. Let (p, h, z, f) be 5-Gallai. If k ≥ 5 and 2 ≤ z(k) ≤ 6(k−1)
k , then for any non-complete

k-list-critical graph G,

d(G) ≥ k − 1 +
2− p(k)− z(k)

k−1 +
z(k)
k−1−(h(k)+f(k))c

∗(L)
|G|

k + 1 + 4h(k)− p(k)− (k−2)z(k)
2(k−1)

,

where L is the subgraph of G induced on (k − 1)-vertices.

When k = 4, we cannot apply Lemma 1.1, but using h(k) = 0 and running through the same argument
proves the following bound for k ≥ 4.

Theorem 2.3. Let (p, 0, z, f) be 4-Gallai. If k ≥ 4 and 2 ≤ z(k) ≤ 6(k−1)
k , then for any non-complete

k-list-critical graph G,

d(G) ≥ k − 1 +
2− p(k)− z(k)

k−1 +
z(k)
k−1−f(k)c

∗(L)
|G|

k + 1− p(k)− (k−2)z(k)
2(k−1)

,

where L is the subgraph of G induced on (k − 1)-vertices.

When z(k) < 2, using Lemma 1.2 worsens the lower bound, so we may as well use z(k) = 0; that is, drop
the β(L) term entirely. Doing so in the above argument shows that Theorems 2.1, 2.2, 2.3 hold for z(k) = 0
if we replace k+ 1 in the denominator with k+ 2. This gives the bounds proved by discharging in Cranston
and R. [2].

3 Gallai quadruples

All known proofs of lower bounds for average degree of list-critical graphs are essentially a counting argument
combined with the fact that some quadruple is Gallai.

Lemma 3.1 (Gallai [4]).
(
k+1
k−1 , 0, 0,−2

)
is 4-Gallai.

Lemma 3.2 (Kostochka-Stiebitz [7]).
(

4(k−1)
k2−3k+4 ,

k2−3k
k2−3k+4 , 0,

−4(k2−3k+2)
k2−3k+4

)
is 7-Gallai.

Lemma 3.3 (Cranston-R. [2]).
(

3k−5
k2−4k+5 ,

k(k−3)
k2−4k+5 , 0,

−2(k−1)(2k−5)
k2−4k+5

)
is 5-Gallai.

Lemma 3.4 (R. [10]). (1, 0, 2, 0) is 4-Gallai.

We give a a list of inequalities that provide a sufficient condition for (p, h, z, f) to be 5-Gallai. These
inequalities take a form quite similar to the inequalities in Cranston and R. [2], but now they involve z(k) as
well. The sufficiency proof is a small modification of the proof in [2]. To use a Gallai quadruple in Lemma
2.1, we want 2h(k) + f(k) ≤ 0 to get rid of the term involving c∗(L). Similarly, for Lemma 2.2, we want
h(k) + f(k) ≤ 0. Finding the p, h, z, f that give the largest average degree subject to these constraints is a
fractional linear program that can be converted to a linear program and solved for each k. This is useful for
verification of bounds, but we want a formula in terms of k. For k ≥ 7, we use the following quadruple.
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Lemma 3.5.
(

3k−7
k2−4k+5 ,

(k−1)(k−4)
k2−4k+5 , 2, −2(k−1)(k−4)k2−4k+5

)
is 5-Gallai.

For k = 6, we use the following quadruple. For k = 5, the quadruple in Lemma 3.4 is the optimal choice of
p, h, z, f .

Lemma 3.6.
(

3k−5
k2−3k+3 ,

(k−1)(k−4)
k2−3k+3 , (3k−5)(k−2)k2−3k+3 , −(k−1)(k−4)k2−3k+3

)
is 5-Gallai.

Now on to the sufficiency proof. For an endblock B of a Gallai tree T , let xB be the cutvertex contained in
B.

Lemma 3.7. Let z : N→ R such that z(k) = 0 or z(k) ≥ 2 for all k ∈ N. For all k ≥ 5 and Gallai trees T
with ∆(T ) ≤ k − 1 and Kk−1 6⊆ T , we have

2 ‖T‖ ≤
(
k − 3 +

max {2, 3− z(k)}
k − 2

)
|T |+ z(k)β(T ).

Proof. Suppose the lemma is false and choose a counterexample T minimizing |T |.
Claim 1. T has at least two blocks.

If T has only one block, then 2 ‖T‖ ≤ (k − 3) |T |.
Claim 2. Each endblock of T is Kk−2.

Suppose T has an endblock B that is not Kk−2. Then removing V (B) \ {xB} from T to get T ′ and
applying minimality of |T | gives

2 ‖B‖ >
(
k − 3 +

max {2, 3− z(k)}
k − 2

)
(|B| − 1) .

This is a contradiction unless k = 5 and B = K3, but then B = Kk−2, a contradiction.
Claim 3. If B is an endblock of T , then dT (xB) = k − 1.

SupposeB is an endblock of T with dT (xB) < k−1. ThenB = Kk−2 by Claim 2 and hence dT (xB) = k−2.
Removing V (B) from T to get T ∗ and applying minimality of |T | gives the contradiction

(k − 2)(k − 3) + 6 >

(
k − 3 +

max {2, 3− z(k)}
k − 2

)
(k − 1) .

Claim 4. T does not exist.
By the previous claims, we know that every endblock T is a Kk−2 that shares a vertex with an odd

cycle. Pick and endblock B that is the end of a longest path in the block-tree of T . Let C be the odd cycle
sharing xB with B. Since B is the end of a longest path in the block-tree, there is a neighbor y of xB on
C such that dT (y) = 2 or y is contained in another endblock A (which must be a Kk−2). First, suppose
dT (y) = 2. Removing V (B) ∪ {y} from T to get T ′ and applying minimality of |T | gives the contradiction
(since β(T ′) < β(T ))

(k − 2)(k − 3) + 6 >

(
k − 3 +

max {2, 3− z(k)}
k − 2

)
(k − 1) + z(k)(β(T )− β(T ′)).

Hence y is contained in another Kk−2 endblock A. Removing V (B) ∪ V (A) from T to get T ∗ and applying
minimality of |T | gives the contradiction (since β(T ∗) < β(T ))

2(k − 2)(k − 3) + 6 >

(
k − 3 +

max {2, 3− z(k)}
k − 2

)
(2(k − 2)) + z(k)(β(T )− β(T ∗)).

Lemma 3.8. Let p : N → R≥0, f : N → R, h : N → R≥0, z : N → R≥0 such that z(k) = 0 or z(k) ≥ 2. For
all k ≥ 5 and Gallai trees T 6= Kk with ∆(T ) ≤ k − 1 and Kk−1 ⊆ T , we have

2 ‖T‖ ≤ (k − 3 + p(k)) |T |+ f(k) + h(k)q(T ) + z(k)β(T )

whenever p, f , h and z satisfy all of the following conditions:
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(1) f(k) ≥ (k − 1)(1− p(k)− h(k)); and

(2) p(k) ≥ 3− z(k)
2

k−2 ; and

(3) p(k) ≥ h(k) + 5− k; and

(4) p(k) ≥ 2+h(k)
k−2 ; and

(5) (k − 1)p(k) + (k − 3)h(k) + z(k) ≥ k + 1.

Proof. Suppose the lemma is false and choose a counterexample T minimizing |T |.
Claim 1. T has at least two blocks.

Otherwise, T = Kk−1 and (1) gives a contradiction.
Claim 2. Each endblock of T is Kk−2 or Kk−1.

Suppose T has an endblock B that is not Kk−2 or Kk−1. Then removing V (B) \ {xB} from T to get T ′

and applying minimality of |T | gives

2 ‖B‖ > (k − 3 + p(k)) (|B| − 1) + h(k)(q(T )− q(T ′)) + z(k)(β(T )− β(T ′)).

If B = K2, then q(T ′) ≤ q(T ) + 1, otherwise q(T ′) = q(T ). For B = K2, we have to contradiction (to (3))

2 > (k − 3 + p(k))− h(k).

Suppose B = Kt for 4 ≤ t ≤ k − 3. Then we have the contradiction

t(t− 1) > (k − 3 + p(k)) (t− 1) .

Finally, suppose B is an odd cycle of length `. Then, we have

2` > (k − 3 + p(k)) (`− 1) .

This simplifies to

` < 1 +
2

k − 5 + p(k)
.

Since k−5+p(k) ≥ 1 when k ≥ 6, this implies that k = 5. Using (4), we conclude ` = 3, but then B = Kk−2,
a contradiction.
Claim 3. T has at most one Kk−1 endblock.

Suppose T has at least two Kk−1 endblocks. Let B be one of them. Then removing V (B) from T leaves
a graph T ′ with Kk−1 ⊆ T ′. So, we may apply minimality of |T | to get

(k − 1)(k − 2) + 2 > (k − 3 + p(k)) (k − 1) + h(k)(q(T )− q(T ′)) + z(k)(β(T )− β(T ′)).

Now β(T ′) < β(T ) and q(T ′) ≤ q(T )− (k − 2) + 1, so we have the contradiction (to (5))

k + 1 > (k − 1)p(k) + (k − 3)h(k) + z(k).

Claim 4. If B is an endblock of T , then dT (xB) = k − 1.
Suppose B is an endblock of T with dT (xB) < k− 1. Then B = Kk−2 by Claim 2. Removing V (B) from

T leaves a graph T ′ with Kk−1 ⊆ T ′. So, we may apply minimality of |T | to get

(k − 2)(k − 3) + 2 > (k − 3 + p(k)) (k − 2) + h(k)(q(T )− q(T ′)) + z(k)(β(T )− β(T ′)).

We have q(T ′) ≤ q(T ) + 1, so this is gives the contradiction (to (4))

2 > (k − 1)p(k)− h(k).

Claim 5. T does not exist.
By Claims 2 and 3, all but at most one endblock of T is Kk−2 with a cutvertex that is also in an odd

cycle. Pick and endblock B that is the end of a longest path in the block-tree of T . Let C be the odd cycle
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sharing xB with B. Since B is the end of a longest path in the block-tree, there is a neighbor y of xB on
C such that dT (y) = 2 or y is contained in another endblock A (which must be a Kk−2). First, suppose
dT (y) = 2. Removing V (B)∪ {y} from T to get T ′ and applying minimality of |T | gives (since q(T ′) = q(T )
and β(T ′) < β(T ))

(k − 2)(k − 3) + 6 > (k − 3 + p(k)) (k − 1) + z(k),

so

p(k) <
9− k − z(k)

k − 1
,

contradicting (2). Hence y is contained in another Kk−2 endblock A. Removing V (B)∪V (A) from T to get
T ∗ and applying minimality of |T | gives(since q(T ∗) = q(T ) and β(T ∗) < β(T ))

2(k − 2)(k − 3) + 6 > (k − 3 + p(k)) (2(k − 2)) + z(k),

so
6 > 2(k − 2)p(k) + z(k),

contradicting (2).

The proof of Lemma 3.5 and Lemma 3.6 are now straightforward computations. That is all we need to
prove our lower bounds on average degree. If a good upper bound on c∗(L) is known, it may be better to
allow 2h(k) + f(k) > 0. In that case, one could use the following.

Lemma 3.9. If z : N → R is such that z(k) = 0 or 2 ≤ z(k) ≤ k(k−3)
k−2 for all k ∈ N, then (p, h, z, f) is

5-Gallai, where

h(k) :=
k(k − 3)− (k − 2)z(k)

k2 − 4k + 5
,

p(k) :=
2 + h(k)

k − 2
,

f(k) := (k − 1)(1− h(k)− p(k)).

4 Bounding q(L)
This section is devoted to extracting the reusable Lemma 4.1 from the proof of Kierstead and R. [5]. All of
the hard work was already done in [5].

Definition 2. A graph G is AT-reducible to H if H is a nonempty induced subgraph of G which is fH -AT
where fH(v) := δ(G) + dH(v)− dG(v) for all v ∈ V (H). If G is not AT-reducible to any nonempty induced
subgraph, then it is AT-irreducible.

Lemma 4.1. Let G be a non-complete AT-irreducible graph with δ(G) = k − 1 where k ≥ 5. Let L be the
subgraph of G induced on (k− 1)-vertices, H− the subgraph of G induced on k-vertices and H+ the subgraph
of G induced on (k + 1)+-vertices. Then

q(L) ≤ c∗(L) + 4
∣∣H−∣∣+

∥∥H+,L
∥∥ ,

and if k ≥ 7, then
q(L) ≤ 2c∗(L) + 3

∣∣H−∣∣+
∥∥H+,L

∥∥ .
Observation. The hypotheses of Lemma 4.1 are satisfied by non-complete k-critical, k-list-critical, online
k-list-critical and k-AT-critical graphs.

The proof of Lemma 4.1 requires the following four lemmas from [5].

Lemma 4.2. Let G be a graph and f : V (G)→ N. If ‖G‖ >
∑
v∈V (G) f(v), then G has an induced subgraph

H such that dH(v) > f(v) for each v ∈ V (H).
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Proof. Suppose not and choose a counterexample G minimizing |G|. Then |G| ≥ 3 and we have x ∈ V (G)
with dG(x) ≤ f(x). But now ‖G− x‖ >

∑
v∈V (G−x) f(v), contradicting minimality of |G|.

Let Tk be the Gallai trees with maximum degree at most k− 1, excepting Kk. For a graph G, let W k(G)
be the set of vertices of G that are contained in some Kk−1 in G.

Lemma 4.3. Let k ≥ 5 and let G be a graph with x ∈ V (G) such that:

1. Kk 6⊆ G; and

2. G− x has t components H1, H2, . . . ,Ht, and all are in Tk; and

3. dG(v) ≤ k − 1 for all v ∈ V (G− x); and

4.
∣∣N(x) ∩W k(Hi)

∣∣ ≥ 1 for i ∈ [t]; and

5. dG(x) ≥ t+ 2.

Then G is f -AT where f(x) = dG(x)− 1 and f(v) = dG(v) for all v ∈ V (G− x).

For a graph G, {X,Y } a partition of V (G) and k ≥ 4, let Bk(X,Y ) be the bipartite graph with one part
Y and the other part the components of G[X]. Put an edge between y ∈ Y and a component T of G[X] iff
N(y) ∩W k(T ) 6= ∅. The next lemma tells us that we have a reducible configuration if this bipartite graph
has minimum degree at least three.

Lemma 4.4. Let k ≥ 7 and let G be a graph with Y ⊆ V (G) such that:

1. Kk 6⊆ G; and

2. the components of G− Y are in Tk; and

3. dG(v) ≤ k − 1 for all v ∈ V (G− Y ); and

4. with B := Bk(V (G− Y ), Y ) we have δ(B) ≥ 3.

Then G has an induced subgraph G′ that is f -AT where f(y) = dG′(y)− 1 for y ∈ Y and f(v) = dG′(v) for
all v ∈ V (G′ − Y ).

We also have the following version with asymmetric degree condition on B. The point here is that this
works for k ≥ 5. The consequence is that we trade a bit in our bound for the proof to go through with
k ∈ {5, 6}.

Lemma 4.5. Let k ≥ 5 and let G be a graph with Y ⊆ V (G) such that:

1. Kk 6⊆ G; and

2. the components of G− Y are in Tk; and

3. dG(v) ≤ k − 1 for all v ∈ V (G− Y ); and

4. with B := Bk(V (G − Y ), Y ) we have dB(y) ≥ 4 for all y ∈ Y and dB(T ) ≥ 2 for all components T of
G− Y .

Then G has an induced subgraph G′ that is f -AT where f(y) = dG′(y)− 1 for y ∈ Y and f(v) = dG′(v) for
all v ∈ V (G′ − Y ).

Proof of Lemma 4.1. Let H be the subgraph of G induced on k+-vertices and let D be the components of
L containing a copy of Kk−1. Put W := W k(L) and L′ := V (L) \W . Define an auxiliary bipartite graph F
with parts A and B where:

1. B = V (H−) and A is the disjoint union of the following sets A1, A2 and A3,

2. A1 = D and each T ∈ D is adjacent to all y ∈ B where N(y) ∩W k(T ) 6= ∅,
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3. For each v ∈ L′, let A2(v) be a set of |N(v) ∩B| vertices connected to N(v) ∩B by a matching in F .
Let A2 be the disjoint union of the A2(v) for v ∈ L′,

4. For each y ∈ B, let A3(y) be a set of dH(y) vertices which are all joined to y in F . Let A3 be the
disjoint union of the A3(y) for y ∈ B.

Define f : V (F ) → N by f(v) = 1 for all v ∈ A1 ∪ A2 ∪ A3 and f(v) = 3 for all v ∈ B. First, suppose
‖F‖ >

∑
v∈V (F ) f(v). Then by Lemma 4.2, F has an induced subgraph Q such that dQ(v) > f(v) for each

v ∈ V (Q). In particular, V (Q) ⊆ B ∪A1 and dQ(v) ≥ 4 for v ∈ B ∩ V (Q) and dQ(v) ≥ 2 for v ∈ A1 ∩ V (Q).
Put Y := B ∩V (Q) and let X be

⋃
T∈V (Q)∩A1

V (T ). Now Z := G[X ∪Y ] satisfies the hypotheses of Lemma

4.5, so Z has an induced subgraph G′ that is f -AT where f(y) = dG′(y)− 1 for y ∈ Y and f(v) = dG′(v) for
v ∈ X. Since Y ⊆ B and X ⊆ V (L), we have f(v) = k − 1 + dG′(v)− dG(v) for all v ∈ V (G′). Hence, G is
AT-reducible to G′, a contradiction. Therefore ‖F‖ ≤

∑
v∈V (F ) f(v) = 3 |B|+ |D|+ |A2|+ |A3|. By Lemma

4.3, for each y ∈ B we have dF (y) ≥ k−1. Hence ‖F‖ ≥ (k−1) |B|. This gives (k−4) |B| ≤ |D|+ |A2|+ |A3|.
Now the first inequality in the lemma follows since B = V (H−), |A3| =

∑
v∈V (H−) dH(v) and

|A2| = −q(L) + ‖H,L‖

= −q(L) + k
∣∣H−∣∣+

∥∥H+,L
∥∥− ∑

v∈V (H−)

dH(v).

Suppose k ≥ 7. Define f : V (F )→ N by f(v) = 1 for all v ∈ A2∪A3 and f(v) = 2 for all v ∈ B∪A1. First,
suppose ‖F‖ >

∑
v∈V (F ) f(v). Then by Lemma 4.2, F has an induced subgraph Q such that dQ(v) > f(v)

for each v ∈ V (Q). In particular, V (Q) ⊆ B ∪ A1 and δ(Q) ≥ 3. Put Y := B ∩ V (Q) and let X
be
⋃
T∈V (Q)∩A1

V (T ). Now Z := G[X ∪ Y ] satisfies the hypotheses of Lemma 4.4, so Z has an induced

subgraph G′ that is f -AT where f(y) = dG′(y) − 1 for y ∈ Y and f(v) = dG′(v) for v ∈ X. Since Y ⊆ B
and X ⊆ V (L), we have f(v) = k − 1 + dG′(v)− dG(v) for all v ∈ V (G′). Hence, G is AT-reducible to G′, a
contradiction.

Therefore ‖F‖ ≤
∑
v∈V (F ) f(v) = 2(|B| + |D|) + |A2| + |A3|. By Lemma 4.3, for each y ∈ B we have

dF (y) ≥ k − 1. Hence ‖F‖ ≥ (k − 1) |B|. This gives (k − 3) |B| ≤ 2 |D| + |A2| + |A3|. Now the second
inequality in the lemma follows as before.

5 Bounding β(L)
This section is devoted to extracting the reusable Lemma 5.1 from the proof of R. [10].

Definition 3. A graph G is OC-reducible to H if H is a nonempty induced subgraph of G which is online
fH -choosable where fH(v) := δ(G) + dH(v) − dG(v) for all v ∈ V (H). If G is not OC-reducible to any
nonempty induced subgraph, then it is OC-irreducible.

Lemma 5.1. Let G be an OC-irreducible graph with δ(G) = k − 1. Let L be the subgraph of G induced on

(k − 1)-vertices and H the subgraph of G induced on k+-vertices. If 2 ≤ λ ≤ 6(k−1)
k , then

β(L) ≤ 2

λ
‖H‖+

2 ‖G‖ − (k − 2) |G| −
(
k
2 + k−1

λ

)
|H| − 1

k − 1
.

Observation. The hypotheses of Lemma 5.1 are satisfied by k-critical, k-list-critical and online k-list-critical
graphs.

The proof of Lemma 5.1 requires the following lemma from Kierstead and R. [6] that generalizes a kernel
technique of Kostochka and Yancey [8].

Definition. The maximum independent cover number of a graph G is the maximum mic(G) of ‖I, V (G) \ I‖
over all independent sets I of G.

Kernel Magic. Every OC-irreducible graph G with δ(G) = k − 1 satisfies

2 ‖G‖ ≥ (k − 2) |G|+ mic(G) + 1.
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Theorem 5.2 (Löwenstein, et al. [9]). If G is a connected graph, then

α(G) ≥ 2

3
|G| − 1

4
‖G‖ − 1

3
.

Corollary 5.3. If G is a connected graph, then

α(G) ≥ 2

3
|G| − 1

3
‖G‖ .

Proof. By Theorem 5.2,

α(G) ≥ 2

3
|G| − 1

3
‖G‖+

1

12
‖G‖ − 1

3
,

so, the corollary holds if 1
12 ‖G‖ ≥

1
3 . If not, then ‖G‖ < 4, so G is K1, K2, P3 or K3 which all satisfy the

desired bound.

Proof of Lemma 5.1. Fix λ with 2 ≤ λ ≤ 6(k−1)
k . Let M be the maximum of ‖I, V (G) \ I‖ over all inde-

pendent sets I of G with I ⊆ H. Since the vertices in L with k − 1 neighbors in L have no neighbors in
H,

mic(G) ≥M + (k − 1)β(L). (13)

Claim 1. If C is a component of H, then

kα(C) ≥
(
k

2
+
k − 1

λ

)
|C| −

(
2(k − 1)

λ

)
‖C‖ .

First, suppose ‖C‖ < |C|. Then ‖C‖ = |C| − 1 and C is a tree. If |C| ≥ 2, then

kα(C) ≥ k |C|
2

≥
(
k

2
− k − 1

λ

)
|C|+ 2(k − 1)

λ

=

(
k

2
+
k − 1

λ

)
|C| −

(
2(k − 1)

λ

)
(|C| − 1)

=

(
k

2
+
k − 1

λ

)
|C| −

(
2(k − 1)

λ

)
‖C‖ .

If instead, |C| = 1, then kα(C) = k ≥
(
k
2 + k−1

λ

)
=
(
k
2 + k−1

λ

)
|C| −

(
2(k−1)
λ

)
‖C‖ since λ ≥ 2.

So, we may assume ‖C‖ ≥ |C|. Applying Corollary 5.3, we conclude

kα(C) ≥ 2k

3
|C| − k

3
‖C‖

=

(
k

2
+
k − 1

λ

)
|C| −

(
2(k − 1)

λ

)
‖C‖+

(
k

6
− k − 1

λ

)
|C| −

(
k

3
− 2(k − 1)

λ

)
‖C‖

=

(
k

2
+
k − 1

λ

)
|C| −

(
2(k − 1)

λ

)
‖C‖+

(
k − 1

λ
− k

6

)
|C|

≥
(
k

2
+
k − 1

λ

)
|C| −

(
2(k − 1)

λ

)
‖C‖ ,

where in the final inequality we used λ ≤ 6(k−1)
k .

Claim 2. Lemma 5.1 is true.
Summing the bound in Claim 1 over all components of H and plugging into (13) gives

mic(G) ≥
(
k

2
+
k − 1

λ

)
|H| −

(
2(k − 1)

λ

)
‖H‖+ (k − 1)β(L). (14)

Applying Kernel Magic using (14) and solving for β(L) proves the claim.
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