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Abstract

We prove that if G is a graph and ry,...,7, € Z>o such that
Ele ri > A(G) 4+ 2 — k then V(G) can be partitioned into sets
Vi,..., Vi such that A(G[V;]) < r; and G[V;] contains no non-complete
r;-regular components for each 1 < ¢ < k. In particular, the vertex set
A(G)+2"

3

of any graph G can be partitioned into sets, each of which

induces a disjoint union of triangles and paths.

1 Introduction

In [5] Kostochka modified an algorithm of Catlin to show that every triangle-
free graph G can be colored with at most 2 (A(G) 4 3) colors. In fact, his

modification proves that the vertex set of any triangle-free graph G can be

partitioned into {%W sets, each of which induces a disjoint union of

paths. We generalize this as follows.

Main Lemma. Let G be a graph and r, ... 71, € Z>o such that Zle r; >
A(G) 4+ 2 —Fk. Then V(G) can be partitioned into sets Vi, ..., Vi such that
A(G[Vi]) < r; and G[V;] contains no non-complete r;-reqular components for
each 1 <1 <k.

A(G)+2

Setting k = {TW and r; = 2 for each 7 gives a slightly more general form

of Kostochka’s theorem.



Corollary 1. The vertez set of any graph G can be partitioned into [%-‘

sets, each of which induces a disjoint union of triangles and paths.

For coloring, this actually gives the bound x(G) < 2 [%—‘ for triangle

free graphs. To get 2 (A(G)+3), just use 1, = 0 when A = 2(mod 3).
Similarly, for any r > 2, setting k = [%w and r; = r for each i gives the

following.

Corollary 2. Fiz r > 2. The vertex set of any K, -free graph G can be
partitioned into [%-‘ sets each inducing an (r — 1)-degenerate subgraph

with maximum degree at most r.

For the purposes of coloring it is more economical to split off A +2 — (r +
1) L%J parts with r; = 0.

Corollary 3. Fix r > 2. The verter set of any K,.1-free graph G can be

partitioned into {A(ﬁ)lﬁJ sets each inducing an (r — 1)-degenerate subgraph
. : AG)+2 ]|
with mazimum degree at most r and A(G)+2—(r+1) {TJ independent
: A(G)+2
sets. In particular, x(G) < A(G) +2 — {M—lJ

For r > 3, the bound on the chromatic number is only interesting in
that its proof does not rely on Brooks’ Theorem. In [7] Lovész proved a
decomposition lemma of the same form as the Main Lemma. The Main
Lemma gives a more restrictive partition at the cost of replacing A(G) + 1
with A(G) + 2.

Lovasz’s Decomposition Lemma. Let G' be a graph and r1,...,7 € Z>
such that Zle ri > A(G) +1—k. Then V(G) can be partitioned into sets
V..o, Vi such that A(G[Vi]) < r; for each 1 <i < k.

For r» > 3, combining this with Brooks’ Theorem gives the following better
bound for a K, ;-free graph G (first proved in [1], [3] and [6]):

A(G)+1J'

X(G)SA(G)Jrl—{ e



2 The proofs

Instead of proving directly that we can destroy all non-complete r-regular
components in the partition, we prove the theorem for the more general class
of what we call r-permissible graphs and show that non-complete r-regular
graphs are r-permissible.

Definition 1. For a graph G and r > 0, let G" be the subgraph of GG induced
on the vertices of degree r in G.

Definition 2. Fix r > 2. A collection T of graphs is r-permissible if it
satisfies all of the following conditions.

1. Every G € T is connected.
2. A(G) =rforeach G €T.
3. §(G") > 0 for each G € T.
4. fGeTandzx e V(G"), then G- ¢ T.

5. If G € T and z € V(G"), then there exists y € V(G") — ({2} U Ng(z))
such that G — y is connected.

6. Let G € T and x € V(G"). Put H := G —xz. Let A C V(H) with
|A| = r. Let y be some new vertex and form H4 by joining y to A in
H; that is, V(Ha) :=V(H)U{y} and E(H,) := E(H)U{zy | x € A}.
If Hy € T, then AN N(;(CE) N V(GT) 7£ 0.

For r = 0,1 the empty set is the only r-permissible collection.

Lemma 4. Fixr > 2 and let T be the collection of all non-complete connected
r-reqular graphs. Then T s r-permissible.

Proof. Let G € T. We have G" = G and (1), (2), (3) and (4) are clearly
satisfied. That (6) holds is immediate from regularity. It remains to check
(5). Let z € V(G). First, suppose G is 2-connected. If (5) did not hold,
then x would need to be adjacent to every other vertex in G. But then
|G| < A(G)+1 = r+ 1 and hence G = K, violating our assumption.
Otherwise GG has at least two end blocks and so we can pick some y in an
end block not containing x such that G — y is connected. Hence (5) holds.
Therefore T' is r-permissible. ]



Now to prove the Main Lemma we just need to prove the following result.
For a graph G, x € V(G) and D C V(G) we use the notation Np(x) =
N(z)N D and dp(x) := |Np(z)|.

Lemma 5. Let G be a graph and ry,...,7, € Z>o such that Zle r; >
A(G) + 2 — k. If T; is an ri-permissible collection for each 1 <1 < k, then
V(G) can be partitioned into sets Vi, ..., Vi such that A(G[Vi]) < r; and

G[V;] contains no element of T; as a component for each 1 < i < k.

Proof. For a graph H, let ¢(H) be the number of components in H and let
pi(H) be the number of components of H that are members of T;. For a
partition P := (Vq,...,V}) of V(QG) let

f(P) = Z (IEGVID] = rilVil),
co(P) =) ¢(GVi]),

=1

p(P) = Zpi(G[Vi])-

Let P := (Vi,...,V,) be a partition of V(G) minimizing f(P), and subject
to that ¢(P), and subject to that p(P).

Let 1 <i <k and z € V; with dy,(x) > r;. Since S5, 7 > A(G) +2—k
there is some j # ¢ such that dy,(z) < r;. Moving = from V; to V; gives
a new partition P* with f(P*) < f(P). Note that if dy,(z) > r; we would
have f(P*) < f(P) contradicting the minimality of P. This proves that
A(G[Vi]) < r; foreach 1 <i < k.

Now suppose that for some #; there is A; € T;, which is a component of
G[V;,]. Plainly, we may assume that r;, > 2. Put P, := P and Vy,; :=V; for
1<i<k. Takez; € V(A;”) such that A; — x; is connected (this exists by
condition (5) of r-permissibility). By the above we have iy # i; such that
moving z; from Vj 4, to Vi, gives a new partition Py := (Va1,Vaa, ..., Vay)
such that f(P,) = f(P). By the minimality of ¢(P;), x; is adjacent to only
one component Cy in G[Va,,]. Let Ay := G[V(Cy) U {x1}]. Since (by condi-
tion (4)) we destroyed a T;, component when we moved x; out of V; ;,, by the
minimality of p(P;), it must be that A, € T},. Now pick z, € Ay not adja-
cent to x; such that A; — x4 is connected (again by condition (5)). Continue
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on this way to construct sequences iy,is,..., Ay, As, ..., P, P, P3,... and
x1,Ta,.... Since (G is finite, this process cannot continue forever. At some
point we will need to reuse a destroyed component; that is, there is a smallest
t such that Ay — 2y = Ay — x5 for some s < t. Put B := V(A; —x,). Notice
that Ay is constructed from A; — x; by joining the vertex x; to Np(z;). By
condition (6) of r; -permissibility, we have z € Np(z;) N Np(x,) N A,

We now modify P; to contradict the minimality of f(P). At step t + 1,
xy was adjacent to exactly r;, vertices in Viy;; . This is what allowed us to
move x; into Viyq,,. Our goal is to modify Ps so that we can move z; into
the 74 part without moving x, out. Since z is adjacent to both x, and x,
moving z out of the i, part will then give us our desired contradiction.

So, consider the set X of vertices that could have been moved out of V ;_
between step s and step ¢ + 1; that is, X = {&s11, Tsqa, ..., 21} N Vi,
For z; € X, since z; € A;is and z; is not adjacent to z;_; we see that
dy,, (v;) > 7. Similarly, dy,, (v;) > 7;,. Also, by the minimality of ¢,
X is an independent set in G. Thus we may move all elements of X out
of Vi, to get a new partition P* := (Vi1,...,Vix) with f(P*) = f(P).
Since z; is adjacent to exactly r;, vertices in Vi1, and the only possible
neighbors of x; that were moved out of V;,; between steps s and ¢ + 1 are
the elements of X, we see that dy, , (z:) = r;,. Since dy, , (z:) > r;, We can
move x; from V, ;, to V. ;. to get a new partition P** := (Vi 1,..., View ) with
f(P*) = f(P*). Now, recall that z € V,, ;.. Since z is adjacent to x; we have
dy.., (z) =2 r;, + 1. Thus we may move z out of Vi, ;, to get a new partition
P with f(P**) < f(P**) = f(P). This contradicts the minimality of

f(P). O
Question. Are there any other interesting r-permissible collections?

Question. The definition of r-permissibility can be weakened in various ways
and the proof will still go through. Does this yield anything interesting?
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