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Abstract

We prove that if G is a graph and r1, . . . , rk ∈ Z≥0 such that∑k
i=1 ri ≥ ∆(G) + 2 − k then V (G) can be partitioned into sets

V1, . . . , Vk such that ∆(G[Vi]) ≤ ri and G[Vi] contains no non-complete
ri-regular components for each 1 ≤ i ≤ k. In particular, the vertex set

of any graph G can be partitioned into
⌈

∆(G)+2
3

⌉
sets, each of which

induces a disjoint union of triangles and paths.

1 Introduction

In [5] Kostochka modified an algorithm of Catlin to show that every triangle-
free graph G can be colored with at most 2

3
(∆(G) + 3) colors. In fact, his

modification proves that the vertex set of any triangle-free graph G can be

partitioned into
⌈

∆(G)+2
3

⌉
sets, each of which induces a disjoint union of

paths. We generalize this as follows.

Main Lemma. Let G be a graph and r1, . . . , rk ∈ Z≥0 such that
∑k

i=1 ri ≥
∆(G) + 2 − k. Then V (G) can be partitioned into sets V1, . . . , Vk such that
∆(G[Vi]) ≤ ri and G[Vi] contains no non-complete ri-regular components for
each 1 ≤ i ≤ k.

Setting k =
⌈

∆(G)+2
3

⌉
and ri = 2 for each i gives a slightly more general form

of Kostochka’s theorem.
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Corollary 1. The vertex set of any graph G can be partitioned into
⌈

∆(G)+2
3

⌉
sets, each of which induces a disjoint union of triangles and paths.

For coloring, this actually gives the bound χ(G) ≤ 2
⌈

∆(G)+2
3

⌉
for triangle

free graphs. To get 2
3

(∆(G) + 3), just use rk = 0 when ∆ ≡ 2(mod 3).

Similarly, for any r ≥ 2, setting k =
⌈

∆(G)+2
r+1

⌉
and ri = r for each i gives the

following.

Corollary 2. Fix r ≥ 2. The vertex set of any Kr+1-free graph G can be

partitioned into
⌈

∆(G)+2
r+1

⌉
sets each inducing an (r − 1)-degenerate subgraph

with maximum degree at most r.

For the purposes of coloring it is more economical to split off ∆ + 2 − (r +
1)
⌊

∆+2
r+1

⌋
parts with rj = 0.

Corollary 3. Fix r ≥ 2. The vertex set of any Kr+1-free graph G can be

partitioned into
⌊

∆(G)+2
r+1

⌋
sets each inducing an (r − 1)-degenerate subgraph

with maximum degree at most r and ∆(G)+2− (r+1)
⌊

∆(G)+2
r+1

⌋
independent

sets. In particular, χ(G) ≤ ∆(G) + 2−
⌊

∆(G)+2
r+1

⌋
.

For r ≥ 3, the bound on the chromatic number is only interesting in
that its proof does not rely on Brooks’ Theorem. In [7] Lovász proved a
decomposition lemma of the same form as the Main Lemma. The Main
Lemma gives a more restrictive partition at the cost of replacing ∆(G) + 1
with ∆(G) + 2.

Lovász’s Decomposition Lemma. Let G be a graph and r1, . . . , rk ∈ Z≥0

such that
∑k

i=1 ri ≥ ∆(G) + 1 − k. Then V (G) can be partitioned into sets
V1, . . . , Vk such that ∆(G[Vi]) ≤ ri for each 1 ≤ i ≤ k.

For r ≥ 3, combining this with Brooks’ Theorem gives the following better
bound for a Kr+1-free graph G (first proved in [1], [3] and [6]):

χ(G) ≤ ∆(G) + 1−
⌊

∆(G) + 1

r + 1

⌋
.
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2 The proofs

Instead of proving directly that we can destroy all non-complete r-regular
components in the partition, we prove the theorem for the more general class
of what we call r-permissible graphs and show that non-complete r-regular
graphs are r-permissible.

Definition 1. For a graph G and r ≥ 0, let Gr be the subgraph of G induced
on the vertices of degree r in G.

Definition 2. Fix r ≥ 2. A collection T of graphs is r-permissible if it
satisfies all of the following conditions.

1. Every G ∈ T is connected.

2. ∆(G) = r for each G ∈ T .

3. δ(Gr) > 0 for each G ∈ T .

4. If G ∈ T and x ∈ V (Gr), then G− x 6∈ T .

5. If G ∈ T and x ∈ V (Gr), then there exists y ∈ V (Gr)− ({x} ∪NG(x))
such that G− y is connected.

6. Let G ∈ T and x ∈ V (Gr). Put H := G − x. Let A ⊆ V (H) with
|A| = r. Let y be some new vertex and form HA by joining y to A in
H; that is, V (HA) := V (H)∪{y} and E(HA) := E(H)∪{xy | x ∈ A}.
If HA ∈ T , then A ∩NG(x) ∩ V (Gr) 6= ∅.

For r = 0, 1 the empty set is the only r-permissible collection.

Lemma 4. Fix r ≥ 2 and let T be the collection of all non-complete connected
r-regular graphs. Then T is r-permissible.

Proof. Let G ∈ T . We have Gr = G and (1), (2), (3) and (4) are clearly
satisfied. That (6) holds is immediate from regularity. It remains to check
(5). Let x ∈ V (G). First, suppose G is 2-connected. If (5) did not hold,
then x would need to be adjacent to every other vertex in G. But then
|G| ≤ ∆(G) + 1 = r + 1 and hence G = Kr violating our assumption.
Otherwise G has at least two end blocks and so we can pick some y in an
end block not containing x such that G − y is connected. Hence (5) holds.
Therefore T is r-permissible.
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Now to prove the Main Lemma we just need to prove the following result.
For a graph G, x ∈ V (G) and D ⊆ V (G) we use the notation ND(x) :=
N(x) ∩D and dD(x) := |ND(x)|.

Lemma 5. Let G be a graph and r1, . . . , rk ∈ Z≥0 such that
∑k

i=1 ri ≥
∆(G) + 2 − k. If Ti is an ri-permissible collection for each 1 ≤ i ≤ k, then
V (G) can be partitioned into sets V1, . . . , Vk such that ∆(G[Vi]) ≤ ri and
G[Vi] contains no element of Ti as a component for each 1 ≤ i ≤ k.

Proof. For a graph H, let c(H) be the number of components in H and let
pi(H) be the number of components of H that are members of Ti. For a
partition P := (V1, . . . , Vk) of V (G) let

f(P ) :=
k∑

i=1

(|E(G[Vi])| − ri|Vi|) ,

c(P ) :=
k∑

i=1

c(G[Vi]),

p(P ) :=
k∑

i=1

pi(G[Vi]).

Let P := (V1, . . . , Vk) be a partition of V (G) minimizing f(P ), and subject
to that c(P ), and subject to that p(P ).

Let 1 ≤ i ≤ k and x ∈ Vi with dVi
(x) ≥ ri. Since

∑k
i=1 ri ≥ ∆(G) + 2− k

there is some j 6= i such that dVj
(x) ≤ rj. Moving x from Vi to Vj gives

a new partition P ∗ with f(P ∗) ≤ f(P ). Note that if dVi
(x) > ri we would

have f(P ∗) < f(P ) contradicting the minimality of P . This proves that
∆(G[Vi]) ≤ ri for each 1 ≤ i ≤ k.

Now suppose that for some i1 there is A1 ∈ Ti1 which is a component of
G[Vi1 ]. Plainly, we may assume that ri1 ≥ 2. Put P1 := P and V1,i := Vi for
1 ≤ i ≤ k. Take x1 ∈ V (A

ri1
1 ) such that A1 − x1 is connected (this exists by

condition (5) of r-permissibility). By the above we have i2 6= i1 such that
moving x1 from V1,i1 to V1,i2 gives a new partition P2 := (V2,1, V2,2, . . . , V2,k)
such that f(P2) = f(P1). By the minimality of c(P1), x1 is adjacent to only
one component C2 in G[V2,i2 ]. Let A2 := G[V (C2) ∪ {x1}]. Since (by condi-
tion (4)) we destroyed a Ti1 component when we moved x1 out of V1,i1 , by the
minimality of p(P1), it must be that A2 ∈ Ti2 . Now pick x2 ∈ A

ri2
2 not adja-

cent to x1 such that A2−x2 is connected (again by condition (5)). Continue
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on this way to construct sequences i1, i2, . . ., A1, A2, . . ., P1, P2, P3, . . . and
x1, x2, . . .. Since G is finite, this process cannot continue forever. At some
point we will need to reuse a destroyed component; that is, there is a smallest
t such that At+1−xt = As−xs for some s < t. Put B := V (As−xs). Notice
that At+1 is constructed from As−xs by joining the vertex xt to NB(xt). By
condition (6) of ris-permissibility, we have z ∈ NB(xt) ∩NB(xs) ∩ Aris

s .
We now modify Ps to contradict the minimality of f(P ). At step t + 1,

xt was adjacent to exactly ris vertices in Vt+1,is . This is what allowed us to
move xt into Vt+1,is . Our goal is to modify Ps so that we can move xt into
the is part without moving xs out. Since z is adjacent to both xs and xt,
moving z out of the is part will then give us our desired contradiction.

So, consider the set X of vertices that could have been moved out of Vs,is
between step s and step t + 1; that is, X := {xs+1, xs+2, . . . , xt−1} ∩ Vs,is .
For xj ∈ X, since xj ∈ A

ris
j and xj is not adjacent to xj−1 we see that

dVs,is
(xj) ≥ ris . Similarly, dVs,it

(xt) ≥ rit . Also, by the minimality of t,
X is an independent set in G. Thus we may move all elements of X out
of Vs,is to get a new partition P ∗ := (V∗,1, . . . , V∗,k) with f(P ∗) = f(P ).
Since xt is adjacent to exactly ris vertices in Vt+1,is and the only possible
neighbors of xt that were moved out of Vs,is between steps s and t + 1 are
the elements of X, we see that dV∗,is (xt) = ris . Since dV∗,it

(xt) ≥ rit we can
move xt from V∗,it to V∗,is to get a new partition P ∗∗ := (V∗∗,1, . . . , V∗∗,k) with
f(P ∗∗) = f(P ∗). Now, recall that z ∈ V∗∗,is . Since z is adjacent to xt we have
dV∗∗,is (z) ≥ ris + 1. Thus we may move z out of V∗∗,is to get a new partition
P ∗∗∗ with f(P ∗∗∗) < f(P ∗∗) = f(P ). This contradicts the minimality of
f(P ).

Question. Are there any other interesting r-permissible collections?

Question. The definition of r-permissibility can be weakened in various ways
and the proof will still go through. Does this yield anything interesting?
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