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Abstract

It is shown that any graph with maximum degree ∆ in which the average degree of
the induced subgraph on the set of all neighbors of any vertex exceeds 6k2

6k2+1
∆ + k+ 6

is either (∆ − k)-colorable or contains a clique on more than ∆ − 2k vertices. In the
k = 1 case we improve the bound on the average degree to 2

3∆ + 4 and the bound
on the clique number to ∆ − 1. As corollaries, we show that every graph satisfies

χ ≤ max {ω,∆− 1, 4α} and every graph satisfies χ ≤ max
{
ω,∆− 1,

⌈
15+
√

48n+73
4

⌉}
.

1 Introduction

Using ideas developed for strong coloring by Haxell [7] and by Aharoni, Berger and Ziv
[1], we make explicit a recoloring technique and apply it to coloring graphs with dense

neighborhoods. The average degree of a graph G is d(G) := 2‖G‖
|G| . For a vertex v in a graph

G, put Gv := G [N(v)]. Reed [15] has conjectured that every graph satisfies

χ ≤
⌈
ω + ∆ + 1

2

⌉
.

Our first result implies this conjecture without the round-up for graphs where every
vertex is in a big clique.

Theorem 5.4. Let k ≥ 1. Every graph G with ω(G) ≤ ∆(G)− 2k such that every vertex is
in a clique on 2k

2k+1
∆(G) + 2k + 1 vertices is (∆(G)− k)-colorable.

Using probabilistic methods, Reed [15] proved a similar-looking result that is much better
for very large k and ∆. For comparison, we modify the statement to look as close to Theorem
5.4 as possible.

Theorem 1.1 (Reed [15]). There exists ∆0 such that for k ≥ 0 every graph G with ∆(G) ≥
∆0 and 69999999

70000000
∆(G) ≤ ω(G) ≤ ∆(G)− 2k is (∆(G)− k)-colorable.

This implies Theorem 5.4 when k gets to be larger than around 35 million. In fact,
Reed states that with some care the constant can be brought down to 9999

10000
and so really his

method starts implying Theorem 5.4 when k gets larger than 5000. Moreover, Theorem 1.1
just needs a large clique while Theorem 5.4 requires every vertex to be in a large clique.

It turns out that if every neighborhood has many edges, it is guaranteed that every vertex
is in a large clique. This implies the following.
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Theorem 5.6. Let k ≥ 0. Every graph G with ω(G) ≤ ∆(G) − 2k such that d(Gv) ≥
6k2

6k2+1
∆(G) + k + 6 for each v ∈ V (G) is (∆(G)− k)-colorable.

To tighten these results up, further development of the theory of f -choosability where
f(v) = d(v)−k for k ≥ 2 is needed. For k = 1 this theory was developed in [5] and using it in
the case of (∆−1) coloring, we achieve tighter bounds which have bearing on the conjecture
of Borodin and Kostochka [3].

Conjecture 1.2 (Borodin and Kostochka [3]). Every graph with χ ≥ ∆ ≥ 9 contains K∆.

Also using probabilistic methods, Reed [16] has proved this conjecture for very large ∆.
Using d1-choosability theory, we prove the following.

Theorem 4.3. Every graph with χ ≥ ∆ ≥ 9 such that every vertex is in a clique on 2
3
∆ + 2

vertices contains K∆.

From this it follows that it would be enough to prove the Borodin-Kostochka conjecture
for irregular graphs.

Theorem 4.4. Every graph satisfying χ ≥ ∆ = k ≥ 9 either contains Kk or contains an
irregular critical subgraph satisfying χ = ∆ = k − 1.

We also get a neighborhood density version.

Theorem 4.9. Every graph G with ω(G) < ∆(G) such that d(Gv) ≥ 2
3
∆(G) + 4 for each

v ∈ V (G) is (∆(G)− 1)-colorable.

Finally, we use these ideas to prove the following bounds on the chromatic number. The
first generalizes the result of Beutelspacher and Hering [2] that the Borodin-Kostochka con-
jecture holds for graphs with independence number at most two. This result was generalized
in another direction in [4] where the conjecture was proved for claw-free graphs.

Theorem 4.11. Every graph satisfies χ ≤ max {ω,∆− 1, 4α}.

The second bound shows that the Borodin-Kostochka conjecture holds for graphs with
maximum degree on the order of the square root of their order. This improves on prior
bounds of ∆ > n+1

2
from Beutelspacher and Hering [2] and ∆ > n−6

3
of Naserasr [14].

Theorem 4.12. Every graph satisfies χ ≤ max
{
ω,∆− 1,

⌈
15+
√

48n+73
4

⌉}
.

2 Strong coloring

For a positive integer r, a graph G with |G| = rk is called strongly r-colorable if for every
partition of V (G) into parts of size r there is a proper coloring of G that uses all r colors on
each part. If |G| is not a multiple of r, then G is strongly r-colorable iff the graph formed

by adding r
⌈
|G|
r

⌉
− |G| isolated vertices to G is strongly r-colorable. The strong chromatic

number sχ(G) is the smallest r for which G is strongly r-colorable.
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Note that a strong r-coloring of G with respect to a partition V1, . . . , Vk of V (G) with
|Vi| = r must partition V (G) into r independent transversals of V1, . . . , Vk. In [18], Szabó
and Tardos constructed partitioned graphs with part sizes 2∆− 1 that have no independent
transversal. So we must have sχ(G) ≥ 2∆(G). It is conjectured that this bound is tight.

Haxell [7] proved that sχ(G) ≤ 3∆(G) − 1. Aharoni, Berger and Ziv [1] gave a simple
proof that sχ(G) ≤ 3∆(G). It is this latter proof whose recoloring technique we use. First
we need a lemma allowing us to pick an independent transversal when one of the sets has
only one element.

Lemma 2.1. Let H be a graph and V1 ∪ · · · ∪ Vr a partition of V (H). Suppose that |Vi| ≥
2∆(H) for each i ∈ [r]. If a graph G is formed by attaching a new vertex x to fewer than
2∆(H) vertices of H, then G has an independent set {x, v1, . . . , vr} where vi ∈ Vi for each
i ∈ [r].

Proof. Suppose not. Remove {x}∪N(x) fromG to formH ′ with induced partition V ′1 , V
′

2 , . . . , V
′
r .

Then V ′1 , V
′

2 , . . . , V
′
r has no independent transversal since we could combine one with x to

get our desired independent set in G. Note that |V ′i | ≥ 1. Create a graph Q by re-
moving edges from H ′ until it is edge minimal without an independent transversal. Pick
yz ∈ E(Q) and apply Lemma 7.1 on yz with the induced partition to get the guaran-
teed J ⊆ [r] and the totally dominating induced matching M with |M | = |J | − 1. Now∣∣⋃

i∈J V
′
i

∣∣ > 2∆(H) |J | − 2∆(H) = 2(|J | − 1)∆(H) and hence M cannot dominate, a contra-
diction.

Theorem 2.2. Every graph satisfies sχ ≤ 3∆.

Proof. We only need to prove that graphs with n := 3∆k vertices have a 3∆ coloring for
each k ≥ 1. Suppose not and choose a counterexample G minimizing ‖G‖. Put r := 3∆(G)
and let V1, . . . , Vk be a partition of G for which there is no acceptable coloring. Then the
Vi are independent by minimality of ‖G‖. By symmetry we may assume there are adjacent
vertices x ∈ V1 and y ∈ V2. Apply minimality of ‖G‖ to get an r-coloring π of G− xy with
π(Vi) = [r] for each i ∈ [k]. We will modify π to get such a coloring of G.

By symmetry, we may assume that π(x) = π(y) = 1. For 2 ≤ i ≤ k, let zi be the
unique element of π−1(1)∩Vi and put Wi := Vi−{v ∈ Vi | π(v) = π(w) for some w ∈ N(zi)}.
Then |Wi| ≥ 2∆(G) and we may apply Lemma 2.1 to get a G-independent transversal
w1, w2, . . . , wk of {x} ,W2,W3, . . . ,Wk. Define a new coloring ζ of G by

ζ(v) :=


1 if v = wi

π(wi) if v = zi

π(v) otherwise.

Then ζ is a proper coloring of G with ζ(Vi) = [r] for each i ∈ [k], a contradiction.

For our application we will need a lopsided version of Lemma 2.1 generalizing King’s [11]
lopsided version of Haxell’s lemma.

Lemma 2.3. Let H be a graph and V1 ∪ · · · ∪ Vr a partition of V (H). Suppose there exists
t ≥ 1 such that for each i ∈ [r] and each v ∈ Vi we have d(v) ≤ min {t, |Vi| − t}. For any
S ⊆ V (H) with |S| < min {|V1| , . . . , |Vr|}, there is an independent transversal I of V1, . . . , Vr
with I ∩ S = ∅.
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Proof. Suppose the lemma fails for such an S ⊆ V (H). Put H ′ := H − S and let V ′1 , . . . , V
′
r

be the induced partition of H ′. Then there is no independent trasversal of V ′1 , . . . , V
′
r and

|V ′i | ≥ 1 for each i ∈ [r]. Create a graph Q by removing edges from H ′ until it is edge
minimal without an independent transversal. Pick yz ∈ E(Q) and apply Lemma 7.1 on yz
with the induced partition to get the guaranteed J ⊆ [r] and the tree T with vertex set J
and an edge between a, b ∈ J for each uv ∈ M with u ∈ V ′a and v ∈ V ′b . By our condition,
for each uv ∈ E(Vi, Vj), we have |NH(u) ∪NH(v)| ≤ min {|Vi| , |Vj|}.

Choose a root c of T . Traversing T in leaf-first order and for each leaf a with parent b
picking |Va| from min {|Va|, |Vb|} we get that the vertices in M together dominate at most∑

i∈J−c |Vi| vertices in H. Since |S| < |Vc|, M cannot totally dominate
⋃
i∈J V

′
i , a contradic-

tion.

We note that the condition on S can be weakened slightly. Suppose we have ordered
the Vi so that |V1| ≤ |V2| ≤ · · · ≤ |Vr|. Then for any S ⊆ V (H) with |S| < |V2| such that
V1 6⊆ S, there is an independent transversal I of V1, . . . , Vr with I ∩ S = ∅. The proof is the
same except when we choose our root c, choose it so as to maximize |Vc|. Since |J | ≥ 2, we
get |Vc| ≥ |V2| > |S| at the end.

3 The recoloring technique

We can extract the idea in the proof of Theorem 2.2 to get a general recoloring tech-
nique. Suppose G is a k-vertex-critical graph and pick x ∈ V (G) and (k − 1)-coloring
π of H := G − x. Let Z be a color class of π, say Z = π−1(1). For each z ∈ Z, let
Oz be the neighbors of z which get a color that no other neighbor of z gets; that is, put
Oz := {v ∈ NH(z) | π(v) 6∈ π(NH(z)− v)}. Suppose the Oz are pairwise disjoint. If we could
find an independent transversal {x} ∪ {vz}z∈Z of {x} together with the Oz, then recoloring
each z ∈ Z with π(vz) and coloring each vertex in {x} ∪ {vz}z∈Z with 1 gives a proper
(k−1)-coloring of G. This is exactly what happens in the above proof of the strong coloring
result. To make this work more generally, we need to find situations where each G[Oz] has
high minimum degree. Also, intuitively, the Oz intersecting each other should make things
easier since recoloring a vertex in the intersection of Oz1 and Oz2 works for both z1 and z2.
In our applications we will allow some restricted intersections.

4 Borodin-Kostochka when every vertex is in a big clique

The case of (∆−1)-coloring is easier and provides a good warm-up for general coloring. Also,
we achieve tighter bounds in this case because the list coloring theory is more developed.

4.1 A general decomposition

Let D1 be the collection of graphs without induced d1-choosable subgraphs. Plainly, D1 is
hereditary. For a graph G and t ∈ N, let Ct be the maximal cliques in G having at least
t vertices. We prove the following decomposition result for graphs in D1 which generalizes
Reed’s decomposition in [16].
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Lemma 4.1. Suppose G ∈ D1 has ∆(G) ≥ 8 and contains no K∆(G). If ∆(G)+5
2

≤ t ≤
∆(G)−1, then

⋃
Ct can be partitioned into sets D1, . . . , Dr such that for each i ∈ [r] at least

one of the following holds:

• Di = Ci ∈ Ct,

• Di = Ci ∪ {xi} where Ci ∈ Ct and |N(xi) ∩ Ci| ≥ t− 1.

Moreover, each v ∈ V (G)−Di has at most t− 2 neighbors in Ci for each i ∈ [r].

Proof. Suppose |Ci| ≤ |Cj| and Ci ∩ Cj 6= ∅. Then |Ci ∩ Cj| ≥ |Ci|+ |Cj| − (∆ + 1) ≥ 4. It
follows from Corollary 6.2 that |Ci − Cj| ≤ 1.

Now suppose Ci intersects Cj and Ck. By the above, |Ci ∩ Cj| ≥ ∆(G)+3
2

and similarly

|Ci ∩ Ck| ≥ ∆(G)+3
2

. Hence |Ci ∩ Cj ∩ Ck| ≥ ∆(G)+3−(∆(G)−1) = 4. Put I := Ci∩Cj∩Ck
and U := Ci ∪ Cj ∪ Ck. By maximality of Ci, Cj, Ck, U cannot induce an almost complete
graph. Thus, by Corollary 6.2, |U | ∈ {4, 5} and the graph induced on U − I is E3. But then
t ≤ 6 and hence ∆(G) ≤ 7, a contradiction.

The existence of the required partition is immediate.

When Di ∈ Ct, we put Ki := Ci := Di and when Di = Ci ∪ {xi}, we put Ki := N(xi) ∩ Ci.

4.2 Doing the recoloring

Let G be a graph. For v ∈ V (G), we let ω(v) be the size of a largest clique in G containing v.
The proofs of the results in this section go more smoothly when we strengthen the induction
in terms of the parameter ρ(G) := maxv∈V (G) d(v)− ω(v).

Lemma 4.2. For k ≥ 9, every graph satisfying ∆ ≤ k, ω < k and ρ ≤ k
3
− 2 is (k − 1)-

colorable.

Proof. Suppose the theorem fails for some k ≥ 9 and choose a counterexample G minimizing
|G| + ‖G‖. Put ∆ := ∆(G). If ∆ < k, then ∆ = k − 1 and by Brooks’ theorem G contains
Kk, a contradiction. Thus χ(G) = k = ∆. Also, for any v ∈ V (G) we have ρ(G− v) ≤ ρ(G),
applying our minimality condition on G implies that G is vertex critical.

Therefore δ(G) ≥ ∆ − 1 and G ∈ D1. For any v ∈ V (G), we have ∆ − 1 − ω(v) ≤
d(v)− ω(v) ≤ ∆

3
− 2 and hence ω(v) ≥ 2

3
∆ + 1. Applying Lemma 4.1 with t := 2

3
∆ + 1 we

get a partition D1, . . . , Dr of
⋃
Ct = V (G). Note that for i ∈ [r], if Ki 6= Di then all vertices

in Ki are high by Lemma 6.3. Pick x ∈ K1. Then x has |C1| − 1 ≤ ∆− 2 neighbors in D1 if
Ki = Di and |C1| ≤ ∆−1 if Ki 6= Di. Hence, by our note, x has a neighbor w ∈ V (G)−D1.

We now claim that xw is a critical edge in G. Suppose otherwise that χ(G− xw) = ∆.
Then by minimality of G we must have ρ(G − xw) > ρ(G). Hence there is some vertex
v ∈ N(x) ∩ N(w) so that every largest clique containing v contains xw. But v is in some
Dj and all largest cliques containing v are contained in Dj and hence do not contain xw, a
contradiction.

Let π be a (∆ − 1)-coloring of G − xw chosen so that π(x) = 1 and so as to minimize
|π−1(1)|. Consider π as a coloring of G− x. One key property of π we will use is that since
x got 1 in the coloring of G− xw and x ∈ K1, no vertex of D1 − x gets colored 1 by π.
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Now put Z := π−1(1) and for z ∈ Z, let Oz be as defined in Section 3. By minimality
of |Z|, each z ∈ Z has at least one neighbor in every color class of π. Hence z has two or
more neighbors in at most 2 + d(z) − ∆ of π’s color classes. For each z ∈ Z we have i(z)
such that z ∈ Di(z). For z ∈ Z such that i(z) 6∈ i(Z − z), put Vz := Oz ∩ Ci(z). We have
|Vz| ≥ ω(z) − 1 − (2 + d(z)−∆). Since ω(z) ≥ d(z) − 1

3
∆ + 2, we have |Vz| ≥ 2

3
∆ − 1.

Each y ∈ Vz is adjacent to all of Ci(z) − {y} and hence has at most d(y) + 1 −
∣∣Ci(z)∣∣

neighbors outside Di(z). Since ω(y) ≥ d(y) + 2 − 1
3
∆, we conclude that y has at most

d(y) + 1− (d(y) + 2− 1
3
∆) = 1

3
∆− 1 neighbors outside Di(z).

Now let Z ′ be the z ∈ Z with i(z) ∈ i(Z−z). Then Z ′ can be partitioned into pairs {z, z′}
such that i(z) = i(z′). For such a pair, one of z, z′ is xi(z) and the other is in Ci(z) −Ki(z).
Put Vz := Oz ∩ Oz′ ∩ Ki(z) and don’t define Vz′ . We have |Vz| ≥ min {ω(z), ω(z′)} −
1 − (2 + d(z)−∆) − (2 + d(z′)−∆) ≥ −1

3
∆ + 2 − 1 − 2 (2−∆) − max {d(z), d(z′)} =

5
3
∆−max {d(z), d(z′)}− 3 ≥ 2

3
∆− 3. Each y ∈ Vz is adjacent to all of Di(z)−{y} and hence

has at most d(y)+1−
∣∣Di(z)

∣∣ neighbors outside Di(z). Since
∣∣Di(z)

∣∣ = ω(y)+1 ≥ d(y)+3− 1
3
∆,

we conclude that y has at most 1
3
∆− 2 neighbors outside Di(z).

Let H be the subgraph of G induced on the union of the Vz. Put S := N(x) ∩ V (H).
Since Z ∩ D1 = ∅, x has at least |D1| − 1 neighbors in D1 none of which are in S. Hence
|S| ≤ d(x) + 1−|D1| ≤ d(x) + 1−ω(x) ≤ ∆

3
− 1 < |Vz| for all Vz since ∆ ≥ 7. Hence we may

apply Lemma 2.3 on H with t := 1
3
∆ − 1 to get an independent set {vz}z∈Z disjoint from

S where vz ∈ Vz. Recoloring each z ∈ Z with π(z) and coloring x ∪ {vz}z∈Z with 1 gives a
(∆− 1)-coloring of G, a contradiction.

The following special case is a bit easier to digest.

Theorem 4.3. Every graph with χ ≥ ∆ ≥ 9 such that every vertex is in a clique on 2
3
∆ + 2

vertices contains K∆.

4.3 Reducing to the irregular case

It is easy to see that if there are irregular counterexamples to the Borodin-Kostochka con-
jecture, then there are regular examples as well: take an irregular counterexample G clone
it, add an edge between any vertex with degree less than ∆(G) and its clone; repeat until
you have a regular graph (from [13]).

But what about the converse? If there are regular examples, must there be (connected)
irregular examples? We’ll see that the answer is yes, but we need to decrease the maximum
degree by one.

Theorem 4.4. Every graph satisfying χ ≥ ∆ = k ≥ 9 either contains Kk or contains an
irregular critical subgraph satisfying χ = ∆ = k − 1.

Proof. Suppose not and choose a counterexample G minimizing |G|. Then G is vertex
critical. If every vertex in G were contained in a (k − 1)-clique, then Corollary 4.3 would
give a Kk in G, impossible. Hence we may pick v ∈ V (G) not in a (k − 1)-clique. If v is
high, choose a (k − 1)-coloring π of G − v so that the color class T of π where v has two
neighbors is as large as possible; if v is low, let π be a (k − 1)-coloring of G− v where some
color class T of π is as large as possible. By symmetry, we may assume that π(T ) = k − 1.

6



Now we have a (k − 1)-coloring ζ of H := G − T given by ζ(x) = π(x) for x 6= v and
ζ(v) = k − 1. Since χ(H) = k − 1, the maximality condition on T together with Brooks’
theorem gives ∆(H) = k−1. Note that dH(v) = k−2. Let H ′ be a (k−1)-critical subgraph
of H. Then H ′ must contain v and hence is not Kk−1. Since dH′(v) = k−2 and ∆(H ′) = k−1
(by Brooks’ theorem), H ′ is an irregular critical subgraph of G satisfying χ = ∆ = k − 1, a
contradiction.

Figure 1: M8: A C5 with vertices blown-up to triangles.

Since the only known critical (or connected even) counterexample to Borodin-Kostochka
for ∆ = 8 is regular (see Figure 1) we might hope that the following strengthened conjecture
is true.

Conjecture 4.5. Every critical graph with χ ≥ ∆ = 8 is regular.

4.4 Dense neighborhoods

Here we show that the Borodin-Kostochka conjecture holds for graphs where each neigh-
boorhood has “most” of its possible edges. First, we need to convert high average degree
in a neighborhood into a large clique in the neighborhood. We need the following extension
of a fundamental result of Mader [12] (see Diestel [6] for some history of this result). We
will also need d1-choosability results from [5] as well as some ideas for dealing with average
degree in neighborhoods used in [4].

Lemma 4.6. For k ≥ 1, every graph G with d(G) ≥ 4k has a (k + 1)-connected induced
subgraph H such that d(H) > d(G)− 2k.

Lemma 4.7. If B is a graph with d(B) ≥ ω(B) + 2, then B has an induced subgraph H
such that K1 ∗H is f -choosable where f(v) ≥ d(v) for the v in the K1 and f(x) ≥ d(x)− 1
for x ∈ V (H).

Proof. Let B be such a graph. Applying Lemma 4.6 with k := 1, we get a 2-connected
subgraph H of B with d(H) > d(B) − 2 ≥ ω(B). Since H is 2-connected, if it is not
d0-choosable, then it is either an odd cycle or complete. The former is impossible since
d(H) ≥ 3, hence H would be complete and we’d have the contradiction ω(H) > ω(B).
Hence H is d0-choosable.

Suppose K1 ∗H isn’t f -choosable and let L be a minimal bad f -assignment on K1 ∗B.
By Lemma 6.6, no nonadjacent pair in H have intersecting lists and hence we must have∑

v∈V (H) |L(v)| ≤ |Pot(L)|ω(H). Since for each v ∈ V (H) we have |L(v)| ≥ dH(v) and by
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the Small Pot Lemma we have |Pot(L)| ≤ |H|, we must have d(H) ≤ ω(H) ≤ ω(B) < d(H),
a contradiction.

Lemma 4.8. If B is a graph with d(B) ≥ ω(B) + 3, then B has an induced subgraph H
such that K1 ∗H is d1-choosable.

Proof. Let B be such a graph. Applying Lemma 4.6 with k := 1, we get a 2-connected
subgraph H of B with d(H) > d(B) − 2 ≥ ω(B) + 1. As in the proof of Lemma 4.7, we
see that H is d0-choosable. Suppose K1 ∗H is not d1-choosable and let L be a minimal bad
d1-assignment on K1 ∗H. Combining Lemma 6.5 with the same argument as in the proof of
Lemma 4.7 shows that |Pot(L)| ≤ |H| − 1.

Now, for c ∈ Pot(L), we consider how big the color graphs Hc can be. All of the
information comes from Lemma 6.4. We have α(Gc) ≤ 2 for all c ∈ Pot(L). First, suppose
we have c ∈ Pot(L) such that |Hc| ≥ ω(H) + 3. Then, using Lemma 6.4, we see that
|Hc′| ≤ ω(H) for all c′ ∈ Pot(L)−c and hence

∑
γ∈Pot(L) |Hγ| ≤ |H|+(|Pot(L)| − 1)ω(H) ≤

|H|ω(H) + |H| − 2ω(H). Now suppose we have c ∈ Pot(L) such that |Hc| = ω(H) + 2.
Then, using Lemma 6.4 again, we see that |Hc′| ≤ ω(H)+1 for all c′ ∈ Pot(L)− c and hence∑

γ∈Pot(L) |Hγ| ≤ 1 + |Pot(L)| (ω(H) + 1) ≤ |H|ω(H) + |H| − ω(H).

Therefore we must have 2 ‖H‖ ≤ |H| (ω(H) + 1)− ω(H) and hence d(H) ≤ ω(H) + 1 <
d(H), a contradiction.

Theorem 4.9. Every graph G with ω(G) < ∆(G) such that d(Gv) ≥ 2
3
∆(G) + 4 for each

v ∈ V (G) is (∆(G)− 1)-colorable.

Proof. Suppose note and let G be a counterexample. Put ∆ := ∆(G). Let H be a ∆-
vertex-critical induced subgraph of G. Then δ(H) ≥ ∆ − 1 and H has no d1-choosable
induced subgraphs. By Theorem 4.3, we must have v ∈ V (H) with ω(v) < 2

3
∆ + 2. Suppose

d(Hv) < d(Gv). Then dH(v) = ∆ − 1 and ‖Hv‖ ≥ ‖Gv‖ − (∆ − 1); therefore, d(Hv) >
d(Gv)−1 ≥ 2

3
∆+3. Applying Lemma 4.7 gives ω(v) > d(Hv)−1 ≥ 2

3
∆+2, a contradiction.

Hence we must have d(Hv) = d(Gv) ≥ 2
3
∆ + 4. Applying Lemma 4.8 gives ω(v) >

d(Hv)− 2 ≥ 2
3
∆ + 2, a contradiction.

4.5 Bounding the order and independence number

Lemma 4.10. Let G be a vertex critical graph with χ(G) = ∆(G) + 1 − k. For every
v ∈ V (G) there is Hv EGv with:

1. |Hv| ≥ ∆(G)− 2k; and

2. δ(Hv) ≥ |Hv| − (k + 1)(α(G)− 1)− 1; and

3. ‖Hv‖ ≥ |Hv| (|Hv| − (k + 2))− (k + 1) (|G|+ 2k − (∆(G) + 1)).

Proof. Put ∆ := ∆(G). Pick v ∈ V (G) and let π be a (∆− k)-coloring of G− v. Let Hv be
the subgraph of Gv induced on {x ∈ N(v) | π(x) 6∈ π(N(v)− x)}. Plainly, |Hv| ≥ ∆− 2k.

By the usual Kempe chain argument, any x, y ∈ V (Hv) must be in the same component
of Cx,y := G[π−1(π(x)) ∪ π−1(π(y))]. Thus if xy 6∈ E(G), there must be a path of length
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at least 3 in Cx,y from x to y and hence some vertex of color π(x) other than x must have
at least two neighbors of color π(y) and some vertex of color π(y) other than y must have
at least two neigbhors of color π(x). We say that such an intermediate vertex proxies for
xy. Each xy with y ∈ V (Hv) must have some proxy zxy ∈ π−1(π(x)) − x such that zxy
proxies for at most k+ 1 total xw with w ∈ V (Hv), for otherwise we could recolor all of xy’s
proxies, swap π(x) and π(y) in x’s component of Cx,y and then color v with π(x) to get a
(∆−k)-coloring of G. We conclude that x has at most (k+1)(|π−1(π(x))|−1) non-neighbors
in Hv. This gives (2) immediately.

For (3), note that |π(i)| ≥ 2 for each i ∈ [∆− k]−π(V (Hv)) and hence
∑

j∈π(V (Hv)) |π−1(j)| ≤
|G| − 1− 2(∆− k − |Hv|). Since ‖Hv‖ ≥

∑
j∈π(V (Hv)) (|Hv| − 1− (k + 1)(|π−1(j)| − 1)), (3)

follows.

Theorem 4.11. Every graph satisfies χ ≤ max {ω,∆− 1, 4α}.
Proof. Suppose not and choose a counterexample G minimizing |G|. Since none of the terms
on the right side increase when we remove a vertex, G is vertex critical. Since the Borodin-
Kostochka conjecture holds for graphs with α = 2 and ∆ ≥ 9, we must have α(G) ≥ 3 and
hence ∆(G) ≥ 13. By Lemma 4.3, there must be v ∈ V (G) with ω(v) < 2

3
∆(G)+2. Applying

(2) of Lemma 4.10, we get Hv E Gv with |Hv| ≥ ∆(G) − 2 and δ(Hv) ≥ |Hv| − 2α(G) + 1.

Since ∆(G) ≥ χ(G) ≥ 4α(G) + 1, we have δ(Hv) ≥ |Hv| − ∆(G)−1
2

+ 1 ≥ |Hv |+1
2

. Applying
Lemma 6.7 shows that either Hv = K3 ∗E4 or ω(Hv) ≥ |Hv| − 1. The former is impossible
since ∆(G) > 9. Therefore ω(v) ≥ ω(Hv) + 1 ≥ ∆(G)− 2 ≥ 2

3
∆(G) + 2 since ∆(G) ≥ 12, a

contradiction.

Theorem 4.12. Every graph satisfies χ ≤ max
{
ω,∆− 1,

⌈
15+
√

48n+73
4

⌉}
.

Proof. Suppose not and choose a counterexample G minimizing |G|. Put ∆ := ∆(G) and
n := |G|. Since none of the terms on the right side increase when we remove a vertex, G
is vertex critical. By Lemma 4.3, there must be v ∈ V (G) with ω(v) < 2

3
∆ + 2. Applying

(3) of Lemma 4.10, we get Hv E Gv with with |Hv| ≥ ∆ − 2 and ‖Hv‖ ≥ |Hv| (|Hv| − 3) −
2 (n+ 1−∆). By Lemma 4.8, we must have d(Hv) <

2
3
∆ + 4 and hence we have

2

3
∆ + 4 > 2 (|Hv| − 3)− 4 (n+ 1−∆)

|Hv|

≥ 2 (∆− 5)− 4 (n+ 1−∆)

∆− 2
.

Simplifying a bit, we get 6(n − 1) > (2∆ − 15)(∆ − 2). Since ∆ ≥ χ(G) ≥ 19+
√

48n+73
4

,

we have 6(n− 1) > (−11+
√

48n+73
2

)(11+
√

48n+73
4

) = 48n−48
8

= 6(n− 1), a contradiction.

5 Coloring graphs when every vertex is in a big clique

5.1 The decomposition

We need a partitioning result similar to Lemma 4.1 in the general case. We deal with a set
of pairwise intersecting Oz by only using vertices in their intersection. Since we need this
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intersection to be big in order to apply the independent transversal lemma, we need to limit
the number of Oz that can pairwise intersect. For k ≥ 0, let Dk be the collection of graphs
without induced dk-choosable subgraphs. Again, for a graph G and t ∈ N, we let Ct be the
maximal cliques in G having at least t vertices.

We put off as much computation as possible until later, to this end, define U(k, ω,∆) :=
max

{
2
3
(∆ + 1), 1

2
(∆ + 3k + 2), 2k

2k+1
(ω + k)− 1, k+1

k+2
ω + 2k + 1

}
.

Lemma 5.1. Let k ≥ 1 and suppose G ∈ Dk. If t ≥ U(k, ω(G),∆(G)), then
⋃
Ct can be

partitioned into sets D1, . . . , Dr so that for each i ∈ [r] each of the following holds:

1. |Di| ≤ ω(G[Di]) + 2k; and

2. G[Di] has at least 3k + 1 universal vertices; and

3. If L is a maximum clique in G[Di], then for independent I ⊆ Di we have
∣∣L ∩⋂v∈I N(v)

∣∣ ≥
|L| − |I| (|L|+ k − t); and

4. G[Di] has independence number at most k + 1.

Proof. Put ∆ := ∆(G) and ω := ω(G). If ω < t, then
⋃
Ct is empty and the lemma holds

vacuously. Hence we may assume ω ≥ t. Let Xt be the intersection graph of Ct. Since
t ≥ 2

3
(∆ + 1), Xt is a disjoint union of complete graphs. Let F1, . . . ,Fr be the components

of Xt and put Di := ∪Fi for i ∈ [r].
Fix i ∈ [r]. Choose L ∈ Fi with |L| = ω(G[Di]). Put A := Di − L.
Claim 1. |A| ≤ 2k and |

⋂
Fi| ≥ 3k + 1. Choose S ⊆ A with |S| = min {2k + 1, |A|}.

Choose Q ⊆ Fi such that S ⊆
⋃
Q so as to minimize |Q|. Then for any Q ∈ Q there exists

vQ ∈ S∩(Q−
⋃

(Q− {Q})). In particular, |Q| ≤ |S| = 2k+1. Suppose |L ∩
⋂
Q| ≥ 3k+1.

Then by Lemma 6.10 there is a clique with at least |S| + |L| − 2k vertices intersecting L.
Since L is a maximum size clique in Di we must have |A| ≤ |S| ≤ 2k. But then A = S and⋂
Fi = L ∩

⋂
Q since A ⊆

⋃
Q.

Therefore to prove the claim it suffices to show that |L ∩
⋂
Q| ≥ 3k + 1. If Q = ∅, then

we are done since |L| ≥ 3k + 1. Hence |Q| ≥ 1. For any Q ∈ Q, we have |Q ∩ L| ≥ 3k + 1
since t ≥ 1

2
(∆ + 3k + 2). Hence we may apply Lemma 6.13 to get |Q− L| + |L| − k ≤ |L|

and hence |Q− L| ≤ k. So we have |Q ∩ L| ≥ |Q| − k for all Q ∈ Q. If
∑

Q∈Q |Q ∩ L| ≥
(|Q|−1) |L|+3k+1, then applying Lemma 6.8 gives the desired conclusion |L ∩

⋂
Q| ≥ 3k+1.

Hence, if the claim fails, we must have

(|Q| − 1)ω + 3k + 1 >
∑
Q∈Q

|Q ∩ L|

≥
∑
Q∈Q

(|Q| − k)

≥ |Q| (t− k).

Hence t < ω + k − ω+3k+1
|Q| ≤ 2k

2k+1
(ω + k) − 1 since |Q| ≤ 2k + 1, a contradiction. This

proves (1) and (2).
Claim 2. for independent I ⊆ Di we have

∣∣L ∩⋂v∈I N(v)
∣∣ ≥ ω(G[Di])−|I| (ω(G[Di])+

k − t). For each v ∈ I pick Qv ∈ Fi containing v and put Q := {Qv | v ∈ I}. Note that
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L ∩
⋂
v∈I N(v) = L ∩

⋂
Q. As in the proof of Claim 1, we see that |Q ∩ L| ≥ |Q| − k for

each Q ∈ Q. Therefore, if the claim fails, Lemma 6.8 shows that we must have |Q| (t− k) <

(|Q| − 1) |L|+ |L| − |I| (|L|+ k− t) and hence t < k+ |L| − |I| (|L|+k−t)
|I| = t, a contradiction.

Claim 3. G[Di] has independence number at most k+ 1. Suppose not and pick indepen-
dent I ⊆ Di with |I| = k+2. By Claim 2,

∣∣Di ∩
⋂
v∈I N(v)

∣∣ ≥ |L|−(k+2)(|L|+k−t). Since
t ≥ k+1

k+2
ω+2k+1, we have

∣∣Di ∩
⋂
v∈I N(v)

∣∣ ≥ (k+1)ω−(k+1) |L|+(k+2)(2k+1)−k(k+2) ≥
(k + 1)(k + 2). Now Lemma 6.9 gives a contradiction.

5.2 Doing the recoloring

Again, to eliminate tiresome computation, put U ′(k, ω,∆) := max
{
k+2
k+3

∆ + 1,U(k, ω,∆)
}

.

Lemma 5.2. For k ≥ 1 and γ ∈ N, every graph G with ∆(G) ≤ γ, ω(G) ≤ γ − 2k and
ρ(G) ≤ γ − k − U ′(k, ω(G), γ) is (γ − k)-colorable.

Proof. Suppose the theorem fails and choose a counterexample first minimizing γ and subject
to that minimizing |G| + ‖G‖. Put ∆ := ∆(G). Plainly, we must have γ > 2k. Suppose
∆ < γ. If k′ ≥ 1, then G satisfies the hypotheses of the theorem with γ′ := γ − 1 and
k′ := k−1. By minimality of γ, χ(G) ≤ γ′−k′ = γ−k, a contradiction. If k′ = 0, then Brooks’
theorem gives a contradiction. Hence ∆ = γ. For any v ∈ V (G) we have ρ(G − v) ≤ ρ(G)
and hence the second minimality condition on G implies that G is (∆+1−k)-vertex-critical.

Therefore δ(G) ≥ ∆ − k and G ∈ Dk. For any v ∈ V (G), we have ∆ − k − ω(v) ≤
d(v)− ω(v) ≤ ∆− k−U ′(k, ω,∆) and hence ω(v) ≥ U ′(k, ω,∆). Applying Lemma 5.1 with
t := U ′(k, ω,∆) we get a partition D1, . . . , Dr of

⋃
Ct = V (G). For i ∈ [r], let Ki be the

universal vertices in G[Di], we know |Ki| ≥ 3k + 1. Suppose every x ∈ K1 has N(x) ⊆ D1.
Put j := minx∈K1 ∆− d(x). Since |K1| ≥ 3k+ 1, applying Lemma 6.11, for every x ∈ K1 we
have ∆ − 2j ≥ ω(G[Di]) + 2(k − j) ≥ |Di| ≥ d(x) + 1, this contradicts the definition of j.
Thus we have x ∈ K1 that has a neighbor w ∈ V (G)−D1.

We claim that xw is a critical edge in G. Suppose otherwise that χ(G−xw) = ∆+1−k.
Then by minimality of G we must have ρ(G − xw) > ρ(G). Hence there is some v ∈
N(x) ∩ N(w) so that every largest clique containing v contains xw. But v is in some Dj

and all largest cliques containing v are contained in Dj and hence do not contain xw, a
contradiction.

Let π be a (∆ − k)-coloring of G − xw chosen so that π(x) = 1 and so as to minimize
|π−1(1)|. Consider π as a coloring of G− x. One key property of π we will use is that since
x got 1 in the coloring of G− xw and x ∈ K1, no vertex of D1 − x gets colored 1 by π.

Now put Z := π−1(1) and for z ∈ Z, let Oz be as defined in Section 3. By minimality of
|Z|, each z ∈ Z has at least one neighbor in every color class of π. Hence z has two or more
neighbors in at most k+1 of π’s color classes. For each z ∈ Z we have i(z) such that z ∈ Di(z).
For each a ∈ i(Z), let La be a maximum clique in G[Da] and put Va := La ∩

⋂
z∈i−1(a) Oz.

By Lemma 5.1, we have |i−1(a)| ≤ k + 1 and
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|Va| ≥ |La| −
∣∣i−1(a)

∣∣ (|La|+ k − t)−
∣∣i−1(a)

∣∣ (k + 1)

= |La| (1−
∣∣i−1(a)

∣∣) +
∣∣i−1(a)

∣∣ (t− 2k − 1)

≥ ω(1−
∣∣i−1(a)

∣∣) +
∣∣i−1(a)

∣∣ (t− 2k − 1)

= ω +
∣∣i−1(a)

∣∣ (t− 2k − 1− ω)

≥ ω + (k + 1)(t− 2k − 1− ω)

≥ (k + 1)(
k + 2

k + 3
∆− 2k)− kω

≥ (k + 1)(
k + 2

k + 3
∆− 2k)− k(∆− 2k)

=
(k + 1)(k + 2)− k(k + 3)

k + 3
∆− 2k

= 2

(
∆

k + 3
− k
)
.

Also |Da| ≥ |La| + |i−1(a)| − 1. So, each y ∈ Va has at most d(y) − (|Da| − 1) ≤
d(y) − ω(y) − |i−1(a)| + 2 ≤ d(y) − ω(y) + 1 ≤ ∆ − k − k+2

k+3
∆ = ∆

k+3
− k neighbors outside

Da. Now |D1| ≥ t ≥ k+2
k+3

∆ + 1 and hence x has at most ∆
k+3

neighbors outside D1. Let H
be the subgraph of G induced on the union of the Va. Then, we may apply Lemma 2.1 on
H to get an independent set {x} ∪ {vz}z∈Z where vz ∈ Vz. Recoloring each z ∈ Z with π(z)
and coloring x ∪ {vz}z∈Z with 1 gives a (∆− k)-coloring of G, a contradiction.

A little computation gives the following two more parsable results.

Lemma 5.3. For k ≥ 1 and γ ∈ N, every graph G with ∆(G) ≤ γ, ω(G) ≤ γ − 2k and
ρ(G) ≤ γ

2k+1
− (2k + 1) is (γ − k)-colorable.

Theorem 5.4. Let k ≥ 1. Every graph G with ω(G) ≤ ∆(G)− 2k such that every vertex is
in a clique on 2k

2k+1
∆(G) + 2k + 1 vertices is (∆(G)− k)-colorable.

5.3 Dense neighborhoods

Lemma 5.5. Let k ≥ 1. If B is a graph with δ(B) ≥ 2k+1
2k+2
|B| + k − 1 such that K1 ∗B is

not dk-choosable, then ω(B) ≥ |B| − 2k.

Proof. Let L be a minimal bad dk-assignment on K1 ∗B. By the Small Pot Lemma, we
have |Pot(L)| ≤ |B|. Let X := {{x1, y1} , . . . , {xs, ys}} be a maximal set of pairwise disjoint

independent sets of size 2 in B. Note that s ≤ |B|
2

. Put K := B − ∪X. Plainly, K is
complete. Thus we are done if s ≤ k.

Suppose s ≥ k + 1. Put ε := 1
2k+2

. For i ∈ [s] we have |L(xi)| + |L(yi)| ≥ dB(xi) +
dB(yi)− 2k + 2 ≥ 2(1− ε) |B| ≥ |B|+ s and hence we may pick s different colors c1, . . . , cs
where ci ∈ L(xi) ∩ L(yi). Color both xi and yi with ci to get a list assignment L′ on K.
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Each v ∈ V (K) has at least δ(B) − (|K| − 1) ≥ (1 − ε) |B| + k − |K| = 2s + k − ε |B|
neighbors in ∪X and hence is joined to at least s + k − ε |B| pairs {xi, yi}. Since L is bad,
we must have s < ε |B|.

Now consider a pair {xi, yi}. Vertices in N(xi) ∩ N(yi) ∩K have a color saved in L′ so
we wish to show this set is big. We have |N(xi) ∩N(yi) ∩K| ≥ 2(δ(B)− (2s− 2))− |K| =
2δ(B) + 4− |B| − 2s > (1− 2ε) |B|+ 2k + 2− 2s.

For v ∈ V (K), let l(v) count the number of i ∈ [s] such that v is joined to {xi, yi}. Then
|L′(v)| ≥ |K|+ l(v)−k for each v ∈ V (K). By Hall’s theorem, we can complete the coloring
if for all 0 ≤ a ≤ k we have |{v ∈ V (K) | l(v) ≥ k − a}| ≥ a+ 1. Thus it will suffice to show

that for any k− a indices i1, . . . ik−a ∈ [s] we have
∣∣∣⋂j∈[k−a] N(xij) ∩N(yij) ∩K

∣∣∣ ≥ a+ 1. If

this were not the case for some a, then by Lemma 6.8 we would have

(k − a)

(
k

k + 1
|B|+ 2(k + 1)− 2s

)
< (k − a− 1)(|B| − 2s) + a+ 1.

A simple computation shows that this is impossible. Hence we can complete the coloring,
contradicting the fact that L is bad.

We can use this to turn Theorem 5.4 into a theorem about graphs with dense neighbor-
hoods as follows. Little effort was put into optimizing the bound d(Gv) that we can get
using Lemma 5.5 since with a more developed dk-choosability theory any such bound would
be easily defeated (as in the k = 1 case).

Theorem 5.6. Let k ≥ 0. Every graph G with ω(G) ≤ ∆(G) − 2k such that d(Gv) ≥
6k2

6k2+1
∆(G) + k + 6 for each v ∈ V (G) is (∆(G)− k)-colorable.

Proof. Let G be such a graph and put ∆ := ∆(G). Suppose G is not (∆ − k)-colorable.
If k = 0, then Brooks’ theorem gives a contradiction. If k = 1, Theorem 4.9 gives a
contradiction.

So, we must have k ≥ 2. Let H be a (∆ + 1 − k)-vertex-critical subgraph of G. Then
δ(H) ≥ ∆−k and hence d(Hv) ≥ d(Gv)−k. By Theorem 5.4, there must be v ∈ V (G) such
that ω(v) < 2k

2k+1
∆ + 2k + 1.

Put s := ∆−k
2k+1

− 6k. Applying Lemma 5.5 repeatedly on K1 ∗Hv, gives a sequence
y1, . . . , ys ∈ NH(v) such that for each i ∈ [s] we have

|NH(yi) ∩ (NH(v)− {y1, . . . , yi−1})| <
2k + 1

2k + 2
(|Hv| − i) + k − 1.

Hence the number of edges missing in Hv is at least

−(k − 1)s+
1

2(k + 1)

∑
i∈[s]

(∆− k − i) .

On the other hand we have d(Hv) ≥ d(Gv) − k ≥ 6k2

6k2+1
∆ + 6 and hence the number of

edges missing in Hv is at most
(

∆−k
2

)
− 3k2

6k2+1
∆(∆−k)−3(∆−k) < 1

2(6k2+1)
(∆−k)2− 7

2
(∆−k).

Therefore, multiplying through by 2(k + 1)(6k2 + 1), we must have

−2(k2−1)(6k2+1)s+(6k2+1) (s(∆− k)− s(s+ 1)) ≤ (k+1)(∆−k)2−7(k+1)(6k2+1)(∆−k).
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Let’s collect everything to the left side and look at the coefficients of the powers of ∆−k
individually. Plugging in for s, we have 6k2+1

2k+1
− 6k2+1

(2k+1)2
− (k+ 1) = 8k3−8k2−3k−1

(2k+1)2
for (∆− k)2.

For (∆ − k)1 we get −2(k2−1)(6k2+1)
2k+1

− (6k − 1)(6k2 + 1) + 7(k + 1)(6k2 + 1) > 8(6k2 + 1).
Finally, for (∆− k)0 we have 12k(k2 − 1)(6k2 + 1)− 36k2 + 6k. Thus all of the coefficients
are positive for k ≥ 2, a contradiction.

Problem. Develop dk-choosability theory and improve the bound d(Gv) ≥ 6k2

6k2+1
∆(G)+k+6.

In particular, can the dependence on k in 6k2

6k2+1
be made linear?

6 List coloring lemmas

Let G be a graph. A list assignment to the vertices of G is a function from V (G) to the
finite subsets of N. A list assignment L to G is good if G has a coloring c where c(v) ∈ L(v)
for each v ∈ V (G). It is bad otherwise. We call the collection of all colors that appear in L,
the pot of L. That is Pot(L) :=

⋃
v∈V (G) L(v). For a subgraph H of G we write PotH(L) :=⋃

v∈V (H) L(v). For S ⊆ Pot(L), let GS be the graph G [{v ∈ V (G) | L(v) ∩ S 6= ∅}]. We also

write Gc for G{c}. For f : V (G) → N, an f -assignment on G is an assignment L of lists to
the vertices of G such that |L(v)| = f(v) for each v ∈ V (G). We say that G is f -choosable
if every f -assignment on G is good. Given f : V (G) → N, we have a partial order on the
f -assignments to G given by L < L′ iff |Pot(L)| < |Pot(L′)|. When we talk of minimal
f -assignments, we mean minimal with respect to this partial order.

We’ll need a lemma about bad list assignments with minimum pot size proved in [5].
Some form of this lemma which we call the Small Pot Lemma has appeared independently
in at least two places we know of—Kierstead [10] and Reed and Sudakov [17]. We also use
the following precursor to this lemma.

Lemma 6.1. Let G be a graph and f : V (G)→ N. Assume G is not f -choosable and let L
be a minimal bad f -assignment. Assume L(v) 6= Pot(L) for each v ∈ V (G). Then, for each
nonempty S ⊆ Pot(L), any coloring of GS from L uses some color not in S.

Small Pot Lemma. Let G be a graph and f : V (G)→ N with f(v) < |G| for all v ∈ V (G).
If G is not f -choosable, then G has a minimal bad f -assignment L such that |Pot(L)| < |G|.

We also need the notion of dk-choosability from [5].

Definition 1. Let G be a graph and r ∈ Z. Then G is dk-choosable if G is f -choosable
where f(v) = d(v)− k.

An in-depth study of the d1-choosable graphs was performed in [5]. We only need a small
portion of those results here and their generalization to dk-choosability. We use the following
results on d1-choosability.

Lemma 6.2. For t ≥ 4, Kt ∗B is not d1-choosable iff ω(B) ≥ |B| − 1; or t = 4 and B is
E3 or a claw; or t = 5 and B is E3.

Lemma 6.3. Let A be a graph with |A| ≥ 4. Let L be a list assignment on G := E2 ∗A such
that |L(v)| ≥ d(v)− 1 for all v ∈ V (G) and each component D of A has a vertex v such that
|L(v)| ≥ d(v). Then L is good on G.
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Lemma 6.4. Let A and B be graphs such that G := A ∗B is not d1-choosable. If either
|A| ≥ 2 or B is d0-choosable and L is a bad d1-assignment on G, then

1. for any independent set I ⊆ V (B) with |I| = 3, we have
⋂
v∈I L(v) = ∅; and

2. for disjoint nonadjacent pairs {x1, y1} and {x2, y2} at least one of the following holds

(a) L(x1) ∩ L(y1) = ∅;
(b) L(x2) ∩ L(y2) = ∅;
(c) |L(x1) ∩ L(y1)| = 1 and L(x1) ∩ L(y1) = L(x2) ∩ L(y2).

Lemma 6.5. Let H be a d0-choosable graph such that G := K1 ∗H is not d1-choosable and
L a minimal bad d1-assignment on G. If some nonadjacent pair in H have intersecting lists,
then |Pot(L)| ≤ |H| − 1.

Lemma 6.6. Let H be a d0-choosable graph such that G := K1 ∗H is not f -choosable where
f(v) ≥ d(v) for the v in the K1 and f(x) ≥ d(x) − 1 for x ∈ V (H). If L is a minimal bad
f -assignment on G, then all nonadjacent pairs in H have disjoint lists.

Lemma 6.7. If B is a graph with δ(B) ≥ |B|+1
2

such that K1 ∗B is not d1-choosable, then
ω(B) ≥ |B| − 1 or B = E3 ∗K4.

Proof. Suppose the lemma is false and let L be a minimal bad d1-assignment on B. First note
that if B does not contain disjoint nonadjacent pairs x1, y1 and x2, y2, then ω(B) ≥ |B| − 1
or B = E3 ∗K4 by Corollary 6.2.

By Dirac’s theorem, B is hamiltonian and in particular 2-connected. Since B cannot be
an odd cycle or complete, B is d0-choosable.

By the Small Pot Lemma, |Pot(L)| ≤ |B|. Since |L(x1)| + |L(x2)| ≥ |B| + 1, their lists
intersect and thus Lemma 6.5 shows that |Pot(L)| ≤ |B| − 1. But then |L(xi) ∩ L(yi)| ≥ 2
for each i and Lemma 6.4 gives a contradiction.

We’ll need the following simple consequence of the pigeonhole principle.

Lemma 6.8. Let r ∈ N≥1. If S1, . . . , Sm are subsets of a finite set T with |Si| ≥ r for each

i ∈ [r] and
∑

i∈[m] |Si| ≥ (m− 1) |T |+ r, then
∣∣∣⋂i∈[m] Si

∣∣∣ ≥ r.

Lemma 6.9. Kr ∗Ek+2 is dk-choosable when k ≥ 0 and r ≥ (k + 1)(k + 2).

Proof. Suppose not and let L be a minimal bad dk-assignment on Kr ∗Ek+2 where r =
(k + 1)(k + 2). By the Small Pot Lemma, we have |Pot(L)| ≤ r + k + 1. For each v in the
Kr we have |L(v)| = r + 1 and for each v in the Ek+2 we have |L(v)| = r − k. Let A be the
colors appearing on the Kr and B the colors appearing on the Ek+2. By Lemma 6.1 we must
have B ⊆ A. Let {X, Y } be a partition of Ek+2 with |X| ≥ |Y | and |X| − |Y | ≤ 1. Now∑

x∈X |L(x)| = |X| (r− k) ≥ |X| (k2 + 2k+ 2) = (|X| − 1)(k2 + 4k+ 3)− |X| (2k+ 1) + k2 +
4k+ 3 ≥ (|X| − 1) |Pot(L)| − k+3

2
(2k+ 1) + k2 + 4k+ 3 > (|X| − 1) |Pot(L)|. Hence Lemma

6.8 gives c1 ∈
⋂
x∈X L(x). Similarly, we have c2 ∈

⋂
x∈Y L(x). Color all of X with c1 and

all of Y with c2. This leaves each vertex in Kr with a list of size at least r − 1. We could
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complete the coloring if two of these lists were different. Hence they are all the same and
thus L(x) = L(y) for all x, y ∈ Kr. Since B ⊆ A, we must have |Pot(L)| = r + 1. But then∑

x∈Ek+2
|L(x)| = (k+2)(r−k) ≥ (k+2)(k2+2k+2) = (k+1)(k2+3k+3)+1 > (k+1) |Pot(L)|

and hence we have c ∈
⋂
x∈Ek+2

L(x). Now we may color all of Ek+2 with c and finish the
coloring on Kr, a contradiction.

The following lemma was proved in [5].

Lemma 6.10. Let k ≥ 1. If B is a graph such that K3k+1 ∗B is not dk-choosable, then
ω(B) ≥ |B| − 2k.

With almost an identical proof we get the following extension that allows us to handle
vertices of less than maximum degree more efficiently.

Lemma 6.11. Let 1 ≤ j ≤ k. Let B be a graph and L a list assignment on G := K3k+1 ∗B
such that |L(v)| ≥ d(v) − j for v ∈ V (K3k+1) and |L(v)| ≥ d(v) − k for v ∈ V (B). If L is
bad on G, then ω(B) ≥ |B| − 2j.

To prove our final list coloring lemma, we need another tool from [5].

Lemma 6.12. Fix k ≥ 1. Let A be a connected graph and B an arbitrary graph such that
A ∗B is not dk-choosable. Let L be a minimal bad dk-assignment on A ∗B. If B is colorable
from L using at most |B| − k colors, then |Pot(L)| ≤ |A|+ |B| − 2.

Lemma 6.13. Let k ≥ 1. If B is the complement of a bipartite graph and K3k+1 ∗B is not
dk-choosable, then ω(B) ≥ |B| − k.

Proof. Suppose not, let B be such a graph and L a minimal bad dk-assignment on K3k+1 ∗B.
Let A be the K3k+1. Let M := {{x1, y1} , . . . , {xt, yt}} be a maximum matching in the
complement of B. If t ≤ k, then since B is perfect we have ω(B) = χ(B) ≥ |B| − k giving a
contradiction.

Hence t ≥ k + 1. For i ∈ [t] we have |L(xi)| + |L(yi)| ≥ dB(xi) + dB(yi) + 4k + 2 ≥
|B| − 2 + 4k + 2 = |B|+ 4k since α(B) ≤ 2. By the Small Pot Lemma, we have |Pot(L)| ≤
|A|+|B|−1 = |B|+3k. Hence we have different colors c1, . . . , ck such that ci ∈ L(xi)∩L(yi) for
each i ∈ [k]. For each such i, color each of xi, yi with ci. Then we can complete the coloring on
B since |A| ≥ k+1. We just colored B with at most |B|−k colors and hence applying Lemma
6.12 gives |Pot(L)| ≤ |B|+3k−1. So, now we can pick ck+1 ∈ L(xk+1)∩L(yk+1)−{c1, . . . , ck},
color each of xi, yi with ci for i ∈ [k + 1], then complete the coloring to B. Now each vertex
in A has at least k+1 colors used twice on its neighborhood, so we can complete the coloring,
a contradiction.

7 Independent transversals

For completeness we include the proof of the main independent transveral lemma used above.
In [9], Haxell and Szabó developed a technique for dealing with independent transversals.
In [8], Haxell used this technique to give simpler proof of her transversal lemma. The proof
gives a bit more and we record that here. This is just slightly more general than the extension
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given in [1] by Aharoni, Berger and Ziv. We write f : A� B for a surjective function from
A to B. Let G be a graph. For a k-coloring π : V (G) � [k] of G and a subgraph H of
G we say that I := {x1, . . . , xk} ⊆ V (H) is an H-independent transversal of π if I is an
independent set in H and π(xi) = i for all i ∈ [k].

Lemma 7.1. Let G be a graph and π : V (G) � [k] a proper k-coloring of G. Suppose that
π has no G-independent transversal, but for every e ∈ E(G), π has a (G − e)-independent
transversal. Then for every xy ∈ E(G) there is J ⊆ [k] with π(x), π(y) ∈ J and an induced
matching M of G [π−1(J)] with xy ∈M such that:

1.
⋃
M totally dominates G [π−1(J)],

2. the multigraph with vertex set J and an edge between a, b ∈ J for each uv ∈ M with
π(u) = a and π(v) = b is a (simple) tree. In particular |M | = |J | − 1.

Proof. Suppose the lemma is false and choose a counterexample G with π : V (G) � [k] so
as to minimize k. Let xy ∈ E(G). By assumption π has a (G− xy)-independent transversal
T . Note that we must have x, y ∈ T lest T be a G-independent transversal of π.

By symmetry we may assume that π(x) = k − 1 and π(y) = k. Put X := π−1(k − 1),
Y := π−1(k) and H := G − N({x, y}) − E(X, Y ). Define ζ : V (H) → [k − 1] by ζ(v) :=
min {π(v), k − 1}. Note that since x, y ∈ T , we have |ζ−1(i)| ≥ 1 for each i ∈ [k − 2]. Put
Z := ζ−1(k − 1). Then Z 6= ∅ for otherwise M := {xy} totally dominates G[X ∪ Y ] giving
a contradiction.

Suppose ζ has an H-independent transversal S. Then we have z ∈ S∩Z and by symmetry
we may assume z ∈ X. But then S∪{y} is a G-independent transversal of π, a contradiction.

Let H ′ ⊆ H be a minimal spanning subgraph such that ζ has no H ′-independent
transversal. Now d(z) ≥ 1 for each z ∈ Z for otherwise T − {x, y} ∪ {z} would be an
H ′-independent transversal of ζ. Pick zw ∈ E(H ′). By minimality of k, we have J ⊆ [k − 1]
with ζ(z), ζ(w) ∈ J and an induced matching M of H ′ [ζ−1(J)] with zw ∈M such that

1.
⋃
M totally dominates H ′ [ζ−1(J)],

2. the multigraph with vertex set J and an edge between a, b ∈ J for each uv ∈ M with
ζ(u) = a and ζ(v) = b is a (simple) tree.

Put M ′ := M ∪ {xy} and J ′ := J ∪ {k}. Since H ′ is a spanning subgraph of H,
⋃
M

totally dominates H [ζ−1(J)] and hence
⋃
M ′ totally dominates G [π−1(J ′)]. Moreover, the

multigraph in (2) for M ′ and J ′ is formed by splitting the vertex k− 1 ∈ J into two vertices
and adding an edge between them and hence it is still a tree. This final contradiction proves
the lemma.
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