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Abstract

It is shown that any graph with maximum degree A in which the average degree of
the induced subgraph on the set of all neighbors of any vertex exceeds %A +k+6
is either (A — k)-colorable or contains a clique on more than A — 2k vertices. In the
k = 1 case we improve the bound on the average degree to %A + 4 and the bound
on the clique number to A — 1. As corollaries, we show that every graph satisfies

. 154/48n+73
X < max {w, A — 1,4a} and every graph satisfies x < max {w, A—1, [fn—‘ }

1 Introduction

Using ideas developed for strong coloring by Haxell [7] and by Aharoni, Berger and Ziv
[1], we make explicit a recoloring technique and apply it to coloring graphs with dense

neighborhoods. The average degree of a graph G is d(G) := % For a vertex v in a graph

G, put G, := G [N(v)]. Reed [I5] has conjectured that every graph satisfies

y < [w—l—?—i—l-"

Our first result implies this conjecture without the round-up for graphs where every
vertex is in a big clique.

Theorem [5.4 Let k > 1. Every graph G with w(G) < A(G) — 2k such that every vertez is

in a clique on %A(G) + 2k 4 1 wertices is (A(G) — k)-colorable.

Using probabilistic methods, Reed [15] proved a similar-looking result that is much better
for very large k and A. For comparison, we modify the statement to look as close to Theorem

as possible.

Theorem 1.1 (Reed [15]). There exists Ay such that for k > 0 every graph G with A(G) >
Ay and LN (G) < w(G) < A(G) — 2k is (A(G) — k)-colorable.

70000000
This implies Theorem when & gets to be larger than around 35 million. In fact,
Reed states that with some care the constant can be brought down to % and so really his

method starts implying Theorem when k gets larger than 5000. Moreover, Theorem
just needs a large clique while Theorem requires every vertex to be in a large clique.

It turns out that if every neighborhood has many edges, it is guaranteed that every vertex
is in a large clique. This implies the following.
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Theorem [5.6, Let k > 0. Every graph G with w(G) < A(G) — 2k such that d(G,) >
S _A(G) + k +6 for each v € V(G) is (A(G) — k)-colorable.

6k2+1

To tighten these results up, further development of the theory of f-choosability where
f(v) =d(v)—k for k > 2 is needed. For k = 1 this theory was developed in [5] and using it in
the case of (A —1) coloring, we achieve tighter bounds which have bearing on the conjecture
of Borodin and Kostochka [3].

Conjecture 1.2 (Borodin and Kostochka [3]). Every graph with x > A > 9 contains Ka.

Also using probabilistic methods, Reed [16] has proved this conjecture for very large A.
Using d;-choosability theory, we prove the following.

Theorem FEvery graph with x > A > 9 such that every vertex is in a clique on %A +2
vertices contains Kx.

From this it follows that it would be enough to prove the Borodin-Kostochka conjecture
for irregular graphs.

Theorem [4.4. Every graph satisfying x > A = k > 9 either contains K or contains an
irreqular critical subgraph satisfying x = A =k — 1.

We also get a neighborhood density version.

Theorem Every graph G with w(G) < A(G) such that d(G,) > 2A(G) + 4 for each
v e V(G) is (A(G) — 1)-colorable.

Finally, we use these ideas to prove the following bounds on the chromatic number. The
first generalizes the result of Beutelspacher and Hering [2] that the Borodin-Kostochka con-
jecture holds for graphs with independence number at most two. This result was generalized
in another direction in [4] where the conjecture was proved for claw-free graphs.

Theorem FEvery graph satisfies x < max{w, A — 1,4a}.

The second bound shows that the Borodin-Kostochka conjecture holds for graphs with
maximum degree on the order of the square root of their order. This improves on prior
bounds of A > 2+ from Beutelspacher and Hering [2] and A > 22 of Naserasr [14].

Theorem 4.12, Every graph satisfies x < max {w, A—1, PH— WW }

2 Strong coloring

For a positive integer r, a graph G with |G| = rk is called strongly r-colorable if for every
partition of V(G) into parts of size r there is a proper coloring of G that uses all r colors on
each part. If |G| is not a multiple of r, then G is strongly r-colorable iff the graph formed

by adding r {@-‘ — |G| isolated vertices to G is strongly r-colorable. The strong chromatic

number sx(G) is the smallest r for which G is strongly r-colorable.



Note that a strong r-coloring of G with respect to a partition Vi,..., Vi of V(G) with
|Vi| = r must partition V(G) into r independent transversals of Vi,..., Vi. In [18], Szabd
and Tardos constructed partitioned graphs with part sizes 2A — 1 that have no independent
transversal. So we must have sx(G) > 2A(G). It is conjectured that this bound is tight.

Haxell [7] proved that sx(G) < 3A(G) — 1. Aharoni, Berger and Ziv [I] gave a simple
proof that sy(G) < 3A(G). It is this latter proof whose recoloring technique we use. First
we need a lemma allowing us to pick an independent transversal when one of the sets has
only one element.

Lemma 2.1. Let H be a graph and Vi U --- UV, a partition of V(H). Suppose that |V;| >
2A(H) for each i € [r]. If a graph G is formed by attaching a new vertex x to fewer than
2A(H) vertices of H, then G has an independent set {x,vy,...,v.} where v; € V; for each
i€ lr]

Proof. Suppose not. Remove {x}UN (x) from G to form H’ with induced partition V{, V3, ... V.
Then V{, V5, ...,V has no independent transversal since we could combine one with z to
get our desired independent set in G. Note that |[V/| > 1. Create a graph @ by re-
moving edges from H’ until it is edge minimal without an independent transversal. Pick
yz € FE(Q) and apply Lemma on yz with the induced partition to get the guaran-
teed J C [r] and the totally dominating induced matching M with |M| = |J| — 1. Now
}UZEJ VZ’| >2A(H) |J| —2A(H) = 2(|J| — 1)A(H) and hence M cannot dominate, a contra-
diction. [l

Theorem 2.2. Fvery graph satisfies sy < 3A.

Proof. We only need to prove that graphs with n := 3Ak vertices have a 3A coloring for
each k > 1. Suppose not and choose a counterexample G minimizing ||G||. Put r := 3A(G)
and let Vi,..., Vi be a partition of G for which there is no acceptable coloring. Then the
V; are independent by minimality of ||G||. By symmetry we may assume there are adjacent
vertices © € V; and y € V5. Apply minimality of |G| to get an r-coloring m of G — xy with
(Vi) = [r] for each i € [k]. We will modify 7 to get such a coloring of G.

By symmetry, we may assume that 7(z) = w(y) = 1. For 2 < i < k, let z be the
unique element of 771 (1)NV; and put W; := V;—{v € V; | 7(v) = n(w) for some w € N(z;)}.
Then |W;| > 2A(G) and we may apply Lemma to get a G-independent transversal
Wy, Wy, ..., wy of {x} Wy, W3, ..., W. Define a new coloring ¢ of G by

1 if v =w;
C(v) = m(w;) ifv=z
m(v)  otherwise.

Then ( is a proper coloring of G with ((V;) = [r] for each i € [k], a contradiction. O

For our application we will need a lopsided version of Lemma generalizing King’s [11]
lopsided version of Haxell’s lemma.

Lemma 2.3. Let H be a graph and Vi U --- UV, a partition of V(H). Suppose there exists
t > 1 such that for each i € [r] and each v € V; we have d(v) < min {t,|V;| —t}. For any
S CV(H) with |S| < min{|Vi|,...,|V,|}, there is an independent transversal I of Vi,...,V,
with ITNS = 0.



Proof. Suppose the lemma fails for such an S C V(H). Put H' := H — S and let V/, ..., V/
be the induced partition of H’. Then there is no independent trasversal of V/,... V! and
|[V/| > 1 for each i € [r]. Create a graph @ by removing edges from H’ until it is edge
minimal without an independent transversal. Pick yz € F(Q) and apply Lemma on Yz
with the induced partition to get the guaranteed J C [r] and the tree T with vertex set .J
and an edge between a,b € J for each uwv € M with v € V] and v € V}/. By our condition,
for each wv € E(V;,V;), we have |Ny(u) U Ny(v)| < min {|V}|, |V;|}.

Choose a root ¢ of T. Traversing T in leaf-first order and for each leaf a with parent b
picking |V, | from min {|V,|, |V4|} we get that the vertices in M together dominate at most
Y ics—o |Vi| vertices in H. Since |S| < |V;|, M cannot totally dominate |J,., V;, a contradic-
tion. [

We note that the condition on S can be weakened slightly. Suppose we have ordered
the V; so that [V4| < [V < -+ < |V,|. Then for any S C V(H) with |S| < |V3| such that
Vi € S, there is an independent transversal I of Vi,...,V, with I NS = (. The proof is the
same except when we choose our root ¢, choose it so as to maximize |V.|. Since |J| > 2, we
get |V.| > [Va| > |S| at the end.

3 The recoloring technique

We can extract the idea in the proof of Theorem to get a general recoloring tech-
nique. Suppose G is a k-vertex-critical graph and pick € V(G) and (k — 1)-coloring
mof H:= G —x. Let Z be a color class of m, say Z = 7 (1). For each z € Z, let
O, be the neighbors of z which get a color that no other neighbor of z gets; that is, put
O, :={v € Ny(2) | 7(v) & m(Nu(z) — v)}. Suppose the O, are pairwise disjoint. If we could
find an independent transversal {z} U {v.},., of {z} together with the O., then recoloring
each z € Z with 7(v,) and coloring each vertex in {z} U {v.},., with 1 gives a proper
(k — 1)-coloring of G. This is exactly what happens in the above proof of the strong coloring
result. To make this work more generally, we need to find situations where each G[O,] has
high minimum degree. Also, intuitively, the O, intersecting each other should make things
easier since recoloring a vertex in the intersection of O,, and O,, works for both z; and zs.
In our applications we will allow some restricted intersections.

4 Borodin-Kostochka when every vertex is in a big clique

The case of (A —1)-coloring is easier and provides a good warm-up for general coloring. Also,
we achieve tighter bounds in this case because the list coloring theory is more developed.

4.1 A general decomposition

Let D; be the collection of graphs without induced d;-choosable subgraphs. Plainly, D; is
hereditary. For a graph G and t € N, let C; be the maximal cliques in G having at least
t vertices. We prove the following decomposition result for graphs in D; which generalizes
Reed’s decomposition in [16].



Lemma 4.1. Suppose G € D, has A(G) > 8 and contains no Kag). If % <t <
A(G) —1, then |JC; can be partitioned into sets Dy, ..., D, such that for each i € [r| at least
one of the following holds:

° Dz = CZ € Ct,
e D, =C;U{x;} where C; € Cy and |N(z;) NCy| >t — 1.
Moreover, each v € V(G) — D; has at most t — 2 neighbors in C; for each i € [r].

Proof. Suppose |C;| < |C;| and C; N C;j # 0. Then |C;NC;| > |Ci| +|C;| — (A+1) > 4. Tt
follows from Corollary [6.2] that |C; — C;] < 1.

Now suppose C; intersects C; and Cj. By the above, |C; N C;| > % and similarly
C; N Cy| > 29 Hence |C; N C; N Cy| > A(G)+3—(A(G)—1) = 4. Put I := C;NC;NCy,
and U := C; U C; U (. By maximality of C;,C;, Cy, U cannot induce an almost complete
graph. Thus, by Corollary [6.2] |U| € {4,5} and the graph induced on U — I is Ej. But then
t < 6 and hence A(G) <7, a contradiction.

The existence of the required partition is immediate. O

When D; € C;, we put K; := C; := D; and when D; = C; U {x;}, we put K; := N(x;) N C;.

4.2 Doing the recoloring

Let G be a graph. For v € V(G), we let w(v) be the size of a largest clique in G containing v.
The proofs of the results in this section go more smoothly when we strengthen the induction
in terms of the parameter p(G) := max,cv(c) d(v) — w(v).

Lemma 4.2. For k > 9, every graph satisfying A < k, w < k and p < § —2is (k—1)-
colorable.

Proof. Suppose the theorem fails for some k£ > 9 and choose a counterexample G' minimizing
|G|+ ||G]|. Put A :== A(G). If A <k, then A =k — 1 and by Brooks’ theorem G contains
Ky, a contradiction. Thus x(G) = k = A. Also, for any v € V(G) we have p(G —v) < p(G),
applying our minimality condition on G implies that G is vertex critical.

Therefore §(G) > A — 1 and G € D;. For any v € V(G), we have A — 1 — w(v) <
d(v) —w(v) < § — 2 and hence w(v) > 2A + 1. Applying Lemma with ¢ := 2A +1 we
get a partition Dy, ..., D, of | JC; = V(G). Note that for i € [r], if K; # D; then all vertices
in K; are high by Lemma . Pick x € K;. Then z has |C;] — 1 < A — 2 neighbors in D, if
K; = D; and |C1] < A—1if K; # D;. Hence, by our note, = has a neighbor w € V(G) — D;.

We now claim that zw is a critical edge in G. Suppose otherwise that x(G — zw) = A.
Then by minimality of G we must have p(G — zw) > p(G). Hence there is some vertex
v € N(z) N N(w) so that every largest clique containing v contains zw. But v is in some
D; and all largest cliques containing v are contained in D; and hence do not contain zw, a
contradiction.

Let m be a (A — 1)-coloring of G — zw chosen so that 7(z) = 1 and so as to minimize
|7=1(1)]. Consider 7 as a coloring of G — x. One key property of m we will use is that since
x got 1 in the coloring of G — zw and x € K, no vertex of D; — x gets colored 1 by 7.
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Now put Z := 7~ !(1) and for z € Z, let O, be as defined in Section . By minimality
of |Z|, each z € Z has at least one neighbor in every color class of 7. Hence z has two or
more neighbors in at most 2 + d(z) — A of 7’s color classes. For each z € Z we have i(z)
such that z € D). For z € Z such that i(z) € i(Z — z), put V. := O, N Cy,). We have
V.| > w(z) =1 —(2+d(z) — A). Since w(z) > d(z) — 1A + 2, we have |[V.| > 2A — 1.
Each y € V. is adjacent to all of Cj.) — {y} and hence has at most d(y) + 1 — ’C’,-(Z){
neighbors outside D;.y. Since w(y) > d(y) + 2 — 3A, we conclude that y has at most
d(y) +1—(d(y) + 2 — 3A) = A — 1 neighbors outside Dj.).

Now let Z' be the z € Z with i(z) € i(Z—2). Then Z’ can be partitioned into pairs {z, 2’}
such that i(z) = i(2’). For such a pair, one of z, 2" is x;.,) and the other is in Cj,) — Kj(»).
Put V. := O, N O, N K.y and don’t define V... We have [V.| > min{w(z),w(2")} —
1—(24dz)—A)— (2+d(z)—A) > —2A+2—-1—-2(2—-A) — max{d(z),d(?)} =
2A—max{d(z),d(z')} =3 > 2A —3. Each y € V. is adjacent to all of Dy, — {y} and hence
has at most d(y)+1— ’Di(z)‘ neighbors outside D;(,). Since ‘Di(z)| =w(y)+1>d(y)+3— %A,
we conclude that y has at most %A — 2 neighbors outside D).

Let H be the subgraph of G induced on the union of the V,. Put § := N(z) NV (H).
Since Z N Dy = (), x has at least |D;| — 1 neighbors in D; none of which are in S. Hence
15| < d(z)+1—|Dy| <d(z)+1—-w(z) < §—1<|V,|forall V, since A > 7. Hence we may
apply Lemma on H with ¢ := %A — 1 to get an independent set {v.},., disjoint from
S where v, € V. Recoloring each z € Z with m(z) and coloring x U {v.},., with 1 gives a
(A — 1)-coloring of G, a contradiction. O

The following special case is a bit easier to digest.

Theorem 4.3. Every graph with x > A > 9 such that every vertez is in a clique on %A +2
vertices contains K.

4.3 Reducing to the irregular case

It is easy to see that if there are irregular counterexamples to the Borodin-Kostochka con-
jecture, then there are regular examples as well: take an irregular counterexample G clone
it, add an edge between any vertex with degree less than A(G) and its clone; repeat until
you have a regular graph (from [13]).

But what about the converse? If there are regular examples, must there be (connected)
irregular examples? We'll see that the answer is yes, but we need to decrease the maximum
degree by one.

Theorem 4.4. FEvery graph satisfying x > A = k > 9 either contains Ky or contains an
irreqular critical subgraph satisfying x = A =k — 1.

Proof. Suppose not and choose a counterexample G minimizing |G|. Then G is vertex
critical. If every vertex in G were contained in a (k — 1)-clique, then Corollary would
give a K}, in G, impossible. Hence we may pick v € V(G) not in a (k — 1)-clique. If v is
high, choose a (k — 1)-coloring 7 of G — v so that the color class T of m where v has two
neighbors is as large as possible; if v is low, let 7 be a (k — 1)-coloring of G — v where some
color class T of 7 is as large as possible. By symmetry, we may assume that 7(7) = k — 1.



Now we have a (k — 1)-coloring ¢ of H := G — T given by ((z) = w(z) for z # v and
((v) = k — 1. Since x(H) = k — 1, the maximality condition on 7" together with Brooks’
theorem gives A(H) = k— 1. Note that dy(v) = k—2. Let H' be a (k —1)-critical subgraph
of H. Then H' must contain v and hence is not Kj_;. Since dy:(v) = k—2 and A(H') = k—1
(by Brooks’ theorem), H' is an irregular critical subgraph of G satisfying x = A=k —1, a
contradiction. ]

Figure 1: Mg: A C5 with vertices blown-up to triangles.

Since the only known critical (or connected even) counterexample to Borodin-Kostochka
for A = 8 is regular (see Figure|l|) we might hope that the following strengthened conjecture
1s true.

Conjecture 4.5. Every critical graph with x > A = 8 s reqular.

4.4 Dense neighborhoods

Here we show that the Borodin-Kostochka conjecture holds for graphs where each neigh-
boorhood has “most” of its possible edges. First, we need to convert high average degree
in a neighborhood into a large clique in the neighborhood. We need the following extension
of a fundamental result of Mader [12] (see Diestel [6] for some history of this result). We
will also need d;-choosability results from [5] as well as some ideas for dealing with average
degree in neighborhoods used in [4].

Lemma 4.6. For k > 1, every graph G with d(G) > 4k has a (k + 1)-connected induced
subgraph H such that d(H) > d(G) — 2k.

Lemma 4.7. If B is a graph with d(B) > w(B) + 2, then B has an induced subgraph H
such that Ky x H is f-choosable where f(v) > d(v) for the v in the Ki and f(x) > d(x) — 1
for x € V(H).

Proof. Let B be such a graph. Applying Lemma [4.6| with £ := 1, we get a 2-connected
subgraph H of B with d(H) > d(B) — 2 > w(B). Since H is 2-connected, if it is not
do-choosable, then it is either an odd cycle or complete. The former is impossible since
d(H) > 3, hence H would be complete and we’d have the contradiction w(H) > w(B).
Hence H is dy-choosable.

Suppose K *x H isn’t f-choosable and let L be a minimal bad f-assignment on K *x B.
By Lemma no nonadjacent pair in H have intersecting lists and hence we must have
> wevin [L()] < [Pot(L)|w(H). Since for each v € V(H) we have [L(v)| > dp(v) and by
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the Small Pot Lemma we have |Pot(L)| < |H|, we must have d(H) < w(H) < w(B) < d(H),
a contradiction. 0

Lemma 4.8. If B is a graph with d(B) > w(B) + 3, then B has an induced subgraph H
such that K+ H 1is dy-choosable.

Proof. Let B be such a graph. Applying Lemma [4.6| with k£ := 1, we get a 2-connected
subgraph H of B with d(H) > d(B) — 2 > w(B) 4+ 1. As in the proof of Lemma [1.7, we
see that H is dy-choosable. Suppose K; x H is not d;-choosable and let L be a minimal bad
dy-assignment on K x H. Combining Lemma with the same argument as in the proof of
Lemma [4.7] shows that |Pot(L)| < |H| — 1.

Now, for ¢ € Pot(L), we consider how big the color graphs H. can be. All of the
information comes from Lemma [6.4 We have a(G,.) < 2 for all ¢ € Pot(L). First, suppose
we have ¢ € Pot(L) such that |H.| > w(H) + 3. Then, using Lemma [6.4, we see that
|He| < w(H) for all ¢ € Pot(L)—cand hence 3 p, ) [H,| < [H[+(|Pot(L)| — 1) w(H) <
|H|w(H) + |H| — 2w(H). Now suppose we have ¢ € Pot(L) such that |H.| = w(H) + 2.
Then, using Lemma [6.4] again, we see that [Hy| < w(H)+1 for all ¢ € Pot(L) — ¢ and hence
S crouey [Hl < 1+ [Pot(L)] (w(H) + 1) < [H|w(H) + |H| — w(H).

Therefore we must have 2 ||H|| < |H|(w(H)+ 1) —w(H) and hence d(H) < w(H)+1 <
d(H), a contradiction. O

Theorem 4.9. Every graph G with w(G) < A(G) such that d(G,) > 2A(G) + 4 for each
v e V(G) is (A(G) — 1)-colorable.

Proof. Suppose note and let G be a counterexample. Put A := A(G). Let H be a A-
vertex-critical induced subgraph of G. Then 6(H) > A — 1 and H has no d;-choosable
induced subgraphs. By Theorem , we must have v € V(H) with w(v) < 2A+2. Suppose
d(H,) < d(Gy). Then dy(v) = A —1 and ||H,|| > ||Gu]| — (A — 1); therefore, d(H,) >
d(G,)—1> 2A+3. Applying Lemmamgives w(v) > d(H,)—1> 2A+2, a contradiction.

Hence we must have d(H,) = d(G,) > 2A + 4. Applying Lemma gives w(v) >
d(H,) — 2> 2A + 2, a contradiction. O

4.5 Bounding the order and independence number

Lemma 4.10. Let G be a vertex critical graph with x(G) = A(G) + 1 — k. For every
v € V(G) there is H, < G, with:

1. |Hy| > A(G) — 2k; and
2. 0(Hy) > |Hy| — (k+1)(a(G) — 1) — 1; and
3. (| Holl = [ Ho| ([Ho| = (k +2)) = (k + D (1G] + 2k = (A(G) + 1))

Proof. Put A := A(G). Pick v € V(G) and let 7 be a (A — k)-coloring of G —v. Let H, be

the subgraph of G, induced on {z € N(v) | n(z) € 7(N(v) — z)}. Plainly, |H,| > A — 2k.
By the usual Kempe chain argument, any x,y € V(H,) must be in the same component

of Cp, = Gr Y (w(x)) Un Hr(y))]. Thus if 2y ¢ E(G), there must be a path of length



at least 3 in C,, from z to y and hence some vertex of color m(x) other than z must have
at least two neighbors of color 7(y) and some vertex of color 7(y) other than y must have
at least two neigbhors of color mw(x). We say that such an intermediate vertex prozies for
zy. Each zy with y € V(H,) must have some proxy z;, € 7 *(m(2)) — x such that z,
proxies for at most k + 1 total zw with w € V(H,), for otherwise we could recolor all of xy’s
proxies, swap 7(z) and 7(y) in x’s component of C,, and then color v with 7(z) to get a
(A —k)-coloring of G. We conclude that = has at most (k+1)(]7—!(7(z))| — 1) non-neighbors
in H,. This gives (2) immediately.

For (3), note that |7 (i)| > 2 for each i € [A — k]—n(V (H,)) and hence Zjeﬂ L T <
G| =1 —=2(A =k —[H,]). Since [Holl > 3 jcniv,) (Ho| =1 = (k+ 1) (|7~ (J)| 1)), (3)
follows. O

Theorem 4.11. Every graph satisfies x < max {w, A — 1, 4a}.

Proof. Suppose not and choose a counterexample G minimizing |G|. Since none of the terms
on the right side increase when we remove a vertex, GG is vertex critical. Since the Borodin-
Kostochka conjecture holds for graphs with & = 2 and A > 9, we must have o(G) > 3 and
hence A(G) > 13. By Lemma, there must be v € V(G) with w(v) < 2A(G)+2. Applying
(2) of Lemma [4.10, we get H, < G, with |H,| > A(G) — 2 and 5( v) > |H,| — 2a(G) + 1.
Since A(G) > x(G) > 4a(G) + 1, we have §(H,) > |H,| — 22~ +1 > |H”|+1 Applying
Lemma [6.7) shows that either H, = K3 Ey or w(H,) > |H,| — 1 The former is impossible
since A(G) > 9. Therefore w(v) > w(H,) + 1> A(G) —2 > 2A(G) + 2 since A(G) > 12, a
contradiction. 0

Theorem 4.12. Every graph satisfies x < max {w, A—1, {—1”@} }

Proof. Suppose not and choose a counterexample G minimizing |G|. Put A := A(G) and
= |G|. Since none of the terms on the right side increase when we remove a vertex, G
is vertex critical. By Lemma , there must be v € V(G) with w(v) < 2A + 2. Applying
(3) of Lemma [£.10} we get H, < G, with with |H,| > A — 2 and ||H,| > |H,|(|H,| —3) —
2(n+1—A). By Lemma , we must have d(H,) < 2A + 4 and hence we have

2 4n+1—-A)
SA+4>2(Hy)|-3) - ————
4(n+1—-A)
2(A—5) - T2
(A—5) N
Simplifying a bit, we get 6(n — 1) > (2A — 15)(A — 2). Since A > x(@) > 2£/8nt7

( —114+/48n+73 )( 114+/48n+73 ) 48n—48
2 4 8

we have 6(n — 1) > = 6(n — 1), a contradiction. O

5 Coloring graphs when every vertex is in a big clique

5.1 The decomposition

We need a partitioning result similar to Lemma in the general case. We deal with a set
of pairwise intersecting O, by only using vertices in their intersection. Since we need this
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intersection to be big in order to apply the independent transversal lemma, we need to limit
the number of O, that can pairwise intersect. For k > 0, let D, be the collection of graphs
without induced dj-choosable subgraphs. Again, for a graph G and t € N, we let C; be the
maximal cliques in G having at least ¢ vertices.

We put off as much computation as possible until later, to this end, define U(k, w, A) :=

max{%(A—i—l) (A+3k+2),2k+1(w—|—k;) -1, Ziéw+2k+1}

Lemma 5.1. Let k > 1 and suppose G € Dy. If t > U(k,w(G), A(G)), then |JC; can be
partitioned into sets Dy, ..., D, so that for each i € [r] each of the following holds:

1. |D;| < w(G[D;]) + 2k; and
2. G[D;] has at least 3k + 1 universal vertices; and

3. If L is a mazimum clique in G[D;], then for independent I C D; we have |L N (,; N(v)| >
\L| = |I|(|L| + &k —t); and

4. G[D;] has independence number at most k + 1.
Proof. Put A := A(G) and w = w(G). If w < t, then |JC; is empty and the lemma holds

vacuously. Hence we may assume w > t. Let X; be the intersection graph of C;. Since
> %(A + 1), X, is a disjoint union of complete graphs. Let Fi,...,F, be the components
of X; and put D; := UF; for i € [r].

Fix i € [r]. Choose L € F; with |L| = w(G[D;]). Put A:= D, — L.

Claim 1. |A| < 2k and | Fi| > 3k + 1. Choose S C A with |S| = min {2k + 1, |A|}.
Choose Q C F; such that S C | Q so as to minimize |Q|. Then for any @ € Q there exists
vg € SN(Q —UJ(Q—{Q})). In particular, |Q| < |S| = 2k+1. Suppose [L N () Q| > 3k+1.
Then by Lemma there is a clique with at least |S| + |L| — 2k vertices intersecting L.
Since L is a maximum size clique in D; we must have |A| < |S| < 2k. But then A =S and
NF:=LN(MNQsince AC |JO.

Therefore to prove the claim it suffices to show that [L N () Q| > 3k + 1. If @ = (), then
we are done since |L| > 3k + 1. Hence |Q| > 1. For any Q € Q, we have |QNL| >3k+1
since t > (A + 3k + 2). Hence we may apply Lemma [6.13| to get |Q — L| + |L| — k < |L]
and hence |Q — L] < k. So we have |QNL| > |Q| —k for all @ € Q. If Y o |QNL| >
(]Q|—1) |L|+3k+1, then applying Lemma6.8|gives the desired conclusion |L N ﬂ Q| > 3k+1.
Hence, if the claim fails, we must have

(19— Dw+3k+1>> QNI

QEeQ
> Q|-
QeQ
> Q[ (t — k).
Hence t < w+k — %Qk‘“ < 2k+1(w + k) — 1 since |Q| < 2k + 1, a contradiction. This
proves (1) and (2).
Claim 2. for independent I C D; we have |L N (),; N ‘ w(G[Dy]) = |I] (w(G[Dy]) +
k —t). For each v € I pick @, € F; containing v and put Q := {QU | v e I}. Note that
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LN(N,e;N(w) = LN Q. As in the proof of Claim 1, we see that [Q N L| > |Q| — k for
each Q € Q. Therefore, if the claim fails, Lemma[6.8 shows that we must have |Q| (t — k) <
(19| —=1)|L| +|L| = || (|L]| + k —t) and hence t < k+ |L| — |1| % = t, a contradiction.

Claim 3. G[D;] has independence number at most k+ 1. Suppose not and pick indepen-
dent I C D; with |I| = k+2. By Claim 2, |D; N (,; N(v)| > |L|— (k+2)(|L|+k—t). Since
t > H3w+2k+1, we have |D; N[(),o; N(v)| > (k+1)w—(k+1) |L|+(k+2)(2k+1)—k(k+2) >
(k+ 1)(k + 2). Now Lemma [6.9| gives a contradiction. O

5.2 Doing the recoloring

Again, to eliminate tiresome computation, put U’(k,w, A) := max { ZI%A +1,U(k,w A)}

Lemma 5.2. For k > 1 and v € N, every graph G with A(G) < v, w(G) < v — 2k and
p(G) <~v—k—-U(kw(G),v) is (y — k)-colorable.

Proof. Suppose the theorem fails and choose a counterexample first minimizing +v and subject
to that minimizing |G| + ||G]|. Put A := A(G). Plainly, we must have v > 2k. Suppose
A < ~. If ¥ > 1, then G satisfies the hypotheses of the theorem with 7' := v — 1 and
k' := k—1. By minimality of v, x(G) < v'—k’ = y—Fk, a contradiction. If ¥’ = 0, then Brooks’
theorem gives a contradiction. Hence A = . For any v € V(G) we have p(G —v) < p(G)
and hence the second minimality condition on G implies that G is (A+1—k)-vertex-critical.

Therefore 6(G) > A — k and G € Dy. For any v € V(G), we have A — k — w(v) <
d(v) —w(v) <A —k—U'(k,w,A) and hence w(v) > U'(k,w,A). Applying Lemma [5.1] with

= U'(k,w,A) we get a partition Dy,..., D, of |JC; = V(G). For i € [r], let K; be the
universal vertices in G[D;], we know |K;| > 3k + 1. Suppose every x € K; has N(z) C D;.
Put j := mingex, A —d(z). Since |K;| > 3k + 1, applying Lemma [6.11] for every z € K; we
have A — 25 > w(G[D;]) + 2(k — j) > |D;| > d(z) + 1, this contradicts the definition of j.
Thus we have x € K that has a neighbor w € V(G) — D;.

We claim that zw is a critical edge in G. Suppose otherwise that x (G —zw) = A+1—k.
Then by minimality of G we must have p(G — zw) > p(G). Hence there is some v €
N(z) N N(w) so that every largest clique containing v contains zw. But v is in some D;
and all largest cliques containing v are contained in D; and hence do not contain rw, a
contradiction.

Let m be a (A — k)-coloring of G — zw chosen so that w(z) = 1 and so as to minimize
|7=1(1)]. Consider 7 as a coloring of G — x. One key property of m we will use is that since
x got 1 in the coloring of G — zw and x € K, no vertex of D; — x gets colored 1 by 7.

Now put Z := 771(1) and for z € Z, let O, be as defined in Section [3| By minimality of
|Z], each z € Z has at least one neighbor in every color class of . Hence z has two or more
neighbors in at most k+1 of 7’s color classes. For each z € Z we have i(z) such that z € D;.).
For each a € i(Z), let L, be a maximum clique in G[D,] and put V, := L, N[ O,.
By Lemma 5.1} we have |i'(a)| < k + 1 and

z2€i~1(a)
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Vol > |La| — i (a ||L|—|—l€—t—|2 a)| (k+1)

= |Lo| (1 = |i7( |+\z \(t—2k=—1)
> w(l =i} |+\z (a)| (t — 2k — 1)
—w—|—|z |(t—2k—1—w)
Zw—l—(k:—l—l)(t—Qk—l—w)
k+ 2
> (k+1)(+——=A — 2k) — kw
= (k+ 1G5 ) =
k+2
2(k+1)(k—+3A—2k) k(A — 2k)
_ (kA Dk —kkE3)
k+3

A
—2(— —k].
(755 +)

Also |Dy| > |La4| + |i7*(a)] — 1. So, each y € V, has at most d(y) — (|Da| = 1) <
dy) —w(y) =it a)| +2 <d(y) —w(y) +1 <A -k — ZigA k+3 — k neighbors outside

D,. Now |Dq| >t > zﬁA + 1 and hence x has at most kﬁ?) neighbors outside D;. Let H
be the subgraph of G induced on the union of the V,. Then, we may apply Lemma on
H to get an independent set {z} U {v.},., where v, € V.. Recoloring each z € Z with 7(z)

and coloring = U {v.},., with 1 gives a (A — k)-coloring of G, a contradiction. O
A little computation gives the following two more parsable results.

Lemma 5 3. For k > 1 and v € N, every graph G with A(G) < v, w(G) < v — 2k and
p(G) < — (2k + 1) is (y — k)-colorable.

— 2k+l

Theorem 5.4. Let k > 1. Every graph G with w(G) < A(G) — 2k such that every vertex is

in a clique on 2,3_”“_1A(G) + 2k + 1 vertices is (A(G) — k)-colorable.

5.3 Dense neighborhoods

Lemma 5.5. Let k > 1. If B is a graph with §(B) > % |B| + k — 1 such that Ky * B s
not dy-choosable, then w(B) > |B| — 2k.

Proof. Let L be a minimal bad dj-assignment on K; % B. By the Small Pot Lemma, we
have |Pot(L)| < |B|. Let X := {{x1,11},...,{xs,ys}} be a maximal set of pairwise disjoint
independent sets of size 2 in B. Note that s < |—]23|. Put K := B — UX. Plainly, K is
complete. Thus we are done if s < k.

Suppose s > k+ 1. Put € := 5. For i € [s] we have |L(z;)| + [L(y;)| > dp(x;) +
dp(y;) — 2k +2 > 2(1 —€) |B| > |B| + s and hence we may pick s different colors ¢y, ..., ¢

where ¢; € L(x;) N L(y;). Color both x; and y; with ¢; to get a list assignment L’ on K.
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Each v € V(K) has at least §(B) — (|[K|—=1) > (1 —€)|B| + k — |K| = 2s + k — €| B|
neighbors in UX and hence is joined to at least s + k — €| B| pairs {x;,y;}. Since L is bad,
we must have s < €|B].

Now consider a pair {z;,y;}. Vertices in N(z;) N N(y;) N K have a color saved in L' so
we wish to show this set is big. We have |N(z;) N N(y;) N K| > 2(6(B) — (2s — 2)) — | K| =
20(B)+4—|B| —2s> (1—2¢)|B|+ 2k + 2 — 2s.

For v € V(K), let [(v) count the number of i € [s] such that v is joined to {z;,y;}. Then
|L'(v)| > |K|+1(v) — k for each v € V(K. By Hall’s theorem, we can complete the coloring
if for all 0 < a < k we have [{v € V(K) | I(v) > k —a}| > a+ 1. Thus it will suffice to show

jelk—a) N(xij> N N(yij) NK|>a+1. If

this were not the case for some a, then by Lemma we would have

that for any k — a indices iy, .. .15, € [s] we have |

k
(k—a) (k—H|B|+2(k‘+1)—23> <(k—a—-1)(|B] —2s)+a+ 1.

A simple computation shows that this is impossible. Hence we can complete the coloring,
contradicting the fact that L is bad. O]

We can use this to turn Theorem into a theorem about graphs with dense neighbor-
hoods as follows. Little effort was put into optimizing the bound d(G,) that we can get
using Lemma [5.5]since with a more developed dj-choosability theory any such bound would
be easily defeated (as in the k =1 case).

Theorem 5.6. Let k > 0. Every graph G with w(G) < A(G) — 2k such that d(G,) >
6 _A(G) + k+6 for each v € V(G) is (A(G) — k)-colorable.

6k2+1

Proof. Let G be such a graph and put A := A(G). Suppose G is not (A — k)-colorable.
If £ = 0, then Brooks’ theorem gives a contradiction. If & = 1, Theorem gives a
contradiction.

So, we must have k > 2. Let H be a (A + 1 — k)-vertex-critical subgraph of G. Then
6(H) > A —k and hence d(H,) > d(G,) — k. By Theorem [5.4] there must be v € V(G) such
that w(v) < 5 A + 2k + 1.

Ak

Put s := 557 — Ok. Applying Lemma repeatedly on Kj* H,, gives a sequence

Yi,--,Ys € Ny(v) such that for each i € [s] we have

2k +1
INu(y:)) V(Nu(v) —{v1, .-, yimi P)] < YD

Hence the number of edges missing in H, is at least

(|Hy| —i) + k—1.

—(k‘—l)S—FQ;)Z(A—k—Z)

k+1
( T 1€[s]

On the other hand we have d(H,) > d(G,) — k > GlffilA + 6 and hence the number of
edges missing in H, is at most (*,*) — 62§i1A(A—kJ)—3(A—k;) < W(A—k)Q—%(A—k).

Therefore, multiplying through by 2(k + 1)(6k* + 1), we must have

—2(k*—=1)(6k*+1)s+(6k*+1) (s(A — k) — s(s + 1)) < (k+1)(A—k)*~7(k+1)(6k*+1)(A—k).
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Let’s collect everything to the left side and look at the coefficients of the powers of A — k

individually. Plugging in for s, we have 62]“::11 — (g’,f:{)lg —(k+1) = % for (A — k)2

For (A — k)! we get 2U2DORED (g 1)(6k2 + 1) + 7(k + 1)(6k> + 1) > 8(6k% + 1).

2k+1
Finally, for (A — k)° we have 12k(k* — 1)(6k* + 1) — 36k* + 6k. Thus all of the coefficients
are positive for k > 2, a contradiction. n

Problem. Develop dj-choosability theory and improve the bound d(G,) > 62§i1A(G) +k+6.
6k2

6k2+1

In particular, can the dependence on k in be made linear?

6 List coloring lemmas

Let G be a graph. A list assignment to the vertices of G is a function from V(G) to the
finite subsets of N. A list assignment L to G is good if G has a coloring ¢ where ¢(v) € L(v)
for each v € V(G). It is bad otherwise. We call the collection of all colors that appear in L,
the pot of L. That is Pot(L) := U,y (g) L(v). For a subgraph H of G we write Poty (L) :=
Usev(my L(v). For S C Pot(L), let Gs be the graph G [{v € V(G) | L(v) NS # 0}]. We also
write G, for Gy,. For f: V(G) — N, an f-assignment on G is an assignment L of lists to
the vertices of G such that |L(v)| = f(v) for each v € V(G). We say that G is f-choosable
if every f-assignment on G is good. Given f: V(G) — N, we have a partial order on the
f-assignments to G given by L < L' iff |Pot(L)| < |Pot(L')|]. When we talk of minimal
f-assignments, we mean minimal with respect to this partial order.

We'll need a lemma about bad list assignments with minimum pot size proved in [5].
Some form of this lemma which we call the Small Pot Lemma has appeared independently
in at least two places we know of—Kierstead [10] and Reed and Sudakov [I7]. We also use
the following precursor to this lemma.

Lemma 6.1. Let G be a graph and f: V(G) — N. Assume G is not f-choosable and let L
be a minimal bad f-assignment. Assume L(v) # Pot(L) for each v € V(G). Then, for each
nonempty S C Pot(L), any coloring of Gs from L uses some color not in S.

Small Pot Lemma. Let G be a graph and f: V(G) — N with f(v) < |G| for allv € V(G).
If G is not f-choosable, then G has a minimal bad f-assignment L such that |Pot(L)| < |G|.

We also need the notion of dj-choosability from [5].

Definition 1. Let G be a graph and r € Z. Then G is dg-choosable if G is f-choosable
where f(v) = d(v) — k.

An in-depth study of the d;-choosable graphs was performed in [5]. We only need a small
portion of those results here and their generalization to di-choosability. We use the following
results on d;-choosability.

Lemma 6.2. Fort > 4, K;* B is not dy-choosable iff w(B) > |B| —1; ort = 4 and B is
Es3 or a claw; ort =5 and B is Es.

Lemma 6.3. Let A be a graph with |A| > 4. Let L be a list assignment on G := Ey % A such
that |L(v)| > d(v) —1 for allv € V(G) and each component D of A has a vertez v such that
|L(v)| > d(v). Then L is good on G.
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Lemma 6.4. Let A and B be graphs such that G := Ax B is not dy-choosable. If either
|A| > 2 or B is dy-choosable and L is a bad di-assignment on G, then

1. for any independent set I C V(B) with |I| = 3, we have (,c; L(v) = 0; and
2. for disjoint nonadjacent pairs {z1,y1} and {x2,y2} at least one of the following holds

(a) L(zy) N L(y:) = 0;
(b) L(x2) N L(y2) = 0;
(¢) |L(z1) N L(y1)| = 1 and L(x1) N L(y1) = L(z2) N L(y2).

Lemma 6.5. Let H be a dy-choosable graph such that G :== Ky x H is not dy-choosable and
L a minimal bad dy-assignment on G. If some nonadjacent pair in H have intersecting lists,
then |Pot(L)| < |H| — 1.

Lemma 6.6. Let H be a dy-choosable graph such that G := K x H is not f-choosable where
f(v) > d(v) for the v in the Ky and f(x) > d(x) — 1 for x € V(H). If L is a minimal bad
f-assignment on G, then all nonadjacent pairs in H have disjoint lists.

Lemma 6.7. If B is a graph with §(B) > ‘HTH such that Ky * B is not di-choosable, then
w(B) > |B| —1 or B= E3%Kj.

Proof. Suppose the lemma is false and let L be a minimal bad d;-assignment on B. First note
that if B does not contain disjoint nonadjacent pairs z1,y; and o, ys, then w(B) > |B| — 1
or B = F3* K, by Corollary

By Dirac’s theorem, B is hamiltonian and in particular 2-connected. Since B cannot be
an odd cycle or complete, B is dy-choosable.

By the Small Pot Lemma, |Pot(L)| < |B|. Since |L(z1)| + |L(x2)| > |B| + 1, their lists
intersect and thus Lemma [6.5| shows that |Pot(L)| < |B| — 1. But then |L(z;) N L(y;)| > 2
for each ¢ and Lemma gives a contradiction. O

We'll need the following simple consequence of the pigeonhole principle.

Lemma 6.8. Let r € Nsy. If Sy,..., S, are subsets of a finite set T with |S;| > r for each
i €[r] and Yy 1Si] = (m = 1) |T| + 7, then ‘mie[m} si‘ >

Lemma 6.9. K, * Ey o is dg-choosable when k >0 and r > (k+ 1)(k + 2).

Proof. Suppose not and let L be a minimal bad dj-assignment on K, * Fy o where r =
(k+ 1)(k 4+ 2). By the Small Pot Lemma, we have |Pot(L)| < r+ k + 1. For each v in the
K, we have |L(v)| = r + 1 and for each v in the Ej s we have |L(v)| = r — k. Let A be the
colors appearing on the K, and B the colors appearing on the Ej 5. By Lemma|6.1| we must
have B C A. Let {X,Y} be a partition of Ej o with |X| > Y| and | X| — Y| < 1. Now
Yovex |L(@)| = |X|(r—k) > |X| (K*4+2k+2) = (| X|-1)(k* +4k +3) — | X| (2k+ 1) + k* +
4k+3 > (|X|—1) |Pot(L)| — 22 (2k + 1) + k* + 4k + 3 > (|X| — 1) |Pot(L)|. Hence Lemma
gives ¢; € (,ex L(z). Similarly, we have ¢; € [,y L(z). Color all of X with ¢; and
all of Y with cy. This leaves each vertex in K, with a list of size at least »r — 1. We could
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complete the coloring if two of these lists were different. Hence they are all the same and
thus L(x) = L(y) for all z,y € K,. Since B C A, we must have |Pot(L)| = r + 1. But then
D vy, 1L(@)| = (k+2)(r—k) > (k+2)(k*+2k+2) = (k+1)(k*+3k+3)+1 > (k+1) [Pot(L)]
and hence we have ¢ € (\,cp, , L(z). Now we may color all of Ej4» with ¢ and finish the
coloring on K,, a contradiction. O]

The following lemma was proved in [5].

Lemma 6.10. Let £ > 1. If B is a graph such that Ksi.1* B s not di-choosable, then
w(B) > |B| — 2k.

With almost an identical proof we get the following extension that allows us to handle
vertices of less than maximum degree more efficiently.

Lemma 6.11. Let 1 < j < k. Let B be a graph and L a list assignment on G 1= K31 % B
such that |L(v)| > d(v) — j forv € V(Ksk41) and |L(v)| > d(v) — k forv € V(B). If L is
bad on G, then w(B) > |B| — 2j.

To prove our final list coloring lemma, we need another tool from [5].

Lemma 6.12. Fiz k > 1. Let A be a connected graph and B an arbitrary graph such that
Ax B is not dig-choosable. Let L be a minimal bad dj-assignment on Ax B. If B is colorable
from L using at most |B| — k colors, then |Pot(L)| < |A| + |B| — 2.

Lemma 6.13. Let k > 1. If B is the complement of a bipartite graph and Kz, * B is not
di-choosable, then w(B) > |B| — k.

Proof. Suppose not, let B be such a graph and L a minimal bad dj-assignment on K351 % B.
Let A be the Kgpyq. Let M := {{z1,u1},...,{z,v:}} be a maximum matching in the
complement of B. If t < k, then since B is perfect we have w(B) = x(B) > |B| — k giving a
contradiction.

Hence t > k + 1. For i € [t] we have |L(x;)| + |L(y:)| > dp(z;) + dp(y;) + 4k +2 >
|B| — 2 + 4k + 2 = | B| + 4k since a(B) < 2. By the Small Pot Lemma, we have |Pot(L)| <
|A|+|B|—1 = | B|4+3k. Hence we have different colors ¢y, . . ., ¢, such that ¢; € L(x;)NL(y;) for
each i € [k]. For each such i, color each of x;, y; with ¢;. Then we can complete the coloring on
B since |A| > k+1. We just colored B with at most | B|—k colors and hence applying Lemma
[6.12 gives |Pot(L)| < |B|+3k—1. So, now we can pick ¢xy1 € L(2gr1)NL(yg1)—{e1, ... cr},
color each of z;,y; with ¢; for i € [k + 1], then complete the coloring to B. Now each vertex
in A has at least £+ 1 colors used twice on its neighborhood, so we can complete the coloring,
a contradiction. O]

7 Independent transversals

For completeness we include the proof of the main independent transveral lemma used above.
In [9], Haxell and Szabé developed a technique for dealing with independent transversals.
In [8], Haxell used this technique to give simpler proof of her transversal lemma. The proof
gives a bit more and we record that here. This is just slightly more general than the extension
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given in [I] by Aharoni, Berger and Ziv. We write f: A — B for a surjective function from
A to B. Let G be a graph. For a k-coloring 7: V(G) — [k] of G and a subgraph H of
G we say that [ := {x1,...,2x} C V(H) is an H-independent transversal of 7 if I is an
independent set in H and 7(z;) =i for all i € [k].

Lemma 7.1. Let G be a graph and w: V(G) — [k] a proper k-coloring of G. Suppose that
7 has no G-independent transversal, but for every e € E(G), m has a (G — e)-independent
transversal. Then for every xy € E(G) there is J C [k] with 7(z),n(y) € J and an induced
matching M of G [w=1(J)] with xy € M such that:

1. UM totally dominates G [w=1(J)],

2. the multigraph with vertexr set J and an edge between a,b € J for each uwv € M with
m(u) = a and 7(v) = b is a (simple) tree. In particular |M| = |J|— 1.

Proof. Suppose the lemma is false and choose a counterexample G with 7: V(G) — [k] so
as to minimize k. Let zy € F(G). By assumption 7 has a (G — xy)-independent transversal
T. Note that we must have x,y € T lest T' be a G-independent transversal of 7.

By symmetry we may assume that w(z) = k — 1 and 7(y) = k. Put X := 7 1(k — 1),
Y := 7 Yk) and H := G — N({z,y}) — E(X,Y). Define ¢: V(H) — [k —1] by ¢(v) :=
min {7 (v), k — 1}. Note that since z,y € T, we have [(7'(i)| > 1 for each i € [k —2]. Put
Z =Yk —1). Then Z # ) for otherwise M := {xy} totally dominates G[X U Y] giving
a contradiction.

Suppose ¢ has an H-independent transversal S. Then we have z € SNZ and by symmetry
we may assume z € X. But then SU{y} is a G-independent transversal of 7, a contradiction.

Let H C H be a minimal spanning subgraph such that ¢ has no H’-independent
transversal. Now d(z) > 1 for each z € Z for otherwise T' — {x,y} U {2z} would be an
H’-independent transversal of (. Pick zw € E(H'). By minimality of k, we have J C [k — 1]
with ¢(z),((w) € J and an induced matching M of H'[(~!(J)] with zw € M such that

1. UM totally dominates H' [¢~1(J)],

2. the multigraph with vertex set J and an edge between a,b € J for each wv € M with
((u) = a and ((v) = b is a (simple) tree.

Put M" := M U {xy} and J' := JU{k}. Since H' is a spanning subgraph of H, |J M
totally dominates H [¢~!(J)] and hence |J M’ totally dominates G [r~1(J')]. Moreover, the
multigraph in (2) for M’ and J’ is formed by splitting the vertex k£ — 1 € J into two vertices
and adding an edge between them and hence it is still a tree. This final contradiction proves
the lemma. ]
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