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Abstract

We introduce a notion of vertex association and consider sequences of these associations.
This allows for slick proofs of a few known theorems as well as showing that for any induced
subgraph H of G, χ(G) ≤ χ(H) + 1

2 (ω(G) + |G| − |H| − 1). As a special case of this, we

have χ(G) ≤
⌈

ω(G)+τ(G)
2

⌉
(here χ(G) denotes the chromatic number, ω(G) the clique number

and τ(G) the vertex cover number), which is a generalization of the Nordhaus-Gaddum upper
bound. In addition, this settles a conjecture of Reed that χ(G) ≤

⌈
ω(G)+∆(G)+1

2

⌉
in the case

when δ(G) ≤ ω(G).

1 Definitions and Basic Properties

All graphs will be assumed finite and simple. We let |G| denote the order of G, s(G) the size of
G, χ(G) the chromatic number, ω(G) the clique number, τ(G) the vertex cover number, ∆(G) the
maximum degree, δ(G) the minimum degree, dG(x) the degree of x in G, and NG(x) the set of
neighbors of x in G.

Definition 1.1. Given a graph G and non-adjacent vertices a and b, we write G/[a, b] for the graph
obtained from G by associating (i.e., identifying) a and b into a single vertex [a, b] and discarding
multiple edges.

Proposition 1.2. Let G be a graph and a, b, x ∈ V (G) with a 6∈ NG(b). Then

dG/[a,b](x) =


dG(x)− 1 if x ∈ NG(a) ∩NG(b),

dG(a) + dG(b)− |NG(a) ∩NG(b)| if x ∈ {a, b},
dG(x) otherwise.

Proof. Immediate from the definitions.

The content of the following proposition is that the operations of vertex removal and association
commute.
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Proposition 1.3. Let G be a graph. If a, b ∈ V (G) with a 6∈ NG(b) and S ⊆ V (G) r {a, b}, then

(Gr S)/[a, b] = G/[a, b] r S.

Proof. Again, this is immediate from the definitions.

Lemma 1.4. Let a and b be non-adjacent vertices in a graph G. Then

(i) χ(G) ≤ χ(G/[a, b]) ≤ χ(G) + 1,

(ii) χ(G/[a, b]) = χ(G) if and only if there exists a coloring of G with χ(G) colors in which a and
b receive the same color.

Proof.

(i) Since a and b are non-adjacent, any k-coloring of G/[a, b] lifts to a k-coloring of G. This
gives the first inequality. The second follows by noting that any k-coloring of G induces a
k-coloring of G/[a, b] r {[a, b]} and hence a (k + 1)-coloring of G/[a, b] by introducing a new
color.

(ii) Assume χ(G/[a, b]) = χ(G). Then we have a χ(G)-coloring of G/[a, b] and lifting this to G
gives a χ(G)-coloring of G in which a and b receive the same color.
For the converse, assume we have a χ(G)-coloring of G in which a and b receive the same
color. Then the induced χ(G)-coloring of G/[a, b] r {[a, b]} extends to a χ(G)-coloring of
G/[a, b] by coloring [a, b] the color that a and b share.

Proposition 1.5. Let a and b be non-adjacent vertices in a graph G. Then

χ(G) = min{χ(G/[a, b]), χ(G+ ab)}.

Proof. If χ(G) = χ(G/[a, b]), then we are done since χ(G + ab) ≥ χ(G). Otherwise, by Lemma
1.4(ii), a and b must receive different colors in every χ(G)-coloring of G. Hence, any χ(G)-coloring
of G extends to a χ(G)-coloring of G+ ab. Thus χ(G) = χ(G+ ab), completing the proof.
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2 Sequences of Associations

We consider sequences of the form

G = H0 → H1 → . . .→ Hr = Kt,

where each term is obtained from the previous one by associating two non-adjacent vertices. The
process clearly terminates at some complete graph Kt.

Lemma 2.1. Let G be a graph. If G is not complete, then there exist non-adjacent vertices a and
b which receive the same color in some χ(G)-coloring of G.

Proof. If not, then any given vertex must be colored differently from every other vertex in any
χ(G)-coloring of G. Hence, χ(G) = |G| and thus G is complete.

Proposition 2.2. The smallest t for which there exists a sequence

G = H0 → H1 → . . .→ Hr = Kt

is t = χ(G).

Proof. The first inequality of Lemma 1.4(i) and the fact that χ(Kt) = t yield t ≥ χ(G). We just
need to show that Kχ(G) can be attained. If G is complete, then we are done. Otherwise, by
Lemma 2.1, we have two vertices a and b which receive the same color in some χ(G)-coloring of G.
By Lemma 1.4(ii), χ(G/[a, b]) = χ(G). Since |G/[a, b]| < |G|, the result follows by induction.

Definition 2.3. We denote by ψ(G) the largest t for which there exists a sequence

G = H0 → H1 → . . .→ Hr = Kt.

With a little thought, one can see that this is the same thing as the achromatic number of G.

Loose upper bounds on ψ(G) can be easily obtained.

Proposition 2.4. Let G be a graph. Then

(i) ψ(G) ≤ |G|,

(ii) ψ(G) ≤ 1+
√

1+8s(G)

2 .

Proof. Consider the sequence

G = H0 → H1 → . . .→ Hr = Kψ(G).

As we move from left to right, both the order and size of the graphs do not increase; hence,
|G| ≥ ψ(G) and s(G) ≥

(
ψ(G)

2

)
. The results follow.
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3 Some Slick Proofs

Lemma 3.1. If a and b are non-adjacent vertices in a graph G, then

χ(G)− 1 ≤ χ(G/[a, b]) ≤ χ(G).

Proof. Note that the chromatic number of G is the clique cover number of G. Assume we have a
partition of V (G) into n disjoint sets {K1, . . . ,Kn}, each of which induces a clique. Since a and b
are non-adjacent, they are in distinct cliques, say a ∈ Ki, b ∈ Kj with i 6= j. We see that replacing
Ki with Ki r {a} and Kj with (Kj r {b}) ∪ {[a, b]} yields a covering of G/[a, b] with n cliques.
This gives the second inequality. To get the first, assume we have a partition of V (G/[a, b]) into
n disjoint sets {K1, . . . ,Kn}, each of which induces a clique. Then [a, b] is in one of the sets, say
[a, b] ∈ Ki. Let K

′
i = ((Ki r {[a, b]}) ∩ NG(a)) ∪ {a} and K

′
n+1 = ((Ki r {[a, b]}) r K

′
i) ∪ {b}.

Then {K1, . . . ,Ki−1,K
′
i ,Ki+1, . . . ,Kn,K

′
n+1} is a partition of V (G) into n + 1 disjoint sets, each

of which induces a clique.

Proposition 3.2 (Harary and Hedetniemi [2]). Let G be a graph. Then

ψ(G) + χ(G) ≤ |G|+ 1.

Proof. Consider the sequence

G = H0 → H1 → . . .→ Hr = Kψ(G), (1)

where r = |G| − ψ(G). It follows from the first inequality of Lemma 3.1 that

χ(G)− (|G| − ψ(G)) = χ(G)− r ≤ χ(Kψ(G)) = 1,

so that ψ(G) + χ(G) ≤ |G|+ 1 as required.

Corollary 3.3 (Nordhaus and Gaddum [3]). Let G be a graph. Then

χ(G) + χ(G) ≤ |G|+ 1.

Proof. Use χ(G) ≤ ψ(G) in Proposition 3.2.

Lemma 3.4. Let G be a graph. Then

χ(G) ≥ 2ψ(G)− |G|.

Proof. It follows from (1) and the second inequality of Lemma 1.4(i) that

ψ(G) = χ(Kψ(G)) ≤ χ(G) + r = χ(G) + |G| − ψ(G).

The result follows.
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Proposition 3.5. Let G be a graph. Then

2ψ(G) + ψ(G) ≤ 2|G|+ 1.

Proof. Lemma 3.4 applied to G yields χ(G) ≥ 2ψ(G) − |G|. Substituting this in proposition 3.2
gives 2ψ(G) + ψ(G) ≤ 2|G|+ 1. Now substiting G for G gives the result.

Corollary 3.6 (Gupta [1]). Let G be a graph. Then

ψ(G) + ψ(G) ≤ d4
3 |G|e.

Proof. Applying Proposition 3.5 to G and G yields the inequalities

2ψ(G) + ψ(G) ≤ 2|G|+ 1

and
ψ(G) + 2ψ(G) ≤ 2|G|+ 1

respectively. By adding these, we get

3(ψ(G) + ψ(G)) ≤ 4|G|+ 2,

which is
ψ(G) + ψ(G) ≤ 4

3 |G|+
2
3 .

The result follows.

4 The Main Results

Definition 4.1. Let G be a graph and I an independent set in G. We denote by G/[I] the graph
obtained from G by associating I down to a single vertex [I].

Lemma 4.2. Let f be a real-valued graph function such that, for any graph G, f(Gr{v}) ≥ f(G)−1
for all v ∈ V (G). Then, for any graph G and independent set I in G,

f(G/[I]) ≤ f(Gr I) + 1.

Proof. Observe that Gr I = G/[I] r {[I]}. But [I] is a single vertex; hence, f(Gr I) = f(G/[I] r
{[I]}) ≥ f(G/[I])− 1. The result follows.
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Definition 4.3. We say that a graph G consists of an independent set attached to a clique if V (G)
can be partitioned into two disjoint sets I and K such that I is independent and K induces a
clique. We say that G consists of an independent set strongly attached to a clique if there is such a
partition in which each vertex of K is adjacent to at least one vertex of I.

Lemma 4.4.

(a) If a graph G consists of an independent set I attached to a clique K, then G consists of
an independent set K attached to a clique I, and χ(G) = ω(G) = |K| or |K| + 1 and
χ(G) = ω(G) = α(G) = |I| or |I|+ 1.

(b) If G consists of an independent set I strongly attached to a clique K, then χ(G) = ω(G) =
α(G) = |I|.

(c) If I is an independent set in a graph G, then G/[I] is complete if and only if G consists of I
strongly attached to a clique.

Proof.

(a) Since I is independent, χ(G) ≤ |K|+ 1 and χ(G) = |K|+ 1 if and only if there exists v ∈ I
such that NG(v) = K; in this case, ω(G) = |K| + 1 as well. The statements about G follow
in a similar manner.

(b) Assume each vertex of K is adjacent in G to at least one vertex of I. Then, in G, each vertex
of K is nonadjacent to at least one vertex of I. Hence ω(G) = |I|. The other equalities follow
from (a).

(c) We have G/[I] complete if and only if NG/[I]([I]) = K. This happens if and only if each
vertex of K is adjacent to at least one vertex of I.

Lemma 4.5. Let
G = H0 → H1 → . . .→ Hr−1 → Hr = Kt

be a sequence where each term is obtained from the previous one by associating two non-adjacent
vertices. If χ(Hr−1) = χ(Hr), then ω(Hr−1) = ω(Hr).

Proof. Since Hr is complete, Hr−1 is an independent set of size 2 strongly attached to a clique;
hence, by Lemma 4.4(a), ω(Hr−1) = χ(Hr−1) = χ(Hr) = ω(Hr).

Theorem 4.6. Let I1, . . . , Im be disjoint independent sets in a graph G. Then

χ(G) ≤ 1
2

ω(G) + |G| −
m∑
j=1

|Ij |+ 2m− 1

 . (2)

6



Proof. Associate I1 through Im in turn to yield a sequence

G = H0 → H1 → . . .→ Hm−1 → Hm = B, (3)

and let A = Hm−1, so that B is obtained from A by associating Im to a single vertex.
We distinguish two cases.
Case 1: B is complete, so that B = Kχ(B). Then, by Lemma 4.4(c), A consists of Im strongly
attached to a clique. By Corollary 3.3 and Lemma 4.4(b),

χ(A) ≤ |A| − χ(A) + 1 = |A| − |Im|+ 1,

so that, since χ(A) = ω(A) by Lemma 4.4(a),

2χ(A) ≤ ω(A) + |A| − |Im|+ 1. (4)

Since ω(Gr {v}) ≥ ω(G)− 1 for all v ∈ V (G), Lemma 4.2 tells us that associating an independent
set to a single point increases ω by at most one. Hence

ω(A) ≤ ω(G) +m− 1. (5)

Also, |G| − |A| =
m−1∑
j=1

(|Ij | − 1) =
m∑
j=1

|Ij | − |Im| −m+ 1, so that

|A| − |Im| = |G| −
m∑
j=1

|Ij |+m− 1. (6)

Since χ(G) ≤ χ(A) by the first inequality of Lemma 1.4(i), substituting (5) and (6) into (4) gives

2χ(G) ≤ 2χ(A) ≤ ω(G) +m− 1 + |G| −
m∑
j=1

|Ij |+m− 1 + 1

= ω(G) + |G| −
m∑
j=1

|Ij |+ 2m− 1,

which is (2).

Case 2: B is not complete. Consider the sequence

B → . . .→ C → Kχ(B), (7)

where each term is obtained from the previous one by associating two non-adjacent vertices. Then,
by the first inequality in Lemma 1.4(i),

χ(B) ≤ χ(C) ≤ χ(Kχ(B)) = χ(B).

Hence χ(C) = χ(B) = χ(Kχ(B)) and we may apply Lemma 4.5 to conclude

ω(C) = ω(Kχ(B)) = χ(B). (8)
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In addition, it is clear that

|C| = χ(B) + 1. (9)

Applying Lemma 4.2 as in (5), but this time to a combination of sequences (3) and (7) between G
and C, gives

ω(C) ≤ ω(G) +m+ |B| − |C|, (10)

and |G| − |B| =
m∑
j=1

|Ij | −m, so that, by (8), (9) and (10),

2χ(B) = ω(C) + |C| − 1 ≤ ω(G) +m+ |B| − 1

= ω(G) +m+ |G| −
m∑
j=1

|Ij |+m− 1.

Since χ(G) ≤ χ(B) by the first inequality of Lemma 1.4(i), the theorem follows.

Since the vertex-set of an induced subgraph H of G can be partitioned into χ(H) independent sets,
the following is an equivalent formulation of Theorem 4.6.

Theorem 4.7. Let G be a graph. Then, for any induced subgraph H of G,

χ(G) ≤ χ(H) + 1
2(ω(G) + |G| − |H| − 1).

Corollary 4.8. Let G be a graph. Then

χ(G) ≤
⌈
ω(G) + τ(G)

2

⌉
.

Proof. Apply Theorem 4.6 to a single independent set with ω(G) elements to get

χ(G) ≤ 1
2
(ω(G) + |G| − ω(G) + 1). (11)

Since S ⊆ V (G) is a vertex cover if and only if V (G) r S is an independent set,

τ(G) + ω(G) = |G|.

The result follows.

Note that this is a generalization of the Nordhaus-Gaddum upper bound since replacing G by G in
(11) and adding the two inequalities yields χ(G) + χ(G) ≤ |G|+ 1.
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Conjecture 4.9 (Reed [4]). Let G be a graph. Then

χ(G) ≤
⌈
ω(G) + ∆(G) + 1

2

⌉
.

Corollary 4.8 establishes this for all graphs G with τ(G) ≤ ∆(G) + 1; equivalently, for all graphs
with δ(G) ≤ ω(G). In particular, if δ(G) ≤ 2 then either δ(G) ≤ 2 ≤ ω(G) or ω(G) = 1 and hence
G is complete. Thus Reed’s conjecture holds for any graph G with ∆(G) ≥ |G| − 3.

Corollary 4.10. Let G be a triangle-free graph. Then

χ(G) ≤ 2 + 1
2δ(G).

Proof. Since G is triangle-free, ω(G) ≥ ∆(G). It follows from (11) that

χ(G) ≤ 1
2
(ω(G) + |G| −∆(G) + 1) =

1
2
(ω(G) + δ(G) + 2) ≤ 1

2
(4 + δ(G)),

which is the required result.
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