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Abstract

We introduce a notion of vertex association and consider sequences of these associations.
This allows for slick proofs of a few known theorems as well as showing that for any induced
subgraph H of G, x(G) < x(H) + 3(w(G) + |G| — |H| — 1). As a special case of this, we
have x(G) < [M—‘ (here x(G) denotes the chromatic number, w(G) the clique number
and 7(G) the vertex cover number), which is a generalization of the Nordhaus-Gaddum upper

bound. In addition, this settles a conjecture of Reed that x(G) < [%—‘ in the case

when §(G) < w(G).
1 Definitions and Basic Properties

All graphs will be assumed finite and simple. We let |G| denote the order of G, s(G) the size of
G, x(G) the chromatic number, w(G) the clique number, 7(G) the vertex cover number, A(G) the
maximum degree, §(G) the minimum degree, dg(z) the degree of z in G, and Ng(x) the set of
neighbors of = in G.

Definition 1.1. Given a graph G and non-adjacent vertices a and b, we write G/[a, b] for the graph
obtained from G by associating (i.e., identifying) a and b into a single vertex [a, b] and discarding
multiple edges.

Proposition 1.2. Let G be a graph and a,b,x € V(G) with a € Ng(b). Then

dg(z) — 1 if © € Ng(a) N Ng(b),
da/ap(x) = ¢ de(a) +de(d) — |Ng(a) N Na(b)| if € {a,b},
dg(x) otherwise.
Proof. Immediate from the definitions. O

The content of the following proposition is that the operations of vertex removal and association
commute.



Proposition 1.3. Let G be a graph. If a,b € V(G) with a ¢ Ng(b) and S C V(G) \ {a,b}, then

(G~ S)/[a,b] = G/Ja,b] ~ S.

Proof. Again, this is immediate from the definitions. O

Lemma 1.4. Let a and b be non-adjacent vertices in a graph G. Then
(1) x(G) < x(G/[a,b]) < x(G) + 1,
(ii) x(G/la,b]) = x(G) if and only if there exists a coloring of G with x(G) colors in which a and
b receive the same color.

Proof.

(i) Since a and b are non-adjacent, any k-coloring of G/[a,b] lifts to a k-coloring of G. This
gives the first inequality. The second follows by noting that any k-coloring of G induces a
k-coloring of G/[a,b] \ {[a,b]} and hence a (k 4 1)-coloring of G/[a,b] by introducing a new
color.

(ii) Assume x(G/[a,b]) = x(G). Then we have a x(G)-coloring of G/[a,b] and lifting this to G
gives a x(G)-coloring of G in which a and b receive the same color.
For the converse, assume we have a x(G)-coloring of G in which a and b receive the same
color. Then the induced x(G)-coloring of G/[a,b] \ {[a,b]} extends to a x(G)-coloring of
G/la,b] by coloring [a, b] the color that a and b share.

O]

Proposition 1.5. Let a and b be non-adjacent vertices in a graph G. Then

X(G) = min{x(G/a, b)), x(G + ab)}.

Proof. 1f x(G) = x(G/|a,b]), then we are done since x(G + ab) > x(G). Otherwise, by Lemma
1.4(ii), @ and b must receive different colors in every x(G)-coloring of G. Hence, any x(G)-coloring
of G extends to a x(G)-coloring of G + ab. Thus x(G) = x(G + ab), completing the proof. O



2 Sequences of Associations

We consider sequences of the form

G=Hy—Hy—...— H, =Ky,

where each term is obtained from the previous one by associating two non-adjacent vertices. The
process clearly terminates at some complete graph Kj.

Lemma 2.1. Let G be a graph. If G is not complete, then there exist non-adjacent vertices a and
b which receive the same color in some x(G)-coloring of G.

Proof. If not, then any given vertex must be colored differently from every other vertex in any
X(G)-coloring of G. Hence, x(G) = |G| and thus G is complete. O

Proposition 2.2. The smallest t for which there exists a sequence

G=Hy—H —...— H.=K;
ist=x(G).

Proof. The first inequality of Lemma 1.4(i) and the fact that x(K;) = t yield t > x(G). We just
need to show that K, (g) can be attained. If G is complete, then we are done. Otherwise, by

Lemma 2.1, we have two vertices a and b which receive the same color in some x(G)-coloring of G.
By Lemma 1.4(ii), x(G/[a,b]) = x(G). Since |G/[a,b]| < |G|, the result follows by induction. ]

Definition 2.3. We denote by ¢(G) the largest ¢ for which there exists a sequence

G=Hy—H —...— H,=K;.

With a little thought, one can see that this is the same thing as the achromatic number of G.

Loose upper bounds on 1(G) can be easily obtained.
Proposition 2.4. Let G be a graph. Then

(1) ¥(G) < |G|,
(ii) (G) < 1+\/1;85(G).
Proof. Consider the sequence

G:H0—>H1—>...—>HT:K¢(G).

As we move from left to right, both the order and size of the graphs do not increase; hence,
|G| > ¢¥(G) and s(G) > (¢(2G)). The results follow. O



3 Some Slick Proofs

Lemma 3.1. If a and b are non-adjacent vertices in a graph G, then

X(G) =1 < x(G/[a,b]) < x(G).

Proof. Note that the chromatic number of G is the clique cover number of G. Assume we have a
partition of V(G) into n disjoint sets {K7, ..., K,}, each of which induces a clique. Since a and b
are non-adjacent, they are in distinct cliques, say a € K;, b € K; with ¢ # j. We see that replacing
K; with K; \ {a} and K; with (K; \ {b}) U {[a,b]} yields a covering of G/[a,b] with n cliques.
This gives the second inequality. To get the first, assume we have a partition of V(G/[a,b]) into
n disjoint sets {K7y,..., Ky}, each of which induces a clique. Then [a, ] is in one of the sets, say
[a,b] € K;. Let K; = ((K; ~ {[a,b]}) N Ng(a)) U {a} and K, ; = ((K; ~ {[a,b]}) ~ K;) U {b}.
Then {Kj,.. .,Ki_l,K;,KiH, .. .,Kn,K/_H} is a partition of V(@) into n + 1 disjoint sets, each

n
of which induces a clique. O

Proposition 3.2 (Harary and Hedetniemi [2]). Let G be a graph. Then
U(G) +x(G) < |G|+ 1.
Proof. Consider the sequence
G=Hy— H —...—> H = Kyq)), (1)
where r = |G| — (G). It follows from the first inequality of Lemma 3.1 that
X(G) = (IG] = ¥(G)) = x(G) —r < x(Ky@) = 1,
so that ¥(G) + x(G) < |G| + 1 as required. O
Corollary 3.3 (Nordhaus and Gaddum [3]). Let G be a graph. Then
X(G) +x(G) < |G| + 1.

Proof. Use x(G) < ¢(G) in Proposition 3.2. O

Lemma 3.4. Let G be a graph. Then
X(G) = 2¢(G) — |G|.
Proof. Tt follows from (1) and the second inequality of Lemma 1.4(i) that

P(G) = x(Ky@) < X(G) +71 =x(G) + |G| = ¢(G).

The result follows.



Proposition 3.5. Let G be a graph. Then
26(G) + (@) < 2|6] + 1.

Proof. Lemma 3.4 applied to G yields x(G) > 2¢(G) — |G|. Substituting this in proposition 3.2
gives 2¢(GQ) + ¥ (G) < 2|G| + 1. Now substiting G for G gives the result. O

Corollary 3.6 (Gupta [1]). Let G be a graph. Then
¥(G) +¥(G) < [5IG]1.
Proof. Applying Proposition 3.5 to G and G yields the inequalities
20(G) +4(G) < 2G| +1

and
V(GQ) +2¢(G) < 2|G| + 1

respectively. By adding these, we get

3 (G) +9(@Q)) <4[G| +2,

which is

$(G) + (@) < 51G| +
The result follows. O

wino

4 The Main Results

Definition 4.1. Let G be a graph and I an independent set in G. We denote by G/[I] the graph
obtained from G by associating I down to a single vertex [I].

Lemma 4.2. Let f be a real-valued graph function such that, for any graph G, f(G~{v}) > f(G)—1
for allv € V(G). Then, for any graph G and independent set I in G,

FG/I) < f(GNT) + 1.

Proof. Observe that G~ I = G/[I|~{[I]}. But [I] is a single vertex; hence, f(G \ 1) = f(G/[I] ~
{{]}) = f(G/[I]) — 1. The result follows. O



Definition 4.3. We say that a graph G consists of an independent set attached to a clique if V(G)
can be partitioned into two disjoint sets I and K such that I is independent and K induces a
clique. We say that G consists of an independent set strongly attached to a clique if there is such a
partition in which each vertex of K is adjacent to at least one vertex of I.

Lemma 4.4.

(a) If a graph G consists of an independent set I attached to a clique K, then G consists of
an independent set K attached to a clique I, and x(G) = w(G) = |K| or |K| + 1 and
X(G) =w(G) = a(G) = 1| or |I| + 1.

(b) If G consists of an independent set I strongly attached to a clique K, then x(G) = w(G) =
a(G) = |11,

(c) If I is an independent set in a graph G, then G/[I] is complete if and only if G consists of I
strongly attached to a clique.

Proof.

(a) Since I is independent, x(G) < [K|+ 1 and x(G) = |K[ + 1 if and only if there exists v € I
such that Ng(v) = K; in this case, w(G) = | K| + 1 as well. The statements about G follow
in a similar manner.

(b) Assume each vertex of K is adjacent in G to at least one vertex of I. Then, in G, each vertex
of K is nonadjacent to at least one vertex of I. Hence w(G) = |I|. The other equalities follow
from (a).

(c) We have G/[I] complete if and only if Ng/7([/]) = K. This happens if and only if each
vertex of K is adjacent to at least one vertex of I.

O]

Lemma 4.5. Let
G:H0—>H1—>...—>Hr,1—>HT:Kt

be a sequence where each term is obtained from the previous one by associating two non-adjacent
vertices. If x(Hy—1) = x(H,), then w(H,_1) = w(H,).

Proof. Since H, is complete, H._; is an independent set of size 2 strongly attached to a clique;
hence, by Lemma 4.4(a), w(H,—1) = x(Hy—1) = x(Hy) = w(H,;). O

Theorem 4.6. Let I1,..., 1, be disjoint independent sets in a graph G. Then

x(G) < G) + |G| — Z]I\+2mfl . (2)

1
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Proof. Associate Iy through I, in turn to yield a sequence

G=Hy—-H —...—H,_1— H, =8, (3)

and let A = H,,_1, so that B is obtained from A by associating I,, to a single vertex.

We distinguish two cases.

Case 1: B is complete, so that B = K, (py. Then, by Lemma 4.4(c), A consists of I, strongly
attached to a clique. By Corollary 3.3 and Lemma 4.4(b),

X(A) < Al = x(A) +1 = |A] = || + 1,
so that, since x(A4) = w(A) by Lemma 4.4(a),

2x(A) < w(A) +|A| = [I] + 1. (4)

Since w(G ~ {v}) > w(G) — 1 for all v € V(G), Lemma 4.2 tells us that associating an independent
set to a single point increases w by at most one. Hence

w(A) <w(G)+m—1. (5)
m—1 m
Also, |G| = |A] =Y (1I;| = 1) = > || = [Im| = m + 1, so that
=1 =1
Al = [Ln| = |G| =Y _ [l +m—1. (6)
j=1

Since x(G) < x(A) by the first inequality of Lemma 1.4(i), substituting (5) and (6) into (4) gives

2X(G) < 2x(A) Sw(G) +m —1+|G| =D || +m—1+1
j=1
=w(G) + |G| =YLl +2m -1,
j=1
which is (2).
Case 2: B is not complete. Consider the sequence
B—...—>C— K, (7)

where each term is obtained from the previous one by associating two non-adjacent vertices. Then,
by the first inequality in Lemma 1.4(i),

X(B) < x(C) < x(KyB)) = x(B).

Hence x(C) = x(B) = x(K,(p)y) and we may apply Lemma 4.5 to conclude

w(C) = w(Ky(p)) = x(B). (8)



In addition, it is clear that

Ol = x(B) + 1. (9)

Applying Lemma 4.2 as in (5), but this time to a combination of sequences (3) and (7) between G
and C, gives

w(C) <w(G)+m+|B|—|C|, (10)

and |G| — |B| = ) _ |I;| — m, so that, by (8), (9) and (10),
j=1

2(B) = w(C) +|C] — 1 < w(G) + m +|B| - 1

=w(G) +m+ |G| =Y || +m—1.

j=1
Since x(G) < x(B) by the first inequality of Lemma 1.4(i), the theorem follows.
O

Since the vertex-set of an induced subgraph H of G can be partitioned into x(H) independent sets,
the following is an equivalent formulation of Theorem 4.6.

Theorem 4.7. Let G be a graph. Then, for any induced subgraph H of G,

X(G) < x(H) + 5(w(G) + |G| — [H| - 1).

Corollary 4.8. Let G be a graph. Then

Proof. Apply Theorem 4.6 to a single independent set with w(G) elements to get

1
X(G) < 5W(G) +]G] = w(G) +1). (11)
Since S C V(G) is a vertex cover if and only if V/(G) \ S is an independent set,

7(G) + w(G) = |G|.
The result follows. O

Note that this is a generalization of the Nordhaus-Gaddum upper bound since replacing G by G in
(11) and adding the two inequalities yields x(G) + x(G) < |G| + 1.



Conjecture 4.9 (Reed [4]). Let G be a graph. Then
w(G@) + A(G) + 1—‘

X(G) < { 5

Corollary 4.8 establishes this for all graphs G with 7(G) < A(G) + 1; equivalently, for all graphs

with 0(G) < w(G). In particular, if §(G) < 2 then either §(G) < 2 < w(G) or w(G) = 1 and hence
G is complete. Thus Reed’s conjecture holds for any graph G with A(G) > |G| — 3.

Corollary 4.10. Let G be a triangle-free graph. Then
X(G) <2+ 55(G).

Proof. Since G is triangle-free, w(G) > A(G). It follows from (11) that

X(G) < 5(w(G) + 1G] = AG) +1) = 5(w(G) +6(C) +2) < 5(4+ (),

N | =

which is the required result.
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