Quantum redactiones paginae "Spiralis logarithmica" differant
Appearance
Content deleted Content added
m movit Spira logarithmica ad Spiralis logarithmica praeter redirectionem: fons nominis |
m r2.7.2) (automaton addit: kk, nl, nn, sv |
||
Linea 26: | Linea 26: | ||
[[it:Spirale logaritmica]] |
[[it:Spirale logaritmica]] |
||
[[ja:対数螺旋]] |
[[ja:対数螺旋]] |
||
[[kk:Логарифмдік спираль]] |
|||
[[nl:Logaritmische spiraal]] |
|||
[[nn:Logaritmisk spiral]] |
|||
[[pl:Spirala logarytmiczna]] |
[[pl:Spirala logarytmiczna]] |
||
[[pt:Espiral logarítmica]] |
[[pt:Espiral logarítmica]] |
||
Linea 31: | Linea 34: | ||
[[simple:Logarithmic spiral]] |
[[simple:Logarithmic spiral]] |
||
[[sl:Zlata spirala]] |
[[sl:Zlata spirala]] |
||
[[sv:Logaritmisk spiral]] |
|||
[[ta:மடக்கைச் சுருள்]] |
[[ta:மடக்கைச் சுருள்]] |
||
[[tr:Logaritmik spiral]] |
[[tr:Logaritmik spiral]] |
Emendatio ex 23:54, 19 Ianuarii 2012
Spiralis logarithmica est curva spiralis quam Cartesius invenit et Iacobus Bernoulli examinavit. Iacobus Bernoulli eam curvam "spiralem mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".
De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent eodem angulo obliquo radii CB, CL&c. ex centro circuli C educti, dicetur Curva haec Spiralis Logarithmica.[1]
Nexus externus
Vicimedia Communia plura habent quae ad spiralem logarithmicam spectant. |