Jump to content

Quantum redactiones paginae "Spiralis logarithmica" differant

E Vicipaedia
Content deleted Content added
m r2.7.1) (automaton addit: kk:Логарифмдік спираль
fons nominis
Linea 1: Linea 1:
[[image:Logarithmic spiral.png|thumb|Curva spiralis logarithmica seu "mirabilis": "Eadem mutata resurgo."]]
[[image:Logarithmic spiral.png|thumb|Curva spiralis logarithmica seu "mirabilis": "Eadem mutata resurgo."]]
'''Spira logarithmica''' est curva [[spiralis]] quam [[Cartesius]] invenit et [[Iacobus Bernoulli]] examinavit. Iacobus Bernoulli eam curvam "spiram mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".
'''Spiralis logarithmica''' est curva [[spiralis]] quam [[Cartesius]] invenit et [[Iacobus Bernoulli]] examinavit. Iacobus Bernoulli eam curvam "spiralem mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".


''De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent
''De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent
Linea 6: Linea 6:
''Logarithmica.''<ref>[http://www.uam.es/personal_pdi/ciencias/barcelo/historia/La%20familia%20%20Bernoulli.pdf {{Ling|Hispanice}}]</ref>
''Logarithmica.''<ref>[http://www.uam.es/personal_pdi/ciencias/barcelo/historia/La%20familia%20%20Bernoulli.pdf {{Ling|Hispanice}}]</ref>


[[Image:Loxodrome.png|right|thumb|[[Curva loxodromica]] esset spira logarithmica si in planitie esset nec in [[sphaera]].]]
[[Image:Loxodrome.png|right|thumb|[[Curva loxodromica]] esset spiralis logarithmica si in planitie esset nec in [[sphaera]].]]


==Nexus externus==
==Nexus externus==
{{communia|Category:Logarithmic spiral|spiram logarithmicam}}
{{communia|Category:Logarithmic spiral|spiralem logarithmicam}}
*[http://books.google.com/books?id=B5VWkvdvJSQC&pg=PA10&lpg=PA10&dq=curva+spiralis+logarithmica&source=web&ots=W5gJR_xCgY&sig=vLDSobBB3rv3mUkJgsFrp-bVDlU#PPA10,M1 Carolus Iulius Küchenmeister 1833]
*[http://books.google.com/books?id=B5VWkvdvJSQC&pg=PA10&lpg=PA10&dq=curva+spiralis+logarithmica&source=web&ots=W5gJR_xCgY&sig=vLDSobBB3rv3mUkJgsFrp-bVDlU#PPA10,M1 Carolus Iulius Küchenmeister 1833]


Linea 26: Linea 26:
[[it:Spirale logaritmica]]
[[it:Spirale logaritmica]]
[[ja:対数螺旋]]
[[ja:対数螺旋]]
[[kk:Логарифмдік спираль]]
[[nl:Logaritmische spiraal]]
[[nn:Logaritmisk spiral]]
[[pl:Spirala logarytmiczna]]
[[pl:Spirala logarytmiczna]]
[[pt:Espiral logarítmica]]
[[pt:Espiral logarítmica]]
Linea 34: Linea 31:
[[simple:Logarithmic spiral]]
[[simple:Logarithmic spiral]]
[[sl:Zlata spirala]]
[[sl:Zlata spirala]]
[[sv:Logaritmisk spiral]]
[[ta:மடக்கைச் சுருள்]]
[[ta:மடக்கைச் சுருள்]]
[[tr:Logaritmik spiral]]
[[tr:Logaritmik spiral]]

Emendatio ex 22:42, 19 Ianuarii 2012

Curva spiralis logarithmica seu "mirabilis": "Eadem mutata resurgo."

Spiralis logarithmica est curva spiralis quam Cartesius invenit et Iacobus Bernoulli examinavit. Iacobus Bernoulli eam curvam "spiralem mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".

De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent eodem angulo obliquo radii CB, CL&c. ex centro circuli C educti, dicetur Curva haec Spiralis Logarithmica.[1]

Curva loxodromica esset spiralis logarithmica si in planitie esset nec in sphaera.

Nexus externus

Vicimedia Communia plura habent quae ad spiralem logarithmicam spectant.

Nota