Jump to content

Quantum redactiones paginae "Spiralis logarithmica" differant

E Vicipaedia
Content deleted Content added
de formula definitionis
 
(16 intermediate revisions by 12 users not shown)
Linea 1: Linea 1:
[[image:Logarithmic spiral.png|thumb|Curva spiralis logarithmica seu "mirabilis": "Eadem mutata resurgo."]]
[[Fasciculus:Logarithmic spiral.png|thumb|Curva spiralis logarithmica seu "mirabilis": "Eadem mutata resurgo."]]
'''Spiralis logarithmica''' est curva [[spiralis]] quam [[Cartesius]] invenit et [[Iacobus Bernoulli]] examinavit. Iacobus Bernoulli eam curvam "spiralem mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".
'''Spiralis logarithmica''' est curva [[spiralis]] quam [[Cartesius]] invenit et [[Iacobus Bernoulli]] examinavit. Iacobus Bernoulli eam curvam "spiralem mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".


''De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent
''De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent
''eodem angulo obliquo radii CB, CL&c. ex centro circuli C educti, dicetur Curva haec Spiralis
''eodem angulo obliquo radii CB, CL&c. ex centro circuli C educti, dicetur Curva haec Spiralis
''Logarithmica.''<ref>[http://www.uam.es/personal_pdi/ciencias/barcelo/historia/La%20familia%20%20Bernoulli.pdf {{Ling|Hispanice}}]</ref>
''Logarithmica.''<ref>[http://docplayer.es/6048037-Los-hermanos-bernoulli.html Los hermanos Bernoulli] {{Ling|Hispanice}}</ref>


[[Image:Loxodrome.png|right|thumb|[[Curva loxodromica]] esset spiralis logarithmica si in planitie esset nec in [[sphaera]].]]
[[Fasciculus:Loxodrome.png|right|thumb|[[Curva loxodromica]] esset spiralis logarithmica si in planitie esset nec in [[sphaera]].]]


==Nexus externus==
== Definitio ==
In [[systema polare coordinatarum|systemate polare coordinatarum]] (''r'', θ), curva in formula scribatur:
{{communia|Category:Logarithmic spiral|spiralem logarithmicam}}
*[http://books.google.com/books?id=B5VWkvdvJSQC&pg=PA10&lpg=PA10&dq=curva+spiralis+logarithmica&source=web&ots=W5gJR_xCgY&sig=vLDSobBB3rv3mUkJgsFrp-bVDlU#PPA10,M1 Carolus Iulius Küchenmeister 1833]


:<math>r = ae^{b\theta}\,</math>
==Nota==
vel
:<math>\theta = \frac{1}{b} \ln(r/a),</math>
E quo nomen "[[logarithmus|logarithmica]]" oritur.
== Nexus externus ==
{{CommuniaCat|Logarithmic spiral|spiralem logarithmicam}}
* [http://books.google.com/books?id=B5VWkvdvJSQC&pg=PA10&lpg=PA10&dq=curva+spiralis+logarithmica&source=web&ots=W5gJR_xCgY&sig=vLDSobBB3rv3mUkJgsFrp-bVDlU#PPA10,M1 Carolus Iulius Küchenmeister 1833]

== Nota ==
<references/>
<references/>


[[Categoria:Mathematica]]
[[Categoria:Mathematica]]

[[bg:Логаритмична спирала]]
[[ca:Espiral logarítmica]]
[[de:Logarithmische Spirale]]
[[en:Logarithmic spiral]]
[[es:Espiral logarítmica]]
[[fr:Spirale logarithmique]]
[[hu:Logaritmikus spirál]]
[[it:Spirale logaritmica]]
[[ja:対数螺旋]]
[[pl:Spirala logarytmiczna]]
[[pt:Espiral logarítmica]]
[[ru:Логарифмическая спираль]]
[[simple:Logarithmic spiral]]
[[sl:Zlata spirala]]
[[ta:மடக்கைச் சுருள்]]
[[tr:Logaritmik spiral]]
[[uk:Логарифмічна спіраль]]
[[zh:等角螺线]]

Redactio novissime (die 17 Augusti 2024, hora 19:48) facta

Curva spiralis logarithmica seu "mirabilis": "Eadem mutata resurgo."

Spiralis logarithmica est curva spiralis quam Cartesius invenit et Iacobus Bernoulli examinavit. Iacobus Bernoulli eam curvam "spiralem mirabilem" vocavit et ei sententiam dicavit: "Eadem mutata resurgo".

De Spirali Logarithmica: Si in plano circuli BCH jaceat curva BDEIPC, quam secent eodem angulo obliquo radii CB, CL&c. ex centro circuli C educti, dicetur Curva haec Spiralis Logarithmica.[1]

Curva loxodromica esset spiralis logarithmica si in planitie esset nec in sphaera.

In systemate polare coordinatarum (r, θ), curva in formula scribatur:

vel

E quo nomen "logarithmica" oritur.

Nexus externus

[recensere | fontem recensere]
Vicimedia Communia plura habent quae ad spiralem logarithmicam spectant (Logarithmic spiral, Logarithmic spirals).
  1. Los hermanos Bernoulli (Hispanice)