ವಿಷಯಕ್ಕೆ ಹೋಗು

ಡೈನಮೋ

ವಿಕಿಪೀಡಿಯದಿಂದ, ಇದು ಮುಕ್ತ ಹಾಗೂ ಸ್ವತಂತ್ರ ವಿಶ್ವಕೋಶ
ಬದಲಾವಣೆ ೧೩:೧೪, ೭ ಮಾರ್ಚ್ ೨೦೧೧ ರಂತೆ Raaghavam (ಚರ್ಚೆ | ಕಾಣಿಕೆಗಳು) ಇವರಿಂದ (Translated from http://en.wikipedia.org/wiki/Dynamo (revision: 412494592) using http://translate.google.com/toolkit with about 99% human translations.)
"ಡೈನಮೋ ಎಲೆಕ್ಟ್ರಿಕ್ ಮೆಶಿನ್‌" (ಕೊನೆ ನೋಟ, ಭಾಗಶಃ ವಿಭಾಗ, [1])

ಡೈನಮೋ (ಶಕ್ತಿ ಎಂಬ ಅರ್ಥಕೊಡುವ ಗ್ರೀಕ್ ಪದ "ಡೈನಾಮಿಸ್" ದಿಂದ) ಎಂಬುದು ಮೂಲತಃ ವಿದ್ಯುಚ್ಛಾಲಿತ ಜನರೇಟರಿನ ಇನ್ನೊಂದು ಹೆಸರು. ಸಾಮಾನ್ಯ ಅರ್ಥದಲ್ಲಿ ಇದು ದಿಕ್ಪರಿವರ್ತಕದ (ಕಮ್ಯುಟೇಟರ್) ಸಹಾಯದಿಂದ ಏಕಮುಖ ವಿದ್ಯುತ್ ಶಕ್ತಿಯನ್ನು ಉತ್ಪಾದಿಸುವ ಒಂದು ಯಂತ್ರವಾಗಿದೆ. ಕೈಗಾರಿಕೋಧ್ಯಮಗಳಿಗೆ ವಿದ್ಯುಚ್ಛಕ್ತಿ ಒದಗಿಸುವ ಸಾಮರ್ಥ್ಯವುಳ್ಳ ಪ್ರಪ್ರಥಮ ವಿದ್ಯುಚ್ಛಾಲಿತ ಜನರೇಟರ್ ಈ ಡೈನಮೋಗಳು. ಅಲ್ಲದೆ, ನಂತರದಲ್ಲಿ ಇದನ್ನೇ ಆಧರಿಸಿ ತಯಾರಿಸಿದ ವಿದ್ಯುತ್ ಮೋಟಾರು - ಪರ್ಯಾಯ ವಿದ್ಯುತ್ ಪ್ರವಾಹ ಜನಕ ಮತ್ತು ಆವರ್ತನ ಪರಿವರ್ತನ ಸಾಧನಗಳಂತಹ ಇತರ ವಿದ್ಯುತ್ ಶಕ್ತಿ ಪರಿವರ್ತನಾ ಸಾಧನಗಳ ಮೂಲ ತಳಹದಿಯೂ ಸಹ ಇದೇ ಆಗಿದೆ. ಪರ್ಯಾಯ ವಿದ್ಯುತ್ತಿನ ಪ್ರಾಬಲ್ಯ, ದಿಕ್ಪರಿವರ್ತಕಗಳ (ಕಮ್ಯುಟೇಟರ್‌ನ) ಪ್ರತಿಕೂಲತೆಗಳು ಮತ್ತು ಪರ್ಯಾಯ ವಿದ್ಯುತ್ತನ್ನು ಏಕಮುಖ ವಿದ್ಯುತ್‌ತನ್ನಾಗಿ ಪರಿವರ್ತಿಸುವ "ಘನಸ್ಥಿತಿ ವಿಧಾನ"ಗಳ ಸುಲಭ ಸಾಧ್ಯತೆಯ ಪರಿಣಾಮಗಳಿಂದ ವಿದ್ಯುತ್ ಉತ್ಪಾದನೆಗಾಗಿ ಡೈನಮೋಗಳನ್ನು ಬಳಸುವುದು ಈಗ ಬಹಳ ಅಪರೂಪವಾಗಿದೆ.

ಪ್ರಾದೇಶಿಕ ಬಳಕೆಯಲ್ಲಿ ಈ ಪದವು ಈಗಲೂ ಚಾಲ್ತಿಯಲ್ಲಿದ್ದು ಜನರೇಟರ್ ಎಂಬ ಪದದ ಬದಲಿಗೆ ಇದನ್ನು ಬಳಸಲಾಗುತ್ತಿದೆ. ಸ್ಥಿರವಾದ ಪರ್ಯಾಯ ಪ್ರವಾಹ ಒದಗಿಸಬಲ್ಲ ಸಾಧನವಾದರೂ, ಸೈಕಲ್ಲಿನ ಚಕ್ರದ ಹಬ್ ಸಹಾಯದಿಂದ ರಚಿಸಲ್ಪಟ್ಟ ಬೆಳಕಿನ ಶಕ್ತಿಯನ್ನು ನೀಡಬಲ್ಲ ಸಣ್ಣ ವಿದ್ಯುತ್ ಜನರೇಟರನ್ನು ಹಬ್ ಡೈನಮೋ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ.

ವಿವರಣೆ

ಫಾರಡೆ ತತ್ವದ ಮೂಲಕ ಯಾಂತ್ರಿಕ ಸುತ್ತುಗಳನ್ನು ಏಕಮುಖ ವಿದ್ಯುತ್‌ ಪ್ರವಾಹವನ್ನಾಗಿ ಪರಿವರ್ತಿಸಲು ಸುತ್ತಬಲ್ಲ ತಂತಿ ಸುರುಳಿಗಳನ್ನು ಮತ್ತು ಕಾಂತೀಯ ಕ್ಷೇತ್ರಗಳನ್ನು ಡೈನಮೋಗಳು ಬಳಸುತ್ತವೆ. ಡೈನಮೋ ಯಂತ್ರವು ಸ್ಥಿರವಾದ ಕಾಂತಕ್ಷೇತ್ರವನ್ನು ಒದಗಿಸುವಂತಹ ಮತ್ತು ಆ ಕ್ಷೇತ್ರದಲ್ಲೇ ಸುತ್ತಬಲ್ಲ ಆರ್ಮೇಚರ್ ಎಂದು ಕರೆಯಲ್ಪಡುವ ನಿರ್ಧಿಷ್ಟ ಸುತ್ತುಗಳ ಸಮುದಾಯವನ್ನು ಹೊಂದಿದ ಸ್ಟೇಟರ್ ಎಂದು ಕರೆಯಲಾಗುವ ಸ್ಥಾಯಿ ರಚನೆಯನ್ನು ಹೊಂದಿದೆ. ಕಾಂತಕ್ಷೇತ್ರದೊಳಗಿನ ತಂತಿಯ ಚಲನೆಯು ಈ ಕ್ಷೇತ್ರವು ಲೋಹದಲ್ಲಿನ ಎಲೆಕ್ಟ್ರಾನ್‌ಗಳನ್ನು ಮುಂದಕ್ಕೆ ತಳ್ಳಿ ತಂತಿಯಲ್ಲಿ ವಿದ್ಯುತ್ ಪ್ರವಾಹವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ. ಸಣ್ಣ ಯಂತ್ರಗಳಲ್ಲಿ ಸ್ಥಿರವಾದ ಕಾಂತೀಯ ಕ್ಷೇತ್ರವು ಒಂದು ಅಥವಾ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಶಾಶ್ವತ ಅಯಸ್ಕಾಂತಗಳಿಂದ ಒದಗಿಸಲ್ಪಟ್ಟರೆ, ಬೃಹತ್ ಯಂತ್ರಗಳು ಸಾಮಾನ್ಯವಾಗಿ ಫೀಲ್ಡ್ ಕಾಯಿಲ್ಸ್ ಎಂದು ಕರೆಯಲ್ಪಡುವ ವಿದ್ಯುತ್ ಕಾಂತಗಳಿಂದ ಒದಗಿಸಲಾದ ಸ್ಥಿರ ಕಾಂತೀಯ ಕ್ಷೇತ್ರವನ್ನು ಹೊಂದಿವೆ.

ದಿಕ್ಪರಿವರ್ತಕಗಳು ಏಕಮುಖ ವಿದ್ಯುತ್‌ ಪ್ರವಾಹಗಳನ್ನು ಉತ್ಪಾದಿಸುವ ಅಗತ್ಯವನ್ನು ಹೊಂದಿದ್ದುವು. ತಂತಿಯ ಕುಣಿಕೆಗಳು ಕಾಂತೀಯ ಕ್ಷೇತ್ರದಲ್ಲಿ ಸುತ್ತುತ್ತಿರುವಾಗ ಅದರಲ್ಲಿ ಪ್ರೇರಿಸಲ್ಪಟ್ಟ ಪ್ರಚ್ಛನ್ನ ಶಕ್ತಿಯು ಪ್ರತೀ ಅರ್ಧ ಆವರ್ತನಗಳಿಗೊಮ್ಮೆ ಹಿಮ್ಮೊಗದಿಕ್ಕಿನಲ್ಲಿ ಸುತ್ತುವಂತೆ ಮಾಡಿ ಪರ್ಯಾಯ ವಿದ್ಯುತ್ ಪ್ರವಾಹವನ್ನು ಉತ್ಪಾದಿಸುತ್ತದೆ. ಆದಾಗ್ಯೂ, ವಿದ್ಯುತ್ತಿನ ಪ್ರಯೋಗದ ಹಳೆಯ ದಿನಗಳಲ್ಲಿ, ಪರ್ಯಾಯ ಪ್ರವಾಹವು ಸಾಮಾನ್ಯವಾಗಿ ತಿಳಿದಿರುವಂತಹ ಯಾವುದೇ ಉಪಯೋಗಗಳನ್ನು ಹೊಂದಿರಲಿಲ್ಲ. ವಿದ್ಯುಲ್ಲೇಪನದಂತಹ ಕೆಲವು ಕಾರ್ಯಗಳಲ್ಲಿ ವಿದ್ಯುತ್ ಶಕ್ತಿಗಾಗಿ ಹಾಳಾದ ಬ್ಯಾಟರಿಗಳಿಂದ ಒದಗಿಸಲಾಗುವ ಏಕಮುಖ ವಿದ್ಯುತ್‌ ಪ್ರವಾಹವನ್ನೇ ಬಳಸುತ್ತಿದ್ದರು. ಬ್ಯಾಟರಿಗಳ ಸ್ಥಾನವನ್ನು ತುಂಬಲು ಡೈನಮೋಗಳನ್ನು ಕಂಡುಹಿಡಿಯಲಾಯಿತು. ದಿಕ್ಪರಿವರ್ತಕಗಳು(ಕಮ್ಯುಟೇಟರ್) ಅತ್ಯಗತ್ಯವಾಗಿ ಆವರ್ತಕ ಗುಂಡಿಯಾಗಿದೆ. ಬ್ರಷಸ್ ಎಂದು ಕರೆಯಲಾಗುವ ಗ್ರಾಫೈಟ್ ಬ್ಲಾಕ್ ಸ್ಥಿರ ಸಂಪರ್ಕಗಳ ಜೊತೆಗೆ ಯಂತ್ರದ ಮಧ್ಯಭಾಗದಲ್ಲಿ ಕೂರಿಸಲಾದ ಸಂಪರ್ಕಗಳ ಸಮೂಹವನ್ನೇ ಇದು ಒಳಗೊಂಡಿದೆ. ಯಾಕೆಂದರೆ, ಹೀಗೆಯೇ ಜೋಡಿಸಲ್ಪಟ್ಟ ಹಳೆಯ ಸಂಪರ್ಕಗಳು ಲೋಹದ ಬ್ರಷ್‌ಗಳಾಗಿದ್ದುವು. ಪ್ರಚ್ಛನ್ನ ಶಕ್ತಿಯು ಹಿಮ್ಮೊಗ ದಿಕ್ಕಿನಲ್ಲಿ ಉಂಟಾದಾಗ ದಿಕ್ಪರಿವರ್ತಕಗಳು ಸುತ್ತುವಿಕೆಯ ಸಂಪರ್ಕಗಳನ್ನೂ ಸಹ ಹಿಮ್ಮೊಗವಾಗಿ ಚಲಿಸುವಂತೆ ಮಾಡಿ ಬಾಹ್ಯ ಸರ್ಕ್ಯೂಟ್‌ನ್ನು ಸಂಪರ್ಕಿಸುವಂತೆ ಮಾಡುತ್ತದೆ. ಆದ್ದರಿಂದ ಪರ್ಯಾಯ ಪ್ರವಾಹದ ಬದಲಿಗೆ ಮುಂದಕ್ಕೆ ತಳ್ಳಲ್ಪಡುವ ನೇರ ಪ್ರವಾಹವು ಉತ್ಪಾದಿಸಲ್ಪಡುತ್ತದೆ.

ಚಾರಿತ್ರಿಕ ಮೈಲಿಗಲ್ಲುಗಳು

ಫಾರಡೆ ತಟ್ಟೆ

ಅಯಸ್ಕಾಂತದ ಎರಡೂ ಧ್ರುವಗಳ ನಡುವೆ ಸುತ್ತುವ ತಾಮ್ರದ ತಟ್ಟೆಯನ್ನು ಹೊಂದಿರುವ ಮೊದಲ ವಿದ್ಯುಚ್ಛಾಲಿತ ಜನರೇಟರ್ 1831ರಲ್ಲಿ ಮೈಕೇಲ್ ಫಾರಡೆಯಿಂದ ಕಂಡುಹಿಡಿಯಲ್ಪಟ್ಟಿತು. ದಿಕ್ಪರಿವರ್ತಕವನ್ನು (ಕಮ್ಯುಟೇಟರ್) ಉಪಯೋಗಿಸದೇ ಇದ್ದುದರಿಂದ ಇದು ಡೈನಮೋ ಆಗಿರಲಿಲ್ಲ. ಆದರೂ, ಫಾರಡೆಯ ತಟ್ಟೆಯು ತನ್ನಲ್ಲಿನ ಕಾಂತೀಯ ಕ್ಷೇತ್ರದ ಮೂಲಕ ಏಕೈಕ ಪ್ರವಾಹ ಪಥವನ್ನು ಹೊಂದಿದ್ದುದರಿಂದ ಅತ್ಯಂತ ಕಡಿಮೆ ಪ್ರಮಾಣದ ವೋಲ್ಟೇಜ್‌ನ್ನು ಉತ್ಪಾದಿಸಿತು. ತಂತಿಗಳ ಹಲವಾರು ಸುತ್ತುಗಳನ್ನು ಕಾಯಿಲ್‌ಗೆ ಸುತ್ತುವಂತೆ ಮಾಡುವುದರಿಂದ ಅಧಿಕ ಪ್ರಮಾಣದ ಮತ್ತು ಹೆಚ್ಚು ಉಪಯೋಗವುಳ್ಳ ವೋಲ್ಟೇಜ್‌ಗಳನ್ನು ಉತ್ಪಾದಿಸಬಹುದು ಎಂದು ಫಾರಡೆ ಮತ್ತು ಇತರರು ಕಂಡುಕೊಂಡರು. ಒಟ್ಟು ಸುತ್ತುಗಳ ಸಂಖ್ಯೆಯನ್ನು ಬದಲಾಯಿಸುವುದರಿಂದ ಈ ತಂತಿಗಳ ಸುತ್ತುವಿಕೆಯು ನಮ್ಮ ಅನುಕೂಲಕ್ಕೆ ತಕ್ಕಂತೆ ಬಯಸಿದ ಯಾವುದೇ ಪ್ರಮಾಣದ ವೋಲ್ಟೇಜ್‌ನ್ನು ಉತ್ಪಾದಿಸಬಹುದು. ಆದುದರಿಂದ ನೇರ ಪ್ರವಾಹವನ್ನು ಉತ್ಪಾದಿಸುವ ಸಲುವಾಗಿ ದಿಕ್ಪರಿವರ್ತಕಗಳನ್ನು ಕಂಡುಹಿಡಿಯುವ ಅಗತ್ಯವನ್ನು ಹೊಂದಿರುವುದರ ಜೊತೆಗೆ ಇವುಗಳು ನಂತರದಲ್ಲಿ ವಿನ್ಯಾಸಗೊಳಿಸಿದ ಎಲ್ಲಾ ಜನರೇಟರ್ ವಿನ್ಯಾಸಗಳ ಪ್ರಮುಖ ಲಕ್ಷಣವಾಯಿತು.

ಜೆಡ್ಲಿಕ್‌ರ ಡೈನಮೋ

ಪಿಕ್ಸೀ ಅವರ ಡೈನಮೋ. ತಿರುಗುತ್ತಿರುವ ಅಯಸ್ಕಾಂತದ ಕೆಳಗಿನ ಶಾಫ್ಟ್‌ ಮೇಲೆ ಈ ಕಮ್ಯೂಟೇಟರ್ ಇರುತ್ತದೆ.
ಚಿತ್ರ:Jedlik's dynamo.jpg
ಜೆಡ್ಲಿಕ್‌ನ ಡೈನಮೋದ ಒಂದು ಆಧುನಿಕ ಪ್ರದರ್ಶನ

1827 ರಲ್ಲಿ ಹಂಗೇರಿಯಾದ ಆನ್ಯೋಸ್ ಜೆಡ್ಲಿಕ್ ವಿದ್ಯುತ್ಕಾಂತೀಯ ಸ್ವಯಂ-ತಿರುಗುಸಿಂಬಿ (ರೋಟರ್) ಎಂದು ತಾನೇ ಕರೆದುಕೊಂಡ ವಿದ್ಯುತ್ಕಾಂತೀಯತೆಯಿಂದ ಸುತ್ತುವ ಸಾಧನಗಳ ಮೇಲೆ ಪ್ರಯೋಗಗಳನ್ನು ನಡೆಸಲು ಪ್ರಾರಂಭಿಸಿದನು. ಏಕ-ಧ್ರುವ ಹೊಂದಿರುವ ವಿದ್ಯುತ್ ಪ್ರಾರಂಭಕ(ಸ್ಟಾರ್ಟರ್)ದ ಮೂಲಮಾದರಿಯಲ್ಲಿ ಸ್ಥಿರವಾದ ಮತ್ತು ಸುತ್ತುವಂತಹ ಎರಡೂ ಭಾಗಗಳು ವಿದ್ಯುತ್ಕಾಂತೀಯ ವಸ್ತುಗಳು. ಸೀಮೆನ್ಸ್ ಮತ್ತು ವೀಟ್‌ಸ್ಟೋನ್‌ರಿಗಿಂತ ಸುಮಾರು ಆರು ವರ್ಷಗಳ ಹಿಂದೆಯೇ ಅವನು ಡೈನಮೋದ ತತ್ವವನ್ನೂ ಸೂತ್ರೀಕರಿಸಿದನು ಆದರೆ, ಇದನ್ನು ಕಂಡುಹಿಡಿದವರಲ್ಲಿ ತಾನೇನೂ ಮೊದಲಿಗನಲ್ಲ ಎಂದು ಭಾವಿಸಿದ್ದುದರಿಂದ ಈತ ಇದರ ಒಡೆತನದ ಹಕ್ಕನ್ನು ಪಡೆದಿರಲಿಲ್ಲ. ಇವನ ಡೈನಮೋ ಸ್ವಯಂ-ತಿರುಗುಸಿಂಬಿ (ರೋಟರ್)ಗಳ ಸುತ್ತಲೂ ಕಾಂತೀಯ ಕ್ಷೇತ್ರವನ್ನು ಪ್ರೇರಿಸುವ ಸಲುವಾಗಿ ಶಾಶ್ವತ ಅಯಸ್ಕಾಂತಗಳ ಬದಲಿಗೆ ಪರಸ್ಪರ ಎದುರು-ಬದುರಾಗಿ ಜೋಡಿಸಲ್ಪಟ್ಟ ಎರಡು ವಿದ್ಯುತ್ಕಾಂತಗಳನ್ನು ಉಪಯೋಗಿಸುತ್ತಿತ್ತು.[][] ಡೈನಮೋದ ಸ್ವಯಂ-ಪ್ರಚೋದನೆಯ ಆವಿಷ್ಕಾರವೂ ಇದೇ ಆಗಿತ್ತು.[]

ಪಿಕ್ಸೀ ಅವರ ಡೈನಮೋ

ಫಾರಡೇಯ ತತ್ವಗಳ ಅಧಾರದ ಮೇಲೆ 1832ರಲ್ಲಿ ಮೊದರ ಡೈನಮೋ ಫ್ರೆಂಚ್‌ನ ಉಪಕರಣಗಳ ತಯಾರಕ ಹಿಪ್ಪೋಲೈಟ್ ಪಿಕ್ಸೀ ರಿಂದ ರಚಿಸಲ್ಪಟ್ಟಿತು. ಇದು ಕ್ರ್ಯಾಂಕ್ ಸಹಾಯದಿಂದ ಸುತ್ತುವ ಶಾಶ್ವತ ಅಯಸ್ಕಾಂತಗಳನ್ನು ಉಪಯೋಗಿಸುತ್ತಿತ್ತು. ತಿರುಗುವ ಕಾಂತವು ತನ್ನ ಉತ್ತರ ಮತ್ತು ದಕ್ಷಿಣ ಧ್ರುವಗಳು ವಿದ್ಯುತ್ ನಿರೋಧಗೊಳಿಸಿದ ತಂತಿಯಿಂದ ಸುತ್ತಿದ ಕಬ್ಬಿಣದ ತುಂಡಿನ ಮೂಲಕ ಹಾದುಹೋಗುವಂತೆ ಜೋಡಿಸಲ್ಪಟ್ಟಿದೆ. ತಿರುಗುವ ಅಯಸ್ಕಾಂತವು ಈ ಸುರುಳಿಯನ್ನು ದಾಟುವ ಪ್ರತೀ ಸಂದರ್ಭದಲ್ಲಿಯೂ ಸಹ ತಂತಿಯಲ್ಲಿ ವಿದ್ಯುತ್ ಕಂಪನಗಳನ್ನು ಉಂಟುಮಾಡುತ್ತವೆ ಎಂದು ಪಿಕ್ಸೀ ಕಂಡುಹಿಡಿದನು. ಆದಾಗ್ಯೂ, ಅಯಸ್ಕಾಂತದ ಉತ್ತರ ಮತ್ತು ದಕ್ಷಿಣ ಧ್ರುವಗಳು ಪರಸ್ಪರ ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ವಿದ್ಯುತ್ ಪ್ರೇರಿತಗೊಳ್ಳುತ್ತವೆ. ಪರ್ಯಾಯ ವಿದ್ಯುತ್ ಪ್ರವಾಹವನ್ನು ನೇರ ಪ್ರವಾಹವನ್ನಾಗಿ ಪರಿವರ್ತಿಸಲು ವಿಭಜಿತ ಲೋಹದ ಸಿಲಿಂಡರ್‌ನ್ನು ಮಧ್ಯಭಾಗದಲ್ಲಿ ಹೊಂದಿರುವುದರ ಜೊತೆಗೆ, ಅದಕ್ಕೆ ವಿರುದ್ಧುವಾಗಿ, ಒತ್ತುವುದಕ್ಕಾಗಿ ಎರಡು ಸ್ಪ್ರಿಂಗ್ ಚಲನೆಯನ್ನು ಹೊತ್ತ ಲೋಹ ಸಂಪರ್ಕಗಳನ್ನು ಒದಗಿಸುವಂತೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಕಮ್ಯುಟೇಟರ್‌ನ್ನು (ದಿಕ್ಪರಿವರ್ತಕ) ಪಿಕ್ಸಿ ಕಂಡುಹಿಡಿದನು.

ಪೇಸಿನೊಟ್ಟಿ ಡೈನಮೋ

ಪ್ಯಾಸಿನೊಟ್ಟಿ ಡೈನಮೋ, 1860

ಈ ಹಳೆಯ ವಿನ್ಯಾಸಗಳು ಸಮಸ್ಯೆಗಳನ್ನು ಹೊಂದಿದ್ದುವು: ಇವು ಉತ್ಪಾದಿಸಿದ ವಿದ್ಯುತ್ ಪ್ರವಾಹವು ಕ್ಷಿಪ್ರ ಏರಿಕೆ-ಇಳಿಕೆಯನ್ನು (ಸ್ಪೈಕ್ಸ್) ಅಥವಾ ಯಾವುದೇ ತಡೆಯಿಂದ ಬೇರ್ಪಡದ ವಿದ್ಯುತ್ ಪ್ರವಾಹದ ಕಂಪನಗಳನ್ನು ಉಂಟುಮಾಡುವುದರಿಂದ ಇದರ ಪರಿಣಾಮವಾಗಿ ಇದು ಕಡಿಮೆ ಸರಾಸರಿ ಶಕ್ತಿಯುಳ್ಳ ವಿದ್ಯುತ್ ಶಕ್ತಿನ್ನು ಉತ್ಪಾದುಸುತ್ತದೆ. ಆ ಕಾಲದ ವಿದ್ಯುತ್ ಮೋಟಾರಿನಲ್ಲಿದ್ದಂತೆ, ವಿನ್ಯಾಸಗಾರರು ಕಾಂತೀಯ ಮಂಡಲದಲ್ಲಿ ಉಂಟಾಗುವ ದೊಡ್ಡ ಪ್ರಮಾಣದ ಗಾಳಿತುಂಬಿದ ಅವಕಾಶಗಳು ಉಂಟುಮಾಡುವ ಅಪಾಯಕರ ಪರಿಣಾಮಗಳನ್ನು ಪೂರ್ಣಪ್ರಮಾಣದಲ್ಲಿ ಅರಿತುಕೊಂಡಿರಲಿಲ್ಲ. ಅಂದಾಜು ಸುಮಾರು 1860ರ ವೇಳೆಗೆ ತಿರುಗುವ ಎರಡು ಧ್ರುವಗಳಿರುವ ಅಕ್ಷೀಯ ಸುರುಳಿ ತಂತಿಗಳ ಬದಲಿಗೆ ಸತತವಾದ ಸುತ್ತುವಿಕೆಯಿಂದ ಮುಚ್ಚಿರುವ ಕಬ್ಬಿಣದ ಉಂಗುರವೊಂದರಿಂದ ತಯಾರಿಸಿದ ಉಬ್ಬುರುಳೆಯಾಕಾರದ ಬಹುಧ್ರುವಗಳನ್ನು ಹೊಂದಿರುವ ಸುರುಳಿತಂತಿಗಳನ್ನು ದಿಕ್ಪರಿವರ್ತಕದ ಮೇಲೆ ಸಮಾನ ದೂರದಲ್ಲಿ ಸೂಚಿಸಿದ ಹಲವು ಬಿಂದುಗಳಲ್ಲಿ ಉಂಗುರದುದ್ದಕ್ಕೂ ಜೋಡಿಸುವರಿಂದ, ದಿಕ್ಪರಿವರ್ತಕವು ಹಲವು ಭಾಗಗಳಾಗಿ ವಿಭಜನೆಗೊಳಗಾಗುವ ಈ ಸಾಧನವನ್ನು ಬಳಸುವ ಮೂಲಕ ಇಟಲಿಯ ಭೌತಶಾಸ್ತ್ರ ಪ್ರಾಧ್ಯಾಪಕರಾದ ಆಂಟೋನಿಯೋ ಪಾಸಿನೋಟ್ಟಿ ಈ ಸಮಸ್ಯೆಯನ್ನು ಪರಿಹರಿಸಿದರು. ಇದರಿಂದ ಸುರುಳಿತಂತಿಯ ಕೆಲವು ಭಾಗಗಳು ಸತತವಾಗಿ ಅಯಸ್ಕಾಂತಗಳ ಮೂಲಕ ಚಲಿಸುವಂತೆ ಮಾಡುತ್ತದೆ ಹಾಗೂ ಸರಾಗವಾಗಿ ವಿದ್ಯುತ್ ಉತ್ಪಾದನೆಯಾಗುತ್ತದೆ.

ಸೀಮೆನ್ಸ್ ಮತ್ತು ವೀಟ್ಸ್‌ಟನ್ ಡೈನಮೋ (1867)

ಡೈನಮೋದ ಮೊದಲ ಪ್ರಾಯೋಗಿಕ ಮಾದರಿಗಳು ಡಾ|| ವರ್ನರ್ ಸೀಮೆನ್ಸ್ ಮತ್ತು ಚಾರ್ಲ್ಸ್ ವೀಟ್ಸ್‌ಟನ್‌ರಿಂದ ಸ್ವಂತಂತ್ರವಾಗಿ ಮತ್ತು ಏಕಕಾಲದಲ್ಲಿ ಘೋಷಿಸಲ್ಪಟ್ಟವು. 1867ರ ಜನವರಿ 17ರಂದು ಸ್ಥಿರಭಾಗವನ್ನು(ಸ್ಟೇಟರ್ ಫೀಲ್ಡ್) ಉಂಟು ಮಾಡಲು ಶಾಶ್ವತ ಅಯಸ್ಕಾಂತಗಳ ಬದಲಿಗೆ ಸ್ವಯಂ-ಬಲಗೊಳ್ಳುವ ವಿದ್ಯುತ್ ಕಾಂತೀಯ ಕ್ಷೇತ್ರ ಹೊಂದಿರುವ ಸುರುಳಿತಂತಿಗಳನ್ನು ಬಳಸಿದ "ಡೈನಮೋ - ವಿದ್ಯುತ್ ಚಾಲಿತ ತಂತ್ರ" (ಈ ಪದದ ಮೊದಲ ಬಳಕೆ)ವನ್ನು ಸೀಮೆನ್ಸ್ ಬರ್ಲಿನ್ ಅಕಾಡೆಮಿಗೆ ಪ್ರಕಟಿಸಿದನು.[] ಈ ಅವಿಷ್ಕಾರವು ಶ್ರೀಮಂತ ಸಮಾಜಕ್ಕೆ ಘೋಷಿಸಲ್ಪಟ್ಟ ಅದೇ ದಿನ ಚಾರ್ಲ್ಸ್ ವೀಟ್ಸ್‌ಟನ್‌ , ಸೀಮೆನ್ಸ್‌ನ ಮಾದರಿಯಿಂದ ತುಸು ಭಿನ್ನವಾಗಿರುವ ಅಂದರೆ, ಸೀಮೆನ್ಸ್ ಮಾದರಿಯಲ್ಲಿ ಸ್ಥಿರಭಾಗದ ವಿದ್ಯುತ್ ಕಾಂತಗಳು ರಾಟರ್‌ ಜೊತೆ ಸರಣಿರೂಪದಲ್ಲಿ ಜೋಡಿಸಲ್ಪಟ್ಟಿದ್ದರೆ, ವೀಟ್‌ಸ್ಟನ್‌ನ ಮಾದರಿಯಲ್ಲಿ ಇವು ಸಮಾಂತರವಾಗಿ ಜೋಡಿಸಲ್ಪಟ್ಟಿರುವಂತಹ ವ್ಯತ್ಯಾಸವನ್ನು ಹೊಂದಿರುವ ಇಂತಹುದೇ ಮಾದರಿಯನ್ನು ವಿವರಿಸಿದ ಪತ್ರಿಕೆಯನ್ನು ಓದಿದನು.[] ಶಾಶ್ವತ ಅಯಸ್ಕಾಂತಗಳ ಬದಲಿಗೆ ವಿದ್ಯುತ್ ಕಾಂತಗಳ ಬಳಕೆಯು ಡೈನಮೋದ ಶಕ್ತಿಯನ್ನು ಉತ್ಪಾದಿಸುವ ಪ್ರಮಾಣವನ್ನು ವೃದ್ಧಿಸಿ ಮೊದಲ ಭಾರಿಗೇ ಅಧಿಕ ವಿದ್ಯುತ್ ಉತ್ಪಾದನೆಯನ್ನು ಉಂಟುಮಾಡಿತು. ಈ ಆವಿಷ್ಕಾರವು ನೇರವಾಗಿ ಕೈಗಾರಿಕೋಧ್ಯಮ ವಲಯದಲ್ಲಿ ಮೊದಲ ಭಾರಿಗೆ ಪ್ರಧಾನ ವಿದ್ಯುತ್ ಬಳಕೆಯನ್ನು ಮಾಡಲು ಕಾರಣವಾಯಿತು. ಉದಾಹರಣೆಗೆ, 1870ರಲ್ಲಿ ಸೀಮೆನ್ಸ್ ಲೋಹ ಮತ್ತು ಇತರ ವಸ್ತುಗಳ ಉತ್ಪಾದನೆಗೆ ಬಳಸುವ ವಿದ್ಯುತ್ ಚಾಪ ಕುಲುಮೆಗಳಿಗೆ ಶಕ್ತಿಯನ್ನು ಒದಗಿಸಲು ವಿದ್ಯುತ್ ಕಾಂತೀಯ ಡೈನಮೋಗಳನ್ನು ಬಳಸಿದನು.

ಗ್ರಾಮ್ಮೆ ರಿಂಗ್ ಡೈನಮೋ

ಸ್ಮಾಲ್ ಗ್ರಾಮ್ಮೆ ಡೈನಮೋ, ಸುಮಾರು 1878 ರಲ್ಲಿ
ಗ್ರಾಮ್ಮೆ ಡೈನಮೋ ಹೇಗೆ ಒಂದು ಔಟ್‌ಪುಟ್ ವೇವ್‌ಫಾರ್ಮ್ ನೀಡುವಂತೆ ಕಾರ್ಯ ನಿರ್ವಹಿಸುತ್ತದೆ.

1870ರಲ್ಲಿ ಮೊದಲ ಭಾರಿಗೆ ಪ್ಯಾರಿಸ್‌ನಲ್ಲಿ ಕಾರ್ಯಾಚರಣೆ ಆರಂಭಿಸಿದ ವಾಣಿಜ್ಯ ಶಕ್ತಿ ಸ್ಥಾವರಗಳನ್ನು ಮೊದಲ ಭಾರಿಗೆ ವಿನ್ಯಾಸಗೊಳಿಸಿದ ಸಂದರ್ಭದಲ್ಲಿ ಝೆನೋಬ್ ಗ್ರಾಮ್ಮೆ ಪಾಸಿನೊಟ್ಟಿಯ ವಿನ್ಯಾಸವನ್ನು 1871ರಲ್ಲಿ ಪುನರಾವಿಷ್ಕರಿಸಿದನು. ಗ್ರಾಮ್ಮೆಯ ವಿನ್ಯಾಸದ ಇನ್ನೊಂದು ಪ್ರಯೋಜನವೆಂದರೆ, ಅಯಸ್ಕಾಂತೀಯ ಪ್ರವಾಹವು ಕಾಂತೀಯ ಕ್ಷೇತ್ರವು ಆವರಿಸಿಕೊಂಡ ಅವಕಾಶವನ್ನು ಭಾರವಾದ ಕಬ್ಬಿಣದ ತುಂಡಿನಿಂದ ತುಂಬಿ ಭರ್ತಿಮಾಡುತ್ತದೆ ಅಲ್ಲದೆ, ಸ್ಥಿರ ಮತ್ತು ತಿರುಗುವ ಭಾಗಗಳ ಮಧ್ಯೆ ಉಂಟಾಗುವ ಗಾಳಿತುಂಬಿದ ಅವಕಾಶಗಳನ್ನು ಕಿರಿದಾಗಿಸುತ್ತದೆ. ವಾಣಿಜ್ಯ ಉಧ್ಯಮಗಳಿಗೆ ಅಗತ್ಯವಿರುವಷ್ಟು ಪರಿಮಾಣದ ಶಕ್ತಿಯನ್ನು ಉತ್ಪಾದಿಸಿದ ಮೊದಲ ಯಂತ್ರವೇ ಗ್ರಾಮ್ಮೆ ಡೈನಮೋ . ಇನ್ನೂ ಹೆಚ್ಚಿನ ಅಭಿವೃದ್ಧಿಯು ಗ್ರಾಮ್ಮೆ ರಿಂಗ್ ಮೇಲೆ ನಡೆಸಲ್ಪಟ್ಟರೂ, ತಂತಿಕುಣಿಕೆಯಳ ಕೊನೆಯಿಲ್ಲದ ಸುತ್ತುವಿಕೆ ಮೂಲ ತತ್ವವು ಆಧುನಿಕ ಡೈನಮೋಗಳ ಹೃದಯಭಾಗದಲ್ಲಿದೆ.

ಬ್ರಷ್ ಡೈನಮೋ

1876 ರ ಬೇಸಿಗೆಯಲ್ಲಿ ಚಾರ್ಲ್ಸ್ ಎಫ್.ಬ್ರಷ್ ಶಕ್ತಿಯನ್ನೊದಗಿಸಲು ಕುದುರೆಗಳಿಂದ ಎಳೆಯಲ್ಪಡುವ ಮೆಟ್ಟು-ಯಂತ್ರವನ್ನು ಉಪಯೋಗಿಸಿ ತನ್ನ ಮೊದಲ ಡೈನಮೋವನ್ನು ಸಂಯೋಜಿಸಿದನು. ಯು.ಎಸ್ ಹಕ್ಕುಪತ್ರ(ಸ್ವಾಮ್ಯ) ಸಂಖ್ಯೆ 189997 "ಅಯಸ್ಕಾಂತೀಯ-ವಿದ್ಯುತ್ ಯಂತ್ರಗಳು" 1877ರ ಏಪ್ರಿಲ್ 24ರಂದು ನೀಡಲ್ಪಟ್ಟಿತು. ಪಾರ್ಶ್ವಗಳಲ್ಲಿನ ತಂತಿಗಳು ಮತ್ತು ರಿಂಗ್‌ನ ಒಳಭಾಗಗಳು ಕಾಂತಕ್ಷೇತ್ರದ ಪರಿಣಾಮಕಾರೀ ವಲಯದ ಹೊರಗೆ ವ್ಯವಸ್ಥೆಗೊಂಡಿದ್ದು, ಅತ್ಯಧಿಕ ಪ್ರಮಾಣದ ಶಾಖವು ಉಳಿದುಕೊಂಡಿರುವಂತಹ ಗ್ರಾಮ್ಮೆ ವಿನ್ಯಾಸದ ಮೂಲಮಾದರಿಯನ್ನೇ ಬಳಸಿ ಬ್ರಷ್ ತನ್ನ ಸಂಯೋಜನೆಯನ್ನು ಆರಂಭಿಸಿದನು. ಈ ವಿನ್ಯಾಸವನ್ನು ಅಭಿವೃದ್ಧಿಗೊಳಿಸುವ ಉದ್ದೇಶವಿದ್ದುದರಿಂದ ಅವನ ರಿಂಗ್ ಆರ್ಮೇಚರ್‌ ಗ್ರಾಮ್ಮೆ ಬಳಸಿದ ಸಿಲಿಂಡರಿನಾಕಾರದಲ್ಲಿಲ್ಲದೆ ಬದಲಿಗೆ ತಟ್ಟೆ(ಡಿಸ್ಕ್)ಯಾಕಾರದಲ್ಲಿತ್ತು. ಕ್ಷೇತ್ರ ವಿದ್ಯುತ್ ಕಾಂತಗಳು ಆರ್ಮೇಚರ್ ತಟ್ಟೆಯ ಪರಿಧಿಯ ಸುತ್ತಲೂ ಜೋಡಿಸಲ್ಪಡದೆ ಅದರ ಪಾರ್ಶ್ವಗಳಲ್ಲಿ ಜೋಡಿಸಲ್ಪಟ್ಟಿದೆ. ಇದರಲ್ಲಿ ನಾಲ್ಕು ವಿದ್ಯುತ್ ಕಾಂತಗಳಿದ್ದು ಎರಡು ಉತ್ತರ ಧ್ರುವದ ಕಟ್ಟಿನಲ್ಲಿ ಮತ್ತು ಇನ್ನೆರಡು ದಕ್ಷಿಣ ಧ್ರುವದ ಕಟ್ಟಿನಲ್ಲಿ ವ್ಯವಸ್ಥೆಗೊಳಿಸಲಾಗಿತ್ತು. ಸಮಾನ ಧ್ರುವಗಳು ಪರಸ್ಪರ ವಿಕರ್ಷಿಸಲ್ಪಡುತ್ತಿದ್ದು ಆರ್ಮೇಚರ್ ತಟ್ಟೆಯ ಎರಡೂ ಬದಿಗಳಲ್ಲಿ ಒಂದೊಂದರಂತೆ ನಿಲ್ಲುತ್ತಿತ್ತು.[] 1881 ರಲ್ಲಿ ಬ್ರಷ್ ವಿದ್ಯುತ್ ಉಪಕರಣ ಕಂಪನಿಯ ಡೈನಮೋಗಳು 89 ಇಂಚು ಉದ್ದ, 28 ಇಂಚು ಅಗಲ ಮತ್ತು 36 ಇಂಚು ಎತ್ತರ ಮತ್ತು 4,800 ಪೌಂಡ್‌ಗಳಷ್ಟು ಭಾರವಿತ್ತು, ಅಲ್ಲದೆ, ನಿಮಿಷಕ್ಕೆ 700 ಭಾರಿ ವೇಗವುಳ್ಳ ಪರಿಭ್ರಮಣವನ್ನು ನಡೆಸುತ್ತಿತ್ತು ಎಂದು ವರದಿಯಾಗಿದೆ. ಇದು ಆ ಕಾಲದಲ್ಲಿನ ಅತೀ ದೊಡ್ಡ ಡೈನಮೋ ಎಂದು ನಂಬಲಾಗಿತ್ತು. ಸುಮಾರು 40 ಚಾಪದೀಪಗಳನ್ನು ಬೆಳಗಲು ಇದು ಸಮರ್ಥವಾಗಿತ್ತು ಮತ್ತು ಇದಕ್ಕೆ 36 ಹಾರ್ಸ್‌ಪವರ್ ಶಕ್ತಿಯ ಅಗತ್ಯವಿತ್ತು.[]

ವಿದ್ಯುತ್ ಮೋಟಾರು ತತ್ವಗಳ ಅವಿಷ್ಕಾರ

ಮೂಲತಃ ಉದ್ದೇಶಕ್ಕೋಸ್ಕರ ವಿನ್ಯಾಸಗೊಳಿಸಿದ್ದರೂ, ಬ್ಯಾಟರಿ ಅಥವಾ ಇನ್ನೊಂದು ಡೈನಮೋದ ಸಹಾಯದಿಂದ ಏಕಮುಖ ಪ್ರವಾಹದ ವಿದ್ಯುತ್ ಸೌಲಭ್ಯವೊದಗಿಸಿದರೆ ಡೈನಮೋ ಒಂದು ವಿದ್ಯುತ್ ಮೋಟಾರಿನಂತೆಯೂ ಕೂಡಾ ಕಾರ್ಯನಿರ್ವಹಿಸಬಲ್ಲುದು ಎಂದು ಶೋಧಿಸಲ್ಪಟ್ಟಿತು. 1873ರಲ್ಲಿ ವಯೆನ್ನದಲ್ಲಿ ನಡೆದ ಕೈಗಾರಿಕೋಧ್ಯಮಗಳ ಪ್ರದರ್ಶನದಲ್ಲಿ ತನ್ನ ಡೈನಮೋದ ಕೊನೆಯ ಭಾಗಗಳು ಆಕಸ್ಮಿಕವಾಗಿ ವಿದ್ಯುತ್ ಉತ್ಪಾದಿಸುವ ಇನ್ನೊಂದು ಡೈನಮೋದ ಜೊತೆಗೆ ಸಂಪರ್ಕ ಹೊಂದಿದಾಗ ಅದರ ಮಧ್ಯಭಾಗವು (ಶಾಫ್ಟ್)ತಿರುಗಲು ಪ್ರಾರಂಭಿಸಿದುದನ್ನು ಗ್ರಾಮ್ಮೆ ಗಮನಿಸಿದನು. ಇದೇನೂ ವಿದ್ಯುತ್ ಮೋಟಾರಿನ ಮೊದಲ ಪ್ರದರ್ಶಕ ಬೋಧನೆಯಾಗಿಲ್ಲದಿದ್ದರೂ, ಇದು ಪ್ರಪ್ರಥಮ ಪ್ರಯೋಗವಾಗಿದೆ. ಡೈನಮೋದ ಕಾರ್ಯನಿರ್ವಹಣೆಯಲ್ಲಿ ದಕ್ಷತೆಯನ್ನು ಒದಗಿಸುವ ವಿನ್ಯಾಸ ಲಕ್ಷಣಗಳೇ ವಿದ್ಯುತು ಮೋಟಾರಿನ ಕಾರ್ಯಚಟುವಟಿಕೆಗಳನ್ನೂ ಸಹ ದಕ್ಷಗೊಳಿಸುತ್ತದೆ ಎಂಬುದು ತಿಳಿದುಬಂತು. ಚಿಕ್ಕ ಕಾಂತೀಯ ಅವಕಾಶಗಳು (ಎರ್ ಗ್ಯಾಪ್) ಮತ್ತು ತಂತಿಯ ಹಲವು ಸುರುಳಿಗಳು ಹಲವು ಭಾಗಗಳಾಗಿ ವಿಭಜನೆಗೊಳಪಟ್ಟ ಕಮ್ಯುಟೇಟರ್‌ಗಳನ್ನೊಳಗೊಂಡ ದಕ್ಷತೆಯುಳ್ಳ ಗ್ರಾಮ್ಮೆ ವಿನ್ಯಾಸವು ಎಲ್ಲಾ ಪ್ರಾಯೋಗಿಕ ಏಕಮುಖ ಪ್ರವಾಹದ ಮೋಟಾರು ವಿನ್ಯಾಸಗಳಿಗೆ ಅಧಾರವಾಗಿದೆ.

ಎರಡು ಅಥವಾ ಹೆಚ್ಚಿನ ಡೈನಮೋಗಳು ಒಟ್ಟಿಗೇ ಕಾರ್ಯನಿರ್ವಹಿಸಬೇಕಾದ ಸಂದರ್ಭದಲ್ಲಿ ನೇರವಿದ್ಯುತ್ ಪ್ರವಾಹವನ್ನು ಉತ್ಪಾದಿಸುವ ಬೃಹತ್ ಗಾತ್ರದ ಡೈನಮೋಗಳು ಸಮಸ್ಯಾತ್ಮಕವಾಗಿರುತ್ತವೆ. ಮತ್ತು, ಒಂದರ ಇಂಜಿನ್ ಇನ್ನೊಂದರ ಇಂಜಿನ್‌ಗಿಂತ ಕಡಿಮೆ ಪ್ರಮಾಣದ ಶಕ್ತಿಯೊಂದಿಗೆ ಕೆಲಸಮಾಡುತ್ತದೆ. ಪ್ರಭಲವಾದ ಇಂಜಿನ್ ಹೊಂದಿದ ಡೈನಮೋಗಳು ದುರ್ಬಲ ಇಂಜಿನ್ ಹೊಂದಿರುವ ಡೈನಮೋವನ್ನು ಮೋಟಾರಿನಂತೆ ದುರ್ಬಲ ಇಂಜಿನ್‌ ಉಳ್ಳ ಡೈನಮೋದ ಸುತ್ತುವಿಕೆಯ ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ಚಲಿಸುವಂತೆ ಮಾಡುತ್ತವೆ. ಅಂತಿಮವಾಗಿ, ಹಲವಾರು ಡೈನಮೋಗಳಿಗೆ ಒಂದೇ ಶಕ್ತಿಯ ಮೂಲದಿಂದ ಶಕ್ತಿಯನ್ನು ಒದಗಿಸಿದಾಗ, ಈ ಎಲ್ಲಾ ಡೈನಮೋಗಳು ಈ ಅಸಮತೋಲನವನ್ನು ಸರಿದೂಗಿಸಲು ಜಾಕ್‌ಶಾಫ್ಟ್ ಬಳಸಿ ತಮ್ಮ ಎಲ್ಲಾ ಇಂಜಿ‍ನ್‌ಗಳು ಮತ್ತು ರೋಟಾರ್‌ಗಳು ಪರಸ್ಪರ ಸಂಪರ್ಕವೇರ್ಪಡುವಂತೆ ಏಕಕಾಲದಲ್ಲಿ ಭದ್ರಪಡಿಸಿಕೊಳ್ಳಲೇಬೇಕಾಗುತ್ತದೆ.

ದಿಕ್ಪರಿವರ್ತಿಸುವ ಏಕಮುಖ ವಿದ್ಯುತ್‌ಪ್ರವಾಹದ ಉತ್ಪಾದಕವಾಗಿ ಡೈನಮೋ

ಸಡಿಲಿಸಬಲ್ಲ ಉಂಗುರ ಅಥವಾ ತಿರುಗುಸಿಂಬಿ (ರೋಟಾರ್)ಯನ್ನು ಹೊಂದಿರುವ ಪರ್ಯಾಯ ಪ್ರವಾಹ ವಿದ್ಯುತ್ ಜನಕವು "ಆವರ್ತಕ" ಎಂಬ ಹೆಸರಿನೊಂದಿಗೆ ಕರೆಯಾಗುತ್ತಿರುವಾಗಲೇ ಪರ್ಯಾಯ ಪ್ರವಾಹ ವಿದ್ಯುತ್ತಿನ ಶೋಧನೆಯ ಬಳಿಕ ಮತ್ತು, ಈ ಪರ್ಯಾಯ ವಿದ್ಯುತ್ ಯಾವುದಕ್ಕಾದರೂ ಬಳಕೆಯಾಗಬಹುದೆಂಬ ಸತ್ಯ ತಿಳಿದ ಮೇಲೆ ಡೈನಮೋ ಎಂಬ ಪದವು "ದಿಕ್ಪರಿವರ್ತಿಸಿದ ಏಕಮುಖ ಪ್ರವಾಹ ವಿದ್ಯುತ್ ಜನಕ " ಎಂಬ ಹೆಸರಿನೊಂದಿಗೆ ಉದ್ಯುಕ್ತವಾಗಿ ಸಂಯೋಜನೆಗೊಂಡಿತು.

ಸಡಿಲಿಸಬಲ್ಲ ಉಂಗುರ ಅಥವಾ ತಿರುಗುಸಿಂಬಿ (ರೋಟಾರ್)ಯನ್ನು ಹೊಂದಿರುವ ಪರ್ಯಾಯ ಪ್ರವಾಹ ವಿದ್ಯುತ್ ಮೋಟಾರನ್ನು ಸಮಾನುಪಾತದ ಮೋಟಾರು ಎಂದು ಸೂಚಿಸಲಾಯಿತು ಮತ್ತು ದಿಕ್ಪರಿವರ್ತಿಸಿದ ಏಕಮುಖ ಪ್ರವಾಹ ವಿದ್ಯುತ್ ಜನಕವು ವಿದ್ಯುತ್ ಜನಕದ ತತ್ವವನ್ನೇ ಬಳಸಿ ಕಾರ್ಯನಿರ್ವಹಿಸುತ್ತದೆ ಎಂದು ತಿಳಿದಿದ್ದರೂ ಸಹ "ವಿದ್ಯುತ್ ಮೋಟಾರು " ಎಂದೇ ಕರೆಯಲ್ಪಟ್ಟಿತು.

ಚಕ್ರೀಯ ಭ್ರಮಣ ಪರಿವರ್ತಕಗಳ ಅಭಿವೃದ್ಧಿ

ಡೈನಮೋ ಮತ್ತು ಮೋಟಾರುಗಳು ಯಾಂತ್ರಿಕ ಶಕ್ತಿಯನ್ನು ವಿದ್ಯುತ್ ಶಕ್ತಿಗೆ ಮತ್ತು ವಿದ್ಯುತ್ ಶಕ್ತಿಯನ್ನು ಯಾಂತ್ರಿಕ ಶಕ್ತಿಗೆ ಸುಲಭವಾಗಿ ಪರಿವರ್ತಿಸುತ್ತವೆ ಎಂದು ತಿಳಿದುಬಂದ ಮೇಲೆ ಇವುಗಳ ಸಂಯೋಜನೆಯನ್ನು ಅಳವಡಿಸಿ ಯಾಂತ್ರಿಕ ಶಕ್ತಿಯನ್ನು ಒದಗಿಸುವ ಉದ್ದೇಶಕ್ಕಾಗಿ ಅಲ್ಲದೆ, ಇದರ ಬದಲಿಗೆ ಒಂದು ವಿಧದ ವಿದ್ಯುತ್ ಪ್ರವಾಹವನ್ನು ಇನ್ನೊಂದು ವಿಧದ ವಿದ್ಯುತ್ ಪ್ರವಾಹಕ್ಕೆ ಪರಿವರ್ತಿಸಲು ಬಳಸುವಂತಹ ತಿರುಗುವ ಯಂತ್ರವಾದ "ರೋಟರಿ ಕನ್ವರ್ಟರ್ಸ್" (ಚಕ್ರೀಯಭ್ರಮಣ ಪರಿವರ್ತಕ) ಎಂಬ ಸಾಧನವನ್ನು ಸಂಯೋಜನೆಗೊಳಿಸಲಾಯಿತು, ಉದಾಹರಣೆಗೆ, ಏಕಮುಖ ಪ್ರವಾಹವನ್ನು ಪರ್ಯಾಯ ಪ್ರವಾಹವಾಗಿ ಬದಲಿಸುವ ಸಾಧನ. ಇವುಗಳು ಎರಡು ಅಥವಾ ಹೆಚ್ಚು ಆವರ್ತಕ ಸಂಪರ್ಕ ಬಿಂದುಗಳ ಗುಂಪನ್ನು(ಅಗತ್ಯಕ್ಕನುಗುಣವಾಗಿ ಸಡಿಲಿಸಬಲ್ಲ ಉಂಗುರ ಅಥವಾ ಪರಿವರ್ತಕಗಳು) ಹೊಂದಿರುವುದರ ಜೊತೆಗೆ ಬಹು-ಕ್ಷೇತ್ರವುಳ್ಳ ಒಂದೇ ತಿರುಗುಸಿಂಬಿ (ರೋಟಾರ್)ಯನ್ನು ಹೊಂದಿರುವ ಸಾಧನಗಳಾಗಿದ್ದು ಒಂದು, ಉಪಕರಣವನ್ನು ತಿರುಗಿಸಲು ನಿರ್ಧಿಷ್ಟ ಸಂಖ್ಯೆಯ ಆರ್ಮೇಚರ್ ಆವರ್ತನಗಳಿಗೆ ಶಕ್ತಿಯನ್ನೊದಗಿಸಲು ಮತ್ತು ಇನ್ನೊಂದು ಅಥವಾ ಜೋಡಿಸಲ್ಪಟ್ಟ ಹೆಚ್ಚುವರಿ ಸುತ್ತುಗಳ ಸಂಪರ್ಕ ಬಿಂದುಗಳು ವಿದ್ಯುತ್ ಉತ್ಪಾದಿಸಲು ಬಳಸಲಾಗುತ್ತದೆ.

ಚಕ್ರೀಯಭ್ರಮಣ ಪರಿವರ್ತಕವು ಆಂತರಿಕವಾಗಿ ಯಾವುದೇ ಮಾದರಿಯ ವಿದ್ಯುತ್ ಶಕ್ತಿಯನ್ನು ಇನ್ಯಾವುದೇ ವಿಧದ ಶಕ್ತಿಗೆ ನೇರವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು. ಇದು ನೇರ ಪ್ರವಾಹ ಮತ್ತು ಪರ್ಯಾಯ ಪ್ರವಾಹ, ಮೂರು ಪ್ರವಾಹವುಳ್ಳ ವಿದ್ಯುತ್ ಸರಬರಾಜು ಮತ್ತು ಒಂದೇ ಪ್ರವಾಹವುಳ್ಳ ಸರಬರಾಜು, 25 ಹರ್ಟ್ಸ್ ಪರ್ಯಾಯ ಪ್ರವಾಹ ಮತ್ತು 60 ಹರ್ಟ್ಸ್ ಪರ್ಯಾಯ ಅಥವಾ ಏಕಕಾಲದಲ್ಲಿ ಇನ್ನು ಹೆಚ್ಚಿನ ವೋಲ್ಟೇಜ್ ಉಳ್ಳ ವಿವಿಧ ಪ್ರವಾಹಗಳ ನಡುವೆ ಪರಸ್ಪರ ಪರಿವರ್ತನೆಗಳನ್ನೊಳಗೊಂಡಿದೆ. ಯಾವುದೇ ಆಕಸ್ಮಿಕ ಏರಿಳಿತಗಳುಂಟಾಗದಂತೆ ಅಥವಾ ಬಳಸಿದ ವಿದ್ಯುತ್ ಪರಿಮಾಣದಲ್ಲಿ ಕ್ಷಿಪ್ರ ಇಳಿಕೆ ಕಂಡುಬಂದರೆ ಅದನ್ನು ಸರಿದೂಗಿಸಲು ನಿಯಂತ್ರಕ ಚಕ್ರದಂತೆ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಸಲುವಾಗಿ ತಿರುಗುಸಿಂಬಿಯ (ರೋಟರ್) ಗಾತ್ರ ಮತ್ತು ದ್ರವ್ಯರಾಶಿಯು ಬೃಹತ್ ಪರಿಮಾಣದಲ್ಲಿರುವಂತೆ ಮಾಡಲಾಗಿದೆ. ಮಾದರಿಯ ತಿರುಗುಸಿಂಬಿಯ (ರೋಟರ್) ಪರಿವರ್ತಕಗಳು 1960ರ ಅಂತ್ಯದವರೆಗೂ ಸಹ ಮನ್‌ಹತ್ತನ್ ಪಶ್ಚಿಮಭಾಗದ ಐಆರ್‌ಟಿ ಸುರಂಗಗಳ ಬಳಕೆಗಾಗಿ ಬಳಕೆಯಲ್ಲಿದ್ದು ಅನಂತರದಲ್ಲಿಯೂ ಕೆಲವು ವರ್ಷಗಳವರೆಗೆ ಬಳಕೆಯಲ್ಲಿದ್ದುವು. ಇವುಗಳಿಗೆ 25ಹರ್ಟ್ಸ್ ಪರ್ಯಾಯ ವಿದ್ಯುತ್ತಿನಿಂದ ಶಕ್ತಿಯನ್ನೊದಗಿಸಿದ್ದು ಇವು ರೈಲಿಗಾಗಿ ಒದಗಿಸಿದ ನೇರ ಪ್ರವಾಹವು ಅಂದಾಜು ಸುಮಾರು 500 ವೋಲ್ಟ್‌ಗಳಾಗಿದ್ದುವು.

ಚಕ್ರೀಯಭ್ರಮಣ ಪರಿವರ್ತಕಗಳ (ರೋಟರಿ ಕನ್ವರ್ಟರ್) ತಂತ್ರಜ್ಞಾನವು 20ನೇ ಶತಮಾನದ ಪೂರ್ವಾರ್ಧದಲ್ಲಿ ಕಿರಿದಾಗಿದ್ದ, ಶಬ್ಧ ಅಥವಾ ಕಂಪನಗಳನ್ನು ಉಂಟುಮಾಡದ ಮತ್ತು ಅಲ್ಪ ಪ್ರಮಾಣದ ಸಂರಕ್ಷಣೆಯ ಅಗತ್ಯವಿರುವ ಪಾದರಸ-ಹಬೆ ಶುದ್ಧಿಕಾರಕಗಳಿಂದ ಸ್ಥಳಾಂತರಗೊಂಡಿತ್ತು. ಇದೇ ಪರಿವರ್ತನೆಯ ಕಾರ್ಯಗಳು ಈಗ ಘನಸ್ಥಿತಿಯ ವಿದ್ಯುತ್ ಅರೆವಾಹಕ ಸಾಧನಗಳಿಂದ ನಡೆಸಲ್ಪಡುತ್ತದೆ.

ಆಧುನಿಕ ಬಳಕೆಗಳು

ಅರೆವಾಹಕ ದಿಷ್ಟಿಕಾರಿಯನ್ನು ಹೊಂದಿದ ಪರಿವರ್ತಕಗಳು ಅಸಮರ್ಥವೆನಿಸಿದ ಕೆಲವು ಕಡಿಮೆ ಶಕ್ತಿ ಬಳಕೆಯಾಗುವ ಅನ್ವಯಗಳಲ್ಲಿ, ವಿಶೇಷವಾಗಿ, ಕಡಿಮೆ ವೋಲ್ಟೇಜ್ ಉಳ್ಳ ಏಕಮುಖ ವಿದ್ಯುತ್ ಅಗತ್ಯವಿರುವ ಕಾರ್ಯಗಳಲ್ಲಿ ಡೈನಮೋಗಳು ಈಗಲೂ ಸಹ ಬಳಕೆಯಲ್ಲಿವೆ. ಕೈಯನ್ನೇ ಕ್ರಾಂಕ್ ಆಗಿ ಬಳಸುವ ಡೈನಮೋಗಳು ಗಡಿಯಾರದಂತಹ ರಚನೆಯುಳ್ಳ ರೇಡಿಯೋಗಳಲ್ಲಿ, ಬ್ಯಾಟರಿದೀಪಗಳಲ್ಲಿ, ಮೊಬೈಲ್ ಫೋನ್‌ಗಳಿಗೆ ವಿದ್ಯುತ್ತನ್ನು ಆವೇಶಿಸುವ ಸಾಧನಗಳಲ್ಲಿ ಮತ್ತು ಬ್ಯಾಟರಿಗಳನ್ನು ಮರುಭರ್ತಿಮಾಡಲು ಮಾನವಶಕ್ತಿ ಬಳಕೆಯಾಗುವ ಇತರ ಸಾಧನಗಳಲ್ಲಿ ಇವುಗಳನ್ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಇವನ್ನೂ ಗಮನಿಸಿ‌

ಟೆಂಪ್ಲೇಟು:Portal

  • ಆವರ್ತಕ(ಆಲ್ಟರ್ನೇಟರ್)‌
  • ಬಾಟಲ್ ಡೈನಮೋ
  • ಕ್ರಾಂಕ್
  • ವಿದ್ಯುತ್ ಜನರೇಟರುಗಳು
  • ಹೆನ್ರಿ ಬ್ರೂಕ್ ಆಡಮ್ಸ್‌
  • ಹೆನ್ರಿ ವೈಲ್ಡ್
  • ಹಬ್ ಡೈನಮೋ
  • ರೇಡಿಯೋಐಸೋಟೋಪ್ ಥರ್ಮೋಎಲೆಕ್ಟ್ರಿಕ್ ಜನರೇಟರ್
  • ಸೌರ ವಿದ್ಯುತ್ಕೋಶ
  • ಥರ್ಮೋಜನರೇಟರ್‌
  • ವೆಲ್ಡಿಂಗ್ ಸೆಟ್ಸ್.
  • ವಿಂಡ್ ಟರ್ಬೈನ್

ಉಲ್ಲೇಖಗಳು‌

  1. Simon, Andrew L. (1998). Made in Hungary: Hungarian contributions to universal culture. Simon Publications. p. 207. ISBN 0966573420.
  2. "Ányos Jedlik biography". Hungarian Patent Office. Retrieved 10 May 2009.
  3. Augustus Heller (April 2, 1896), "Anianus Jedlik", Nature, 53 (1379), Norman Lockyer: 516
  4. Berliner Berichte. January 1867. {{cite journal}}: Missing or empty |title= (help)
  5. Proc. Royal Society. February 14, 1867. {{cite journal}}: Missing or empty |title= (help)
  6. Jeffrey La Favre. "The Brush Dynamo".
  7. "The Brush Electric Light". Scientific American. 2 April, 1881. {{cite journal}}: Check date values in: |year= (help)CS1 maint: year (link)


ಬಾಹ್ಯ ಕೊಂಡಿಗಳು‌