Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Albrecht, Thomas [VerfasserIn]   i
 Rossberg, Annik [VerfasserIn]   i
 Albrecht, Jana Dorothea [VerfasserIn]   i
 Nicolay, Jan Peter [VerfasserIn]   i
 Straub, Beate Katharina [VerfasserIn]   i
 Gerber, Tiemo S. [VerfasserIn]   i
 Albrecht, Michael [VerfasserIn]   i
 Brinkmann, Fritz [VerfasserIn]   i
 Charbel, Alphonse [VerfasserIn]   i
 Schwab, Constantin [VerfasserIn]   i
 Schreck, Johannes [VerfasserIn]   i
 Brobeil, Alexander [VerfasserIn]   i
 Flechtenmacher, Christa [VerfasserIn]   i
 Winterfeld, Moritz von [VerfasserIn]   i
 Köhler, Bruno Christian [VerfasserIn]   i
 Springfeld, Christoph [VerfasserIn]   i
 Mehrabi, Arianeb [VerfasserIn]   i
 Singer, Stephan [VerfasserIn]   i
 Vogel, Monika Nadja [VerfasserIn]   i
 Neumann, Olaf [VerfasserIn]   i
 Stenzinger, Albrecht [VerfasserIn]   i
 Schirmacher, Peter [VerfasserIn]   i
 Weis, Cleo-Aron Thias [VerfasserIn]   i
 Rössler, Stephanie [VerfasserIn]   i
 Kather, Jakob Nikolas [VerfasserIn]   i
 Goeppert, Benjamin [VerfasserIn]   i
Titel:Deep learning-enabled diagnosis of liver adenocarcinoma
Titelzusatz:original research
Verf.angabe:Thomas Albrecht, Annik Rossberg, Jana Dorothea Albrecht, Jan Peter Nicolay, Beate Katharina Straub, Tiemo Sven Gerber, Michael Albrecht, Fritz Brinkmann, Alphonse Charbel, Constantin Schwab, Johannes Schreck, Alexander Brobeil, Christa Flechtenmacher, Moritz von Winterfeld, Bruno Christian Köhler, Christoph Springfeld, Arianeb Mehrabi, Stephan Singer, Monika Nadja Vogel, Olaf Neumann, Albrecht Stenzinger, Peter Schirmacher, Cleo-Aron Weis, Stephanie Roessler, Jakob Nikolas Kather, and Benjamin Goeppert
E-Jahr:2023
Jahr:November 2023
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 9. August 2023, Artikelversion: 19. Oktober 2023 ; Gesehen am 16.05.2024
Titel Quelle:Enthalten in: Gastroenterology
Ort Quelle:New York, NY : Elsevier, 1949
Jahr Quelle:2023
Band/Heft Quelle:165(2023), 5 vom: Nov., Seite 1262-1275
ISSN Quelle:1528-0012
Abstract:Background & Aims - Diagnosis of adenocarcinoma in the liver is a frequent scenario in routine pathology and has a critical impact on clinical decision making. However, rendering a correct diagnosis can be challenging, and often requires the integration of clinical, radiologic, and immunohistochemical information. We present a deep learning model (HEPNET) to distinguish intrahepatic cholangiocarcinoma from colorectal liver metastasis, as the most frequent primary and secondary forms of liver adenocarcinoma, with clinical grade accuracy using H&E-stained whole-slide images. - Methods - HEPNET was trained on 714,589 image tiles from 456 patients who were randomly selected in a stratified manner from a pool of 571 patients who underwent surgical resection or biopsy at Heidelberg University Hospital. Model performance was evaluated on a hold-out internal test set comprising 115 patients and externally validated on 159 patients recruited at Mainz University Hospital. - Results - On the hold-out internal test set, HEPNET achieved an area under the receiver operating characteristic curve of 0.994 (95% CI, 0.989-1.000) and an accuracy of 96.522% (95% CI, 94.521%-98.694%) at the patient level. Validation on the external test set yielded an area under the receiver operating characteristic curve of 0.997 (95% CI, 0.995-1.000), corresponding to an accuracy of 98.113% (95% CI, 96.907%-100.000%). HEPNET surpassed the performance of 6 pathology experts with different levels of experience in a reader study of 50 patients (P = .0005), boosted the performance of resident pathologists to the level of senior pathologists, and reduced potential downstream analyses. - Conclusions - We provided a ready-to-use tool with clinical grade performance that may facilitate routine pathology by rendering a definitive diagnosis and guiding ancillary testing. The incorporation of HEPNET into pathology laboratories may optimize the diagnostic workflow, complemented by test-related labor and cost savings.
DOI:doi:10.1053/j.gastro.2023.07.026
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1053/j.gastro.2023.07.026
 Volltext: https://www.sciencedirect.com/science/article/pii/S0016508523048837
 DOI: https://doi.org/10.1053/j.gastro.2023.07.026
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial Intelligence
 Biliary Tract Cancer
 Digital Pathology
 Intestinal Cancer
K10plus-PPN:1888948310
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69215360   QR-Code

zum Seitenanfang