Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Petrelli, Maurizio [VerfasserIn]   i
Titel:Machine Learning for Earth Sciences
Titelzusatz:Using Python to Solve Geological Problems
Verf.angabe:by Maurizio Petrelli
Ausgabe:1st ed. 2023.
Verlagsort:Cham
 Cham
Verlag:Springer International Publishing
 Imprint: Springer
E-Jahr:2023
Jahr:2023.
 2023.
Umfang:1 Online-Ressource(XVI, 209 p. 102 illus., 99 illus. in color.)
Gesamttitel/Reihe:Springer Textbooks in Earth Sciences, Geography and Environment
ISBN:978-3-031-35114-3
Abstract:Part 1: Basic Concepts of Machine Learning for Earth Scientists -- Chapter 1. Introduction to Machine Learning -- Chapter 2. Setting Up your Python Environments for Machine Learning -- Chapter 3. Machine Learning Workflow -- Part 2: Unsupervised Learning -- Chapter 4. Unsupervised Machine Learning Methods -- Chapter 5. Clustering and Dimensionality Reduction in Petrology -- Chapter 6. Clustering of Multi-Spectral Data -- Part 3: Supervised Learning -- Chapter 7. Supervised Machine Learning Methods -- Chapter 8. Classification of Well Log Data Facies by Machine Learning -- Chapter 9. Machine Learning Regression in Petrology -- Part 4: Scaling Machine Learning Models -- Chapter 10. Parallel Computing and Scaling with Dask -- Chapter 11. Scale Your Models in the Cloud -- Part 5: Next Step: Deep Learning -- Chapter 12. Introduction to Deep Learning.
 This textbook introduces the reader to Machine Learning (ML) applications in Earth Sciences. In detail, it starts by describing the basics of machine learning and its potentials in Earth Sciences to solve geological problems. It describes the main Python tools devoted to ML, the typival workflow of ML applications in Earth Sciences, and proceeds with reporting how ML algorithms work. The book provides many examples of ML application to Earth Sciences problems in many fields, such as the clustering and dimensionality reduction in petro-volcanological studies, the clustering of multi-spectral data, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals.
DOI:doi:10.1007/978-3-031-35114-3
URL:Resolving-System: https://doi.org/10.1007/978-3-031-35114-3
 DOI: https://doi.org/10.1007/978-3-031-35114-3
Schlagwörter:(s)Geowissenschaften   i / (s)Umweltwissenschaften   i / (s)Geostatistik   i / (s)Datenauswertung   i / (s)Mathematisches Modell   i / (s)Lehrbuch   i
 (s)Geologie   i / (s)Angewandte Mathematik   i / (s)Statistik   i / (s)Datenanalyse   i / (s)Berechnung   i / (s)Python <Programmiersprache>   i
 (s)Python <Programmiersprache>   i / (s)Maschinelles Lernen   i
Datenträger:Online-Ressource
Dokumenttyp:Lehrbuch
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
K10plus-PPN:1860529135
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69125606   QR-Code

zum Seitenanfang