Learning PL/pgSQL

David Wheeler
Kineticode

Portland PostgreSQL Users Group
2006-07-19

But First...

SQL on Rails!

http://www.sqlonrails.org/

Learning PL/pgSQL

David Wheeler
Kineticode

Portland PostgreSQL Users Group
2006-07-19

Application Tiers

Application Tiers

@ Application developers used to tiers

Application Tiers

@ Application developers used to tiers

@ UI layer (Browser)

Application Tiers

@ Application developers used to tiers
@ UI layer (Browser)

@ Application layer (Perl, Python, Ruby, PHP)

Application Tiers

@ Application developers used to tiers
@ UI layer (Browser)
@ Application layer (Perl, Python, Ruby, PHP)

@ Database (PostgreSQL, MySQL, Oracle)

What Have We Learned?

What Have We Learned?

@ Application layer

What Have We Learned?

@ Application layer

@ P* languages

What Have We Learned?

@ Application layer
@ P* languages

@ SQL

What Have We Learned?

@ Application layer
@ P* languages
@ SQL

@ Templating

What Have We Learned?

What Have We Learned?

@ UI layer

What Have We Learned?

@ UI layer
@ X?HTML

What Have We Learned?

@ UI layer
@ X?HTML

@ CSS

What Have We Learned?

@ UI layer
@ X?HTML
@ CSS

@ JavaScript

What Have We Learned?

@ UI layer
@ X?HTML
@ CSS
@ JavaScript

@ AJAX

What Have We Learned?

What Have We Learned?

@ Database layer

What Have We Learned?

@ Database layer

@ CREATE TABLE

What Have We Learned?

@ Database layer
@ CREATE TABLE

@ CREATE INDEX

What Have We Learned?

@ Database layer
@ CREATE TABLE

@ CREATE INDEX

@ Foreign key constraints

What Have We Learned?

@ Database layer
@ CREATE TABLE
@ CREATE INDEX
@ Foreign key constraints

@ Erm...

What Have We Learned?

@ Database layer
@ CREATE TABLE
@ CREATE INDEX
@ Foreign key constraints
@ Erm...

@ Is that it?

What about the
Database?

What about the
Database?

® What we haven't learned

What about the
Database?

® What we haven't learned

@ Views

What about the
Database?

® What we haven't learned

@ Views

@ Rules

What about the
Database?

® What we haven't learned
@ Views

@ Rules

@ Triggers

What about the
Database?

® What we haven't learned
@ Views

@ Rules

@ Triggers

@ Domains

What about the
Database?

® What we haven't learned
@ Views

@ Rules

@ Triggers

@ Domains

@ Aggregates

What about the
Database?

® What we haven't learned
@ Views

@ Rules

@ Triggers

@ Domains
@ Aggregates

@ Functions/Stored Procedures

Isnt it Time We

Changed That?

PostgreSQL Functions

PostgreSQL Functions

@ SQL

@ PL/Perl

@ PL/Python
@ PL/TCL

@ PL/Ruby
@ PL/Java

@ PL/PHP

@ PL/pgsQ@L

What is PL/pgSQL?

What is PL/pgSQL?

@ Procedural programming language

What is PL/pgSQL?

@ Procedural programming language

@ More powerful than SQL

What is PL/pgSQL?

@ Procedural programming language
@ More powerful than SQL

@ Variables

What is PL/pgSQL?

@ Procedural programming language
@ More powerful than SQL
@ Variables

@ Conditionals

What is PL/pgSQL?

@ Procedural programming language
@ More powerful than SQL

@ Variables

@ Conditionals

@ Looping constructs

What is PL/pgSQL?

@ Procedural programming language
@ More powerful than SQL

@ Variables

@ Conditionals

@ Looping constructs

@ Exceptions

What is PL/pgSQL?

@ Procedural programming language
@ More powerful than SQL

@ Variables

@ Conditionals

@ Looping constructs

@ Exceptions

@ Similar to Oracle’s PL/SQL

Adding PL/pgSQL

Adding PL/pgSQL

% createlang -U postgres plpgsqgl templatel

CREATE FUNCTION

CREATE FUNCTION

CREATE OR REPLACE FUNCTION name (

CREATE FUNCTION

CREATE OR REPLACE FUNCTION name (

type,
type

CREATE FUNCTION

CREATE OR REPLACE FUNCTION name (

type,
type

) RETURNS type

CREATE FUNCTION

CREATE OR REPLACE FUNCTION name (

type,
type

) RETURNS type AS $$%

CREATE FUNCTION

CREATE OR REPLACE FUNCTION name (

type,
type

) RETURNS type AS $$%
// Function Body

CREATE FUNCTION

CREATE OR REPLACE FUNCTION name (

type,
type

) RETURNS type AS $$%
// Function Body
$$ LANGUAGE langname attributes;

A Note on Examples

A Note on Examples

@ Early examples calculate Fibonacci numbers

A Note on Examples

@ Early examples calculate Fibonacci numbers

@ Fibonacci numbers are a sequence

A Note on Examples

@ Early examples calculate Fibonacci numbers
@ Fibonacci numbers are a sequence

00, 1,1,2°35 5 8, 3.2l

A Note on Examples

@ Early examples calculate Fibonacci numbers
@ Fibonacci numbers are a sequence
011,235, 8,13, 21..

@ http://en.wikipedia.org/wiki/Fibonacci_number

A Note on Examples

@ Early examples calculate Fibonacci numbers

@ Fibonacci numbers are a sequence

00, 1,1,2°3, 5 8, 138, 2L

@ http://en.wikipedia.org/wiki/Fibonacci_number

@ Used here entirely for pedagogical purposes

A Note on Examples

@ Early examples calculate Fibonacci numbers

@ Fibonacci numbers are a sequence

00, 1,1,2°35 5 8, 3.2l

@ http://en.wikipedia.org/wiki/Fibonacci_number
@ Used here entirely for pedagogical purposes

@ Shows off different PL/pgSQL features

A Note on Examples

@ Early examples calculate Fibonacci numbers

@ Fibonacci numbers are a sequence

00, 1,1,2°35 5 8, 3.2l

@ http://en.wikipedia.org/wiki/Fibonacci_number
@ Used here entirely for pedagogical purposes
@ Shows off different PL/pgSQL features

@ Without further ado...

Recursive Fibonacci
Function

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (

fib_for 1integer
) RETURNS 1integer AS $%
BEGIN

IF fib_for < 2 THEN

RETURN fib_for;

END IF;

RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (

fib_for integer
) RETURNS 1integer AS $%
BEGIN

IF fib_for < 2 THEN

RETURN fib_for;

END IF;

RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (

fib_for 1integer
) RETURNS integer AS $$%
BEGIN
- IF fib_for < 2 THEN

RETURN fib_for;

END IF;

RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
fib_for 1integer

) RETURNS 1integer AS $%

BEGIN
IF|fib_for < 2 THEN
"~ RETURN fib_for;

RETURN f1b(f1b for - 2) + fib(fib_for - 1);
END;

$$ LANGUAGE plpgsql strict;

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
fib_for 1integer
) RETURNS 1integer AS $%
BEGIN
IF fib_for < 2 THEN
'RETURN| fib_for;

END;
$$ LANGUAGE plpgsql strict;

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (

fib_for 1integer
) RETURNS 1integer AS $%
BEGIN

IF fib_for < 2 THEN

RETURN fib_for;

END IF;

RETURN| fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (

fib_for 1integer
) RETURNS 1integer AS $%
BEGIN

IF fib_for < 2 THEN

RETURN fib_for;

END IF;

RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE fplpgsql strict;

Accessing the Database

Accessing the Database

® Use SQL to access relations

Accessing the Database

® Use SQL to access relations

® Example: Memoize the Fibonacci function

Accessing the Database

@ Use SQL to access relations
® Example: Memoize the Fibonacci function

® Create a table to store values

Accessing the Database

@ Use SQL to access relations
® Example: Memoize the Fibonacci function

® Create a table to store values

CREATE TABLE fib_cache (
num integer PRIMARY KEY,
fib 1nteger NOT NULL

);

Memoized Fibonacci

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $%
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $$
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int

) RETURNS integer AS $$%

DECLARE ;
ret integer;

‘BEGIN
if fib_for < 2 THEN

RETURN fib_for;

END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int

) RETURNS integer AS $%

DECLARE

~ ret integer;

|BEGIN

if fib_for < 2 THEN
RETURN fib_for;

| END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $%
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

| SELECT INTO ret fib
|FROM fib_cache
:WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $%
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret TS NULL@
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)

VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $%
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF_ret IS NULL THEN 4
Brat fib cached(f1b for - 2) + f1b cached(f1b for - 1)
“INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $%
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
| INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret); '
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Memoized Fibonacci

CREATE OR REPLACE FUNCTION fib_cached(
fib_for int
) RETURNS integer AS $%
DECLARE
ret integer;
BEGIN
if fib_for < 2 THEN
RETURN fib_for;
END IF;

SELECT INTO ret fib
FROM fib_cache
WHERE num = fib_for;

IF ret IS NULL THEN
ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);
END IF;
RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

Using SQL in PL/pgSQL

Using SQL in PL/pgSQL

@ Any SQL can be used

Using SQL in PL/pgSQL

@ Any SQL can be used

® Variables can be used in the SQL statements

Using SQL in PL/pgSQL

@ Any SQL can be used
® Variables can be used in the SQL statements

@ SQL statements are compiled into the function

Using SQL in PL/pgSQL

@ Any SQL can be used
® Variables can be used in the SQL statements

@ SQL statements are compiled into the function

INSERT 1INTO fib_cache (num, fib)
VALUES (fib_for, ret);

Using SQL in PL/pgSQL

@ Any SQL can be used
® Variables can be used in the SQL statements

@ SQL statements are compiled into the function

PREPARE some_insert(integer, integer) AS
INSERT 1INTO fib_cache (num, fib)
VALUES (%1, $2);

Using SQL in PL/pgSQL

@ Any SQL can be used
® Variables can be used in the SQL statements

@ SQL statements are compiled into the function

PREPARE some_insert(integer, integer) AS
INSERT 1INTO fib_cache (num, fib)
VALUES (%1, $2);

EXECUTE some_insert(fib_for, ret);

Looping Fibonacci
Function

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
fib_for int

) RETURNS integer AS $$

DECLARE
ret integer := 0;
nxt integer := 1;

tmp 1nteger;
BEGIN
FOR num IN 1..fib_for LOOP

tmp :
et
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
fib_for int

) RETURNS integer AS $%

DECLARE
ret integer := 0;
nxt integer := 1;

tmp 1nteger;
BEGIN
FOR num IN 1..fib_for LOOP

tmp :
et
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
fib_for int

) RETURNS integer AS $%

DECEARESR: &

~ret integer := 0;
nxt integer := 1;

tmp 1nteger;
BEGIN
FOR num IN 1..fib_for LOOP

tmp :
et
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
fib_for int

) RETURNS integer AS $$

DECLARE
ret integer := 0;
nxt integer :=1

tmp 1nteger;
BEGIN
FOR num IN 1..fib_for LOOP

| tmp :
[Ee
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
fib_for int

) RETURNS integer AS $$

DECLARE
ret integer := 0;
nxt integer := 1;

tmp 1nteger;
BEGIN
FOR num IN 1..fib_for LOOP

tmp :
et
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Set Returning Functions

Set Returning Functions

® Functions can return sets

Set Returning Functions

® Functions can return sets

® Similar to continuations

Set Returning Functions

® Functions can return sets
® Similar to continuations

@ Think of a SELECT on a single-column table

Set Returning Functions

® Functions can return sets
® Similar to continuations
@ Think of a SELECT on a single-column table

@ Set returning function used like a fable

Set Returning Functions

@ Functions can return sets

@ Similar fto continuations

@ Think of a SELECT on a single-column table
@ Set returning function used like a fable

@ Easy to implement in PL/pgSQL

Fibonacci Set

Fibonacci Set

CREATE OR REPLACE FUNCTION fib_fast(
fib_for int

) RETURNS 1integer AS $$

DECLARE
ret integer := 0;
nxt integer :=1
tmp 1nteger;

BEGIN
FOR num IN 1..fib_for LOOP

tmp :
ret :
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Fibonacci Set

CREATE OR REPLACE FUNCTION fibs_to(
fib_for int

) RETURNS SETOF integer AS $$

DECLARE
ret integer := 0;
nxt integer :=1
tmp 1nteger;

BEGIN
FOR num IN 1..fib_for LOOP

tmp :
ret :
nxt :

= ret;
END LOOP;

nxt;
tmp + nxt;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Fibonacci Set

CREATE OR REPLACE FUNCTION fibs_to(
fib_for int

) RETURNS SETOF integer AS $$

DECLARE
ret integer := 0;
nxt integer :=1
tmp 1nteger;

BEGIN
FOR num IN 1..fib_for LOOP
RETURN NEXT ret;
tmp := ret;
ret = nxt:
nxt := tmp + nxt;
END LOOP;

RETURN ret;
END;
$$ LANGUAGE plpgsqgl strict;

Fibonacci Set

CREATE OR REPLACE FUNCTION fibs_to(
fib_for int

) RETURNS SETOF integer AS $$

DECLARE
ret integer := 0;
nxt integer :=1
tmp 1nteger;

BEGIN
FOR num IN 1..fib_for LOOP
RETURN NEXT ret;
tmp := ret;
ret = nxt:
nxt := tmp + nxt;
END LOOP;

RETURN NEXT ret;
END;
$$ LANGUAGE plpgsqgl strict;

Yea, but What Good
are They?

Yea, but What Good
are They?

@ I'm glad you asked

Yea, but What Good
are They?

@ I'm glad you asked

@ Let’s get practical

Yea, but What Good
are They?

@ I'm glad you asked

@ Let’s get practical

@ Let's manage an ordered many-to-many
relationship

A Blogging Apps Schema

A Blogging Apps Schema

CREATE TABLE entry (

id SERIAL PRIMARY KEY,
title TEXT,

content TEXT

))

A Blogging App's

CREATE TABLE entry (
id SERIAL PRIMARY KEY,
title TEXT,
content TEXT

35

CREATE TABLE tag (
id SERIAL PRIMARY KEY,
nhame text

5

A Blogging Apps Schema

CREATE TABLE entry (
id SERIAL PRIMARY KEY,
title TEXT,
content TEXT

35

CREATE TABLE tag (
id SERIAL PRIMARY KEY,
nhame text

5

CREATE TABLE entry_coll_tag (

entry_id 1integer REFERENCES entry(id)
ON UPDATE CASCADE
ON DELETE CASCADE,

tag_id integer REFERENCES tag(id)
ON UPDATE CASCADE
ON DELETE CASCADE,

tag_order smallint,

PRIMARY KEY (entry_id, tag_id)

);

A Blogging Apps Schema

CREATE TABLE entry (
id SERIAL PRIMARY KEY,
title TEXT,
content TEXT

35

CREATE TABLE tag (
id SERIAL PRIMARY KEY,
nhame text

5

CREATE TABLE entry_coll_tag (

entry_id 1integer REFERENCES entry(id)
ON UPDATE CASCADE
ON DELETE CASCADE,

tag_id integer REFERENCES tag(id)
ON UPDATE CASCADE
ON DELETE CASCADE,

tag_order smallint,

PRIMARY KEY (entry_id, tag_id)

s

CREATE UNIQUE INDEX 1idx_entry_coll_tag_order
ON entry_coll_tag (entry_id, tag_order);

SELECT Tags for an Entry

SELECT Tags for an Entry

SELECT tag.i1d, tag.name

FROM tag, entry_coll_tag

WHERE tag.1d = entry_coll_tag.tag_1id
AND entry_coll_tag.entry_id =1

ORDER BY entry_coll_tag.tag_order;

Try It

SELECT tag.i1d, tag.name
FROM tag, entry_coll_tag
WHERE tag.1d = entry_coll_tag.tag_1id

AND entry_coll_tag.entry_id =1
ORDER BY entry_coll_tag.tag_order;

Setting Tags

Setting Tags

Use prepared statements.
insert = dbh.prepare('INSERT INTO entry (title, content) VALUES (?, ?)');
sel_id = dbh.prepare("SELECT CURRVAL('entry_id_seq')");

ins_coll = dbh.prepare(’
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (?, ?, ?)

B

Do everything inside a transaction.
dbh.begin;

Insert the new entry.
insert.execute(entry.title, entry.content);
sel_id.execute;

entry.id = sel_id.fetch;

Associate the tags with the entry.

T =05

foreach tag in (tag_array) {
ins_coll.execute(entry.id, tag.id, ++1);

}

Make it so!
dbh.commit;

What's Wrong with
That?

What's Wrong with
That?

@ It's Slow

What's Wrong with
That?

@ It's Slow

@ A separate query for each tag

What's Wrong with
That?

o Its Slow
@ A separate query for each tag

@ What if there were 100 tags?

What's Wrong with
That?

o Its Slow
@ A separate query for each tag

@ What if there were 100 tags?

® There's a race condition

What's Wrong with
That?

o Its Slow
@ A separate query for each tag
@ What if there were 100 tags?
@ There's a race condition

@ Tag order can be wrong

What's Wrong with
That?

o Its Slow
@ A separate query for each tag
@ What if there were 100 tags?
@ There's a race condition
@ Tag order can be wrong

@ When two processes update tags for the
same entry at the same time

How can PL/pgSQL Help?

How can PL/pgSQL Help?

@ A function can associate tags with entries

How can PL/pgSQL Help?

@ A function can associate tags with entries

@ It can carefully control for the race
condition

How can PL/pgSQL Help?

@ A function can associate tags with entries

@ It can carefully control for the race
condition

@ It can be called once to associate all tags
with a given entry

Let’s Do It!

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids 1integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $$%
BEGIN

PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;J

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iToop IN 1..array_upper(coll_ids, 1) LOOPI
IF coll_1ds[1loop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array upper(coll ids, 1) LOOP

IF coll_ids[iloop] IS NULL THEN
CONTINUE;

END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag

SET tag_order = iloop

WHERE entry_id = obj_id

| AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);

END IF;

END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Let’s Do It!

CREATE OR REPLACE FUNCTION entry_coll_tag_set (
obj_id integer,
coll_ids 1integer[]
) RETURNS VOID AS $%
BEGIN
PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

UPDATE entry_coll_tag
SET tag_order = -tag_order
WHERE entry_id = obj_id

FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
IF coll_ids[iloop] IS NULL THEN
CONTINUE;
END IF;

UPDATE entry_coll_tag
SET tag_order = iloop
WHERE entry_id = obj_id
AND tag_id = coll_ids[iloop];

IF FOUND IS false THEN
INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
VALUES (obj_id, coll_ids[iloop], iloop);
END IF;
END LOOP;

DELETE FROM entry_coll_tag

WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

Try It

SELECT entry_coll_tag_set(1l, '{1,4,6,3}');

Learn More

@ My O'Reilly Articles
http://www.oreillynet.com/pub/au/1059

@ The PostgreSQL Documentation
http://www.postgresqgl.org/docs/current/static/plpgsql.html

@ PostgreSQL: Introduction and Concepts

http://www.postgresql.org/ files/documentation/books/aw_pgsql/nodel65.html

Thank You!

Learning PL/pgSQL

David Wheeler
Kineticode

Portland PostgreSQL Users Group
2006-07-19

