
Learning PL/pgSQL
David Wheeler

Kineticode

Portland PostgreSQL Users Group
2006-07-19

1

2

But First…

2

3

SQL on Rails!
http://www.sqlonrails.org/

3

Learning PL/pgSQL
David Wheeler

Kineticode

Portland PostgreSQL Users Group
2006-07-19

4

Application Tiers

5

Application Tiers

Application developers used to tiers

5

Application Tiers

Application developers used to tiers

UI layer (Browser)

5

Application Tiers

Application developers used to tiers

UI layer (Browser)

Application layer (Perl, Python, Ruby, PHP)

5

Application Tiers

Application developers used to tiers

UI layer (Browser)

Application layer (Perl, Python, Ruby, PHP)

Database (PostgreSQL, MySQL, Oracle)

5

What Have We Learned?

6

What Have We Learned?

Application layer

6

What Have We Learned?

Application layer

P* languages

6

What Have We Learned?

Application layer

P* languages

SQL

6

What Have We Learned?

Application layer

P* languages

SQL

Templating

6

What Have We Learned?

7

What Have We Learned?

UI layer

7

What Have We Learned?

UI layer

X?HTML

7

What Have We Learned?

UI layer

X?HTML

CSS

7

What Have We Learned?

UI layer

X?HTML

CSS

JavaScript

7

What Have We Learned?

UI layer

X?HTML

CSS

JavaScript

AJAX

7

What Have We Learned?

8

What Have We Learned?

Database layer

8

What Have We Learned?

Database layer

CREATE TABLE

8

What Have We Learned?

Database layer

CREATE TABLE

CREATE INDEX

8

What Have We Learned?

Database layer

CREATE TABLE

CREATE INDEX

Foreign key constraints

8

What Have We Learned?

Database layer

CREATE TABLE

CREATE INDEX

Foreign key constraints

Erm…

8

What Have We Learned?

Database layer

CREATE TABLE

CREATE INDEX

Foreign key constraints

Erm…

Is that it?

8

What about the
Database?

9

What about the
Database?

What we haven’t learned

9

What about the
Database?

What we haven’t learned

Views

9

What about the
Database?

What we haven’t learned

Views

Rules

9

What about the
Database?

What we haven’t learned

Views

Rules

Triggers

9

What about the
Database?

What we haven’t learned

Views

Rules

Triggers

Domains

9

What about the
Database?

What we haven’t learned

Views

Rules

Triggers

Domains

Aggregates

9

What about the
Database?

What we haven’t learned

Views

Rules

Triggers

Domains

Aggregates

Functions/Stored Procedures

9

10

Isn’t it Time We
Changed That?

10

PostgreSQL Functions

11

PostgreSQL Functions
SQL

PL/Perl

PL/Python

PL/TCL

PL/Ruby

PL/Java

PL/PHP

PL/pgSQL
11

What is PL/pgSQL?

12

What is PL/pgSQL?

Procedural programming language

12

What is PL/pgSQL?

Procedural programming language

More powerful than SQL

12

What is PL/pgSQL?

Procedural programming language

More powerful than SQL

Variables

12

What is PL/pgSQL?

Procedural programming language

More powerful than SQL

Variables

Conditionals

12

What is PL/pgSQL?

Procedural programming language

More powerful than SQL

Variables

Conditionals

Looping constructs

12

What is PL/pgSQL?

Procedural programming language

More powerful than SQL

Variables

Conditionals

Looping constructs

Exceptions

12

What is PL/pgSQL?

Procedural programming language

More powerful than SQL

Variables

Conditionals

Looping constructs

Exceptions

Similar to Oracle’s PL/SQL

12

Adding PL/pgSQL

13

Adding PL/pgSQL

% createlang -U postgres plpgsql template1

13

CREATE FUNCTION

14

CREATE FUNCTION
CREATE OR REPLACE FUNCTION name (

14

CREATE FUNCTION

type,
type

CREATE OR REPLACE FUNCTION name (

14

CREATE FUNCTION

type,
type

CREATE OR REPLACE FUNCTION name (

) RETURNS type

14

CREATE FUNCTION

type,
type

CREATE OR REPLACE FUNCTION name (

) RETURNS type AS $$

14

CREATE FUNCTION

type,
type

CREATE OR REPLACE FUNCTION name (

) RETURNS type AS $$
// Function Body

14

CREATE FUNCTION

type,
type

CREATE OR REPLACE FUNCTION name (

) RETURNS type AS $$
// Function Body

$$ LANGUAGE langname attributes;

14

A Note on Examples

15

A Note on Examples

Early examples calculate Fibonacci numbers

15

A Note on Examples

Early examples calculate Fibonacci numbers

Fibonacci numbers are a sequence

15

A Note on Examples

Early examples calculate Fibonacci numbers

Fibonacci numbers are a sequence

0, 1, 1, 2, 3, 5, 8, 13, 21…

15

A Note on Examples

Early examples calculate Fibonacci numbers

Fibonacci numbers are a sequence

0, 1, 1, 2, 3, 5, 8, 13, 21…

http://en.wikipedia.org/wiki/Fibonacci_number

15

A Note on Examples

Early examples calculate Fibonacci numbers

Fibonacci numbers are a sequence

0, 1, 1, 2, 3, 5, 8, 13, 21…

http://en.wikipedia.org/wiki/Fibonacci_number

Used here entirely for pedagogical purposes

15

A Note on Examples

Early examples calculate Fibonacci numbers

Fibonacci numbers are a sequence

0, 1, 1, 2, 3, 5, 8, 13, 21…

http://en.wikipedia.org/wiki/Fibonacci_number

Used here entirely for pedagogical purposes

Shows off different PL/pgSQL features

15

A Note on Examples

Early examples calculate Fibonacci numbers

Fibonacci numbers are a sequence

0, 1, 1, 2, 3, 5, 8, 13, 21…

http://en.wikipedia.org/wiki/Fibonacci_number

Used here entirely for pedagogical purposes

Shows off different PL/pgSQL features

Without further ado…

15

Recursive Fibonacci
Function

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Recursive Fibonacci
Function

CREATE OR REPLACE FUNCTION fib (
 fib_for integer
) RETURNS integer AS $$
BEGIN
 IF fib_for < 2 THEN
 RETURN fib_for;
 END IF;
 RETURN fib(fib_for - 2) + fib(fib_for - 1);
END;
$$ LANGUAGE plpgsql strict;

16

Try It

17

Accessing the Database

18

Use SQL to access relations

Accessing the Database

18

Use SQL to access relations

Example: Memoize the Fibonacci function

Accessing the Database

18

Use SQL to access relations

Example: Memoize the Fibonacci function

Create a table to store values

Accessing the Database

18

Use SQL to access relations

Example: Memoize the Fibonacci function

Create a table to store values

Accessing the Database

CREATE TABLE fib_cache (
 num integer PRIMARY KEY,
 fib integer NOT NULL
);

18

Memoized Fibonacci

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Memoized Fibonacci
CREATE OR REPLACE FUNCTION fib_cached(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer;
BEGIN
 if fib_for < 2 THEN
 RETURN fib_for;
 END IF;

 SELECT INTO ret fib
 FROM fib_cache
 WHERE num = fib_for;

 IF ret IS NULL THEN
 ret := fib_cached(fib_for - 2) + fib_cached(fib_for - 1);
 INSERT INTO fib_cache (num, fib)
 VALUES (fib_for, ret);
 END IF;
 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

19

Try It

20

Using SQL in PL/pgSQL

21

Any SQL can be used

Using SQL in PL/pgSQL

21

Any SQL can be used

Variables can be used in the SQL statements

Using SQL in PL/pgSQL

21

Any SQL can be used

Variables can be used in the SQL statements

SQL statements are compiled into the function

Using SQL in PL/pgSQL

21

Any SQL can be used

Variables can be used in the SQL statements

SQL statements are compiled into the function

Using SQL in PL/pgSQL

INSERT INTO fib_cache (num, fib)
VALUES (fib_for, ret);

21

Any SQL can be used

Variables can be used in the SQL statements

SQL statements are compiled into the function

Using SQL in PL/pgSQL

PREPARE some_insert(integer, integer) AS
INSERT INTO fib_cache (num, fib)
VALUES ($1, $2);

21

Any SQL can be used

Variables can be used in the SQL statements

SQL statements are compiled into the function

Using SQL in PL/pgSQL

PREPARE some_insert(integer, integer) AS
INSERT INTO fib_cache (num, fib)
VALUES ($1, $2);

EXECUTE some_insert(fib_for, ret);

21

Looping Fibonacci
Function

22

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

22

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

22

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

22

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

22

Looping Fibonacci
Function

CREATE OR REPLACE FUNCTION fib_fast(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

22

Try It

23

Set Returning Functions

24

Set Returning Functions

Functions can return sets

24

Set Returning Functions

Functions can return sets

Similar to continuations

24

Set Returning Functions

Functions can return sets

Similar to continuations

Think of a SELECT on a single-column table

24

Set Returning Functions

Functions can return sets

Similar to continuations

Think of a SELECT on a single-column table

Set returning function used like a table

24

Set Returning Functions

Functions can return sets

Similar to continuations

Think of a SELECT on a single-column table

Set returning function used like a table

Easy to implement in PL/pgSQL

24

Fibonacci Set

25

Fibonacci Set
CREATE OR REPLACE FUNCTION fib_fast(
 fib_for int
) RETURNS integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP

 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

25

Fibonacci Set
CREATE OR REPLACE FUNCTION fibs_to(
 fib_for int
) RETURNS SETOF integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP

 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

25

Fibonacci Set
CREATE OR REPLACE FUNCTION fibs_to(
 fib_for int
) RETURNS SETOF integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 RETURN NEXT ret;
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN ret;
END;
$$ LANGUAGE plpgsql strict;

25

Fibonacci Set
CREATE OR REPLACE FUNCTION fibs_to(
 fib_for int
) RETURNS SETOF integer AS $$
DECLARE
 ret integer := 0;
 nxt integer := 1;
 tmp integer;
BEGIN
 FOR num IN 1..fib_for LOOP
 RETURN NEXT ret;
 tmp := ret;
 ret := nxt;
 nxt := tmp + nxt;
 END LOOP;

 RETURN NEXT ret;
END;
$$ LANGUAGE plpgsql strict;

25

Try It

26

Yea, but What Good
are They?

27

Yea, but What Good
are They?

I’m glad you asked

27

Yea, but What Good
are They?

I’m glad you asked

Let’s get practical

27

Yea, but What Good
are They?

I’m glad you asked

Let’s get practical

Let’s manage an ordered many-to-many
relationship

27

A Blogging App’s Schema

28

A Blogging App’s Schema
CREATE TABLE entry (
 id SERIAL PRIMARY KEY,
 title TEXT,
 content TEXT
);

28

A Blogging App’s Schema
CREATE TABLE entry (
 id SERIAL PRIMARY KEY,
 title TEXT,
 content TEXT
);

CREATE TABLE tag (
 id SERIAL PRIMARY KEY,
 name text
);

28

A Blogging App’s Schema
CREATE TABLE entry (
 id SERIAL PRIMARY KEY,
 title TEXT,
 content TEXT
);

CREATE TABLE tag (
 id SERIAL PRIMARY KEY,
 name text
);

CREATE TABLE entry_coll_tag (
 entry_id integer REFERENCES entry(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
 tag_id integer REFERENCES tag(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
 tag_order smallint,
 PRIMARY KEY (entry_id, tag_id)
);

28

A Blogging App’s Schema
CREATE TABLE entry (
 id SERIAL PRIMARY KEY,
 title TEXT,
 content TEXT
);

CREATE TABLE tag (
 id SERIAL PRIMARY KEY,
 name text
);

CREATE TABLE entry_coll_tag (
 entry_id integer REFERENCES entry(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
 tag_id integer REFERENCES tag(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
 tag_order smallint,
 PRIMARY KEY (entry_id, tag_id)
);

CREATE UNIQUE INDEX idx_entry_coll_tag_order
ON entry_coll_tag (entry_id, tag_order);

28

SELECT Tags for an Entry

29

SELECT Tags for an Entry

SELECT tag.id, tag.name
FROM tag, entry_coll_tag
WHERE tag.id = entry_coll_tag.tag_id
 AND entry_coll_tag.entry_id = 1
ORDER BY entry_coll_tag.tag_order;

29

Try It
SELECT tag.id, tag.name
FROM tag, entry_coll_tag
WHERE tag.id = entry_coll_tag.tag_id
 AND entry_coll_tag.entry_id = 1
ORDER BY entry_coll_tag.tag_order;

30

Setting Tags

31

Setting Tags
Use prepared statements.
insert = dbh.prepare('INSERT INTO entry (title, content) VALUES (?, ?)');
sel_id = dbh.prepare("SELECT CURRVAL('entry_id_seq')");

ins_coll = dbh.prepare('
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (?, ?, ?)
');

Do everything inside a transaction.
dbh.begin;

Insert the new entry.
insert.execute(entry.title, entry.content);
sel_id.execute;
entry.id = sel_id.fetch;

Associate the tags with the entry.
i = 0;
foreach tag in (tag_array) {
 ins_coll.execute(entry.id, tag.id, ++i);
}

Make it so!
dbh.commit;

31

What’s Wrong with
That?

32

What’s Wrong with
That?

It’s Slow

32

What’s Wrong with
That?

It’s Slow

A separate query for each tag

32

What’s Wrong with
That?

It’s Slow

A separate query for each tag

What if there were 100 tags?

32

What’s Wrong with
That?

It’s Slow

A separate query for each tag

What if there were 100 tags?

There’s a race condition

32

What’s Wrong with
That?

It’s Slow

A separate query for each tag

What if there were 100 tags?

There’s a race condition

Tag order can be wrong

32

What’s Wrong with
That?

It’s Slow

A separate query for each tag

What if there were 100 tags?

There’s a race condition

Tag order can be wrong

When two processes update tags for the
same entry at the same time

32

How can PL/pgSQL Help?

33

How can PL/pgSQL Help?

A function can associate tags with entries

33

How can PL/pgSQL Help?

A function can associate tags with entries

It can carefully control for the race
condition

33

How can PL/pgSQL Help?

A function can associate tags with entries

It can carefully control for the race
condition

It can be called once to associate all tags
with a given entry

33

Let’s Do It!

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Let’s Do It!
CREATE OR REPLACE FUNCTION entry_coll_tag_set (
 obj_id integer,
 coll_ids integer[]
) RETURNS VOID AS $$
BEGIN
 PERFORM true FROM entry WHERE id = obj_id FOR UPDATE;

 UPDATE entry_coll_tag
 SET tag_order = -tag_order
 WHERE entry_id = obj_id

 FOR iloop IN 1..array_upper(coll_ids, 1) LOOP
 IF coll_ids[iloop] IS NULL THEN
 CONTINUE;
 END IF;

 UPDATE entry_coll_tag
 SET tag_order = iloop
 WHERE entry_id = obj_id
 AND tag_id = coll_ids[iloop];

 IF FOUND IS false THEN
 INSERT INTO entry_coll_tag (entry_id, tag_id, tag_order)
 VALUES (obj_id, coll_ids[iloop], iloop);
 END IF;
 END LOOP;

 DELETE FROM entry_coll_tag
 WHERE entry_id = obj_id AND tag_order < 0;
END;
$$ LANGUAGE plpgsql;

34

Try It

35

Try It
SELECT entry_coll_tag_set(1, '{1,4,6,3}');

35

Learn More

My O’Reilly Articles
http://www.oreillynet.com/pub/au/1059

The PostgreSQL Documentation
http://www.postgresql.org/docs/current/static/plpgsql.html

PostgreSQL: Introduction and Concepts
http://www.postgresql.org/files/documentation/books/aw_pgsql/node165.html

36

Learning PL/pgSQL
David Wheeler

Kineticode

Portland PostgreSQL Users Group
2006-07-19

Thank You!

37

