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We consider the derivative of the polar decomposition of a “time-varying” matrix A(t):
A(t) = R(1)S(1) (1)

where R is the closest rotation matrix to A (in Frobenius norm) and S is a symmetric matrix capturing the
stretching performed by A. Notice that if A inverts space (if det(A) < 0), then this decomposition is actually
not the polar decomposition but rather the closely related decomposition where the smallest eigenvalue of
S is negated.

We begin by differentiating both sides of , denoting quantities’ instantaneous rates of change with a
dot (e.g., A := %|t20 A(t)):

A=RS+RS <= RTA=RTRS+S. (2)

We observe that because S(t) is symmetric for all ¢, S must be a symmetric matrix. Furthermore, because
RTR = I, we find by differentiating both sides that RTR is a skew symmetric matrix: RTR + RTR = 0.
We can use these symmetric and skew symmetric properties to isolate and solve for R: computing the skew
symmetric part of both sides kills off the symmetric S term:

KA (RTA)" = RTis - (RTRS) " +5=57

. . . AT
RTA—ATR=RTRS—S (RTR) — MS—SMT,
M

which is a Sylvester equation C' = MS + SM for skew symmetric matrix M := RT R. We solve this equation
by using S’s eigen decomposition S = QAQT:

C=MQAQT + QAQ™M = QTCcQ =QTMQA+AQTMAQ.
It becomes clear that this equation is now easy to solve when we inspect its components:
[QTCQLi; = [QTMQLijA; + N[QTMQLi; = (\i + X)[QT MQ)s;. (3)

(In this equation ¢, j are free indices and summation is not implied.) In other words, we simply divide the
i7" component of QTCQ by A\; +A; to find QT M Q. From here we are essentially done: we can just compute
R =RM = RQ(Q"MQ)Q".

We can express the division operation from (3)) in terms of standard linear algebra operations by converting
matrix equation (3 into a vector equation. First, we notice that both QT CQ and Q7 M Q are skew symmetric
matrices because both C' and M are. Any skew symmetric matrix B has the form

0 by by
B=1|b; 0 —b]|,
—by b 0

where we chose the signs so that B is actually the cross product matrix for vector b = (by, b2, b3)”. In other
words, we have the property that Bv = b x v for all vectors v.
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We can introduce the linear operators sk(-) and sk™!(-) to convert between a skew symmetric matrix
and its corresponding cross-product vector:

by 0 —bs be 0 —bs b b1
sk b2 = b3 0 —bl s Sk_1 b3 0 —b1 = b2
bs —by b 0 —by b 0 bs

Applying sk~ to both sides of , we obtain:

Ao+ A3 0 0
sk 1(QTOQ) = 0 A+ A3 0 sk 1 (QTMQ) = (tr(A)T — A)sk™H(QTMQ).
0 0 A+ Ao

Next, we apply the transformation formula sk~ (Q7 BQ) = QTsk™!(B) (rotating, taking a cross product
with b, and then rotating back is the same thing as rotating b back and taking a cross product):

OTsk™1(C) = (tr(A)] — A)QTsk 1 (M) =
sk 1(C) = Q(tr(A)T — A)QTsk~L(M) = (tr(S)] — S)sk H(M) =
M = sk((tr(S)I - S)—lsk—l(C)).

Finally, we plug in the expressions for C' and M and solve for R:

RTR = (tr(S)I — 8)"'sk }(RTA - ATR) —

R= Rsk(?(tr(S)I - S)*lskfl(RTA))

where we've extended the definition of sk=!(B) to non skew-symmetric matrices B by having it operate on
the skew symmetric part % (B — BT).
Now that we know R, it’s easy to solve for S by going back to (2)):

S:RTA—RTRszRT<A—RS).




