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We consider the derivative of the polar decomposition of a “time-varying” matrix A(t):

A(t) = R(t)S(t) (1)

where R is the closest rotation matrix to A (in Frobenius norm) and S is a symmetric matrix capturing the
stretching performed by A. Notice that if A inverts space (if det(A) < 0), then this decomposition is actually
not the polar decomposition but rather the closely related decomposition where the smallest eigenvalue of
S is negated.

We begin by differentiating both sides of (1), denoting quantities’ instantaneous rates of change with a
dot (e.g., Ȧ := d

dt

∣∣
t=0

A(t)):

Ȧ = ṘS +RṠ ⇐⇒ RT Ȧ = RT ṘS + Ṡ. (2)

We observe that because S(t) is symmetric for all t, Ṡ must be a symmetric matrix. Furthermore, because
RTR = I, we find by differentiating both sides that RT Ṙ is a skew symmetric matrix: ṘTR + RT Ṙ = 0.
We can use these symmetric and skew symmetric properties to isolate and solve for Ṙ; computing the skew
symmetric part of both sides kills off the symmetric Ṡ term:

RT Ȧ−
(
RT Ȧ

)T
= RT ṘS −

(
RT ṘS

)T
+����Ṡ − ṠT

RT Ȧ− ȦTR︸ ︷︷ ︸
C

= RT Ṙ︸ ︷︷ ︸
M

S − S
(
RT Ṙ

)T
= MS − SMT ,

which is a Sylvester equation C = MS+SM for skew symmetric matrix M := RT Ṙ. We solve this equation
by using S’s eigen decomposition S = QΛQT :

C = MQΛQT +QΛQTM ⇐⇒ QTCQ = QTMQΛ + ΛQTMQ.

It becomes clear that this equation is now easy to solve when we inspect its components:

[QTCQ]ij = [QTMQ]ijλj + λi[Q
TMQ]ij = (λi + λj)[Q

TMQ]ij . (3)

(In this equation i, j are free indices and summation is not implied.) In other words, we simply divide the
ijth component of QTCQ by λi +λj to find QTMQ. From here we are essentially done: we can just compute

Ṙ = RM = RQ(QTMQ)QT .
We can express the division operation from (3) in terms of standard linear algebra operations by converting

matrix equation (3) into a vector equation. First, we notice that both QTCQ and QTMQ are skew symmetric
matrices because both C and M are. Any skew symmetric matrix B has the form

B =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 ,
where we chose the signs so that B is actually the cross product matrix for vector b = (b1, b2, b3)T . In other
words, we have the property that Bv = b× v for all vectors v.
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We can introduce the linear operators sk(·) and sk−1(·) to convert between a skew symmetric matrix
and its corresponding cross-product vector:

sk

b1b2
b3

 =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , sk−1

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 =

b1b2
b3

 .
Applying sk−1 to both sides of (3), we obtain:

sk−1(QTCQ) =

λ2 + λ3 0 0
0 λ1 + λ3 0
0 0 λ1 + λ2

 sk−1(QTMQ) = (tr(Λ)I − Λ)sk−1(QTMQ).

Next, we apply the transformation formula sk−1(QTBQ) = QT sk−1(B) (rotating, taking a cross product
with b, and then rotating back is the same thing as rotating b back and taking a cross product):

QT sk−1(C) = (tr(Λ)I − Λ)QT sk−1(M) ⇐⇒
sk−1(C) = Q(tr(Λ)I − Λ)QT sk−1(M) = (tr(S)I − S)sk−1(M) ⇐⇒

M = sk
(

(tr(S)I − S)−1sk−1(C)
)
.

Finally, we plug in the expressions for C and M and solve for Ṙ:

RT Ṙ = (tr(S)I − S)−1sk−1(RT Ȧ− ȦTR) ⇐⇒

Ṙ = R sk
(

2(tr(S)I − S)−1sk−1(RT Ȧ)
)
,

where we’ve extended the definition of sk−1(B) to non skew-symmetric matrices B by having it operate on
the skew symmetric part 1

2

(
B −BT

)
.

Now that we know Ṙ, it’s easy to solve for Ṡ by going back to (2):

Ṡ = RT Ȧ−RT ṘS = RT
(
Ȧ− ṘS

)
.
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