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This document provides physical validation experiments and more details on the derivations of various
formulas and methods stated in the main paper [Ren et al., 2024].
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Figure 1 Physical validation of pattern homogenization. We fabricated tessellations of the representative unit
cells shown in the main paper, inflated them to the same pressure, and conducted load tests. The tessellations
exhibit the expected behavior of the homogenized material properties. In particular, the 3-star pattern has weak
bending stiffnesses despite having similar geometric features to the dashed line pattern.
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Figure 2 Comparisons between simulation and physical prototypes for the parallel tubes of [Panetta et al., 2021]
and our approach. The second and third columns show two basic load-testing experiments. See also accompanying
video for an animation of the experiments.

2 Bending the Midsurface

The following subsections investigate details related to the macroscopic bending deformation illustrated in
Figure 3.
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Figure 3 Deformations applied to an infinite periodic sheet tiling during homogenization (left): first an in-plane
constant macroscopic stretch is applied and the sheet relaxes into a (potentially non-planar) periodic fluctuation
displacement around the linear deformation (middle). Second, the entire tiling is bent into a surface of constant
curvature (right).

2.1 Single Axis Bending

We pick a “center” point c on the x3 = 0 plane of the unbent unit cell to remain fixed under this wrapping
and note that traversing the geodesic of the cylinder corresponding to tangent vector v at c induces a rotation
of the tangent plane by κ(â⊥ · v) around â. Therefore, the orientation of the tangent plane at any point
Ûx of the bent tiling relative to the (unbent) tangent plane at c can be represented by the angle-scaled-axis
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vector ω = κâ(â⊥ · v) = ∇ω(x − c) where ∇ω = κâ ⊗ â⊥. The corresponding rotation matrix is given by

e[ω]
× = I + sin(∥ω∥) [ω̂]

×
+ (1− cos(∥ω∥)) [ω̂]

2
×
. Furthermore, we can calculate the bent coordinates Ûx of a

point x also on the x3 = 0 plane in the unbent tiling by integrating along the geodesic connecting it to c:

Ûx = c+

∫ 1

0

et[∇ω(x−c)]
×(x− c) dt

= c+
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I +
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+
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ã
[ω]

2
×
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= x+
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1− cos(∥ω∥)

∥ω∥2

ã
[ω]

×
+

Å
∥ω∥ − sin(∥ω∥)

∥ω∥3

ã
[ω]

2
×

ò
(x− c).

(A1)

2.2 Dependence on Choice of c

The requirement to pick a fixed point c for the wrapping raises concerns that the homogenized properties
change with different selections. However, here we show that under single-axis bending, different selections
produce wrappings differing only by a rigid transformation (and thus identical homogenized properties).

We first rearrange the Ûx formula above into a more geometrically meaningful form, making use of the
relationships:

â⊥ · (x− c) =
∥ω∥

κ
,

ω × (x− c) = ∥ω∥â× (x− c) = e3∥ω∥â⊥ · (x− c) = e3
∥ω∥2

κ
,

[ω]
2
×
(x− c) = ω ×

Å
e3

∥ω∥2

κ

ã
=

∥ω∥3

κ
â× e3 = −

∥ω∥3

κ
â⊥.

Therefore:

Ûx = x+

Å
1− cos(∥ω∥)

κ

ã
e3 −

Å
∥ω∥ − sin(∥ω∥)

κ

ã
â⊥

= x− (â⊥ ⊗ â⊥)(x− c) +
1

κ

[

e3 + sin(∥ω∥)â⊥ − cos(∥ω∥)e3
]

= c+ (I − â⊥ ⊗ â⊥)(x− c) +
1

κ

[

e3 + sin(∥ω∥)â⊥ − cos(∥ω∥)e3
]

=

Å
c+

1

κ
e3

ã
+ â⊗ â(x− c)−

1

κ
e[∇ω(x−c)]

×e3.

This formula makes it geometrically obvious that the x3 = 0 plane is indeed wrapped onto a radius 1
κ cylinder

with axis passing through point c+ 1
κe3 along direction â. Now, manipulating slightly further:

Ûx = (â⊗ â)x−
1

κ
e[∇ω(x−c)]

×e3 + tc

= e[−∇c]
×

Å
(â⊗ â)x−

1

κ
e[∇ωx]

×e3

ã
+ tc,

where tc =
(

c+ 1
κe3
)

− (â ⊗ â)c. Here, we used the fact that rotations e[∇ωc]
× and e[∇ωx]

× are both
around the same axis â (which does not hold in the general case of multi-axis bending!) to factor out the
c-dependent part of the rotation. This shows Ûx to be a rigid transformation of the c-independent cylinder
(â⊗ â)x− 1

κe
[∇ωx]

×e3. In other words, all choices of c produce rigid transformations of the same cylinder,
as we wished to prove.
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2.3 Double Curvature

The formula for Ûx generalizes to the double-curvature setting by taking ω = ∇ωx with ∇ω = κ1â ⊗ â⊥ +
κ2â

⊥ ⊗ â. However, the resulting deformation is dependent on the choice of c, and the deformed unit cells
no longer tile seamlessly:

Figure 4 An attempt to apply the bent tiling formulas to a state of double curvature (here, picking c at the
center of the blue tile); notice the gaps appearing between unit cells.

3 Single-axis Bending of Thickened Unit Cell

Formula (A1) for Ûx is a bending motion only for points on the macroscopic midsurface (x3 = e3 ·x = 0). We
extend this bending deformation the full space using the formula:

Ûx(x) = x2D +

ïÅ
1− cos(∥ω∥)

∥ω∥2

ã
[ω]

×
+

Å
∥ω∥ − sin(∥ω∥)

∥ω∥3

ã
[ω]

2
×

ò
(x2D − c) + u3e

[ω]
×e3, (A2)

where x2D = (I − e3 ⊗ e3)x and u3 = e3 · x. In other words, points at normal offset u3 from the flat initial
midsurface remain at offset u3 along the rotated normal e[ω]

×e3 from the bent midsurface.

3.1 Stretch-Bend Ambiguity under Normal Offset

We note that the Kirchhoff-Love-type bending deformation (A2) stretches material “above” and compresses
material “below” the x3 = 0 midsurface. Thus, although the periodic deformation described by a particular
macroscopic state (S, κ, α) is invariant to in-plane translations u → u+ αe1 + βe2, it is affected by normal
translations u → u + he3. In other words, it is sensitive to the vertical positioning of the microscopic
geometry within the unit cell. A natural way to resolve this is to constrain h̄ :=

∫

Γ
u · e3 dA(x) = 0, defining

the macroscopic midsurface to pass through the “center” of the microscopic geometry; this is similar in
spirit to the more complicated “parallel-transported” constraint imposed in [Sperl et al., 2020]. However,
even with this simplified formulation, care must be taken to implement this global constraint in a way that
does not excessively sacrifice sparsity; [Sperl et al., 2020] resort to enforcing it via Lagrange multipliers,
which involves solving a more expensive, indefinite KKT system at each Newton step (and losing the ability
to detect indefiniteness “for free” from the Cholesky factorization).

We propose instead to resolve the ambiguity by establishing an equivalence between macroscopic states
(Sh̄, κh̄, α, h̄) with different offsets h̄ of the “true” macroscopic midsurface from the x3 = 0 midplane. Our
approach is especially convenient for inflatables homogenization, where we need not impose S0 or (κ0, α0)
directly but rather wish to study the macroscopic deformation that arises under pressure actuation. If
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a precise stretching and bending state must be imposed at h̄ = 0, this still can be done with an outer
optimization over either the imposed (Sh̄, κh̄, αh̄) or the parameter controlling h̄ (e.g., the right-hand-side
of a pin constraint).

Specifically, we note that the vertical offset h̄ adds to the radius of curvature, meaning the curvature of the
“true” midsurface at x3 = h̄ is κ0 = 1

h̄+1/κ
h̄

. Furthermore, bending by κh̄αh̄ stretches the plane x3 = h̄ along

the â⊥ axis by a factor of h̄κh̄, establishing a true midsurface stretch of S0 = (I + h̄κh̄â
⊥ ⊗ â⊥)Sh̄. (Note,

S0 is no longer symmetric in general, but its symmetric part can be extracted via a polar decomposition,
and then α can be adjusted to account for the effective rotation this applied to the stretched tiling). Hence,
after performing a simulation using any means to constrain vertical motion (e.g., a pin constraint or a small
Hessian shift), one obtains the deformed macro + micro state (Sh̄, κh̄, αh̄,uh̄, h̄) (where h̄ can be computed by
averaging the fluctuation displacement) and then can recover (S0, κ0, α0,u0, 0) using the relationships above,

combined with u0 = S0Sh̄

−1
(uh̄ − h̄e3). This fluctuation displacement transformation formula follows from

the entire linear-plus-periodic deformation Sh̄X+uh̄ needing to stretch by S0(Sh̄)
−1 into S0X+S0(Sh̄)

−1uh̄

in addition to vertically translating. Because all states in the equivalence class share the same energy, a
vertical pin constraint on any one vertex simply picks one of the states and does no work.

Similar conversions must be applied to the equilibrium derivatives used to calculate stiffness, transforming

them to maintain a vertically centered midsurface ( ˙̄h = 0). We note the following derivative relationships:

κ̇0 = −
1

(h̄+ 1/κh̄)
2

Ç
˙̄h−

κ̇h̄

κ2
h̄

å
=

Å
κ0

κh̄

ã2 Ä
κ̇h̄ − κh̄

2 ˙̄h
ä
,

Ṡ0 = ( ˙̄hκh̄â
⊥ ⊗ â⊥ + h̄κ̇h̄â

⊥ ⊗ â⊥)Sh̄ + (I + h̄κh̄â
⊥ ⊗ â⊥)Ṡh̄,

u̇0 =
(

Ṡ0Sh̄

−1
− S0Sh̄

−1
Ṡh̄Sh̄

−1
)

(uh̄ − h̄e3) + S0Sh̄

−1
(u̇h̄ − ˙̄he3).

If we apply these formulas around an equilibrium state that has already been transformed to have h̄ = 0,
then they simplify to:

κ̇0 = κ̇h̄ − κ0
2 ˙̄h,

Ṡ0 = ( ˙̄hκh̄â
⊥ ⊗ â⊥)S0 + Ṡh̄,

u̇0 =
(

Ṡ0S0
−1

− Ṡh̄S0
−1
)

u0 + (u̇h̄ − ˙̄he3).

Finally, when computing stiffness around an unbent equilibrium state (κ0 = 0), these formulas simplify to:

κ̇0 = κ̇h̄,

Ṡ0 = Ṡh̄,

u̇0 = u̇h̄ − ˙̄he3.

Therefore, after computing the equilibrium state perturbation (Ṡh̄, κ̇h̄, α, u̇h̄,
˙̄h) for scalar “independent”

variable perturbation ˙̄y = 1 via sensitivity analysis employing any strategy for constraining vertical mo-

tion, we can use the above formulas to transform to an equivalent perturbation (Ṡ0, κ̇0, α, u̇0, 0) and finally
normalize this entire result so that ˙̄y = 1.
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4 Periodic Volume Calculation

We prove here the fact used in the main paper that the integrated normal vector of a surface depends only
on the surface’s boundary.

∫

Γ+

i

n dA(x) =
∑

i

ei

Ç
∫

Γ+

i

n · ei dA(x)

å

=
1

2

∑

i

ei

Ç
∫

Γ+

i

n · ∇ × (ei × x) dA(x)

å

(Stokes’ Theorem) =
1

2

∑

i

ei

Ç
∫

∂Γ+

i

(ei × x) · ds

å

=
1

2

∑

i

ei

Ç
ei ·

∫

∂Γ+

i

x× ds

å
=

1

2

∫

∂Γ+

i

x× ds,

where we used the identity ∇× (ei × x) = ei∇ · x− (∇x)ei = 2ei to rewrite ei as a curl in the first step.

5 Analytical Bending Regularization Coefficients

We obtain analytical expressions for the inner integral appearing in our bending regularization:

Ebend(f,p) :=

∫

M

∫ 2π

0

κM(α)2kb(α;p)dα dA(x).

We first plug in our expansion for bending stiffness kb(α;p) along with Euler’s theorem for normal curvature,
κM(α) = κ1 cos

2(α+ δ) + κ2 sin
2(α+ δ):

Ebend(f,p) =

∫

M

∫ 2π

0

(κ1 cos
2(α+ δ) + κ2 sin

2(α+ δ))2

(

4
∑

i=0

qi(p) cos(α)
4−i sin(α)i

)

dα dA(x).

Here, phase offset δ accounts for the angle between the principal curvature directions of the target surface
and the coordinate frame of the pattern parameter. The inner integral can be computed analytically to
obtain:

Ebend(f,p) =

∫

M

(

4
∑

i=0

qi(p)gi(δ, κ1, κ2)

)

dA(x),

with

g(δ, κ1, κ2) =
1

64
π

ï
−2κ1κ2(cos(4δ)− 6) + 16

(

κ2
1 − κ2

2

)

cos(2δ) +
(

κ2
1 + κ2

2

)

(cos(4δ) + 18),

2 (κ1 − κ2) sin(2δ) ((κ2 − κ1) cos(2δ)− 4 (κ1 + κ2)) ,

κ1κ2(cos(4δ) + 2)−
(

κ2
1 + κ2

2

)

(cos(4δ)− 6),

2 (κ1 − κ2) sin(2δ) ((κ1 − κ2) cos(2δ)− 4 (κ1 + κ2)) ,

−2κ1κ2(cos(4δ)− 6) + 16
(

κ2
2 − κ2

1

)

cos(2δ) +
(

κ2
1 + κ2

2

)

(cos(4δ) + 18)

ò
.
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6 Homogenization statistics for the three pattern families

The following table summarizes the parameters and a few statistics from our homogenization experiments
for the three pattern families used for inverse design in our work. For the parameters range, s is the side
length of the unit cell.

Pattern

Family

Parameters Sampling

Grid Di-

mensions

Parameters range Data Generation

Duration(s)

Cosine curve amplitude 50 [0, 0.5s] 1042.36
Dash line length, orientation 21× 16 [0.2s, s]× [π/4, π/2] 3417.28
Elliptic holes orientation, lengths of the

major and semi-major axes
16× 9× 6 [0, π/4] × [0.04s, 0.36s] ×

[0.52s, 0.72s]
4540.10

7 Coarsened Design Optimization Weight Tuning

The objective function for the coarsened design optimization contains the fitting term, bending term, and
the regularizaiton term which has pattern orientation smoothing and pattern parameters smoothing. In
practice, we find it helpful to schedule the weights for these terms to gradually enforce one objective at a
time. In the following, we provide the weight tuning schemes used for all the results in the main paper:

1. Starting from the output of the local-global optimization, run the design optimization with only the
fitting objective and the flattening f fixed for 600 iterations.

2. Free f , add the pattern orientation smoothing term with a weight such that the weighted value of the
gradient norm of the pattern orientation term is 4 times the gradient norm of the fitting term. Run
for 200 iterations.

3. Add the pattern parameter smoothing term with a weight such that the weighted value of the gradient
norm of the pattern parameter term is 4 times the gradient norm of the fitting term. Run for 100
iterations. Reduce the orientation smoothing weight by half, run for another 100 iterations.

4. Add the bending term with a weight such that the weighted value of the gradient norm of the bending
term is 2 times the gradient norm of the fitting term. Run for 400 iterations. Reduce the pattern
parameter smoothing weight by half, reduce the pattern orientation smoothing weight by a quarter,
run for another 200 iterations. Further reduce the pattern orientation smoothing weight by half, run
for another 200 iterations.
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