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Fig. 1. Given an input target surface, our inverse design algorithm first computes a conformal flattening to the plane. We superimpose a regular tiling of

user-selected resolution and integrate the local scale factor for each unit cell to serve as an index into a precomputed library of bistable auxetic cells. From all

the cells with the required scale factor, we find the one with highest stiffness in the second bistable state. These cells are combined into the flat fabrication

state of our deployable structure that can be laser-cut from sheet material. Actuation of the bistable cells then deploys the surface to the stable target state.

We present Bistable Auxetic Surface Structures, a novel deployable material

system based on optimized bistable auxetic cells. Such a structure can be

flat-fabricated from elastic sheet material, then deployed towards a desired

double-curved target shape by activating the bistable mechanism of its

component cells. A unique feature is that the deployed model is by design

in a stable state. This facilitates deployment without the need of complex

external supports or boundary constraints.

We introduce a computational solution for the inverse design of our

Bistable Auxetic Surface Structures. Our algorithm first precomputes a li-

brary of bistable auxetic cells to cover a range of in-plane expansion / con-

traction ratios, while maximizing the bistability and stiffness of the cell to

ensure robust deployment. We then use metric distortion analysis of the

target surface to compute the planar fabrication state as a composition of

cells that best matches the desired deployment deformation. As each cell ex-

pands or contracts during deployment, metric frustration forces the surface

towards its target equilibrium state. We validate our method with several

physical prototypes.
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1 INTRODUCTION

Large-scale shape transformation is crucial in many applications

across different length scales, ranging from encapsulation and re-

lease of medicine [Shim et al. 2012] to the construction of space struc-

tures [Miura 1985]. In particular, structures that can deploy from a

flat state to a desired target geometry can significantly reduce the

time and cost of fabrication, transport, and construction [Adrover

2015]. In extreme environments such as outer space or the deep sea,

deployable structures are often the only feasible means of erection.

Traditional deployable structures often employ regular periodic

patterns to simplify fabrication and achieve deployment through the

application of specifically designed boundary constraints. Examples

of this type of structures include grid shells, cable nets, inflatable

domes or deployable solar panels [Fenci and Currie 2017]. Shape

control through boundary constraints is inherently limited, however,

and typically leads to a narrow range of possible shapes.
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Fig. 2. Our bistable hexagonal cell is composed of six triangular units (a), each parameterized by a width 𝑡 and an angle 𝜃 . When expanding the cell, triangle

units become kinematically inconsistent (b), introducing strain into the cell. FE simulation in (c) illustrates the stress concentration in the compliant hinge

joints connecting the rotating inner triangle elements as a result of this strain. The strain energy (d) and force (e) as a function of strain exhibit the typical

bistable behavior. At the 2nd minimum of energy and zero force, the cell assumes a stable state 𝑃5. In (f,g) we show experimental validation for two cells with

different parameter settings for (𝑡, 𝜃 ) .

To achievemore complex target shapes, recentwork has leveraged

advanced manufacturing technology to embed knowledge of the tar-

get shape into the material system itself. This shifts the complexity

from the boundary to the interior of the structure and often enables

a simplified, global deployment. Researchers have also incorporated

smart materials that react to certain environmental conditions to

achieve autonomous shape change. Typically, smart materials such

as shape memory polymers, liquid crystal elastomers and artificial

hydrogels are fabricated in one state, and when exposed to a trigger,

transform to a second state.

Contributions. In our work we propose a novel mechanics-based

solution to achieve stable shape transformation and deployment.

We leverage two key principles to solve this challenging problem,

namely (i) deployment of a planar surface by spatially varying

isotropic expansion [Konaković-Luković et al. 2018], and (ii) auxetic-

ity with tunable mechanical bistability [Rafsanjani and Pasini 2016].

We introduce a parameterized bistable cell that offers a continuous

range of extensibility at a second stable equilibrium state through

geometric variation. We show how a tiling of such cells can be op-

timized to program the required metric frustration into a planar

sheet such that the structure globally deploys into a desired target

surface and remains stable after deployment forces are removed.

Our computational method is validated through scanned physical

prototypes and mechanical testing.

2 RELATED WORK

We focus our discussion of previous work on deployable structures

that we categorize into three classes. Our classification is based on

they way the target shape is encoded, and whether deployment

requires external actuation or is intrinsic in the material system. For

a broader perspective on fabrication-aware computational design,

we refer to recent surveys [Bermano et al. 2017; Pietroni et al. 2019].

Extrinsic deployment of regular structures. Traditional deployable

structures such as pure kinematic mechanisms, gridshells and ca-

blenets achieve their target shape through the application of exter-

nal boundary constraints [Adrover 2015]. More recently, Konaković

et al. [2016] studied regular linkage-based auxetic materials and es-

tablished a connection to conformal geometry to define an inverse

design algorithm. Garg et al. [2014] use Chebyshev nets to approxi-

mate a given target shape with a wiremesh surface. These structures

have a periodic architecture, and as such encode no knowledge of

the target shape, requiring external guides to deform the planar

fabrication state. The inherent mechanical characteristics are taken

as constants that cannot be tuned.

Extrinsic deployment of programmed structures. With the advent

of powerful computational methods and digital manufacturing, we

are able to design and fabricate structures whose internal architec-

ture and/or global topology can be optimized for given input target

shapes. Friedrich et al. [2018]; Konaković-Luković et al. [2018] ex-

tend auxetic linkages with locally adapted cells to allow deployment

of the planar material to the target 3D shape using overpressure or

gravity.

With Flexmaps, [Malomo et al. 2018] decompose the target surface

into panels whose stiffnesses are tuned with parametrized spiral pat-

terns to achieve the desired curvature when appropriate boundaries

constraints are imposed.

Origami features customized crease lines and dihedral angles to

form 3D shapes [Demaine and O’Rourke 2008]. Tachi [2009] utilizes

tuck modules to approximate input polyhedral surfaces using flat

sheets, where the excess material is folded beneath the surface. To

ensure stability in the folded state, plasticity is inherently present

across the crease lines [Shi et al. 2017]. A related construction of

introducing slits within an otherwise continuous material (a.k.a.

Kirigami) has been shown to produce sheets that deploy out-of-

plane when certain boundary points are pulled [Celli et al. 2018].
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X-shells [Panetta et al. 2019] and geodesic gridshells [Pillwein et al.

2020] exploit length incompatibilities within a biaxial grid-shell that,

when expanded, deploys into a double-curved target shape. When

the pulling forces are released, the deployed shape will close again in

absence of plastic deformation or boundary constraints. Siéfert et al.

[2019] introduce biomorphs, elastomeric materials with embedded

air channels that can be inflated to generate double curvature. This

deformation behavior is abstracted as an anisotropic change in the

surface metric.

For material systems in this category, maintaining the structure

in its target shape generally requires either active deployment forces

(e.g., over-pressure), whose removal would lead to structural col-

lapse, or plastic deformation that is typically irreversible.

Intrinsic deployment of programmed structures. The last category

of deployable structures embeds both the knowledge of the target

shape and a means of deployment within the planar surface. These

works share a unique property that energy is only needed during

deployment as a trigger. Once deployed, the structure is in a state

of self-equilibrium.

By fabricating an optimized layout on a pre-stretched substrate

and releasing this stretch to apply a contractive force, a number

of complex shapes have been demonstrated [Guseinov et al. 2017;

Pérez et al. 2017]. In these works, while the deployed shapes are

stable, the flat states are generally not.

A large body of work utilizes smart materials that change shape

through an environmental trigger. Gladman et al. [2016]; Raviv et al.

[2014] print artificial hydrogel with optimized alignments and utilize

anisotropic swelling to achieve shape deployment. Multimaterial 4D

printing is used in [Boley et al. 2019] to transform lattices through

thermal expansion and contraction. 3D printed shape memory poly-

mers are used for the deployment from a planar fabrication state [Ge

et al. 2013], with applications for a solar panel shown in [Chen et al.

2019]. Liquid crystal elastomers with optimized nematic alignment

are used to achieve shape deployment when exposed to heat or

light [Aharoni et al. 2014, 2018; Kotikian et al. 2018]. Guseinov et al.

[2020] additionally integrate temporal control to ensure collision-

free deployment of shell structures. They employ a data-driven

approach to solve the inverse design problem.

The above systems often require sophisticated fabrication tech-

nologies and custom-synthesized base materials. The necessary

triggering conditions, such as exposure to large changes in tempera-

ture or humidity, can further limit the applicability of some of these

systems.

Bistable mechanism. In our work, we exploit multiple equilibrium

states of mechanical bistability. Bistable mechanical systems are

traditionally associated with buckling and catastrophic collapse.

Recently however, the nonlinearity inherent in multi-stable systems

have been exploited to achieve useful functions. Bharaj et al. [2018]

introduce metamorphs, planar spring-based linkage mechanisms

that can transition between two pre-defined shapes. Chen et al.

[2017] demonstrate 3D printed planar quadrilateral tiled surfaces

that feature bistable elements to enable out-of-plane deployment.

Rafsanjani and Pasini [2016] have shown a surface with periodic

bistable units that also possess a Poisson’s ratio of −1 at any stretch

between the first and the second equilibria. In our work, we focus

on eliminating the need for a continual energy input to maintain

the deployed shape. Our bistable auxetic structures not only guide

the deployment towards the target shape, but also favor the target

surface as a local energy minimum. Thereby, energy input is only

needed during deployment or un-deployment. We see our work as a

first demonstration of an inverse generative algorithm for the stable

out-of-plane deployment of surfaces.

3 METHOD OVERVIEW

The key principle of deployment in our approach is metric frus-

tration. By programming variable in-plane expansion into a flat

sheet of elastic material, we obtain a double-curved surface as the

equilibrium state with low elastic energy that respects the new sur-

face metric. Unique to our approach, we populate the flat sheet with

bistable cells that offer controlled isotropic expansion at their second

stable states, while providing sufficient resistance to the material’s

elastic restoring forces in the deployed state. The resulting surface

is globally stable and requires no external forces to maintain its

shape.

Figure 1 provides an overview of our computational inverse de-

sign approach. In a precomputation stage, we build a library of

bistable auxetic cells optimized for a maximal range of expansion

factors, sufficient energy barrier between the two stable states, and

high stiffness in the deployed configuration. The design optimiza-

tion stage then follows the approach of [Konaković-Luković et al.

2018] to first compute a conformal flattening of the design surface

using the method of [Sawhney and Crane 2017]. The scale factors

from this conformal map determine the pointwise in-plane expan-

sion needed to encode the shape. A regular equilateral triangular

mesh of a user-chosen resolution is overlaid on the flattened sur-

face. We calculate the per-cell expansion factors by averaging the

conformal scale factor over the area of the cell.

These expansion factors are used to query our library for the

optimal bistable cells, which are then tiled to obtain the planar layout

of the fabrication state. Finally, the fabricated model is actuated by

pushing all cells toward their second stable state to yield the globally

stable deployed surface.

4 PARAMETRIC BISTABLE CELL

The design of our parametric cell is guided by several requirements.

In particular, cells should (i) exhibit bistability and sufficient stiffness

in the deployed state, (ii) cover a large range of expansion factors,

and (iii) seamlessly tile the plane in the fabrication state. Our pa-

rameterized cell is inspired by the auxetic bistable tilings proposed

in [Rafsanjani and Pasini 2016]. Auxetic materials are materials with

negative Poisson’s ratio, i.e.when stretched in one direction, they ex-

pand also in the perpendicular directions. We specifically work with

cells that can be abstracted as a one degree-of-freedom kinematic

linkage with Poisson’s ratio of −1, meaning they strongly resist

all deformations except uniform expansion [Konaković et al. 2016].

This isotropic expansion behavior means the pattern’s properties

can be fully characterized by experiments stretching it along a single

axis. We quantify the magnitude of this stretch with the first entry

of the finite Biot strain tensor, which for an isotropically scaling
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Fig. 3. Parameter sweep on our hexagonal cells. We only retain the portion of the parameter space that yields bistable cells (a). The local expansion factor

covers a range of 1.129 to 1.775 (b). The energy barrier measures the difference between the minimum and maximum strain energy (c). Stiffness is evaluated

with Equation 2 (d). We show the behavior of cells for a specific constant value of 𝜃 (e) and 𝑡 (f), as indicated by the red vertical and horizontal lines in (a). The

specific cell shown in (a) is highlighted in (e,f) in cyan (second from left).

pattern like ours, directly measures the relative length change; this

quantity is the scalar-valued strain 𝜀 used throughout the paper.

Cell geometry. We define a hexagonal cell with a triangular atomic

unit as illustrated in Fig. 2. All hexagons are regular with the same

edge length 𝑙o to ensure tileability. The geometry of each triangular

unit within the hexagonal cell, also with an edge length of 𝑙o, is

generated using two tunable parameters, an angle 𝜃 and a thick-

ness 𝑡 . In this way we unify several geometric parametrizations

proposed by [Rafsanjani and Pasini 2016] to allow for a larger de-

sign space. In addition, we have fabrication- and material-related

parameters that are held constant in our analysis. In our experi-

ments, cells are fabricated by perforating the cut lines using a CNC

laser. The diameter of the laser determines the perforation width

𝑠 = 0.125mm. The hinge thickness𝑤 = 0.25mm is empirically cho-

sen to be as small as possible while still ensuring robustness over

multiple opening-and-closing cycles of the cells.

Cell kinematics. The auxetic deformation behavior emerges due

to the rotation of the embedded inner triangles of edge length 𝑙𝑖
as the cell expands (Fig. 2). Previous works on deployable auxetics

model this behavior using a purely kinematic approach with ideal-

ized point hinges (assuming 𝑠 = 𝑤 = 0) and rigid elements [Friedrich

et al. 2018; Konaković et al. 2016; Konaković-Luković et al. 2018].

Bistability is defined as the existence of a second local minimizer

𝜀bist > 0 in the strain energy landscape (Fig. 2e). In our setting, the

bistable functionality of the cell critically depends on the elasticity

of the underlying material [Rafsanjani and Pasini 2016]. As shown

in Fig. 2b, incompatibilities between the unit triangles suggest that

when the cell is stretched, strain energy is accumulated in the inter-

mediate states between the two stable states 𝑃1 (at 𝜀 = 0) and 𝑃5 (at

𝜀 = 𝜀bist). Accurately quantifying the energy barrier between these

states and the stiffness around 𝑃5 requires a physical simulation

of the finite elastic deformation behavior. To determine approxi-

mately how far the simulation must stretch the cell to reach this

second stable state, we derive an analytical estimate of 𝜀bist based

on kinematics. We derive in Appendix II an expression for the inner

triangle length 𝑙𝑖 in terms of the pattern parameters and calculate

the bistable strain estimate as

𝜀bist ≈
2

𝑙o
𝑙𝑖 sin

(

𝜃 + 𝜋

6

)

.

Numerical simulation. We use nonlinear periodic homogenization

[Nakshatrala et al. 2013] to characterize the mechanical properties

of our bistable auxetic cut patterns. To analyze a particular pattern,

we simulate how a large (theoretically infinite) periodic tiling of cells

behaves when stretched. We make two assumptions to simplify the

simulation: (i) the tiling remains planar throughout the deformation,

and (ii) the deformation does not break translation symmetry, so all

repetitive units of the tiling will experience the same deformation.

Note that while our patterns are defined by a chiral triangular atomic

unit, we perform our simulation using a larger hexagonal cell (Fig. 3)

that tiles the plane with only translations as opposed to translations

and reflections.
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A kinematic analysis of the idealized linkage shows both of these

assumptions are valid for the expanded state, thus we expect our

simulation to accurately predict properties around the second stable

state. These assumptions do mean that we over-estimate the energy

barrier of cells that prefer to buckle into symmetry-breaking or

out-of-plane configurations at intermediate states (this can be seen

in the accompanying video). However, as discussed in Section 4,

practical considerations lead us to prefer the stiffness criterion for

cell selection, so any inaccuracies in the energy barrier estimate do

not influence our design process.

The first assumption allows us to simulate the hexagonal cell

with a 2D elasticity model defined by an energy density function

𝜓 : R
2×2 → R operating on 2D deformation gradients. We use a

plane stress neo-Hookean membrane energy with Poisson’s ratio

0.45. We note that the Young’s modulus selected for the sheet ma-

terial does not influence the expansion ratio and merely applies a

global scaling to all energy barriers and stiffnesses. We repeated our

characterizations using a lower Poisson’s ratio of 0.30 and concluded

that, as expected, the sheet material’s Poison’s ratio has negligible

influence on expansion ratios and stiffnesses; a tilings’ properties

are almost purely a function of its unit cell geometry.

The second assumption of translational symmetry forces the de-

formed position of each material point x to take the form 𝝎 (x) + 𝐹x,
where 𝐹 is the average deformation gradient experienced by the

tiling, and 𝝎 is a displacement field that is periodic over the hexag-

onal tiling (commonly referred to as a fluctuation displacement).

Accordingly, the elastic energy stored in a deformed cell Ω is given

by:

E [𝝎, 𝐹 ] =
∫

Ω

𝜓 (∇𝝎 + 𝐹 ) d𝑥 .

We discretize this energy using quadratic finite elements (obtain-

ing a discrete energy 𝐸 (w, 𝐹 ) := E [∑𝑖 𝑤𝑖𝝓𝑖 , 𝐹 ] with vector-valued

shape functions 𝝓𝑖 ), and impose the periodicity condition on 𝝎

by assigning periodically identified mesh nodes the same displace-

ment variables in w. We account for the rotational invariance of the

material response by restricting our consideration to symmetric 𝐹

(i.e., the stretching part of the polar decomposition of an arbitrary

average deformation gradient).

Our mechanical characterization comprises two stages. In the

first stage, we incrementally stretch the tiling horizontally until

reaching a uniaxial strain slightly exceeding our analytic prediction

of 𝜀bist. For each strain 𝜀 in this sequence, we simulate the tiling’s

deformation by solving for the minimum energy configuration:

𝐸∗ (𝜀) = min
𝐹,w

𝐹00=1+𝜀

𝐸 (w, 𝐹 ) := 𝐸 (w∗ (𝜀), 𝐹 ∗ (𝜀)) . (1)

The solution to this minimization problem tells us the elastic energy

stored in each hexagonal cell of the tiling as well as the effective

macroscopic stretch of the full tiling, 𝐹 ∗ (𝜀), from which we can

verify the uniform expansion behavior (𝐹 ∗ ≈ 𝜀𝐼 ). By recording the

energy at each increment, we detect bistability with high accuracy

by analyzing the energy-strain curve (e.g., Fig. 2d).

In the second stage, we release the constraint on 𝐹00 and rerun

the energy minimization, allowing the tiling to settle into an uncon-

strained local minimum at its second stable state 𝑃5. We can then

accurately measure 𝜀bist = 𝐹 ∗
00

− 1 and calculate pattern stiffness

using the following analytical formula (see Appendix I):

d
2𝐸∗

d𝜀2
(𝜀bist) =

𝜕2𝐸

𝜕𝐹00𝜕w

dw
∗

d𝜀
+ 𝜕2𝐸

𝜕𝐹00𝜕𝐹
:
d𝐹 ∗

d𝜀
. (2)

The results of this stiffness calculation for all analyzed patterns

are visualized in Fig. 3. For very weakly bistable structures, the

minimization in the second stage could tunnel through the energy

barrier to the undeformed state. However, this is unlikely to oc-

cur with our solver, and we found no instances where our high

resolution energy-strain curves detected bistability but the second

stage failed to find 𝜀bist > 0. Furthermore, weakly bistable structures

structures like these are unfavorable for our application and would

be discarded by our cell selection anyway.
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We evaluate all integrals with exact Gaussian quadrature and

solve the nonlinear minimization Eq. 1 with a custom Newton solver

employing a standard backtracking line search and a simple Hes-

sian modification strategy to guarantee convergence to a minimum.

Solving each parametric combination takes on average 20 seconds

on a PC with 2.5GHz dual-core Intel Core i7 and 16GB of RAM.

Figure 2d shows the energy landscape along the uniform expan-

sion deployment path computed by our physical simulation for a

typical hexagonal cell. The force-strain curve (Fig. 2e) can be plotted

using the formula d𝐸
d𝜀

in the appendix I. We compute the energy

barrier by subtracting the energy calculated at stationary points 𝑃3
and 𝑃5.

Parameter Sweep. We perform a dense parameter sweep on 𝑡 and

𝜃 , running our periodic simulation on each sampled cell design to

evaluate the expansion factor, bistable energy barrier, and stiffness

around the deployed state. We derive the parameter bounds from

geometric considerations. Specifically, we aim to derive a range of

geometrically feasible values of 𝑡 for every feasible 𝜃 . The angle 𝜃

is constrained to lie between ±𝜋
6
. Smaller values would result in

cells with a different deformation mechanism that is not bistable.

Larger 𝜃 would require a negative value for 𝑡 . For a given 𝜃 , we can

determine the bounds for 𝑡 using equations derived in Appendix II.

At 𝑡 = 𝑡max, the inner triangle would vanish, and at 𝑡 = 𝑡min, the

inner triangle would occupy the entire triangular unit. The artificial

limit of 𝑡 ≥ 0.5mm is imposed due to limits of fabrication precision.

To build our cell library, we sample 𝜃 at 43 evenly spaced values.

For each 𝜃 , we sample 𝑡 in increments of 0.01mm between 𝑡min

and 𝑡max. Figure 3 summarizes the results. We observe that not all

theoretically bistable cells are in fact bistable when the finite elas-

ticity of the hinges is considered (Fig. 3a). Similarly, the achievable

expansion factor (defined as 𝜀 + 1) does not extend to the entire

theoretical range of 1 to 2 as shown in Fig. 3b.

In Fig. 2f,g, we validate our computational exploration with phys-

ical experiments to confirm the accurate prediction of the computed

cell geometries. We provide all data of the cell library in supplemen-

tal material.

Cell selection. For a given target expansion factor, we can search

along the corresponding isoline to find the triangular unit with the

highest stiffness (see also Fig. 1) or highest energy barrier. Qualita-

tively, a larger energy barrier suggests that more work is required to

move between two equilibrium states, whereas a higher stiffness at

𝜀bist suggests that the second equilibrium is more stable, resulting in

a higher-precision encoding of the expansion factor. Experimentally,

we found the prototypes easier to deploy than to flatten even for

patterns with relatively low energy barrier: during deployment, a

cascading motion is observed where opening one cell causes its

neighbours to open [Jin et al. 2020]. The opposite is true during

flattening, where multiple cells must be held closed simultaneously

to ensure they do not łpopž back open. This suggests that global

collapse is unlikely to occur, and we should perform triangular unit

selection based on stiffness to maximize the stability and accuracy

of the deployed shape.

Stitching

Deployment

0

2.0% l
diag

Target surface

3D scan

Fabrication State

Deployed Cylindrical

400 triangles

Fig. 5. This vase has been reconnected with glue along the boundarymarked

in red prior to deployment.

5 EVALUATION

Given the precomputed cell library, we calculate the fabrication

state for a given target deployed surface as discussed in Section 3.

Figures 4 to 7 show example designs created with this approach. We

provide the cut patterns for all models in the supplemental material.

t
1

t
2

t
3

When triangular units are

tiled, a mismatch is ob-

served where the 𝑡 parame-

ters of neighboring units dif-

fer. A simple averaging oper-

ation is performed on every

pair of neighboring units to

match the end points of the

cut lines along the bound-

ary of the triangles as shown

in the inset. For the designs

shown, due to the smooth-

ness of the scaling factor

field, this adjustment is imperceptible.

Our models have been laser cut from 2.3mm thick rubber sheets.

Pushing and stretching the material manually deploys the structure

to its stable target state. Due to the bistability of the cells, this de-

ployment does not require any specific order or coordination. As

soon as some cells are deployed towards their second stable state,

the cascading effect propagates the deployment to the remaining

structure, leading to a simple and very robust deployment procedure

(see also accompanying video). We scanned all deployed model us-

ing the photometric stereo method implemented in the Metashape

software [Agisoft 2021]. The error plots show the deviation of the
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scan from the input reference surface as a percentage of the bound-

ing box diagonal. As the plots indicate, the accuracy of the deployed

shape is high.

Using a simple spherical cap example shown in Fig. 4, we demon-

strate stable deployment in the absence of boundary constraints, as

well as load carry capacity. The cap is a quarter sphere, which can be

conformally mapped to the plane using a range of scale factors much

narrower than our bistable cells can achieve. This allows realizing

the same target geometry from different fabrication states and ulti-

mately with different mechanical behavior of the deployed structure.

Using scale factors at the lower end of the available range results in

a larger fabrication state, and a denser deployed surface, and vice

versa. Based on the numerically predicted stiffnesses corresponding

to the parameters selected for each model, it is evident that the

cap featuring lower scale factors will be stiffer. This is verified in

the 3D reconstruction, as the cap with larger scale factors deforms

more under gravity. We also explicitly measure the force response

using a typical indentation experiment for shallow spherical shells.

The two caps deliver qualitatively similar response curves, yet one

exhibits a higher stiffness by a factor of approximately 2. The cells

do not collapse in either experiment, and the shapes recover when

the indenter is removed (see video).

Apart from the simple spherical caps, we utilize the entire ex-

pansion range in all examples to demonstrate more complex target

shapes. Figure 5 illustrates how we can fabricate models from a

single material sheet that do not have disk topology. The required

cut defines a boundary that needs to be reconnected prior to de-

ployment. The compatible chirality of the triangles along this seam

enables deployment of the connected cylindrical geometry.

In Fig. 6 we demonstrate how we can use the same methodology

to employ bistable cells that are fabricated in the open state and

contract towards a closed state during deployment. Similar FE sim-

ulations are performed using negative strain values to simulate the

closing behavior. While a larger flat sheet is needed to achieve the

same target deployment as compared to the closed-to-open cells,

this type of design results in a nearly solid deployed surface. This

can be advantageous in numerous applications such as satellites,

where slit-like holes are invisible to some wavelengths. Figure 7

shows design studies for architectural freeform shapes that high-

light the rich shape space of our bistable auxetic surface structures.

For shapes that span large unsupported spaces, external factors

such as gravity result in visible deformation in the geometry when

deployed.

5.1 Limitations and Future Work

Our parametric bistable auxetic cell has a bounded isotropic expan-

sion range, between 1.129 and 1.77 for our specific material setup.

Similar to [Konaković-Luković et al. 2018], this limits the range of

target shapes that we can obtain from a single sheet of material.

More complex surfaces require singularities, which complicates the

deployment process as cuts in the fabrication model need to be

re-joined during deployment (cf. Fig. 5).

Our metric-based approach only defines the target surface up to

isometry. This can necessitate additional guidance during actuation,

for example to determine in which direction a convex bump should

1 2ξ
min

ξ
max

Bistable

0.5 η
max

η
min

Bistable(a)

(b)

(c) (d)

(e)

0 2.5% l
diag

3D scan

() contractive 

deployment

-0.15 0.15 MPa Max. Principal Stress

Fig. 6. Our bistable cell works both in expansion and contraction (a). In (b)

we show the FE simulation of a cell in an open rest state that is contracted

to a second stable state. These cells can then used in the same manner

as our expansive cells for inverse design: Layout and scale factors (c), flat

fabrication state (d), deployed surface (e) and error plot (f).

deploy; i.e. extrinsic curvature is not encoded in the design. In

addition, surfaces that have close-to-isometric deformation modes

might require additional supports to achieve a stable target state.

Another drawback is that we currently do not incorporate additional

physical constraints, e.g., we cannot easily compensate for the effect

of external forces such as gravity.

All our physical prototypes have been laser-cut from elastic sheet

material. Since the key mechanism of our bistable cells is based on

compliant hinge joints, this requires sufficiently flexible material

to keep the bistable energy barrier, and thus actuation forces, low.

At the same time, we want a sufficiently high material stiffness to

keep the target state stable. The optimal trade-off is different for

each base material and sheet thickness, and our cell library must

be recomputed when these parameters are changed. Multi-material

systems, either through monolithic additive manufacturing or as-

sembly from components, can potentially provide more flexibility

to control this trade-off.

Currently all cells in our designs are chosen to be bistable. For cer-

tain applications, we might not require a dense packing of bistable

cells, but could instead mix bistable cells with other passive expan-

sive or contractive elements. This could help increase the available

scaling range and thus support a broader class of design surfaces.

As future work addressing some of the above limitations, we

intend to develop an interactive tool that can inform users if an

input target surface exceeds the admissible expansion range and

suggest the closest feasible surface. Further, the tool would allow

users to interactively specify regions of monostability and locations

of topological singularities.
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0 max error

max error = 4.0% l
diag

max error = 3.0% l
diag

Boundary support

l
o
 = 10 mmLilium Tower

Tigridia Pavilion
898 triangles

901 triangles

Fig. 7. Complex freeform surfaces deployed from a flat sheet. From left to right: Target surface, planar state, deployed state, deviation of scanned model.

6 CONCLUSIONS

We propose a new class of deployable surface structures composed

of bistable cells that facilitate effective deployment to an implicitly

encoded target shape. Deployment induces only elastic deformation

and is thus reversible, yet leads to a stable target state due to the

embedded bistability. One of the key benefits of our inverse design

approach is simplicity. We achieve high predictive accuracy by com-

bining local precomputation of cell behavior with global metric

analysis without requiring a complex PDE-constrained global opti-

mization to determine the cell parameters. This leads to an efficient,

robust, and easy-to-use computational pipeline.
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APPENDIX I

We provide the formulas necessary to compute a unit cell’s stiffness

along its 1D deployment path. First, note that the equilibrium de-

formation variables at a given stretch, w∗ (𝜀) and 𝐹 ∗ (𝜀), solve the
system of nonlinear equations:

𝜕𝐸

𝜕w
(w∗, 𝐹 ∗) = 0,

𝜕𝐸

𝜕𝐹
(w∗, 𝐹 ∗) =

[

𝜆 0

0 0

]

, 𝐹00 = 𝜀 (3)

for some unknown stretching force 𝜆. Differentiating the energy at

equilibrium with respect to strain 𝜀 yields:

d𝐸∗

d𝜀
=

𝜕𝐸

𝜕w
(w∗, 𝐹 ∗) dw

∗

d𝜀
+ 𝜕𝐸

𝜕𝐹
(w∗, 𝐹 ∗) : d𝐹

∗

d𝜀
=

𝜕𝐸

𝜕𝐹00
(w∗, 𝐹 ∗),

where nearly all terms vanish due to Eq. 3. Differentiating a second

time yields Eq. 2, for which we need the equilibrium derivatives
dw

∗
d𝜀

and d𝐹 ∗
d𝜀

. Flattening the unconstrained entries of 𝐹 into a vector

f := [𝐹01, 𝐹11], we find these derivatives by differentiating both

sides of Eq. 3 and solving the resulting system:
[

𝜕2𝐸
𝜕w2

𝜕2𝐸
𝜕w𝜕f

𝜕2𝐸
𝜕f𝜕w

𝜕2𝐸
𝜕f2

] [

dw
∗

d𝜀
df

∗
d𝜀

]

= −
[

𝜕2𝐸
𝜕w𝜕𝐹00
𝜕2𝐸

𝜕f𝜕𝐹00

]

,

which can be assembled from the individual energy Hessian terms:

𝜕2𝐸

𝜕𝑤𝑖 𝜕𝑤 𝑗
=

∫

Ω

∇𝝓𝑖 : 𝜓 ′′
: ∇𝝓 𝑗 d𝑥,

𝜕2𝐸

𝜕𝑤𝑖 𝜕𝐹
=

∫

Ω

∇𝝓𝑖 : 𝜓 ′′
d𝑥,

𝜕2𝐸

𝜕𝐹 2
=

∫

Ω

𝜓 ′′
d𝑥 .
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Fig. 8. The geometry of the unit cell is defined parametrically. By changing

𝑡 and 𝜃 , we cover the theoretical expansion ratios between 1 and 2.

Here, 𝜓 ′′ is the second derivative of membrane energy density 𝜓

with respect to its argument, evaluated at ∇𝝎∗ + 𝐹 ∗.

APPENDIX II

We derive the quantities used in the estimation of 𝜀bist in Eq. 4.

First, referring to Fig. 8a, we derive expressions for 𝑙𝑖 and 𝑡𝑠 by

formulating a system of two equations:

𝑡 sin
(𝜋

3

)

+ (𝑡s + 𝑙i + 2𝑠 ′) sin (𝜃 ) = 𝑡s sin
(𝜋

3
− 𝜃

)

,

𝑡 cos
(𝜋

3

)

+ (𝑡s + 𝑙i + 2𝑠 ′) cos (𝜃 ) + 𝑡s cos
(𝜋

3
− 𝜃

)

+ 𝑡 = 𝑙𝑜 .

Solving for both 𝑡s and 𝑙i,

𝑡s = 𝑡 cos(𝜃 ) +
√
3

(

2𝑙o

3
− 𝑡

)

sin(𝜃 )

𝑙i = (𝑙o − 3𝑡) cos(𝜃 ) +
√
3(𝑡 − 𝑙o) sin𝜃 − 2𝑠 ′.

We calculate the projected length 𝑠 ′ as

𝑠 ′ = − 𝑠

3

(√
3 sin (𝜃 ) − 3 cos (𝜃 )

)

,

obtaining a final expression for 𝑙𝑖 :

𝑙i =

(

2

3
𝑠 + 𝑡 − 𝑙o

) √
3 sin (𝜃 ) − (2𝑠 + 3𝑡 − 𝑙o) cos (𝜃 ) .

Note that𝑤 remains included in 𝑙i and can be adjusted at will prior

to fabrication. The bounds for 𝑡 are found as follows: 𝑡min occurs

when 𝑡s = 0 and 𝑡max occurs when 𝑙i = 0, i.e.,

𝑡min = 𝑙o
2 sin (𝜃 )

√
3

3 sin (𝜃 )
√
3 − 3 cos (𝜃 )

,

𝑡max =

(−2𝑠 + 3𝑙o)
√
3 sin (𝜃 ) + 3(2𝑠 − 𝑙o) cos (𝜃 )

3
√
3 sin (𝜃 ) − 9 cos (𝜃 )

.

Lastly, Eq. 4 can be derived by referring to Fig. 8b, where 𝛼 = 𝜃 +𝜋/6.
The extension in length is therefore Δ = 2 𝑙i sin (𝛼). The strain

estimate can then be calculated as 𝜀bist = Δ/𝑙o.
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