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Recently, the LHCb Collaboration announced the discovery of the Tþ
cc tetraquark. Being merely a few

hundred keV below the D�þD0 threshold, the Tþ
cc is expected to have a molecular component, for which

there is a good separation of scales that can be exploited to make reasonably accurate theoretical predictions
about this tetraquark. Independently of its nature, the most important decay channels will be DþD0π0,
D0D0πþ, andDþD0γ. Its closeness to threshold suggests that the mass and particularly the width of the Tþ

cc

tetraquark depend on the resonance profile. While the standard Breit-Wigner parametrization generates a
Tþ
cc that is too broad for current theoretical calculations to reproduce, a three-body unitarized Breit-Wigner

shape reveals instead a decay width (Γpole ¼ 48� 2þ0
−12 keV) consistent with theoretical expectations. Here,

we consider subleading-order contributions to the decay amplitude, which, though having at most a
moderate impact in the width, still indicate potentially significant differences with the experimental width
that can be exploited to disentangle the nature of the Tþ

cc. Concrete calculations yield ΓLO ¼ 49� 16 keV
and ΓNLO ¼ 58þ7

−6 keV, though we expect further corrections to the next-to-leading-order (NLO) decay
widths from asymptotic normalization effects. We find that a detailed comparison of the NLO total and
partial decay widths with experiment suggests the existence of a small (but distinguishable from zero)
nonmolecular component of the Tþ

cc.

DOI: 10.1103/PhysRevD.105.014007

I. INTRODUCTION

The LHCb Collaboration has recently observed [1] a
tetraquark in the D0D0πþ mass spectrum. The Breit-
Wigner parameters of this tetraquark, the Tþ

cc, are

δmBW ¼ −273� 61� 5þ11
−14 keV; ð1Þ

ΓBW ¼ 410� 165� 43þ18
−38 keV; ð2Þ

where the mass difference is with respect to the D�þD0

threshold. Alternatively, if the data are analyzed with a
resonance profile more suitable to the closeness of the Tþ

cc

to the D�þD0 threshold [2], the parameters of the Tþ
cc pole

turn out to be

δmpole ¼ −360� 40þ4
−0 keV; ð3Þ

Γpole ¼ 48� 2þ0
−12 keV: ð4Þ

Of course, the question is what the nature of this state is,
where the two contending explanations are a compact
tetraquark or a loosely bound D�þD0-D�0Dþ system.
Actually, there is a long list of predictions of a ccūd̄ state

with J ¼ 1þ and I ¼ 0, beginning with the pioneering
realization by Zouzou et al. [3] that this tetraquark could be
below the D�D threshold, followed by a large series of
works till nowadays [4–12]. The predictions of I ¼ 0 D�D
and D�D� bound states with JP ¼ 1þ (for which heavy
quark-spin symmetry predicts identical potentials1) are in
contrast somewhat more recent, with Manohar and Wise
[16] and Törnqvist [17] considering it unlikely (from pions
alone), but then Ericson and Karl [18] realizing that this
conclusion might change if other meson exchanges are
considered, an observation later confirmed in Ref. [19] for
D�D�, in Ref. [20] for D�D (corresponding to the Tþ

cc), in
Ref. [21] forD�D andD�D�, in Refs. [22,23] forD�D, etc.
(plus the attention this hypothesis has received [24–28]
after the observation of the Tþ

cc). Here, it is worth noticing
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1The situation is completely analogous to the Zbð10610Þ and
Zbð10650Þ [13] or to the Xð3872Þ and its hypothetical JPC ¼
2þþ Xð4012Þ partner [14]. However, for the D�D�, a similar
caveat applies as for the Xð4012Þ [15]: the actual location of the
compact ccūd̄=cc̄ states might make the higher mass partner
disappear.
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that there might be up to three states with the quantum
numbers of the Tþ

cc (with the molecular ones usually close
to threshold).
In view of the aforementioned theoretical landscape,

there are reasons to believe that the two hypotheses (i.e., the
molecular and tetraquark explanations) are not mutually
exclusive and the Tþ

cc could be a superposition of both. The
molecular component of the Tþ

cc has the theoretical advan-
tage of being a shallow bound state, presumably with a
good separation of scales between its long-range and short-
range components. This in turn allows us to use the existent
theoretical toolbox for shallow bound states [29,30], from
which in principle it would be possible to make predictions
accurate enough as to analyze its structure.
In this regard, the decay width of the Tþ

cc is particularly
important (and indeed it has already received due attention
[31–33]); if the experimental measurements and theoretical
predictions are on par with each other in terms of accuracy,
we will be able to determine whether the Tþ

cc is purely
molecular or compact, or what the degree of admixture is
between these two explanations. Given small enough
uncertainties, a calculated decay width that is too small
or too large in comparison with the experiment might point
to (or even determine) the existence of physics beyond the
naive molecular explanation, like a tetraquark component
or unobserved states. However, this might prove difficult;
the wave function of a tetraquark close to the D�D
threshold might be indistinguishable from that of two
separate D� and D mesons, as noted in Ref. [8], which
already considered the possibility of a tetraquark lying
between the D�D and DDπ thresholds (see also the
discussion in Ref. [34]).

II. DECAY CHANNELS

The Tþ
cc decay width is expected to be saturated by its

strong and electromagnetic decays, which are in principle
limited to three possibilities: Tþ

cc → DþD0π0, Tþ
cc →

D0D0πþ, and Tþ
cc → DþD0γ.

However, this is not necessarily the whole story; if the
predicted ccūd̄ tetraquark happens to be a different state than
the Tþ

cc but with a lower mass, which we might call T 0þ
cc for

concreteness, we will have to add up to two new decay
channels, Tþ

cc → T 0þ
ccγ (M1 magnetic and E2 quadrupole

transitions) and Tþ
cc → T 0þ

ccπ
0, of which the second requires

isospin breaking (e.g., stemming from the isospin breaking in
the mass of theD�þD0 andDþD�0 channels) and a compact
T 0þ
cc located close or below the DþD0 threshold. This last

condition is more difficult to meet as there are fewer
predictions of a ccūd̄ state close to or below the DD
threshold [35–38] (as to allow some phase space for
Tþ
cc → T 0þ

ccπ
0) than between the D�D and DD thresholds

[5,39–43]. A different variation over this idea—the possibil-
ity of aDD bound state, T̃þ

cc, and its potential effect on theTþ
cc

decay width—has been recently explored in Ref. [44].

The most straightforward calculation of the Tþ
cc decay

width into pions involves sandwiching the D� → Dπ one-
body decay operators between the initial and final wave
functions [31–33], in which case the total decay width of a
molecular Tþ

cc falls short of the Breit-Wigner width [1], but
agrees well with the width from the improved resonance
profile introduced in Ref. [2] (which is in turn consistent
with the well-known fact that the Breit-Wigner paramet-
rization will lead to distortions for two-body states close to
threshold [45,46]). Here, we include a series of subleading-
order effects, including two-body decay operators and
rescattering effects in the final DD pair, which refine the
aforementioned theoretical estimations and might allow us
to eventually disentangle the molecular and nonmolecular
components of the Tþ

cc.

III. POWER COUNTING

Effective field theories (EFTs) are expansions in terms of
the ratio Q=M, with Q and M characteristic soft and hard
scales of the system at hand. If the Tþ

cc is molecular, its
natural momentum scale Q is given by the wave number of
itsD�þD0-D�0Dþ components, i.e., 23–26 and 57–59MeV,
respectively, depending on whether we use δmBW or δmpole;
seeEqs. (1) and (3). The ratio of these two scaleswith respect
to the pionmass is about 0.18 and 0.42, fromwhich it would
be perfectly possible to consider the pion mass as a heavy
scale M ∼mπ in a first approximation. If we consider the
strong decay products of the Tþ

cc, the maximum momentum
and energy of the final pion are about 40 and 6 MeV, which
are again small in comparison with the pion mass. The
situation is less clear with the momentum of the final DD
pair, which can reach 100MeV; however, one pion exchange
does not happen in this system, with the longest range piece
of the DD potential being the two-pion exchange football
diagram, with a range of 2mπ . From this, the ratio of scales
for the final DD system is 0.37. At this point, it is worth
noticing that a pion exchanged between a D�D and a DD�
initial and final state is almost on mass shell and will in
principle follow naive dimensional analysis (NDA) as its
power counting (also referred to as Weinberg’s counting
[47,48], which was originally formulated for the two-
nucleon system but can be applied to other non-relativistic
two-hadron systems as well). This conclusion changes,
though, once we consider the relatively large momentum
scale at which pions become nonperturbative in the two-
charmed meson system [49]. In summary, an effective field
theory description in which the pion mass is considered a
hard scale is expected to have a convergence parameter in the
range Q=M ∼ 0.2–0.4.
With this, if we consider the strong decays of the Tþ

cc and
the diagrams in Fig. 1, their counting will be as follows:
(a) The one-body decay diagram is order Q−2, and being

the lowest-order one, it is leading order (LO),
(b) In the Weinberg counting, the seagull diagram is Q0,

but in the decay of the Tþ
cc, the Weinberg-Tomozawa
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term is proportional to mπ , which we count as a hard
scale. Thus, this diagram is promoted to Q−1 and is
next-to-leading order (NLO),

(c) The contact-range two-body operator is naively Q1,
but if the Tþ

cc is a bound state and if we apply the
arguments of Ref. [50] for the counting of two-body
operators, it will be promoted to Q0 and will be next-
to-next-to-leading order (N2LO).
Indeed, following the logic in Ref. [50], if we apply

renormalization group invariance to the contact-range
two-body operator, we obtain

d
dRc

hΨðDDÞjÔ2B
C jΨðTþ

ccÞi ∝
d

dRc

�
ϵ⃗1 · q⃗

C2BðRcÞ
Rc

�
¼ 0; ð5Þ

where jΨðTþ
ccÞi and jΨðDDÞi are the initial and final

two-meson wave functions, Rc is a cutoff radius, C2B
is the contact-range coupling, ϵ⃗1 is the polarization
of the Tþ

cc tetraquark, and q⃗ is the momentum of
the pion. The R−1

c factor in front of C2BðRcÞ comes
from the tetraquark wave function, which scales as
hrjΨðTþ

ccÞi ∝ 1=r at short distances. This factor also
implies that in the infrared limit (R−1

c ∼Q), the C2B
coupling is proportional to 1=Q and thus enhanced by
one order with respect to NDA.

It is worth noticing that the appearance of the contact-range
two-body operator sets the limit of predictability of the
EFT: at N2LO, this contact can be calibrated to reproduce
the Tþ

cc decay width into pions, which means that the decay
width becomes the input of the theory (instead of its output,
which is what we want). For comparison purposes, this
counting has a few similarities with X-EFT [an effective

field theory tailor-made for the X(3872)][51] and a very
significant difference in what regards the counting of pion
exchanges [which we count at least as N2LO, as will be
explained later; see the discussion below Eq. (32)]. We find
it also interesting to comment on Ref. [44], which proposes
an EFT description of the Tþ

cc decays when there is a bound
state in the final DD state; if this were to be the case, the
final DD wave function will behave in exactly the same
way as the initial Tþ

cc one, i.e., hrjΨðDDÞi ∝ 1=r, which
will result in a 1=Q2 enhancement of the contact-range two-
body operator, which will then enter at NLO. In this case,
EFT will only be able to predict the Tþ

cc decay at LO
(instead of NLO as we propose here).
Even if the NLO limitation and the potentially slow

convergence parameter look disappointing, they are indeed
more than enough for the current situation; the relative
uncertainty in the experimental decay width is 0.43 for the
standard Breit-Wigner parametrization and 0.25 for the
unitarized Breit-Wigner. This naively indicates that either a
LO or NLO calculation will be enough to match it, but at
which order this exactly happens is not completely obvious
a priori; EFT arguments allow for the existence of
numerical factors ofOð1Þ, which might subvert the original
power counting expectations. If we ignore these numerical
factors and consider the expansion parameter to lie between
0.18–0.42, we find that the uncertainty in the LO and NLO
decay widths will be

ΔΓLO

ΓLO ∼ 0.18–0.42 and
ΔΓNLO

ΓNLO ∼ 0.03–0.18; ð6Þ

which indicates that a NLO calculation is necessary to be
fully competitive with experiment, particularly if we want
to match the accuracy of Ref. [2]. As we will see,
calculations of the decay width will turn out to be
compatible with the average estimations of the EFT
convergence. Thus, it happens that all the pieces fit together
to put the current limit at NLO, as it is simply not possible
to achieve a better accuracy at N2LO where the decay width
is no longer a prediction.

IV. DECAY AMPLITUDES

For the decay of the Tþ
cc into DDπ, we will consider a

decay amplitude in the form

hDDðp⃗0ÞπcjHjD�Dðp⃗Þi ¼ Acðp⃗0; p⃗; q⃗Þ; ð7Þ

where c is the isospin index of the outgoing pion, q⃗ is its
momentum, and p⃗ (p⃗0) is the center-of-mass relative
momentum of the incoming (outgoing) D�D (DD) system.
This amplitude will be sandwiched between the initial and
final state wave functions

hAci ¼ hDDðk⃗ÞjAcjTþ
cci; ð8Þ

FIG. 1. Lowest-order operators involved in the Tcc → DDπ
decay: the one-body decay operator is of order Q−2, while the
seagull and contact two-body currents are naively of orderQ0 and
Q1 but get promoted to Q−1 and Q0, respectively.
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and then inserted into Fermi’s golden rule to obtain the
decay width

ΓðTþ
cc → DDπÞ ¼ 2π

Z
d3k⃗
ð2πÞ3

d3q⃗
ð2ωÞð2πÞ3

× δ

�
ωþ k2

2μDD
þ q2

2mDD
− Δ

�
jhAcij2;

ð9Þ

where k⃗ is the center-of-mass momentum of the DD pair, q⃗
refers to the momentum of the outgoing pion and ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

refers to its energy (with mπ the pion mass),
μDD and mDD are the reduced and total mass of the final

DD pair, and jhAcij2 represents the sum over final states
and average over initial states. The amplitude Ac is
represented by the diagrams in Fig. 1, the evaluation of
which yields

Ac ¼
g1ffiffiffi
2

p
fπ

�
ϵ⃗1 · q⃗τ1cð2πÞ3δð3Þ

�
p⃗0 − p⃗þ q⃗

2

�

þ iðτ⃗1 × τ⃗2Þc
mπ

f2π

ϵ⃗1 · ðp⃗0 − p⃗ − q⃗
2
Þ

μ2π þ ðp⃗0 − p⃗ − q⃗
2
Þ2
�
; ð10Þ

where p⃗, p⃗0 are the relative momenta of the incoming and
outgoingD�D andDD systems, q⃗ and c are the momentum
and the isospin index (in the Cartesian basis) for the
outgoing pion, τci is the isospin operator (a Pauli matrix)
for the pion as applied to vertex i ¼ 1, 2, fπ ≃ 130 MeV is
the pion weak decay constant, g1 is the axial coupling for
the charmed mesons, mπ is the pion mass, and μ2π ¼ m2

π −
ðmðD�Þ −mðDÞÞ2 is the effective pion mass for the in-
flight pion, which can be on shell and which we simplify to
μπ ¼ 0 from now on.2 Besides, in the Weinberg-Tomozawa
vertex, we have made the simplification that the energy of
the incoming and outgoing pion is mπ (we notice that
changing it to ωπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q⃗2
p

has a negligibly small
effect). For the initial center-of-mass momentum coordi-
nates, we have also ignored the mass difference between
the D and D� mesons.
We now evaluate the decay operator between the

initial and final states. If we assume wave functions of
the type

hx⃗jDDðk⃗Þi¼eik⃗·x⃗jDDi and hx⃗jTcci¼ψðx⃗ÞjD�Di; ð11Þ

the matrix element of the decay amplitude can be explicitly
evaluated as follows,

hAci ¼
g1ffiffiffi
2

p
fπ

�
ϵ⃗1 · q⃗hτ1ciI1Bðk⃗; q⃗Þ

þ iðτ⃗1 × τ⃗2Þc
mπ

f2π
iϵ⃗1 · I⃗2Bðk⃗; q⃗Þ

�
; ð12Þ

where the one- and two-body integrals take the form

I1Bðk⃗; q⃗Þ ¼
Z

d3x⃗ψðx⃗Þe−iðk⃗−q⃗
2
Þ·x⃗; ð13Þ

I⃗2Bðk⃗; q⃗Þ ¼
Z

d3x⃗ψðx⃗Þ∇⃗x

�
1

4πjx⃗j
�
e−iðk⃗þ

q⃗
2
Þ·x⃗: ð14Þ

These expressions can be further simplified by assuming
the Tcc to be an S-wave bound state

hr⃗jTcci ¼
1ffiffiffiffiffiffi
4π

p uðrÞ
r

jD�Di; ð15Þ

and by expanding the decay amplitude in partial waves

hAðk⃗; q⃗Þi ¼ ϵ⃗1 · q⃗ASPðk; qÞ þ ϵ⃗1 · k⃗APSðk; qÞ
þ ðD-waves and higherÞ; ð16Þ

where we will ignore contributions in which the final DD
pair has orbital angular momentum L ≥ 2. After a few
manipulations, we arrive at

hAci ¼
g1ffiffiffi
2

p
fπ

�
ϵ⃗1 · q⃗hτ1ciI00ðk; qÞ

−
mπ

f2π
hiðτ⃗1 × τ⃗2Þci

�
ϵ⃗1 ·

q⃗
2
I01ðk; qÞ

þ ϵ⃗1 · k⃗I10ðk; qÞ
��

; ð17Þ

where the integrals I00, I01, and I11 are given by

I00ðk; qÞ ¼
ffiffiffiffiffiffi
4π

p Z þ∞

0

dr r uðrÞj0ðkrÞj0
�
q
2
r

�
; ð18Þ

I01ðk; qÞ ¼
1ffiffiffiffiffiffi
4π

p
Z þ∞

0

dr uðrÞj0ðkrÞ
j1ðq2 rÞ
ðq
2
rÞ ; ð19Þ

I10ðk; qÞ ¼
1ffiffiffiffiffiffi
4π

p
Z þ∞

0

dr uðrÞ j1ðkrÞ
kr

j0

�
q
2
r
�
; ð20Þ

with jnðxÞ the spherical Bessel functions. We notice that in
the theory we are using, the reduced wave function takes
the form uðrÞ ¼ ASe−γr, for which the I00, I01, and I10
integrals can be evaluated analytically.

2Actually, μ2π ≤ 0, which means that we can interpret the two-
body operator as the rescattering of the outgoing pion with the
second charmed meson (indeed, this is how this operator is
interpreted in X-EFT [52]). By taking the μπ ¼ 0 limit, we are
effectively considering that this rescattering happens at zero
energy, which is a good approximation taking into account that
the maximum momentum of the pion is about 35–40 MeV.
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The scattering of the DD in the final state can be taken
into account by changing the j0ðkrÞ (which comes from
assuming the final DD state is a plane wave) in the integral
I00 to

j0ðkrÞ → cos δðkÞj0ðkrÞ − sin δðkÞy0ðkrÞ; ð21Þ

where δðkÞ is the S-wave DD phase shift and ynðxÞ the
spherical Neumann functions. If we assume that scattering
in the final state is weak (as dictated by our counting), we
can simply approximate

cos δ ≈ 1 and sin δ ≈ −a0k; ð22Þ

with a0 the DD scattering length.3 Thus, the only change
we have to do is the substitution

I00ðk; qÞ → I00ðk; qÞ þ ða0kÞY00ðk; qÞ; ð23Þ

with Y00 defined as

Y00ðk; qÞ ¼
ffiffiffiffiffiffi
4π

p Z
∞

0

dr r uðrÞ y0ðkrÞj0
�
q
2
r

�
: ð24Þ

We notice that the combination of theDD rescattering with
the seagull diagram, which is N2LO, is logarithmically
divergent and requires the inclusion of a contact-range two-
body operator. This represents a nontrivial check of our
initial power counting estimation for this operator.
For the decay of the Tþ

cc into DDγ, we use basically the
same formalism, though in this case there is no two-body
operator; the lowest-order one enters at N2LO. The decay
amplitude takes the form

hDDðp⃗0ÞγjHjD�Dðp⃗Þi ¼ AM1ðp⃗0; p⃗; q⃗Þ; ð25Þ

with AM1 given by

AM1 ¼ μðD�Þα⃗ · ðϵ⃗1 × q⃗Þð2πÞ3δð3Þ
�
p⃗0 − p⃗þ q⃗

2

�
; ð26Þ

where α⃗ is the polarization vector of the photon and μðD�Þ
is the magnetic moment of the relevantD� → Dγ transition,
which if written in the isospin basis reads

μðD�Þ ¼ μþ

�
1þ τ1z

2

�
þ μ0

�
1 − τ1z

2

�
; ð27Þ

with μþ and μ0 the magnetic moments for D�þ → Dþγ and
D�0 → D0γ, though for this decay, one might as well
simply use the particle basis. The calculation of the decay

width uses Eq. (9) but with the substitution ω → q for
adapting it to the photon case. The matrix elements of AM1

are obtained as before, leading to

hAM1i ¼ hμðD�Þiα⃗ · ðϵ⃗1 × q⃗ÞI00ðk; qÞ; ð28Þ

which is completely analogous to Eq. (17). The inclusion of
rescattering effects in the final DD state is done again
with Eq. (23).

V. MOLECULAR T +
cc WAVE FUNCTION

If isospin symmetry were to be conserved in the masses,
the wave function of the Tcc would be written as

hx⃗jTðIÞ
cc i ¼ ψðx⃗ÞjD�DðIÞi; ð29Þ

depending on whether its isospin is I ¼ 0 or 1 (where
molecular models show a clear preference for I ¼ 0).
However, the Tþ

cc is located merely a few hundred of
keV below the D�þD0, which is small in comparison with
the mass difference between the D�þD0 and D�0Dþ
thresholds (about 1.4 MeV). For this reason, we instead
consider the Tþ

cc wave function to be a linear combination
of a low and a high mass channel contributions,

hx⃗jTcci ¼ ψLðx⃗ÞjLi þ ψHðx⃗ÞjHi; ð30Þ

with jLi and jHi given by

jLi ¼ jD�þD0i and jHi ¼ jD�0Dþi: ð31Þ

For determining the wave function, we first consider the
EFT expansion of the D�D interaction

VEFTðq⃗Þ ¼ CI þDIq⃗2 þ EI

�
ϵ⃗1 · q⃗ϵ⃗1� · q⃗ −

1

3
q⃗2
�

þ VOPEðq⃗Þ; ð32Þ

where q⃗ is the exchanged momentum between the mesons,
I ¼ 0, 1 indicates isospin, CI andDI represent momentum-
independent and momentum-dependent S-wave inter-
actions, EI is an S-to-D-wave contact interaction, and
VOPE is the one pion exchange (OPE) potential. We will
count C0 as LO, C1 and D0 as NLO, and E0 as N2LO. As
for the OPE potential, it is nominally NLO, but the actual
momentum scale at which central and tensor pion
exchanges become nonperturbative in the D�D=DD̄�
systems has been estimated to be ΛC > 1 GeV and ΛT ¼
290 MeV in Ref. [49], but this corresponds to g1 ¼ 0.6. If
we use the updated value of the axial coupling g1 ¼ 0.56,
the tensor scale will become ΛT ¼ 330 MeV. The size of
the tensor corrections is thus expected to be γL=ΛT ∼ 0.08,
which is in between N1.7LO and N2.9LO for our estimation
of the expansion parameter [ð0.2Þ1.7 and ð0.4Þ2.9 are

3Notice that in the sign convention we are using k cot δðkÞ →
−1=a0 for k → 0, and a bound (virtual) state entails a positive
(negative) scattering length.
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approximately 0.08]. Yet, we warn that this estimation will
require further attention; owing to the effective mass of the
pion being relatively small (μπ → 0), the S-to-D wave
tensor force effectively becomes a 1=r3 potential, which
has a really long range and might generate a D-wave
component of the wave function that is larger than
expected.
As long as pions remain subleading, we have a contact

theory with a wave function of the type

ψLðx⃗Þ ¼
ASffiffiffiffiffiffi
4π

p ϕL
e−γLr

r
; ð33Þ

ψHðx⃗Þ ¼
ASffiffiffiffiffiffi
4π

p ϕH
e−γHr

r
; ð34Þ

with AS the asymptotic normalization of the wave function,
ϕL and ϕH (such that jϕLj2 þ jϕHj2 ¼ 1) the amplitudes of
the L and H channels, and γL ¼ 26.4 MeV and γH ¼
58.5 MeV the wave numbers for the central value of δmpole.
It will prove useful to also define ϕL and ϕH in terms of the
isospin angle θI:

ϕL ¼ cos θI and ϕH ¼ sin θI: ð35Þ

At LO, if we assume that the Tþ
cc is predominantly an I ¼ 0

state (at least at short distances), we will only have an
isoscalar contact-range interaction, which basically fixes
ϕLO
L ¼ −ϕLO

H ¼ 1=
ffiffiffi
2

p
(modulo corrections from the differ-

ence in the reduced masses of the L and H channels). The
LO asymptotic normalization will be determined by the
normalization of the wave function, i.e.,

jALO
S j2

Z
∞

0

dr ½jϕLO
L j2u2LðrÞ þ jϕLO

H j2u2HðrÞ� ¼ 1; ð36Þ

with uLðrÞ ¼ e−γLr and uHðrÞ ¼ e−γHr, from which

1

ALO
S

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕLO2

L

2γL
þ ϕLO2

H

2γH

s
: ð37Þ

At NLO, we will have corrections from i) the potential in
the I ¼ 1 channel, i.e., C1, which actually does not change
the form of the wave function at all, and ii) the momentum-
dependent contact-range interaction in the I ¼ 0 channel,
i.e., D0, which breaks the relation between AS and the
normalization of the wave function. Basically, this implies
the correction:

ANLO
S ¼ ALO

S þ δAS: ð38Þ

Now, two strategies are possible here: i) to determine δAS
from the isoscalar effective range or ii) to determine them
from external information. The first strategy is the more
usual one in pionless EFT, though besides expanding in

terms of range corrections [53], it is also possible to expand
in terms of the wave function renormalization [54].
The second strategy is equivalent (up to higher-order

corrections) to the first one and might be easier to pull off
simply because AS (and also θI) can be determined from
potential models. In fact, provided that the interaction
binding the Tþ

cc is attractive at most distance scales, we will
have AS > ALO

S (the only way in which to obtain AS < ALO
S

is with an attractive short-range potential surrounded by a
repulsive barrier), which works in the direction of increas-
ing the decay widths.
Finally, for completeness and as a nontrivial crosscheck

of isospin symmetry, we will explicitly consider changes of
the isospin angle at NLO,

θNLOI ¼ θLOI þ δθI: ð39Þ

From the expansion of the potential in Eq. (32), we expect
θLOI ≈ θNLOI ≈ −45°, modulo negligible corrections from
the difference in the reduced masses of the L andH channel
and the relative effect of the range corrections (the D0

coupling) in these two channels. Yet, considering a non-
trivial δθI might reveal the existence of isospin breaking
contact terms at short distances (though here short distances
actually include two-pion exchange diagrams that might
generate a larger than expected δθIÞ. We will see that the
NLO calculation yields a θNLOI compatible with −45° when
compared with the relevant experimental data.

VI. NONMOLECULAR COMPONENT
OF THE T +

cc

Predictions for the Tþ
cc tetraquark fall into two categories

depending on whether they are based on its quark or
charmed meson degrees of freedom. We might loosely refer
to them as compact and molecular. This is not necessarily a
clear-cut distinction though, as four-quark explanations can
perfectly generate a noncompact, two-charmed meson
component of the wave function if the mass of the
tetraquark happens to be close to the D�D threshold [8].
For the sake of simplicity, we might consider that the Tþ

cc
wave function can be subdivided into a noncompact and
compact component,

jTþ
cci ¼ cos θCjD�Di þ sin θCjccq̄q̄i; ð40Þ

with the noncompact piece corresponding to the D�D
molecular explanation we have referred to previously,
while the compact piece represents the nonmolecular
components and θC represents the mixing angle between
these two pieces of the wave function, where θC ¼ 0
corresponds to the usual molecular interpretation of
the Tþ

cc.
The interesting point is how a compact component will

enter the description of the decay widths. The contribution
of a wave function component to the decay amplitude

MAO-JUN YAN and MANUEL PAVON VALDERRAMA PHYS. REV. D 105, 014007 (2022)

014007-6



depends on the momentum scales involved. For the
molecular component, we have

hTccðD�DÞjA1B
c jDDπi

¼ g1ffiffiffi
2

p
fπ

ϵ⃗1 · q⃗
Z

d3x⃗hψ jx⃗ie−iðk⃗−q⃗=2Þ·x⃗

¼ g1ffiffiffi
2

p
fπ

ϵ⃗1 · q⃗hψ jk⃗ − q⃗=2i; ð41Þ

where hψ jx⃗i and hψ jp⃗i are the r- and p-space molecular
wave functions. By taking into account that in a contact-
range theory hψ jp⃗i ¼ ffiffiffiffiffiffiffiffi

8πγ
p

=ðp2 þ γ2Þ, we expect that this
matrix element scales as

hTccðD�DÞjA1B
c jDDπi ∝ g1ffiffiffi

2
p

fπ
ϵ⃗1 · q⃗

ffiffiffiffiffiffi
2π

p

Q3=2 ; ð42Þ

with Q ∼ γL, γH, k, or q the characteristic low-energy
momentum scale for a molecular Tþ

cc. From this, the natural
expectation for the scaling of the decay amplitude of a
compact component would be

hTccðccq̄q̄ÞjAcjDDπi ∝ g01ffiffiffi
2

p
fπ

ϵ⃗1 · q⃗

ffiffiffiffiffiffi
2π

p

M3=2
C

; ð43Þ

with MC the characteristic momentum scale for a compact
tetraquark, which we expect to be of the order of the natural
hadronic scale MC ∼ ð0.5–1.0Þ GeV (and g01 the coupling
of the compact component to DDπ, which we have
assumed to be of roughly the same size as g1). This scaling
argument also applies to the DDγ decays.
From the previous estimation in Eq. (69) the decay

amplitude of a compact component of the Tcc wave
function is expected to be suppressed by a factor of
ðQ=MCÞ3=2 with respect to the LO contribution. Were
MC to be of the order of the hard scale in the EFT we are
using here, i.e., M ∼ ð1 − 2Þmπ , the contribution from a
compact component to the decay would enter at N3=2LO. It
turns out that MC > M, which means that this contribution
enters at a considerably higher order. Thus, at lower orders
in the EFT expansion, the effect of a compact tetraquark
component is simply to reduce the total decay width:

ΓðTþ
ccÞ ¼ cos2θCΓðTþ

ccðD�DÞÞ: ð44Þ

That is, if a molecular prediction overshoots the exper-
imental decay width by a noticeable amount, this might
indicate the existence of a nonmolecular component for the
Tþ
cc tetraquark.
It is, however, worth noticing that the explicit separation

of the Tþ
cc wave function into molecular and nonmolecular

components generates a parameter redundancy problem, as
the observable effects of the compact mixing angle θC can
be reabsorbed into the EFT’s subleading range corrections,

i.e., into AS. Indeed, at NLO, the decay amplitude is
proportional to these two factors,

ΓðTþ
ccÞ ∝ cos2θC A2

S; ð45Þ

which means that compactness can be recast into a negative
contribution to the effective range (as this reduces A2

S; see
Appendix). Thus, the angle θC should be considered as a
model-dependent quantity, at least in the absence of a
model-independent disentanglement of the dynamics
between the molecular and nonmolecular degrees of free-
dom. Unfortunately, though the inclusion of a compact Tþ

cc
field is straightforward, this still does not resolve the
parameter redundancy problem (which probably requires
invoking phenomenological models).

VII. COUPLINGS

The width of a molecular Tcc depends on the axial
coupling g1 and the magnetic moments μþ and μ0 for the
D� to D transitions, which can be extracted from the decay
widths of the charmed mesons. We begin with g1, for which
we use the decays of D�þ into Dπ,

ΓðD�þ → D0πþÞ ¼ g21
6πf2π

mD0

mD�þ
q3πþ ; ð46Þ

ΓðD�þ → Dþπ0Þ ¼ g21
12πf2π

mDþ

mD�þ
q3
π0
; ð47Þ

where fπ ¼ 130 MeV and qπ the momentum of the emitted
pion. From the D�þ decay width and branching ratios
provided in the Review of Particle Physics [55], i.e.,
ΓðD�þÞ¼83.4�1.8keV, ΓðD0πþÞ=Γ¼ð67.7�0.5Þ%, and
ΓðDþπ0Þ=Γ ¼ ð30.7� 0.5Þ%, we obtain g1 ¼ 0.56� 0.01.
For the magnetic moments μþ and μ0, we use the D�

decays into Dγ,

ΓðD� → DγÞ ¼ jμj2
3π

mD

mD�
q3γ ; ð48Þ

with qγ the momentum of the outgoing photon. For μþ, we
use again the D�þ decay width and its branching ratio into
Dþγ (i.e., 1.6� 0.4%), yielding μþ ¼ 0.46� 0.06μn:m:
where the sign is chosen as to coincide with that of
the magnetic moment of the d̄ antiquark within the D�þ
and with μn:m: ¼ jej=2mN the nuclear magneton. The
determination of μ0 is more indirect as the D�0 decay
width is not experimentally known (beyond an upper
bound). However, its branching ratios into D0π0 and
D0γ are well determined [55], and the partial decay width
into D0π0 can be calculated from g1 [resulting in
ΓðD�0 → D0π0Þ ¼ 35.9� 1.3 keV], which all together
yields ΓðD�0 → D0γÞ ¼ 19.6� 1.0 keV. From this, we
obtain μ0 ¼ −ð1.72� 0.05Þμn:m:.
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VIII. PARTIAL DECAY WIDTHS

With the previous ingredients, we are ready to calculate
the Tcc → DDπ and Tcc → DDγ decay widths. For this,
we have to sandwich the decay operator between the initial
and final states, which, though laborious (we have to take
into account isospin breaking in the L and H channels), is
nonetheless straightforward. We will use the δmpole sol-
ution, from which the binding energy of the L (H)
components of a molecular Tþ

cc is BL¼0.36�0.04MeV
(BH ¼ 1.77� 0.04 MeV). In addition, we will assume a
purely molecular Tþ

cc (i.e., θC ¼ 0) unless stated otherwise.
We begin with the tree level amplitudes. For the Tþ

cc →
D0D0πþ decay, the final state contains two identical bosons
and requires symmetrization, which is done by adding the
Aðk⃗; q⃗Þ and Að−k⃗; q⃗Þ amplitudes and then changing the
phase space factor for the final D0D0 pair from d3k⃗ →

d3k⃗=2 to avoid counting the final D0D0 states twice. We
obtain

ΓLOð1BÞðTþ
cc → D0D0πþÞ ¼ 29.6þ1.1

−1.0
þ1.8
−1.8 keV; ð49Þ

ΓLOð1BÞðTþ
cc → DþD0π0Þ ¼ 13.7þ0.5

−0.5
þ0.5
−0.6 keV; ð50Þ

ΓLOð1BÞðTþ
cc → DþD0γÞ ¼ 5.8� 0.4� 0.2 keV; ð51Þ

which basically agrees with Ref. [31] and where we have
taken ϕL ¼ −ϕH ¼ 1=

ffiffiffi
2

p
and AS ¼ 8.5 MeV1=2 (obtained

from the normalization of the wave function). The first
uncertainty corresponds to varying g1 for the strong decays
and μþ and μ0 for the electromagnetic one, while the
second comes from the binding energy. We notice that the
previous amplitudes only take into account a final D0D0

state in the S-wave or a final DþD0 state in the S- or P-
wave; adding the contributions from higher L ¼ 2; 4; 6;…
(L ¼ 2; 3; 4;…), partial waves of the D0D0 (DþD0) final
state will change the partial decay widths to 29.9, 14.1, and
6.4 keV, respectively, i.e., a small 1.3 keV increase in the
total decay width. With the exception of the electromag-
netic decay, the decay widths increase if the binding energy
is reduced (e.g., if we were to use δmBW instead of δmpole,
we would obtain 33.7, 14.9, and 5.5 keV for the partial
decay widths). The combined LO decay width is

ΓLOðTþ
ccÞ ¼ 49.1þ1.6

−1.5
þ0.4
−0.4

þ2.2
−2.1 keV;

¼ 49.1þ2.7
−2.6 keV; ð52Þ

where the uncertainties refer only to the input parameters
(g1, μþ=μ0, and δm), not to the EFT convergence rate
(which we have not discussed yet). It is interesting to notice
that this width is in line with most of the other LO
calculations available: 47 keV in Ref. [31] (which uses
δmBW instead of δmpole), 53 keV in Ref. [32] (which
calculates the decay width in the isospin limit), 43 keV

(80 keV) for δmpole (δmBW) in Ref. [33] (which directly
convolutes the width of the charmed mesons to obtain the
Tþ
cc width), and 52 keV in Ref. [44] (which also uses

δmBW). A cursory comparison of the previous predictions
suggest a LO error of the order of 10 keV, a figure
compatible with the EFT uncertainties we will later obtain
in Eqs. (63) and (64).
Next, we consider the rescattering of the DD pair in the

final state, which requires the scattering length of this
system as input. The only phenomenological calculation
of this quantity we are aware of is Ref. [21], which
estimates a0ðDDÞ ¼ −0.4þ0.1

−0.2 fm (and also predicts δm ¼
−3þ4

−15 MeV for the Tcc in the isospin symmetric limit, from
which we may assume that the actual DD scattering length
will also fall within the error bars4). If we use the LO values
of AS, ϕL, and ϕH (which we will from now on, unless
stated otherwise), we obtain

Γð1BþDDÞðTþ
cc → D0D0πþÞ ¼ 33.3þ1.2

−1.2
þ1.9
−1.7

þ2.0
−0.9 keV; ð53Þ

Γð1BþDDÞðTþ
cc → DþD0π0Þ ¼ 15.9þ0.6

−0.5
þ0.5
−0.5

þ1.2
−0.6 keV; ð54Þ

Γð1BþDDÞðTþ
cc →DþD0γÞ ¼ 7.5� 0.6� 0.2þ0.9

−0.4 keV; ð55Þ

where the source of the first two errors is as in the LO
calculation and the third error comes from the propagation
of the uncertainty in a0. We stress that in the counting used
here, the DD interaction is perturbative. Previously, a
nonperturbative final state interaction was considered for
instance in case of the Xð3872Þ as a D�D̄ system and its
decays into DD̄π [52,58]. For the Tþ

cc, Ref. [44] has
recently considered the case in which the final DD
interaction is able to form a bound state.
Then, we consider the inclusion of the seagull diagram

(but without including the DD rescattering or the changes
in asymptotic normalization), which only affects the DDπ
decays, arriving at

Γð1Bþ2BÞðTþ
cc → D0D0πþÞ ¼ 30.2þ1.1

−1.0
þ1.8
−1.6 keV; ð56Þ

Γð1Bþ2BÞðTþ
cc → DþD0π0Þ ¼ 14.1þ0.6

−0.4
þ0.7
−0.5 keV; ð57Þ

which implies that the two-body corrections are actually
smaller than the rescattering of the final DD mesons and
where the uncertainties are the same as in the LO
calculation (g1 and δmpole). Here, a comparison with the

4We mention, though, that calculations of the two-bottom-
meson potential in the lattice indicate that the I ¼ 1 BB
configuration is attractive overall [56] (which in our sign
convention will generate a0 < 0 if the attraction is not strong
enough to generate a bound state), particularly at short distances.
Chiral EFT also predicts an attractive two-pion exchange poten-
tial for I ¼ 1 BB [57]. Finally, from heavy flavor symmetry, we
expect the DD and BB potentials to be similar.
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D�D̄ system—the Xð3872Þ—is in order: Ref. [52], which
previously considered the rescattering and two-body cor-
rections for the Xð3872Þ decays, also arrived to the
conclusion that rescattering effects are much larger than
the contribution from the seagull diagram, where the later
contribution happens to be fairly small.
Finally, including these two subleading-order corrections

together (but using the LO values of the wave function
parameters), we obtain an abridged NLO result for the
decay widths,

ΓNLOð�ÞðTþ
cc→D0D0πþÞ¼34.0�1.2þ1.8

−1.7
þ1.9
−1.0 keV; ð58Þ

ΓNLOð�ÞðTþ
cc → DþD0π0Þ ¼ 16.4þ0.6

−0.5
þ0.6
−0.5

þ1.2
−0.5 keV; ð59Þ

ΓNLOð�ÞðTþ
cc →DþD0γÞ ¼ 7.5� 0.6� 0.2þ0.9

−0.4 keV; ð60Þ

where the uncertainties are as in the previous DD rescatter-
ing partial widths (g1 or μþ and μ0, δmpole, and a0). The
combined decay width will then be

ΓNLOð�ÞðTþ
ccÞ ¼ 57.9þ1.8

−1.8 � 0.6 þ4.1
−2.0

þ2.2
−2.1 keV

¼ 57.9þ5.0
−3.4 keV; ð61Þ

where for the moment the uncertainty only refers to the one
coming from the input parameters of the calculation. If we
are interested in the EFT uncertainty, we can compare the
abridged NLO(*) decay width with the LO one, suggesting

����ΓNLOð�Þ − ΓLO

ΓLO

���� ≈ 0.18; ð62Þ

in linewith the naive estimations in Eq. (6) of a convergence
ratewithin 0.2–0.4. However, this does not take into account
the possible corrections to the asymptotic normalization and
isospin angle, which might worsen the convergence of the
EFT. For exploringwhat to expect from the corrections to the
asymptotic normalization, we might look at the two nucleon
system. There, the LO wave function in a pionless theory
would yield ALO

S ¼ ffiffiffiffiffiffiffi
2γd

p ¼ 0.6806 fm−1=2, which is to be
compared with AS ¼ 0.8846ð9Þ fm−1=2 [59], yielding
A2
S=ðALO

S Þ2 ¼ 1.69. Were this ratio to hold for the Tþ
cc case,

wewould have a 70% increase in theNLOdecaywidth if we

were to expand directly in terms of AS. This is probably not
the case, though; the A2

S=ðALO
S Þ2 ratio scales as 1=ð1 − γreÞ

with γ the binding momentum and re the effective range
(with this simple approximation resulting in 1.68 for the
deuteron). The Tþ

cc is less bound than the deuteron, though,
and naively we expect range corrections in the Tþ

cc to be of
the same order of magnitude as those of theXð3872Þ, which
are considerably smaller than in the deuteron case [51,52]. If
we notice that nontensorOPE almost cancels in theD�D and
D�D̄ systems, the scale of range corrections is probably set
by the tensor scale ΛT ¼ 330 MeV [check the previous
discussion below Eq. (32)], while in the deuteron, the
range will be given by the pion mass, indicating that the
expected range of theD�D potential is about 0.42 times that
of the two-nucleon case. From this, we could expect
A2
S=ðALO

S Þ2 ∼ 1.1, which will suggest a convergence param-
eter of

����ΓNLO − ΓLO

ΓLO

���� ≈ 0.3: ð63Þ

If this estimation were to hold, the full uncertainties in the
LO and NLO calculation would be

ΓLOðTþ
ccÞ ¼ 49� 3� 16 keV; ð64Þ

ΓNLOð�ÞðTþ
ccÞ ¼ 58þ5

−3 � 5 keV; ð65Þ

where the first and second errors refer to the input parameters
and the intrinsic EFT uncertainty, respectively. But again,
there might be factors which we have not properly consid-
ered and which might alter the current conclusions, which
should be taken as temporary. As a cross-check, we notice
thatmost LO calculations available [31–33,44] liewithin the
(43–53) keV window and are thus compatible with our LO
result within EFT uncertainties.
Of course, the previous NLO partial decay widths are

incomplete; the full NLO calculation requires a modifica-
tion in the asymptotic normalization AS and the isospin
angle θI , and in principle, it is also possible to consider the
mixing angle between a noncompact and compact Tþ

cc
component, θC. Luckily, these contributions can be fac-
tored out easily, leading to the following expressions,

ΓNLOðTþ
cc → D0D0πþÞ ¼ cos2 θC A2

S × ðϕ2
L½0.825ð94Þ − 0.248ð17Þa0 þ 0.0188ð7Þa20�

þ ϕLϕH½−0.00648ð47Þ þ 0.000947ð35Þa0�Þ; ð66Þ

ΓNLOðTþ
cc → DþD0π0Þ ¼ cos2θCA2

S × ðϕ2
L½0.187ð22Þ − 0.0552ð39Þa0 þ 0.00412ð15Þa20�

þ ϕLϕH½−0.164ð13Þ þ 0.0729ð48Þa0 − 0.00719ð27Þa20�
þ ϕ2

H½0.0386ð23Þ − 0.00230ð11Þa0 þ 0.00347ð14Þa20�Þ; ð67Þ
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ΓNLOðTþ
cc → DþD0γÞ ¼ cos2θCA2

S × ðϕ2
L½0.0119ð30Þ − 0.0057ð14Þ a0 þ 0.00078ð19Þ a20�

þ ϕLϕH½−0.0624ð82Þ þ 0.0381ð49Þ a0 − 0.000573ð73Þ a20�
þ ϕ2

H½0.0851ð45Þ − 0.0638ð34Þ a0 þ 0.0122ð6Þ a20�Þ; ð68Þ

which return the partial decay widths in keVand require as
input AS in units of MeV−1=2 and a0 in units of fm. The
uncertainties are shown in parentheses and correspond to
g1, μþ, μ0, and δmpole summed in quadrature and sym-
metrized (as these errors are almost symmetrical). The term
proportional to ϕ2

H in ΓðTþ
c → D0D0πþÞ is actually neg-

ligible (a small contribution coming from the seagull
diagram), and we have not written it down. The same
could be argued of a few of the terms we have kept, but in
these cases, the difference is at most of 2 orders of
magnitude, potentially up to about a 1% difference for
ja0j ¼ 1 fm. Here, it is worth remembering that these
formulas are only expected to be valid for mπa0 < 1,
i.e., a0 < 1.4 fm (otherwise, a different power counting
in which the interaction of the final DD pair is non-
perturbative should be used). The actual accuracy of these
formulas is limited by the EFT convergence, where for our
estimation of 0.3 for the expansion parameter we should
expect the previous expressions to have a 9% uncertainty.

IX. COMPARISON WITH EXPERIMENT

The theoretical decay widths can be compared with the
experimental analysis to obtain information about the Tþ

cc. If
we begin with the LO calculation, we quickly realize that the
EFT calculation overshoots the experimental decay width as
extracted from the unitarized Breit-Wigner profile [2]

Γpole

ΓLO
¼ 0.98þ0.04

−0.22
þ0.06
−0.06

þ0.42
−0.23 ; ð69Þ

where the first uncertainty comes from Γpole while the
second and third are derived from the input parameters and
the convergence rate of ΓLO, respectively. The previous
result is compatible with 1. If we allow for a nontrivial θC,
this ratio could be related to the molecular content of
the Tþ

cc,

Γpole

ΓLO
¼ cos2 θLOC ; ð70Þ

yielding

jθLOC j ¼ ð8.6þ7.7
−8.6

þ21.3
−8.6 Þ°; ð71Þ

which is compatible with the absence of a compact
component, i.e., θC ¼ 0, within errors.
Other interesting experimental information in Ref. [2] is

the signal yields of the Tþ
cc to the DþD0 and D0D0

channels:

Nþ
S ≡ NSðDþD0Þ ¼ 171� 26; ð72Þ

N0
S ≡ NSðD0D0Þ ¼ 263� 23: ð73Þ

As the number of events grows, the ratio of these two
numbers is expected to approach the ratio of the decays to
the DþD0 and D0D0 channels

ΓðTþ
cc → DþD0π0=γÞ

ΓðTþ
cc → D0D0πþÞ ¼ Nþ

S

N0
S

�
1þO

�
1ffiffiffiffiffiffi
NS

p
��

; ð74Þ

with NS ¼ Nþ
S þ N0

S. Actually, the error from the finite
number of signals can be easily estimated by assuming a
binomial distribution for Nþ

S and N0
S and finding the

expected 68% band for the Nþ
S =N

0
S ratio. Putting the pieces

together, we arrive at

Γþ

Γ0
¼ 0.65� 0.10 þ0.6

−0.5
þ0.7
−0.6 ¼ 0.65þ0.14

−0.13 ; ð75Þ

where the first two uncertainties come from Nþ
S and N0

S and
the last one comes from the finite size of Nþ

S þ N0
S and then

we add them in quadrature. The LO ratio is

Γþ
LO

Γ0
LO

¼ 0.66þ0.03
−0.03 � 0.20; ð76Þ

which is compatible with the experimental yields.
At NLO, the Γþ=Γ0 ratio depends on the isospin angle,

where we find that reproducing the experimental ratio
requires

θNLOI ¼ ð−42.4þ8.1
−6.1

þ1.7
−1.6 � 3.8Þ°; ð77Þ

where the first uncertainty is experimental, the second is the
couplings/a0=δmpole, and the third is the NLO uncertainty.
This in turn implies that

Γpole

ΓNLO
¼ cos2 θC

A2
S

A2
SðCÞ

¼ 0.81þ0.03
−0.21

þ0.04
−0.06 � 0.07; ð78Þ

where the errors are as before and ASðCÞ refers to the
normalization for a contact-range theory with the isospin
angle θNLOI , i.e., Eq. (37) but using θNLOI instead of
θLOI ¼ −45°. If we assume that AS ¼ ASðCÞ and the dis-
crepancy comes exclusively from the probability of the
compact component, we will obtain
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jθNLOC j ¼ ð25.7þ13.0
−2.3

þ4.2
−2.3 � 2.3Þ°; ð79Þ

with the errors as before and which would imply a θC
distinguishable from zero at NLO. However, this is con-
tingent on two factors: what would be AS for the molecular
component (if considered as a separate degree of freedom
from the compact one) and the fact that θC is not model
independent in the sense that its effects can be recast into a
negative effective range instead (i.e., the compact compo-
nent can be reabsorbed as energy dependence in the
molecular one). In the first case, assuming A2

S=A
2
SðCÞ ¼

1.1ð1.2Þ will entail a compact mixing angle of 30.7(34.6)°,
larger than the one we have calculated. In the second case,
we set θC ¼ 0 and recast the effects of θC ≠ 0 into a
negative effective range by means of the formula (check
Appendix)

A2
S

A2
SðCÞ

¼ 1

1 − 1
2
re0ð1−sin 2θI2

ÞA2
SðCÞ

; ð80Þ

where re0 is the I ¼ 0 effective range, leading to

rNLOe0 ¼ −1.3þ0.3
−2.3

þ0.3
−0.6 � 0.1 fm; ð81Þ

which is, as expected, negative and within the confidence
limits (CL) of Ref. [2] [i.e., 0 ≥ reL ≥ −11.9ð−16.9Þ fm
within 90ð95Þ% CL, where reL refers to the effective
range in the L channel; if we assume no interaction in
the isovector channel, we will have reL ¼ 2re0−
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2H − γ2L

p
, or reL ¼ −6.4 fm for re0 ¼ −1.3 fm].

Alternatively, had we simply assumed θI ¼ −45°, the
Γþ=Γ0 ratio would have been

Γþ
NLO

Γ0
NLO

����
θI¼−π

4

¼ 0.70� 0.03� 0.06; ð82Þ

which is still compatible with the experimental yields.
Meanwhile, the nonmolecular ratio would have been

Γpole

ΓNLO

����
θI¼−π

4

¼ cos2 θC
A2
S

A2
SðLOÞ

¼ 0.83þ0.03
−0.21

þ0.05
−0.06 �0.07; ð83Þ

which also happens to be different from 1, again. Assuming
AS ¼ ASðLOÞ, this ratio would in turn imply a compact
mixing angle of

jθNLOC jjθI¼−π
4
¼ ð24.1þ13.5

−2.3
þ4.2
−2.3 � 2.3Þ° ð84Þ

or, alternatively, assuming that the ratio comes exclusively
from range corrections, would imply an isoscalar effective
range of

rNLOe0 jθI¼−π
4
¼ −1.1þ0.3

−2.2
þ0.4
−0.5 � 0.1 fm; ð85Þ

which is negative. As can be appreciated, all the numbers
obtained for θI ¼ −45° are indistinguishable within errors
to the ones we obtain from fixing θI to the Γþ=Γ0 ratio
derived from the experimental yields.

X. CONCLUSIONS

The Tþ
cc represents not only a fascinating discovery but

also a wonderful opportunity for the study of hadron
spectroscopy and decays.
Whilewe do not know for sure its nature yet—themass of

the Tþ
cc is in principle compatible with previous predictions

of I ¼ 0, J ¼ 1 ccūd̄ compact tetraquarks andD�D shallow
bound states—its closeness to the D�þD0 threshold indi-
cates that at least part of its wave function will beD�D. This
last component is amenable to relatively straightforward
theoretical treatments, including the calculation of its
expected width, which would be a crucial piece of informa-
tion if we want to eventually know the structure of the Tþ

cc.
The physical scales involved in the molecular compo-

nents of the Tþ
cc indicate a moderate convergence rate for

the calculation of its decay width and a NLO calculation is
required to achieve an accuracy comparable with the 25%
to 40% relative uncertainty in the experimental result
(depending on the resonance profile used). Our preliminary
calculation shows that the inclusion of a seagull pion decay
operator and the rescattering of the final DD pair increase
the total decay width of the Tþ

cc state from 50 keV in LO to
58 keV in our abridged NLO calculation (i.e., a NLO
calculation with a LO wave function). This is still prelimi-
nary; there are corrections coming from the asymptotic
normalization AS of a molecular Tþ

cc state, the particular
isospin mixing θI between its D�þD0 and D�0Dþ compo-
nents and the final physical pion rescattering with the
charmed mesons at non-zero energy (not to mention that
the DD system might interact more strongly than we
expect). AS and θI could be easily estimated from phe-
nomenological models and fed into the NLO calculation,
where we expect a moderate increase from the 58 keV
figure we obtain.
If we compare the NLO results with the total decay

width extracted from the unitarized Breit-Wigner profile
(Γpole ¼ 48þ2

−12 keV), the previously discussed factors (par-
ticularly AS) point toward an excess decay width for a
purely molecular explanation of the Tþ

cc at NLO. This
excess can be interpreted as the existence of a compact
component, where the ratio of Γpole and ΓNLO suggest that
the nonmolecular probability of the Tþ

cc wave function is
about 20%. This conclusion should be taken as temporary,
though, as future experimental refinements regarding
the Tþ

cc mass and decay widths might alter the present
picture. In addition, the interplay of the compact and
molecular components of the Tþ

cc could also be improved.
Nonetheless, we find it worth mentioning that the picture
that emerges from the current EFT description together
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with the experimental analysis of Ref. [2] is compatible
with that of Ref. [8], which underlined the importance of
including both mesonic and quark degrees of freedom for
the binding and description of a tetraquark below the D�D
threshold.
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APPENDIX: RANGE CORRECTIONS TO THE
ASYMPTOTIC NORMALIZATION

Here, we calculate the range corrections to AS for the
Tþ
cc. Instead of the usual method of extracting AS from the

residue of the scattering amplitude, we will consider how
the effective normalization of the wave function changes
when range corrections are included. We will begin with a
single channel system and assume that range corrections
are generated by an energy-dependent contact interaction of
the type

VðRÞ
C ¼ Dk2 δð3Þðr⃗Þ; ðA1Þ

where D is a coupling and k refers to the center-of-mass
momentum of the two-body system, with k2 ¼ 2μEcm and
Ecm the center-of-mass energy. We regularize this potential
with a delta-shell regulator of the type

VðRÞ
C ¼ DðRcÞ

4πR2
c
k2δðr − RcÞ; ðA2Þ

where D is a coupling and Rc is a cutoff. Fixing DðRcÞ to
the effective range re in two-body scattering gives [60]

DðRcÞ ¼
2π

μ

re
2
R2
c þOðR3

cÞ: ðA3Þ

Energy-dependent potentials change the asymptotic nor-
malization AS in a way that is compatible with the
following modified normalization condition [61],

1 ¼
Z

∞

0

dr u2ðrÞ
�
1 − 2μ

d2

dk2
VðrÞ

�
; ðA4Þ

with uðrÞ the reduced wave function of a two-body bound
state. For a contact-range theory, we have uðrÞ ¼ ASe−γr,
and after a few manipulations, we arrive at

A2
SðCÞ
A2
S

¼ 1 −
re
2
A2
SðCÞ; ðA5Þ

for Rc → 0, where ASðCÞ ¼
ffiffiffiffiffi
2γ

p
and AS are the asymptotic

normalizations in the absence and presence of range
corrections. For a single channel problem, this is equivalent
to the well-known result [54]

AS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ASðCÞ
1 − γre

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ

1 − γre

s
: ðA6Þ

The advantage of the energy-dependent potential is that we
can extend the previous result to the two-channel isospin-
breaking case directly. In the fjLi; jHig basis, the isospin
effects can be included by considering that the potential (or
for simplicity the coupling D) is a matrix in said basis,

D →

� 1
2
D0 þ 1

2
D1 − 1

2
D0 þ 1

2
D1

− 1
2
D0 þ 1

2
D1

1
2
D0 þ 1

2
D1

�
; ðA7Þ

where DI is the coupling generating the I ¼ 0, 1 effective
range. If we extend the modified normalization condition
of Eq. (A4) to the two-channel case with the uLðrÞ ¼
AS cos θIe−γLr and uHðrÞ ¼ AS sin θIe−γHr wave functions,
we arrive at

A2
SðCÞ
A2
S

¼1−
�
re0
2

ð1−sin2θIÞ
2

þre1
2

ð1þsin2θIÞ
2

�
A2
SðCÞ; ðA8Þ

where reI refers to the effective range in the isospin channel
I ¼ 0, 1 and ASðCÞ is given by Eq. (37). For a molecular Tþ

cc

that happens to be a pure I ¼ 0, 1 state at short distances
(i.e., θI ¼∓45°), the range corrections will simplify to

A2
SðCÞ
A2
S

¼ 1 −
reI
2
A2
SðCÞ; ðA9Þ

i.e., identical to the single channel case. Finally, it is
interesting to connect the previous result with the following
often-used definition of compositeness (check, e.g.,
Ref. [62]),

Xcomp ¼ −
X
A

jgAj2
dG0AðEÞ

dE

����
E¼EB

; ðA10Þ

where A refers to the different two-body channels and g2A
refers to the residue of the T-matrix at the bound state pole
in the diagonal channels (g2A ¼ limE→EB

ðE − EBÞTAAðEÞ,
with E the center-of-mass energy, EB the binding energy,
and TAA the T-matrix in the diagonal channel AA, where the
T-matrix is defined via TAB ¼ VAB þP

C VACG0CðEÞTCB)
and G0A ¼ 1=ðE −H0AÞ is the resolvent operator for
channel A (withH0A the free Hamiltonian for that channel).
From the previous definition, we obtain
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Xcomp ¼
A2
S

A2
SðCÞ

; ðA11Þ

for the Tþ
cc, which for a negative effective range gives

Xcomp < 1. For a positive effective range, the previous

result will probably have to be modified in the line of what
is proposed in Ref. [63] for single channel scattering. Be
that as it may, our calculations already suggest a negative
effective range.
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