
PHYSICAL REVIEW C 102, 015502 (2020)

Data-based two-body current contribution to the neutrino-nucleus cross section
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A phenomenological model of two-body current (2p2h) contribution to neutrino cross section is introduced.
Predictions of the Valencia model for 2p2h [J. Nieves et al., Phys. Rev. C 83, 045501 (2011)] are modified using
recent CC0π measurements from T2K and MINERvA experiments. Our results suggest a significant increase
of the 2p2h cross section at neutrino energies bigger than 1 GeV and also a redistribution of 2p2h events as
function of energy and momentum transfer. This may have a big impact on neutrino energy reconstruction in
neutrino oscillation parameters.
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I. INTRODUCTION

One of the most important unknowns in modeling neutrino-
nucleus cross sections [1] is the size of the contribution
coming from two-body current (2p2h) mechanism [2–4]. It is
important to have a precise estimate of the fraction of events
originating from this mechanism because in detectors such as
SuperKamiokande they cannot be distinguished from charge
current quasielastic (CCQE) scatterings on bound nucleons

νl + n → l− + p, ν̄l + p → l+ + n, (1)

where l is lepton’s flavor, n, p are neutron and proton, re-
spectively. This leads to a bias in the neutrino energy recon-
struction [5–11] and strongly affects the precision of neutrino
oscillation parameters measurements.

Over the last decade a lot of theoretical studies were done
aiming to understand the situation [12–21]. The most reliable
ab initio computations exist only on a restricted phase space
and for light nuclei. At larger neutrino energies theoretical
model predictions differ significantly among themselves [22].

Experimental studies focus mainly on CC0π (called also
CCQE-like) measurements with the signal defined as no pion
in the final state [23]. Most of the CC0π events originate from
the CCQE mechanism, but there is a significant contribution
from the two-body current mechanism and also from pion
production with consequent absorption inside nucleus. The
advantage of this type of measurement comes from simplicity
of the definition of experimental signal. The data analysis
does not depend on uncertain predictions for the hadrons in
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the final state. The available theoretical models for the 2p2h
contribution give predictions for the final-state lepton only and
modeling final-state hadrons is based on approximations [5]
and nucleon final-state interactions effects [24].

Recent CC0π measurements were done by T2K and MIN-
ERvA experiments. In both cases results are published in
a form of flux-averaged double differential cross section in
kinematic variables describing final-state (anti)muon. T2K
measured cross section for neutrinos and antineutrinos on
hydrocarbon [25,26] and on water [27,28]. MINERvA pub-
lished measurements on hydrocarbon for antineutrinos [29]
and neutrinos [30]. Altogether, there is a lot of information
in the experimental data that has not yet been fully explored.
The most important CCQE contribution to the CC0π signal
is well understood thanks to electron scattering studies. It has
been established that in the typical T2K kinematical region
theoretical models used in neutrino community reproduce the
QE peak region quite well [31]. For the pion production and
absorption there have been many studies, which put a lot of
constraint on them [32,33]. The most uncertain is the 2p2h
contribution and a natural question arises how much can be
learned about it from the CC0π measurements.

The goal of this paper is to answer this question and as
a result to propose a new phenomenological mode of 2p2h.
The computations are done using a NUWRO Monte Carlo (MC)
event generator [34], but our procedure is quite general and
can be employed in other MC generators and be used in
neutrino oscillation experimental studies.

Our study is inspired by the MINERvA experiment attempt
to resolve events’ kinematics completely with calorimetric-
type measurement of the interacting (anti)neutrino energy
[35,36]. A study done in the context of GENIE Monte Carlo
generator [37] allowed us to identify a kinematical region
where more strength from the 2p2h mechanism is needed, rel-
ative to predictions of the Valencia theoretical model [12,38].
Contrary to the above-mentioned study our work uses infor-
mation contained in the final-state muon only.

Our paper is organized as follows. In Sec. II our approach is
presented and the data sets used in the numerical analysis are
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described. Section III outlines our main results: the new model
and its performance compared to the experimental data. The
Sec. IV contains a discussion of the results and final remarks.
Appendixes A and B include technical details supplementary
to Sec. II. A simple toy model illustrates our method of
analyzing the data based on a separation of the covariance
matrices into shape and normalization parts.

II. OUR APPROACH

The starting point for our investigation is the Valen-
cia model of the 2p2h contribution described in Ref. [12]
with a restriction on the values of momentum transfer q �
1.2 GeV/c [38]. It is implemented in NUWRO in terms of
five structure functions depending on energy and momentum
transfers (ω, q). The Valencia model does not provide predic-
tions for final-state nucleons and this information is added in a
factorization scheme using a model proposed in Ref. [5]. The
structure functions Wj define double differential cross section
in final-state lepton kinematical variables:

d2σ mec

dωdq
= G2

F cos2 θcq

2πE2
LμνW μν, (2)

where

LμνW μν = W1(Q2 + m2)

+W2

(
2E (E − ω) − m2 + Q2

2

)

± W3

M

(
EQ2 − ω

2
(m2 + Q2)

)

+ W4

M2

(
1

2
Q2m2 + 1

2
m4

)
− W5

M
m2E . (3)

In the above equations E is neutrino energy, m is charged
lepton mass, GF is Fermi constant, θc is the Cabibbo angle,
Q2 ≡ q2 − ω2, and M is nucleon mass. A sign ± in the W3

containing term refers to neutrino/antineutrino cases. At neu-
trino energies in current and planned short- and long-baseline
oscillation experiments the contributions from W4 and W5

containing terms are strongly suppressed due to presence of
charged lepton mass in a multiplicative factor.

Our considerations are based on the hypothesis that the
overall double differential cross section defined by the Valen-
cia model should be scaled by an unknown function S(ω, q):

d2σ mec,phenom

dωdq
= G2

F cos2 θcq

2πE2
LμνW μνS(ω, q) (4)

and a form of S(ω, q) will be deduced from the CC0π data.
Equivalently, this may be viewed as a simultaneous rescaling
of all the structure functions Wj by S(ω, q):

Wj (ω, q) → W̃j (ω, q) = Wj (ω, q)S(ω, q). (5)

Even if the assumption introduced in Eq. (4) looks general
it is in fact quite restrictive. The proposed rescaling is indepen-
dent on neutrino energy and is the same for both neutrinos and
antineutrinos. In Sec. IV we will explain how it can be made
more general and realistic. The form of the scaling function

S(ω, q) will be determined by minimization of χ2 estimator
introduced in Sec. II C.

A. Data sets

We investigate information from the T2K and MINERvA
CC0π measurements in the balanced way. Both are done
on the same target but with different beams peaked at
≈600 MeV for T2K and ≈3.5 GeV for MINERvA. In the
case of MINERvA we include results from neutrinos [30] and
antineutrinos [29]. In the case of T2K we include neutrino
and antineutrino measurements from Ref. [26]. In all the
considered measurements the results for double differential
cross section is reported together with the covariance matrix
V . In the case of T2K data we use two separate covariance
matrices for neutrino and antineutrino results in the same way
in which the MINERvA data is available. We disregard the
T2K neutrino/antineutrino covariance matrix in order to treat
both experiments in a symmetric way.

MINERvA νμ data contains 156 2D bins. They are dis-
tributed on a two-dimensional (2D) grid of the size 12×13.
The binning is done, respectively, by longitudinal (range from
1.5–15 GeV/c) and transversal (range from 0–2.5 GeV/c)
components of the outgoing muon momentum. For the MIN-
ERvA ν̄μ data the division is done by using the same kine-
matic variables but binning is different (for the transversal
component the range is from 0–1.5 GeV/c) resulting in a
10×6 grid, i.e., 60 2D bins. In the MINERvA experiment
there is a limited acceptance of muons: its angle must be lower
than 20◦ with respect to the neutrino beam.

T2K data represent double differential cross section in
(anti)muon momentum and cosine of the lepton scattering
angle θμ. The binning is the same for neutrino and antineu-
trino. Altogether, there are 58 2D bins in each case. Muon
momentum range is from 0–5 GeV/c. The full range of the
cosine is employed. However, in the forward muon directions
the binning is much finer. All the backward directions are
contained in just one cosine bin extending from −1 to 0.2.

B. NUWRO

NUWRO [39] is a neutrino Monte Carlo generator developed
at the Wrocław University starting from 2005. It can be used
for neutrino energy range from ≈100 MeV to ≈100 GeV.
For neutrino-nucleon scattering NUWRO uses three interaction
modes: CCQE [40] (and elastic for neutral current reactions),
RES [41,42], which covers a region of invariant hadronic mass
W � 1.6 GeV, and DIS, including shallow and deep inelastic
processes with W > 1.6 GeV. In the case of neutrino-nucleus
scattering two new interaction modes are coherent pion pro-
duction (COH) and two-body current (2p2h).

Simulations done in this paper were done using NUWRO

version 19.02. The nucleon momentum distribution is that
of a local Fermi gas (LFG). 2p2h events were generated
with Valencia model [12,38]. Final-state interactions play an
important role for RES events and are modeled with Oset et al.
model [34,43] for low momentum pions. NUWRO predictions
σ model

k in each bin k is a sum of three contributions

σ model
k = σ

ccqe
k + σ res+dis

k + σ
2p2h
k . (6)
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C. Estimator

Schematically, our estimator is defined as:

χ2 =
4∑

I=1

χ2
I,cov, (7)

where

χ2
I,cov =

∑
k,l

(
σ data

k − σ model
k

)
V −1

I;k,l

(
σ data

l − σ model
l

)
. (8)

k, l run over bins in double differential cross sections and VI;k,l

is a covariance matrix for the experiment I , I = 1, . . . , 4.
It turns out that the function S(ω, q) obtained by min-

imizing Eq. (8) leads to a drastic and clearly nonphysical
reduction of the cross section far below the measured cross
section in most of the bins. We recognized this behavior
as a manifestation of Peelle’s pertinent puzzle (PPP) [44].
We checked that this effect comes from both MINERvA
data sets. Various remedies were proposed to deal with this
problem. We decided to follow the ideas proposed in Refs,
[45,46]. The overall covariance matrix is decomposed into
shape, normalization, and mixed parts [46], see the details
in Appendix A. Our estimator for the MINERvA data is
constructed as a sum of contributions from shape and normal-
ization uncertainties. This is similar to the treatment discussed
in Ref. [46]. However, while in the MiniBooNE paper only
the diagonal part of the shape covariance matrix is explored
we include the complete information contained there. We
performed several tests of the performance of this method and
results are summarized in Appendix B. The final form of our
estimator is

χ2
final = (

χ2
shape + N )

MINERvA νμ

+ (
χ2

shape + N )
MINERvA ν̄μ

+ (
χ2

cov

)
T2K νμ

+ (
χ2

cov

)
T2K ν̄μ

, (9)

where

χ2
shape =

∑
k,l

(
σ data

k − σ model
norm,k

)
V pseudoinv

shape,k,l

(
σ data

l − σ model
norm,l

)
.

(10)

σ model
norm,l are linearly rescaled model predictions satisfying∑

j

σ data
j =

∑
j

σ model
norm, j . (11)

V pseudoinv
shape,k,l is Moore-Penrose pseudoinverse matrix [47] to the

shape component of the covariance matrix. N is defined as

N =
(∑

k σ data
k − ∑

l σ model
l

)2

δσ 2
norm

(12)

with

δσ 2
norm ≡

∑
j,k

Vj,k . (13)

N accounts for the overall normalization of the cross section.
Intuitively, this contribution becomes very large if PPP is

about to appear making it impossible. For the details about
the estimator defined in Eq. (10) see Appendixes A and B.

χ2
final is a function of S(ω, q) and we are looking for its

minimum. We would like to avoid any assumption on a form
of the function S. It is why in the numerical computations we
approximate S(ω, q) by a 2D step function, i.e., by a discrete
set of values Smn where m, n refer to bins in the (ω, q) plane.
m, n run values 1, . . . , 24. The fit is done for values Smn but
it is important to keep information that they come from an
approximation of unknown function S(ω, q). For this reason
continuity constraints are imposed on values of Sm,n, which as
a result cannot be changed in a completely random way, see
Sec. II E.

D. Fitter

A minimum of χ2
final was found using a fitter based on a

concept of genetic evolution algorithm [48]. It was chosen
because of its flexibility and ability to escape from local
minima.

At the beginning all the matrix entries describing pa-
rameters Smn = 1 ∀(m, n), meaning no scaling whatsoever.
At every iteration the fitter produces a set of 500 matrices,
called generation. In each generation the matrices are sorted
according to the values of χ2

final(S
k
mn). 10% of best performing

matrices (the smallest χ2
final) are copied to the next generation

as they are.
80% of the next generation is populated with the offspring

from the previous one. In order to produce the offspring, two
matrices are selected at random with a probability to select a
matrix Sk being:

p(Sk ) = χ2
max − χ2

k∑500
i=1

(
χ2

max − χ2
i

) , (14)

where χ2
i is a value of χ2

final of ith matrix and χ2
max is the

maximal value of χ2
final in the generation.

From these two parents a new matrix is built. In the first
step its elements are taken from either of the parents with
relative probabilities proportional to those given by Eq. (14).
Continuity constrain (to be discussed in detail in Sec. II E)
is not yet checked at this point. In the second step about 5%
(an exact number is sampled from binomial distribution) of
the new matrix entries are selected at random to be modified.
The modification is done with 50% of probability either by
multiplication factor or by addition of a number. Multipli-
cation factor is selected from a normal distribution centered
at 1.0 and with a standard deviation 1.0. Negative values are
excluded. In the case of addition a number is selected from
a normal distribution centered at 0 with standard deviation
0.5. After every single modification is applied it is checked if
the new number satisfies the continuity constraint defined in
Eq. (15). If the constraint is not satisfied, the value is changed
to the biggest/lowest allowed one.

The last 10% of the new generation consists of randomly
generated matrices. They are created in the following way. We
start with two empty matrices, A and B. Entries of the matrix
A are filled with random values selected from a uniform dis-
tribution with minimum/maximum being the lowest/highest
values out of all entries from all the previous generations.
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Once matrix A is constructed, its entries are checked for the
continuity constraint. If a given values satisfies the constraint,
it is copied to the matrix B. If the constraint is not satisfied,
a minimal/maximal allowed value according to whether the
constraint is broken from above or from below, is inserted to
matrix B instead. The order in which the values are checked
is irrelevant as they are checked within original matrix A,
which remains unchanged, and the constraint is symmetrical.
At the end of this procedure the matrix B is added to the built
generation.

All the percentage values, population sizes, etc. were opti-
mized during trial and error process of testing the performance
of the algorithm. A lower bound value of 0.1 was imposed as
a lowest possible bin value to prevent vanishing cross section
from any region. Too high probability of bin modification led
to instability and very slow convergence. Lower percentage
of matrices copied to next generation slowed the process of
escaping from local minima. A higher number of random
matrices does not help much, as we only need an access to
explore new promising regions and the process of investigat-
ing them is time consuming.

E. Continuity constraints

To prevent obtaining rescaling matrices with large differ-
ences between neighboring bins values we added the follow-
ing constraint allowing for a control of the smoothness of the
final matrix:

αmin · max
〈k,l〉

(Skl ) � Si j � αmax · min
〈k,l〉

(Skl ), (15)

where:

(i) α is a user given parameter with a value from the
range [0;1),

(ii) αmin = 1 − α,
(iii) αmax = 1/αmin,
(iv) k, l go through the four closest neighbors of the i, j

bin.

An impact of changing the values of α on the best fit value
of χ2

final is shown on Fig. 1. When we weaken the continuity
constraint (α → 1) the value of χ2

final at the best fit point
becomes smaller. The value α = 0 corresponds to no rescaling
at all. The values α 	= 1 ensures smooth and more physical
scaling without sharp and narrow peaks in neighboring bins.

A computation for each value of α was performed in 105

iterations. The calculations for ten values of α on CPU with
six cores and 12 threads (two fits were running simultaneously
and matrix multiplication was parallelized to achieve 100%
of CPU utilization) takes about 4 h. The computations were
performed ten times and it was checked that the differences
between obtained values of χ2

final for each α were lower than
1%. The best results for each α were chosen as the final result.

The optimal value of α is evaluated by looking at the
behavior of the function defined as

[χ2(α = 0) − χ2(α)] · (1 − α). (16)

It has a maximum at α ≈ 0.2 and it is the value used in all
further considerations.

0.0 0.2 0.4 0.6 0.8 1.0
α

800

900

1000

1100

1200

χ
2

χ2(α) dependency

FIG. 1. Value of χ 2 as function of α parameter.

III. RESULTS

The final result for α = 0.2 is shown in Fig. 2. There
are two regions where the scaling makes the 2p2h con-
tribution bigger. The first one is for maximal values of
momentum transfer q ≈ 1200 MeV/c and energy trans-
fer ω ∈ (300, 500) MeV, and the second one for q ≈
(600, 700) MeV/c and ω ≈ (500, 600) MeV. A reduction of
the 2p2h contribution is obtained in a region of lower values
of energy transfer. This has important consequences seen in
Fig. 3. There are two (anti)neutrino energy regimes. For the
energies lower than ≈700 MeV the phenomenological model
cross sections are lower with respect to the Valencia model.
For larger energies the opposite is true and phenomenological
model cross sections become bigger. At larger energies the

0 200 400 600 800 1000 1200
q [MeV]

0

200

400

600

800

1000

1200

ω
[M

eV
]

value 1

FIG. 2. The obtained scaling function for α = 0.2.
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FIG. 3. Cross section dependence on energy for (a) neutrino and (b) antineutrino.

difference becomes vary large and amounts to about 80%. As
a result the overall T2K cross sections are not changed much
while MINERvA cross sections are strongly increased.

The contributions from four experiments to the overall
value of χ2

final are listed in Table I. In the columns 2–4 are
shown: numbers of bins in each experiments, values of χ2

before rescaling and values of χ2 after rescaling. For the
MINERvA experiment we show separately contributions from
shape and normalization, see Eq. (10). We see that the final
results seem to be determined by the MINERvA neutrino re-
sults with the largest number of bins. The contribution to χ2

final
from the MINERvA neutrinos was reduced by roughly 30% at
the expense of the MINERvA antineutrino contribution which
was increased. This is a signal that our model is not general
enough to accommodate both neutrino and antineutrino re-
sults at different energies. Still, the overall reduction of the
χ2 is large, which means that the new model agrees with
the data much better. Another observation is that our method
produces an improvement for neutrinos, regardless of their
energies but is less successful for antineutrinos. It is a signal
that the W3 response function [see Eq. (3)], which contributes
with a different sign for neutrinos and antineutrinos should be
rescaled separately.

In Fig. 4 we show contributions to the cross section from
2p2h events before and after rescaling for each experiment
separately. For all the experiments we observe a significant re-
distribution of the strength always to the region of momentum
transfer ≈700 MeV/c and energy transfer ≈500 MeV. For
T2K it gives rise to a completely new picture. In the case of

TABLE I. Contributions to χ 2
final [see Eq. (10)] from each exper-

iment before and after rescaling.

Experiment D.O.F. Nonscaled Scaled

MINERvA νμ 156 618.0+0.8 403.0+0.1
MINERvA ν̄μ 60 96.7+1.6 132.2+0.2
T2K νμ 58 262.5 137.0
T2K ν̄μ 58 200.8 206.6
Sum 332 1180.3 879.1

T2K neutrinos a region with a large cross section at momen-
tum transfer ≈300 MeV/c and energy transfer ≈100 MeV
mostly disappears and similar is the case of neutrinos with
smaller values of energy end momentum transfers. The re-
gion of the strongest rescaling seen in Fig. 2 is not a very
relevant one for all the experiments and leaves no visible trail
in Fig. 4.

Another illustration of the performance of our model is
seen in Fig. 5. A few typical histograms with experimental
results and errors and also model predictions without and
with rescaling calculated in this paper are shown together. We
see that for MINERvA the overall size of 2p2h contribution
is larger than for T2K because of bigger neutrino energy.
In the case of T2K the rescaling does not introduce much
change. Contrary to that in the case of MINERvA results
rescaling makes the overall cross section much bigger. For
neutrinos a very good data/MC agreement is obtained while
for antineutrinos the rescaling seems to be too strong and MC
predictions exceed the data points in some bins.

As an additional test we compared the values of χ2 without
correlations. This comparison is closest to the intuitive (some-
times misleading, though) assessment by eye of data/MC
agreement. In Table II we see that after rescaling the overall
agreement is much better and the improvement comes mostly
from neutrinos. For antineutrinos the model predictions are
not changed much but also slightly improved. Apart from
MINERvA neutrinos the values of χ2 after rescaling are close
to the number of degrees of freedom, which means that the
agreement is very good.

IV. DISCUSSION AND FINAL REMARKS

In this paper we propose a procedure to construct a phe-
nomenological model of two-body current contribution to
(anti)neutrino cross section. A universal rescaling function
to be applied to the predictions of the Valencia model [12]
is found. Our result is specific to carbon target and also
to a selection of models used in numerical computations in
NUWRO.

The results shown in Fig. 5 indicate that a significant
redistribution of 2p2h cross section is predicted and this
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FIG. 4. Distribution of 2p2h cross section in the ω/q plane before (left) and after (right) rescaling. From top to bottom: MINERνA neutrino:
(a) before and (b) after, MINERνA antineutrino: (c) before and (d) after, T2K neutrino: (e) before and (f) after and T2K antyneutrino: (g) before
and (h) after. On all the figures we show d2σ

dωdq in the units cm2/GeV2.
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FIG. 5. A sample of detail comparison of NUWRO predictions before and after rescaling confronted with the experimental data for
(a) MINERvA neutrino, (b) MINERvA antineutrino, (c) T2K neutrino, and (d) T2K antineutrino. In all the figures the shaded area shows
a sum of contributions from CCQE, RES, and DIS mechanisms.

translates into a change of values of reconstructed neu-
trino energy in experiments such as T2K wherein the Su-
perkamiokande detector final-state nucleons are not observed.
It is interesting that at larger neutrino energies the overall 2p2h
cross sections strongly exceed those of the original Valencia
model and seem to be close to the predictions from Martini
et al. model [2,3] and also SUSAv2 model [49]. We obtained

TABLE II. Values of χ 2 without the covariance matrix for each
experiment before and after rescaling.

Experiment D.O.F. Nonscaled Scaled

MINERvA νμ 156 462.8 358.2
MINERvA ν̄μ 60 65.1 62.2
T2K νμ 58 143.7 83.9
T2K ν̄μ 58 101.2 98.0
Sum 332 772.8 619.6

also a strong increase of the values of response functions at
the boundary of the Valencia model domain, i.e., close to
q = 1.2 GeV/c. This may be a signal that the definition of the
boundary proposed in Ref. [38] is too restrictive and should be
relaxed as it is in the SUSAv2 model. In a very recent paper of
the Valencia group [50] it is argued that there is a large 3p-3h
contribution neglected in the original papers. This makes the
overall np-nh Valencia model cross section larger and closer
to our final result.

The results presented in this paper are the first step in our
program of construction of the phenomenological model of
2p2h. The final goal is very involved numerically and we
decided to divide it into steps. The final step is to rescale three
most important response matrices in an independent way. W3

enters the cross section formula in Eq. (3) with different signs
for neutrinos and antineutrinos and the results obtained in
this paper suggest that it should be scaled in a different way
than others. W2 is multiplied by a neutrino energy-dependent
function that takes different values in MINERvA and T2K
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experiments. If we allow W1 and W2 to be scaled indepen-
dently we get extra flexibility to adjust better to both data sets.
Altogether, we think that with three independent rescalings
we will obtain more reduction of χ2

final from all the individual
experiments.

An important caveat of the study in this paper is that it is
based on the assumption that other processes contribution to
the CC0π signal are described correctly. We used the default
NUWRO version with LFG nucleus model to describe CCQE
contribution. More advantageous will be inclusion of a model,
which is known to reproduce well the QE peak resulting from
one-body mechanism, see Ref. [31]. One of them, the hole
spectral function (SF) approach [51], is already implemented
in NUWRO. With CCQE events modeled with SF and three
independent rescalings of W1,2,3 using the approach described
in this paper we should obtain a realistic model of 2p2h
contribution on the carbon target. This work is in progress.

ACKNOWLEDGMENTS

We thank Kajetan Niewczas, Steven Dolan, Sara Bolog-
nesi, Ciro Riccio, Kevin McFarland, and other members of
the T2K Neutrino Interactions Working Group for many
helpful comments and stimulating discussions. The authors
were supported by the Polish Ministry of Science and Higher
Education, Grant No. DIR/WK/2017/05 and also by NCN
Opus Grant No. 2016/21/B/ST2/01092.

APPENDIX A: A DECOMPOSITION
OF COVARIANCE MATRIX

In Ref. [46] one can find a procedure how to decompose
an arbitrary N×N covariance matrix into a sum of shape,
normalization, and mixed parts:

Vjk = V shape
jk + V mixed

jk + V norm
jk , (A1)

V shape
jk = Vjk − xk

xT

N∑
l=1

Vjl − x j

xT

N∑
l=1

Vlk + x jxk

x2
T

N∑
l,s=1

Vls,

V mixed
jk = xk

xT

N∑
l=1

Vjl + x j

xT

N∑
l=1

Vlk − 2
x jxk

x2
T

N∑
l,s=1

Vls,

V norm
jk = x jxk

x2
T

N∑
l,s=1

Vls, (A2)

where x j are results of measurements and

xT =
N∑

l=1

xl .

The matrix V shape
jk is singular: a vector made of N identical

numbers is an eigenvector to eigenvalue 0. This makes the
use of V shape

jk in the definition of the modified χ2 difficult. We
propose to introduce:

χ2
shape ≡

N∑
j,k=1

(ỹ j − x j )V
pseudo

shape; j,k (ỹk − xk ), (A3)

where V pseudo
shape is a Moore-Penrose pseudoinverse [47] of

V shape. It is a generalization of the definition of inverse matrix,
inverse, and pseudoinverse matrices coincide for nonsingular
matrices. ỹ j are normalized to satisfy∑

j

ỹ j =
∑

j

x j . (A4)

We investigated the statistical properties of the estimator
defined in Eq. (A3). We used the covariance matrix of the
MINERvA neutrino experiment studied in this paper. We
produced several throws (y1, . . . , yN ) generated with a mul-
tivariate distribution defined by (x1, . . . , xN ) and V . For each
one we calculated a normalized random throws (ỹ1, . . . , ỹN )

obtained by applying a normalization factor f =
∑

j x j∑
j y j

: ỹ j =
f · y j . Finally, we studied a distribution of values of χ2

shape. It
has the basic features of the standard χ2(N − 1) distribution.
The difference is that the peak is less pronounced with more
probability at both smaller and larger values of the random
variable. It may be difficult to infer from χ2

shape confidence
intervals but it can be used safely as an estimator in a search
for best fit values.

APPENDIX B: A TOY MODEL

In this Appendix the performance of χ2 introduced in
Sec. II C is tested with a simple toy model. Numerical values
are chosen to be similar to those used in the Ref. [45].

Suppose two measurements were done with the following
results: x = [8.0

8.5

]
and the covariance matrix is reported to be:

V =
[

0.6656 0.68
0.68 0.7514

]
. (B1)

Suppose also that a theoretical model predictions contains a
parameter λ the value of which we would like to estimate
based on the data. The model predictions for the two mea-
surements are assumed to be:

y(λ) =
[

7.2 + λ · 0.795
7.2 + λ · 0.805

]
. (B2)

The standard χ2(λ) estimator is defined as

χ2(λ) ≡
2∑

j,k=1

[y j (λ) − x j]V
−1
jk [yk (λ) − xk]. (B3)

It can be checked that χ2(λ) has a minimum at λ̃ = 0.94
and y(λ̃) = [7.95

7.96

]
. When we compare those values with the

measurements we see that we obtained a puzzling result, a
manifestation of the Peelle’s pertinent puzzle [44].

Applying the procedure outlined in the Appendix A we
obtain:

V shape ≈ 0.01359 ·
[

1 −1
−1 1

]
. (B4)

A pseudoinverse of V shape is

V pseudo
shape ≈ 18.40 ·

[
1 −1

−1 1

]
. (B5)
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In the χ2
shape introduced in the Appendix A there is no

information about the overall normalization of data points. A
remedy is to add a N term defined as

N =
⎛
⎝ 2∑

j=1

y j (λ) −
2∑

j=1

x j

⎞
⎠

2/
σ 2

norm (B6)

with

σ 2
norm =

2∑
j,k=1

Vj,k ≈ 2.777. (B7)

Finally we define:

χ2
final(λ) ≡

2∑
j,k=1

[y j (λ) − x j]Ṽ
−1,pseudo
jk [yk (λ) − xk] + N .

It can be checked that χ̃2
final(λ) has a minimum at λ̃ ≈ 1.396

and y(λ̃) = [8.31
8.32

]
, which is a reasonable result.
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