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Thermomagnetic properties and Debye screening for magnetized quark-gluon plasma
using the extended self-consistent quasiparticle model
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The thermomagnetic behavior of quark-gluon plasma has recently received a great deal of attention. In this
work we make use of the extended self-consistent quasiparticle model to study the thermodynamic properties,
magnetic response, and screening properties of magnetized (2+1)-flavor quark-gluon plasma (QGP). The system
is considered as a noninteracting system of quasiparticles with masses depending on both temperature and
magnetic fields. This allows us to obtain the equation of state of the system and other thermodynamic properties
such as the speed of sound. We use the extended self-consistent model to obtain the magnetization and show
that QGP has a paramagnetic nature. In addition, we study the pressure anisotropy and calculate the transverse
pressure. The obtained anisotropic pressure may be used in hydrodynamic studies of magnetized QGP produced
in heavy-ion collisions. We then study the total pressure in both directions, taking pure-field contributions into
consideration. Finally we examine the screening properties of magnetized QGP in the longitudinal direction by
calculating the Debye screening mass. We go on to compare our results for Debye mass with the results from
other approaches.
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I. INTRODUCTION

Quark-gluon plasma (QGP), the state of matter believed to
have existed shortly after the big bang, has been successfully
created in high-energy collisions [1]. The charged ions can
produce large magnetic fields reaching up to eB ≈ (1–15)m2

π

[2,3] during off-central collisions. Magnetic fields created in
this manner may exist only for a short while but can be
stationary during this time [4–7]. The theoretical tools used
to study QGP need modifications to incorporate effects of
external magnetic fields and there has been flurry of research
activity in this area [8–33]. Measurements at the Large Hadron
Collider [34], along with those at relativistic heavy ion col-
lider energies [35], are capable of providing new insights that
can constrain the theoretical modeling. The equation of state
has a significant impact on the evolution of QGP [36]. The
study of the equation of state of magnetized QGP is relevant
in the contexts of cosmology [37] and strongly magnetized
neutron stars too [38–42]. The investigation of the behavior of
magnetized QGP is, therefore, of importance [43]. There are
different approaches to studying the effect of magnetic fields
on QGP [8,16,44–46].
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In Ref. [45], we developed the extended self-consistent
quasiparticle model and studied the behavior of energy den-
sity, longitudinal pressure, and entropy density of magnetized
2-flavor QGP. In this work, we apply the extended quasiparti-
cle model to magnetized (2+1)-flavor QGP. We use it to study
the behavior of longitudinal pressure, speed of sound, magne-
tization, pressure anisotropy, and Debye screening. We start
with the study of thermodynamics by obtaining the equation
of state and calculating the speed of sound in the medium. We
then make use of our model to study the magnetic response of
QGP by finding the magnetization and show that the system
exhibits paramagnetic behavior. Using the calculated magne-
tization, we go on to study the anisotropy between longitu-
dinal and transverse pressures caused by the magnetization
acquired by the system along the field direction. We bring
out the dependence of transverse pressure on temperature
and magnetic fields. Then we study the behavior of the total
longitudinal and transverse pressure, including the pure-field
or Maxwell contributions. Finally, we examine the screening
properties of magnetized QGP in the longitudinal direction
by calculating the Debye screening mass. As a consistency
check, we compare the Debye mass obtained within our
formalism with the corresponding result using perturbation
techniques and examine how well they agree, especially at
high temperatures.

The paper is organized as follows. In Sec. II, we summarize
the extended self-consistent quasiparticle model developed in
Ref. [45]. In Sec. III, we apply this formulation for the case of
(2+1)-flavor QGP and obtain its equation of state and speed
of sound in the medium. Section IV involves the calculation
of the magnetization of QGP. In Sec. V we study the pressure
anisotropy. Section VI deals with the pure-field or Maxwell
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contribution to the total pressure. In Sec. VII we calculate the
Debye screening mass of magnetized QGP and compare our
results with other results. In Sec. VIII, we discuss the results
obtained and conclude in Sec. IX.

II. THE EXTENDED SELF-CONSISTENT
QUASIPARTICLE MODEL

In the extended self-consistent quasiparticle model, the
thermal properties of interacting real particles are modeled
by noninteracting quasiparticles with thermomagnetic masses
[45].

In the self-consistent quasiparticle model [47–52], the
thermal mass is defined to be proportional to the plasma
frequencies as

m2
g = 3

2ω2
p and m2

q = (m0 + m f )2 + m2
f . (1)

The plasma frequencies are calculated from the density-
dependent expressions [51]

ω2
p = a2

gg2 ng

T
+ d2

q g2 nq

T
(2)

for gluons and

m2
f = c2

qg2 nq

T
(3)

for quarks. Here nq and ng are the quark and gluon number
density, respectively. g2 is related to the QCD running cou-
pling constant αs by the relation g2 = 4παs. The coefficients
ag, aq, bq are determined by demanding that as T → ∞, ωp

and m f both go to the corresponding perturbative results.
The motivation for choosing such an expression for plasma
frequency is that the plasma frequency for electron-positron
plasma is known to be proportional to n/T in the relativistic
limit [53,54]. Since the thermal masses appear in the expres-
sion for the density, we need to solve the density equation self-
consistently to obtain the thermal mass. The thermal mass, in
turn, may be used to evaluate the thermodynamic quantities
of interest. The results obtained have shown a good fit with
lattice data even at temperatures near Tc [52].

In the presence of magnetic fields, the energy eigenvalue
values are given as Landau levels,

Ej =
√

m2 + k2
z + 2 jq f |eB|, (4)

and the momentum integral is modified as [55–59]∫
d3k

(2π )3
→ q f |eB|

2π

∞∑
j=0

∫
dkz

2π
(2 − δ0 j ), (5)

where f is the flavor index, and q f is the absolute value of the
electric charge. The above equations modify the expression
for number density. The thermomagnetic mass for quarks is
obtained by using the modified equation for number density
in Eq. (3) and solving the resulting equation self-consistently
[45].

The expression for the number density of gluons remains
unchanged in the presence of magnetic fields as gluons are
chargeless and the thermomagnetic mass for gluons is ob-
tained by solving Eq. (2) in a self-consistent manner. Note

that even though the expression for gluon density remains
unchanged in the presence of magnetic fields, gluons acquire
a thermomagnetic mass through the quark number density.
Using the thermomagnetic mass, we can obtain the thermo-
dynamics and study the thermomagnetic properties of magne-
tized QGP.

We focus primarily on the qualitative thermomagnetic
behavior of magnetized QGP. So, the inclusion of the ef-
fects of dynamically generated anomalous magnetic moments
(AMMs) [60], as done in Refs. [61,62], is out of the scope
of our work. Moreover, it has been demonstrated in Ref. [63]
that the effect of AMMs is not significant when it comes to the
calculation of thermodynamic quantities of charged fermions.
In the self-consistent quasiparticle model, the thermomagnetic
mass is obtained from the density-dependent expression for
plasma frequency. It follows that the contribution from AMMs
to the thermomagnetic mass is negligible. Since all quantities
in this work, including the Debye mass in Sec. VII, are
expressed in terms of the thermomagnetic mass, it is safe to
say that the exclusion of AMMs in our work does not affect
the results in any significant manner.

Thermomagnetic coupling

The only ingredient we need in order to make calculations
is a thermomagnetic coupling, a coupling that incorporates
the effect of both temperature and magnetic fields. The
thermomagnetic coupling is used in the calculation of the
thermomagnetic masses from Eqs. (2) and (3). To this end,
throughout this work, we make use of the one-loop running
coupling constant that evolves with both the momentum trans-
fer and the magnetic field [64] as

αs(�
2, |eB|) = αs(�2)

1 + b1αs(�2) ln
(

�2

�2+|eB|
) . (6)

The one-loop running coupling in the absence of a magnetic
field at the renormalization scale is given by

αs(�
2) = 1

b1 ln
(
�2/�2

MS

) , (7)

where b1 = (11Nc − 2Nf )/12π and following [8], MS =
0.176 GeV at αs(1.5 GeV) = 0.326 for Nf = 3.

It is to be noted that the above thermomagnetic coupling
has been obtained using the lowest Landau level approxima-
tion suitable in a strong magnetic field limit (eB � T 2). As
explained in Ref. [65], in this limit, the coupling is split into
terms dependent on the momentum parallel and perpendicular
to the magnetic field separately. The coupling dependent on
the transverse momentum does not depend on the magnetic
field at all. We are interested in how the system responds
to magnetic fields, and so we make use of the longitudinal
part of the coupling constant. The coupling is obtained in
the one-loop order, and so this may be appropriate only at
high temperatures. We use this coupling as an approximation,
and so our results are bound to be qualitative. A two-loop
thermomagnetic coupling, which includes the contribution
from higher Landau levels, is expected to give quantitatively
reliable results.
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III. THERMODYNAMICS OF (2+1)-FLAVOR QGP
IN THE PRESENCE OF MAGNETIC FIELDS

In this section, we study the thermodynamics of (2+1)-
flavor QGP, focusing only on the thermomagnetic correction.
We will discuss the pure-field contributions in Sec. VI.

A. Thermodynamic pressure

For quarks, the grand canonical potential, within the self-
consistent quasiparticle model, is

�q

V
= − Pq = − T

g f q f |eB|
2π2

∞∑
l=1

(−1)l−1
∞∑
j=0

(2 − δ0 j )

×
[

T

l2

mqj l

T
K1

(
mqj l

T

)

+
∫ T

T0

dτ

τ
mqj

∂mqj

∂τ
K0

(
mqj l

τ

)]
, (8)

where

mqj =
√

m2
q + 2 j|q f eB|. (9)

Here we have taken μ = 0. Note that in the self-consistent
quasiparticle model, the grand canonical potential is not equal
to −KT log10 Z , where Z is the grand partition function, due
to the temperature dependence of masses. This is the reason
why the expressions for pressure in Eqs. (8) and (10) do not
match the corresponding expressions for an ideal gas even
though in the quasiparticle model the system is considered
as an ideal gas with temperature-dependent masses. There
is an extra term that ensures thermodynamic consistency, as
shown in Ref. [48]. The temperature dependence of mass in
quasiparticle models has led to a great deal of discussion about
the thermodynamic inconsistency problem and introduction
of additional terms like B(T ) whose physical meaning is
not obvious [66,67]. The self-consistent quasiparticle model
avoids this problem by starting with the expressions for energy
density and number density and calculating everything else
from them.

The contribution from gluons is

�g

V
= − Pg = − T

g f

2π2

∞∑
l=1

1

l4

[
T 3

(
mgl

T

)2

K2

(
mgl

T

)

+
∫ T

T0

dτ

mg
τ 3 ∂mg

∂τ

(
mgl

τ

)3

K1

(
mgl

τ

)]
. (10)

Here, T0 is some reference temperature, suitably chosen.

B. Velocity of sound

The velocity of sound is a fundamental quantity that is used
in the description of hot QCD medium. The velocity of sound
squared c2

s is given by

c2
s = ∂P

∂ε
= dP/dT

dε/dT
, (11)

where ε is the energy density which can be obtained from
pressure using the thermodynamic relation,

ε = T
∂P

∂T
− P. (12)

The speed of sound in magnetized QGP medium can be
calculated using these equations.

IV. MAGNETIZATION

Magnetization can be obtained from the grand canonical
potential �:

M = − 1

V

∂�

∂ (eB)
. (13)

We confine our calculation to the region where eB is greater
than zero. Note that the equation for magnetization in the self-
consistent quasiparticle model is not related to the partition
function as in Ref. [68]. This is because of the additional
terms in Eqs. (8) and (10), which ensure thermodynamic
consistency.

Using Eqs. (8) and (13), we get, for quarks,

Mq =T g f q f

2π2

∞∑
l=1

(−1)l
∞∑
j

(2−δ0 j )

([
T

l2

(
mq jl

T

)
K1

(
mq jl

T

)

+
∫ T

T0

dτ

τ
mqj

∂mqj

∂τ
K0

(
mqj l

τ

)]

−eB

{
T

l2

(
mq jl

T

)
K0

(
mq jl

T

)
∂

∂ (eB)

(
mq jl

T

)

− ∂

∂ (eB)

[∫ T

T0

dτ

τ
mqj

∂mqj

∂τ
K0

(
mqj l

τ

)]})
. (14)

In a similar manner, we obtain the expression for magnetiza-
tion of gluons from Eq. (10) as

Mg = T g f

2π2

∞∑
l=1

[
∂

∂ (eB)

∫ T

T0

dτ

mg
τ 3 ∂mg

∂τ

(
mgl

τ

)3

× K1

(
mgl

τ

)
− T 3

(
mgl

T

)2

× K1

(
mgl

T

)
∂

∂ (eB)

(
mgl

T

)]
. (15)

By obtaining the magnetization using the above equations,
we can go on to study the pressure anisotropy of QGP in the
presence of magnetic fields.

V. PRESSURE ANISOTROPY

There has been some discussion in the literature regard-
ing the existence of a pressure anisotropy, and it has been
suggested that the anisotropy is scheme dependent [68–76].
In the φ scheme, the presence of magnetic fields breaks
rotational symmetry due to the magnetization of the system
in the direction of the magnetic field, resulting in a pressure
anisotropy. Thus, in this scheme, the pressure has a transverse
component different from the longitudinal component.
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The transverse pressure is related to the longitudinal pres-
sure as

PT = P − eB · M. (16)

Using Eqs. (8) and (14) the contribution from quarks to
transverse pressure becomes

(PT )q

T
= g f q f (eB)2

2π2

∞∑
l=1

(−1)l
∞∑
j

(2 − δ0 j )

×
{

T

l2

(
mq jl

T

)
K0

(
mq jl

T

)
∂

∂ (eB)

(
mq jl

T

)

− ∂

∂ (eB)

[∫ T

T0

dτ

τ
mqj

∂mqj

∂τ
K0

(
mqj l

τ

)]}
. (17)

Similarly, for gluons,

(PT )g

T
= g f

2π2

∞∑
l=1

1

l4

{
T 3

(
mgl

T

)2

K2

(
mgl

T

)

+
∫ T

T0

dτ

mg
τ 3 ∂mg

∂τ

(
mgl

τ

)3

K1

(
mgl

τ

)

−eB

[
∂

∂ (eB)

∫ T

T0

dτ

mg
τ 3 ∂mg

∂τ

(
mgl

τ

)3

K1

(
mgl

τ

)

−T 3

(
mgl

T

)2

K1

(
mgl

T

)
∂

∂ (eB)

(
mgl

T

)]}
. (18)

VI. PURE-FIELD CONTRIBUTION

So far we concentrated only on the contributions to the
thermodynamic quantities from quarks and gluons. The total
pressure of magnetized QGP involves one other contribution,
namely, the pure-field or Maxwell contribution [69,75,77–79].
These contributions are again different in the parallel and per-
pendicular directions as the magnetic field breaks rotational
symmetry. The total pressure in the transverse direction is

Ptotal
T = PT + (PT )m

= PT + B2

2
. (19)

The total pressure in the longitudinal direction is given by

Ptotal = P + Pm

= P − B2

2
, (20)

where (PT )m and Pm are the pure-field contributions in the
transverse and longitudinal directions, respectively. Using
these we can calculate the total longitudinal and transverse
pressures.

VII. LONGITUDINAL DEBYE SCREENING MASS

At the leading order, Debye screening mass parametrizes
the dynamically generated screening of chromoelectric fields,
due to the strong interactions of hot quantum chromodynam-
ics [80]. The ability of QGP to shield out the chromoelectric

potential can be measured in terms of the Debye screening
length, which is the inverse of the Debye mass (mD). Calcula-
tions of the higher-order contributions to the Debye screening
[81,82] are beyond the scope of this work. The presence of an
external magnetic field causes an anisotropy, and we study the
Debye mass in the longitudinal direction.

The conventional definition for Debye mass can be ob-
tained either from the small momentum limit of the gluon
self-energy [83–87] or the semiclassical transport theory
[44,88,89].

In the zero magnetic field case, the Debye mass can be
defined as [44,85,90]

m2
D = −gng2

∫
d3k

(2π )3

∂

∂ωk
f (ωk ), (21)

where f (ωk ) are the quasi-gluon, quasi-quark-antiquark dis-
tribution functions with

ωk =
√

m(T )2 + k2, (22)

and gn is the degeneracy factor. In the self-consistent quasipar-
ticle model, all the medium effects are captured by the thermal
masses of the quasiparticles m(T ). The distribution functions
(in zero chemical potential) are

fg(ωk ) = 1

eβωk − 1
and fq

(
ω

f
k

) = 1

eβω
f
k + 1

(23)

for gluons and quark-antiquark flavor f , respectively. Here-
after we shall drop the flavor index on the quasiparticle mass
and energies of quarks, to avoid cluttering.

The gluonic contribution to the Debye mass in zero mag-
netic field is obtained using Eqs. (21) and (22), the first
relation in Eq. (23), and gn = 2Nc as

m2
Dg = Ncg2

π2T

∫ ∞

0
dkk2 e−β

√
k2+m2

g(
1 − e−β

√
k2+m2

g
)2

, (24)

which simplifies to

m2
Dg = Ncg2T 2

π2

[ ∞∑
l=1

1

l2

(
lmg

T

)2

K2

(
lmg

T

)]
. (25)

The gluon Debye mass is associated with the gluon and
ghost loops contribution to the gluon self-energy. In the
presence of magnetic fields, the expression of Debye mass for
gluons remains the same as the magnetic fields do not change
the ghost and gluon loops [8]. The expression for gluon
Debye mass in the self-consistent quasiparticle model also
remains the same as Eq. (25). However, the thermomagnetic
mass of gluons, mg, depends on magnetic fields through the
quark contribution to the gluon plasma frequency. The gluon
plasma frequency in Eq. (2) is defined in such a way that it
approaches the corresponding values in perturbative QCD at
high temperatures, ensuring consistency. So we can consider
the dependence of the gluon Debye mass on magnetic fields,
through the quark plasma frequency, as a correction to the
perturbative result due to medium effects caused by the strong
interaction.
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FIG. 1. Thermodynamic pressure as a function of temperature
for different magnetic fields.

At zero magnetic field, Eq. (21), with the quark distribution
function in Eq. (23), can also be written as

m2
Dq = g2

T
gn

∫
d3k

(2π )3
f (ωk )[1 − f (ωk )]. (26)

With gn = 2 × 2 × Nc (quark-antiquark, spin, and color), and
for a single quark flavor,

m2
Dq = 4Ncg2

T

∫
d3k

(2π )3

e−β
√

k2+m2
q(

1 + e−β
√

k2+m2
q .
)2

, (27)

which simplifies to

m2
Dq = 2Ncg2T 2

π2

∞∑
l=1

(−1)l−1

l2

(
lmq

T

)2

K2

(
lmq

T

)
. (28)

The Debye mass for quarks is associated with the quark loop
contribution to the gluon self-energy. This changes in the
presence of external magnetic fields. The expression of Debye
mass for quarks in the presence of magnetic fields can be
obtained by replacing the thermal masses by thermomagnetic
masses, changing the dispersion relation in accordance with
Eq. (4), and modifying the momentum integration according
to Eq. (5) in Eq. (26). This gives [85]

m2
Dq(eB) = |q f eB|g2

2π2

∞∑
j=0

g j

∫ ∞

0

dkz

T
fq

(
ω

j
kz

)[
1 − fq

(
ω

j
kz

)]
,

(29)

where

fq
(
ω

j
kz

) = 1

eβω
j
kz + 1

(30)

and

ω
j
kz

=
√

k2
z + m2

q j
, (31)

with mqj given in Eq. (9). g j in Eq. (29) is the degeneracy
of the jth Landau level and is dependent on the Landau level
index j. Along with these and adding up the contributions

FIG. 2. Thermodynamic pressure for different temperatures as a
function of magnetic field.

from all flavors, we get from Eq. (29)

m2
Dq =

∑
f

|q f eB|g2

2π2

∞∑
j=0

g j

∫ ∞

0

dkz

T

e
−β

√
k2

z +m2
q j

(
1 + e

−β
√

k2
z +m2

q j
)2

.

(32)

With g j = 2Nc × (2 − δ0 j ) [85], Eq. (32) simplifies to

m2
Dq(eB) = Ncg2

π2

∑
f

|q f eB|
∞∑

l=1

(−1)l−1
∞∑
j=0

(2 − δ0 j )

×
(

lmqj

T

)
K1

(
lmqj

T

)
. (33)

VIII. RESULTS AND DISCUSSION

We have plotted the variation of longitudinal pressure with
temperature for different magnetic fields in Fig. 1. Figure 2
shows the variation of pressure with the magnetic field for dif-
ferent temperatures. The increase in pressure with a magnetic
field at a given temperature, as seen in our equation of state,
is consistent with lattice QCD results [68], perturbative QCD

FIG. 3. Velocity of sound as a function of temperature for differ-
ent values of magnetic fields.
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FIG. 4. Magnetization for different magnetic fields as a function
of temperature.

results [8], and other works [44]. At this point, we do not make
a quantitative comparison with the lattice data because the
coupling constant used here is calculated in the lowest Landau
level (LLL) approximation. The one-loop thermomagnetic
coupling we used may be reliable at high temperatures only.

In Fig. 3 we have plotted C2
s as a function of temperature,

for different magnetic field values. The speed of sound is seen
to reach the Stefan-Boltzmann limit of 1/3, asymptotically.
This behavior is consistent with the behavior of P/ε in lattice
QCD results [68] and with the behavior of sound velocity in
Ref. [44].

The variation of magnetization with temperature for differ-
ent magnetic fields is plotted in Fig. 4. We see that the mag-
netization has a positive value for all values of temperature
above Tc. This shows that QGP has a paramagnetic nature.

In Fig. 5, we have plotted the variation of magnetization
with the magnetic field for different temperatures. It is seen
that the magnetization increases with the magnetic field. The
behavior of magnetization of QGP, as seen in our work, is
qualitatively consistent with lattice QCD results [91] and with
results from hard thermal loop (HTL) perturbation theory [8].
We have included higher Landau levels, whereas in Ref. [8]

FIG. 5. Magnetization for different temperatures as a function of
magnetic field.

FIG. 6. Transverse pressure for different magnetic fields as a
function of temperature.

the lowest Landau level approximation has been used. We see
that in our model, the contribution from higher Landau levels
cannot be neglected.

In Fig. 6, we have plotted the variation of transverse
pressure with temperature for different magnetic fields. In
Fig. 7, we show the variation of transverse pressure with mag-
netic fields for different temperatures. Since magnetization
increases with temperature, the transverse pressure tends to
decrease with an increase in the magnetic field. This behavior,
too, is qualitatively consistent with the perturbative QCD
results from [8], and the lattice QCD results from [68,91].

Including the Maxwell contribution to the total pressure,
we see that the parallel or longitudinal pressure decreases
and the transverse pressure increases with increase in the
magnetic field strength. The behavior of the total longitudinal
and transverse pressure is plotted in Figs. 8–11. Figure 8
shows that for a given magnetic field, the total longitudinal
pressure increases with temperature. Toward the lower values
of temperature the value of total longitudinal pressure is
negative. Figure 9 shows that the total longitudinal pressure
decreases and becomes negative as the magnetic field strength
is increased. The negative value of total longitudinal pressure

FIG. 7. Transverse pressure for different temperatures as a func-
tion of magnetic field.
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FIG. 8. Variation of total longitudinal pressure (P + Pm ) with
temperature for different magnetic fields.

can produce instabilities to the system and this aspect deserves
to be studied carefully. The total transverse pressure (Fig. 11)
increases with increase in magnetic field and remains posi-
tive.

We study the screening effect in magnetized QGP using our
model by calculating the Debye mass. At B = 0, the Debye
mass increases with temperature. We have plotted the varia-
tion of Debye mass with temperature for different magnetic
fields in Fig. 12. The Debye screening mass variation with
magnetic fields is plotted for different temperatures in Fig. 13.
The enhancement of Debye screening mass in the presence of
external magnetic field agrees with the finding in Ref. [82]
using lattice QCD simulations, and in Refs. [14,26,92] using
perturbative calculations. Similar results are also obtained in
Refs. [44,85].

In Fig. 14, we plot our result for the contribution of quarks
to the Debye mass along with the corresponding result from
perturbative quantum chromodynamics (pQCD). The expres-
sion for the Debye mass of quarks obtained from the gluon
self-energy tensor in the strong magnetic field limit and with

FIG. 9. Variation of total longitudinal pressure with magnetic
field for different temperatures.

FIG. 10. Variation of total transverse pressure [PT + (PT )m] with
temperature for different magnetic fields.

massless quarks [93–95] is

m2
D = g2

4π2

∑
f

|q f eB|. (34)

We have corrected for a factor of 2 overlooked in Ref. [94]
as pointed out in Ref. [95]. We plot the quark Debye mass of
Eq. (34) in Fig. 14, after including the appropriate degeneracy
factor gn = 2Nc [85]. We have used g2 = 4παs, with the
thermomagnetic coupling αs given in Eq. (6). The plots are
denoted as “pQCD.”

Along with the pQCD results in Fig. 14, we have plot-
ted the quark Debye mass calculated using Eq. (33) in the
LLL approximation and neglecting the physical quark masses
(m0 = 0). The quasiparticles, however, are still massive with
masses depending on temperature and magnetic fields.

At T = 0.2 GeV our results deviate from the pQCD results.
The deviation is expected because QGP is strongly interacting
at these temperatures, and perturbative QCD may not be suit-
able. In our model, the strong interaction is taken into account
through the temperature and magnetic field dependence of the
quasiparticle masses.

FIG. 11. Variation of total transverse pressure with magnetic
field for different temperatures.
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FIG. 12. Debye mass as a function of temperature for different
magnetic fields.

The results from these different approaches match reason-
ably well at a higher temperature of T = 0.4 GeV, as shown
in the plot. The agreement shows that our results approach
the results obtained through a perturbative calculation at high
temperatures. The proportionality constants in Eqs. (2) and (3)
are obtained by demanding that the expressions for plasma
frequency approach the corresponding pQCD results at high
temperature. So the comparison plot shows that our approach
is consistent.

The expression for Debye mass of massive quarks in
Ref. [94], after correcting for the missing factor of 2 and
multiplying by the degeneracy factor, is

m2
D = Ncg2

π2

∑
f

|q f eB|
∫ ∞

0

dkz

T

eβ
√

k2
z +m2

0(
1 + eβ

√
k2

z +m2
0
)2

, (35)

where m0 is the physical quark mass (we have dropped the
flavor index for convenience). We note that Eq. (32), ob-
tained from the self-consistent quasiparticle model, reduces
to Eq. (35) in the LLL approximation and when quarks and
gluons are considered as noninteracting (mqj = m0). Inter-

FIG. 13. Debye mass as a function of magnetic field for different
temperatures.

FIG. 14. Contribution of quarks to the Debye mass plotted
against magnetic field compared with pQCD result.

acting quarks and gluons acquire thermomagnetic mass, and
the stronger the interaction, the more significant the deviation
from the ideal gas result.

IX. CONCLUSION

To summarize, we made use of the extended self-consistent
quasiparticle model to study thermodynamics, thermomag-
netic properties, and screening behavior of magnetized (2+1)-
flavor quark-gluon plasma.

We studied the thermodynamics of magnetized (2+1)-
flavor QGP by calculating and plotting the pressure and sound
velocity of magnetized QGP. The magnetic response of QGP
was investigated by our model, and the variation of magne-
tization with temperature and magnetic field examined. We
found that QGP has a paramagnetic nature. It has a small but
positive magnetization at all temperatures above the transition
temperature. We also noted that the presence of magnetization
makes the system anisotropic, causing different pressures in
directions parallel and perpendicular to the magnetic field.
We evaluated the transverse pressure and plotted its variation
with both magnetic fields and temperature. The equation of
state and anisotropic pressure calculated here can be used as
an input for magnetohydrodynamic calculations and analysis
of the elliptic flow of QGP formed in heavy-ion collisions.
We noted that taking the pure-field contribution into account,
the total longitudinal pressure becomes negative, indicating
instability in the system in this region. The total transverse
pressure remains positive and increases with the magnetic
field in the range of magnetic fields and temperatures consid-
ered in this work. Finally, we studied the screening properties
of magnetized QGP by examining the behavior of Debye
screening mass in the longitudinal direction. We saw that the
screening mass increases with magnetic fields. Our results
showed the same qualitative behavior as those obtained from
lattice QCD calculations and the HTL perturbation theory
approach, and those obtained using other phenomenological
models. The quark contribution to Debye mass as calculated
and plotted using our model agrees reasonably well with
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the corresponding results from perturbative QCD, at high
temperatures.

We see that the extended quasiparticle model is quite
effective in studying various thermodynamic and thermo-
magnetic properties of the deconfined QCD matter in the
presence of magnetic fields. It is an advantage to this
model that the higher Landau level contributions can be
incorporated without difficulty. The present results could be
improved with a two-loop order thermomagnetic coupling,
which also includes the contributions from higher Landau
levels.

It would be interesting to study the transport coefficients
of magnetized QGP with the equation of state obtained using

the extended self-consistent quasiparticle model. Another area
where the model, with appropriate modifications, can be
applied is QGP at finite temperature and density. We can use
the model extended to nonzero chemical potential to study the
interior of strongly magnetized neutron stars.
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