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MRCV: A Package for Analyzing
Categorical Variables with Multiple
Response Options
by Natalie A. Koziol and Christopher R. Bilder

Abstract Multiple response categorical variables (MRCVs), also known as “pick any” or “choose
all that apply” variables, summarize survey questions for which respondents are allowed to select
more than one category response option. Traditional methods for analyzing the association between
categorical variables are not appropriate with MRCVs due to the within-subject dependence among
responses. We have developed the MRCV package as the first R package available to correctly analyze
MRCV data. Statistical methods offered by our package include counterparts to traditional Pearson
chi-square tests for independence and loglinear models, where bootstrap methods and Rao-Scott
adjustments are relied on to obtain valid inferences. We demonstrate the primary functions within the
package by analyzing data from a survey assessing the swine waste management practices of Kansas
farmers.

Introduction

Survey questions often instruct respondents to “choose all that apply” from a list of response cate-
gories. For example, surveys instituted by U.S. government agencies are mandated to ask race and
ethnicity questions in this format (Office of Management and Budget, 1997, p. 58781). In medical
applications, “choose all that apply” questions have been used for a variety of purposes, including
gathering information about treatment and monitoring strategies (Kantarjian et al., 2007; Riegel et al.,
2006). Outside of surveys, this format can appear in unexpected applications. For example, wildlife
management researchers are often interested in the food habits of animal species. Traces of prey in
scats provide these researchers with a “choose all that apply” type of response because multiple prey
types may be present (Lemons et al., 2010; Riemer et al., 2011).

Variables that summarize data arising from a “choose all that apply” format are referred to as
multiple response categorical variables (MRCVs), and the response categories within each MRCV
are referred to as items (Bilder and Loughin, 2004). Because individual subjects are allowed to
choose multiple items, the responses are likely dependent, and therefore traditional methods for
analyzing categorical variables (e.g., Pearson chi-square tests for independence, loglinear models) are
not appropriate. Unfortunately, numerous examples exist where these traditional methods are still
used (see Wright, 2010 for a review), which can lead to erroneous results (Loughin and Scherer, 1998).

While MRCVs have been identified since at least Coombs (1964), methods for correctly analyzing
MRCVs in the context of common categorical data analysis interests, such as examining associations
between variables, have only been available for approximately 15 years (e.g., see Agresti and Liu,
1999). Our MRCV package (Koziol and Bilder, 2014) is the first R package available to implement
valid inference procedures for this type of data. The functions within the package can be used by
researchers who want to examine the relationship among items from up to three MRCVs.

We begin this paper by first illustrating functions within the package for summarizing MRCV data
and testing for independence. Then, we illustrate functions for fitting a generalized loglinear model to
MRCV data and for performing follow-up analyses using method functions. Our examples focus on
only two MRCVs for brevity reasons, but we discuss extensions in the conclusion.

Test for independence

We begin with an example from Bilder and Loughin (2007) involving a simple random sample of
Kansas swine farmers. There are two MRCVs to be examined here, and we denote them generically as
W and Y. The first MRCV (W) corresponds to a survey question that asked farmers to state which
contaminants they tested for from the items “nitrogen”, “phosphorous”, and “salt” (W1, W2, W3,
respectively). The second MRCV (Y) corresponds to a survey question that asked farmers to identify
their swine waste storage methods from the items “lagoon”, “pit”, “natural drainage”, and “holding
tank” (Y1, Y2, Y3, Y4, respectively). Farmers were instructed to “choose all that apply” from each of
these predefined lists. By using a 0 to denote an item not chosen (negative response) and a 1 to denote
an item chosen (positive response), each observation consists of a set of correlated binary responses, as
shown below:
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> head(farmer2, n = 3)
w1 w2 w3 y1 y2 y3 y4

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1
3 0 0 0 0 0 0 1

> tail(farmer2, n = 3)
w1 w2 w3 y1 y2 y3 y4

277 1 1 1 1 1 0 0
278 1 1 1 1 1 0 0
279 1 1 1 1 1 1 0

We see, for example, that the third farmer does not test for any contaminants and uses only a holding
tank for waste storage.

Contingency table-like summaries of MRCV data are often given in papers. In particular, marginal
counts for all pairwise positive responses between items in W and Y are shown in Table 1. This display
format can lead researchers to want to apply Pearson chi-square tests (or other simple categorical
measures) to the table of counts in order to understand associations between the MRCVs. However,
this approach is not correct because it does not take into account the fact that an individual subject
can contribute to multiple counts in the table, which violates any type of multinomial distribution
underlying assumption for these specific counts. Furthermore, three other tables summarizing the
pairwise positive/negative responses (e.g., summarizing responses for items “not” chosen) of this type
could also be constructed. Agresti and Liu (1999) and Bilder and Loughin (2001) show that testing
procedures are not invariant to whether positive or negative responses are summarized and that
different conclusions about the data can be reached depending on the types of responses summarized.

Examining all possible combinations of the positive/negative item responses between MRCVs
is the preferred way to display and subsequently analyze MRCV data. The item.response.table()
function provides this summary for each (Wi, Yj) pair:

> item.response.table(data = farmer2, I = 3, J = 4)

y1 y2 y3 y4
0 1 0 1 0 1 0 1

w1 0 123 116 175 64 156 83 228 11
1 13 27 24 16 38 2 38 2

w2 0 128 121 181 68 165 84 237 12
1 8 22 18 12 29 1 29 1

w3 0 134 124 184 74 174 84 245 13
1 2 19 15 6 20 1 21 0

where I is the number of items for W and J is the number of items for Y. The pairwise item-response
table indicates, for example, that 27 farmers tested for nitrogen and used lagoon as a waste storage
method (i.e., W1 = 1, Y1 = 1). Furthermore, 123 farmers did not test for nitrogen and did not use a
lagoon, 13 farmers tested for nitrogen without using a lagoon, and 116 farmers did not test for nitrogen
while using a lagoon. In total, 27 + 123 + 13 + 116 = 279 farmers participated in the survey (there are
no missing responses to any item).

Agresti and Liu (1999) provided the MRCV extension to testing for independence between single
response categorical variables (SRCVs). This test, known as a test for simultaneous pairwise marginal
independence (SPMI), involves determining whether each W1, . . . , WI is pairwise independent of each
Y1, . . . , YJ . Our MI.test() function calculates their modified Pearson statistic as X2

S = ∑I
i=1 ∑J

j=1 X2
S,i,j

where X2
S,i,j is the usual Pearson chi-square statistic used in this situation to test for independence in

the 2×2 tables formed by each (Wi, Yj) response combination. In our example, X2
S is the sum of 12

Waste storage method

Lagoon Pit Natural Drainage Holding tank

Contaminant
Nitrogen 27 16 2 2

Phosphorous 22 12 1 1
Salt 19 6 1 0

Table 1: Pairwise positive responses for the data in farmer2. While not recommended, this summary
format is available through the marginal.table() function of MRCV.
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pairwise marginal tests for independence. In general, X2
S does not have an asymptotic χ2

I J distribution
due to dependency among the X2

S,i,j. Rather, the asymptotic distribution is a linear combination of

independent χ2
1 random variables (Bilder and Loughin, 2004).

The MI.test() function offers three methods, available through its type argument, that can be
used with X2

S or the X2
S,i,j individual statistics to perform valid tests for SPMI. The type = "boot"

argument value specifies the use of the nonparametric bootstrap to estimate the sampling distribution
of X2

S under SPMI and to calculate an appropriate p-value using B resamples. In addition, two p-value
combination methods—the product and minimum of p-values—are implemented to combine the
p-values obtained from X2

S,i,j and a χ2
1 approximation. Details on these bootstrap approaches are given

in Bilder and Loughin (2004). The type = "rs2" argument value applies a Rao-Scott second-order
adjustment to X2

S and its sampling distribution. This procedure adjusts X2
S to match the first two

moments of a chi-square random variable, asymptotically. Details on this approach are provided in
Bilder and Loughin (2004) and Thomas and Decady (2004). Finally, the type = "bon" argument value
simply applies a Bonferroni adjustment with each X2

S,i,j and a χ2
1 approximation. To implement all

three methods, we can use the type = "all" argument value:

> set.seed(102211) # Set seed to replicate bootstrap results
> MI.test(data = farmer2, I = 3, J = 4, type = "all", B = 1999, plot.hist = TRUE)

Test for Simultaneous Pairwise Marginal Independence (SPMI)

Unadjusted Pearson Chi-Square Tests for Independence:
X^2_S = 64.03
X^2_S.ij =

y1 y2 y3 y4
w1 4.93 2.93 14.29 0.01
w2 6.56 2.11 11.68 0.13
w3 13.98 0.00 7.08 0.32

Bootstrap Results:
Final results based on 1999 resamples
p.boot = 0.0005
p.combo.prod = 0.0005
p.combo.min = 0.001

Second-Order Rao-Scott Adjusted Results:
X^2_S.adj = 36.17
df.adj = 6.78
p.adj < 0.0001

Bonferroni Adjusted Results:
p.adj = 0.0019
p.ij.adj =

y1 y2 y3 y4
w1 0.3163 1.0000 0.0019 1.0000
w2 0.1253 1.0000 0.0076 1.0000
w3 0.0022 1.0000 0.0934 1.0000

Figure 1 shows histograms from the bootstrap implementations. All of the methods provide strong
evidence for rejecting SPMI. The X2

S,i,j and corresponding Bonferroni adjusted p-values indicate a
significant association for the (W1, Y3), (W2, Y3), and (W3, Y1) combinations.

Loglinear modeling

SPMI is only one possible association structure between MRCVs. Bilder and Loughin (2007) introduced
a flexible loglinear modeling approach that allows researchers to consider alternative association
structures somewhere between SPMI and complete dependence. Within this framework, a model
under SPMI is given as

log
(

µab(ij)

)
= γij + ηW

a(ij) + ηY
b(ij) (1)

where µab(ij) is the expected number of subjects who responded (Wi = a, Yj = b) for a, b ∈ {0, 1}.
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Figure 1: Histograms of the bootstrap estimated sampling distributions, where X2∗
S is the modified

Pearson statistic calculated for a resample, and p̃∗prod and p̃∗min are the product and minimum p-value
combination statistics, respectively, calculated for a resample. The vertical lines correspond to the
statistics for the observed data.

The terms on the right side of the model are the same as for a loglinear model under independence
between two SRCVs, where we have added a subscript (ij) to indicate a particular 2×2 table for (Wi,
Yj) within the pairwise item-response table. The usual constraints are placed on the model parameters
to maintain identifiability.

Adding additional terms to Equation (1) leads to different types of association structures between
the MRCVs. For example, adding λab to Equation (1) produces a homogeneous association model (i.e.,
a model that implies equal odds ratios, not necessarily equal to 1, for each 2×2 table), adding λW

ab(i) or

λY
ab(j) to the homogeneous association model produces a W- or Y-main effects model, respectively, and

adding both of these terms to the homogeneous association model produces a W- and Y-main effects
model. The addition of a WY interaction term, λWY

ab(ij), produces the saturated model.

The genloglin() function estimates the above models through a marginal estimation approach.
Within genloglin(), a new data frame is created by converting the raw data into the pairwise item-
response counts:

> item.response.table(data = farmer2, I = 3, J = 4, create.dataframe = TRUE)
W Y wi yj count

1 w1 y1 0 0 123
2 w1 y1 0 1 116
3 w1 y1 1 0 13
4 w1 y1 1 1 27
5 w1 y2 0 0 175

< output omitted >

48 w3 y4 1 1 0

The glm() function is subsequently called from within genloglin() to estimate a loglinear model to
these counts. Rao-Scott adjustments are then applied to obtain valid large-sample standard error esti-
mates. The model argument of genloglin() can take the names of "spmi", "homogeneous", "w.main",
"y.main", "wy.main", and "saturated" to specify a particular model. Alternatively, a user-supplied
formula allows for more flexibility by specifying the model in terms of W, Y, wi, yj, count, W1, . . . ,
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WI, and Y1, . . . , YJ, which we illustrate shortly. The boot = TRUE (the default) value for genloglin()
specifies that resamples should be taken under the fitted model. We use the method of Gange (1995)
for generating correlated binary data to perform semi-parametric bootstrap resampling in this case.
These resamples are subsequently used for hypothesis tests, confidence intervals, and/or standardized
residuals with our related method functions for objects returned by genloglin().

We demonstrate the genloglin() function by estimating the Y-main effects model to the farmer2
data, and then summarize the results using our summary() method function:

> set.seed(499077) # Set seed to replicate bootstrap results
> mod.fit <- genloglin(data = farmer2, I = 3, J = 4, model = "y.main", B = 1999,
+ print.status = FALSE)
> summary(mod.fit)

Call:
glm(formula = count ~ -1 + W:Y + wi %in% W:Y + yj %in% W:Y + wi:yj + wi:yj %in% Y,
family = poisson(link = log), data = model.data)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.58007 -0.13272 0.00043 0.10282 0.79587

Coefficients:
Estimate RS SE z value Pr(>|z|)

Ww1:Yy1 4.83360 0.06535 73.969 < 2e-16 ***
Ww2:Yy1 4.85571 0.06387 76.023 < 2e-16 ***
Ww3:Yy1 4.87418 0.06314 77.199 < 2e-16 ***

< output omitted >

Null deviance: 25401.0663 Residual deviance: 5.8825
Number of Fisher Scoring iterations: 4

The print.status argument can be changed to TRUE (default) in order to print model fitting infor-
mation while the function is running. Information typically provided by the glm() function can be
extracted from mod.fit.

The formula argument within the Call: portion of the output displays an alternative way that
the Y-main effects model could have been specified using variable names. For a model under SPMI
(Equation (1)), the syntax -1 + W:Y + wi %in% W:Y + yj %in% W:Y specifies an ordinary loglinear
model under independence within each 2×2 table formed by the (Wi, Yj) pairs; i.e., the intercept (W:Y),
“row effect” (wi %in% W:Y), and “column effect” (yj %in% W:Y) terms. Note that the addition of wi:yj
%in% W:Y would then lead to a saturated loglinear model within the 2×2 tables. Instead, the addition
of wi:yj + wi:yj %in% Y allows for the associations to vary across the items in Y (waste storage) but
to be the same across items in W (contaminant).

The deviance values in the output should not be used with chi-square distributional approxima-
tions to construct traditional model comparison tests. Instead, our anova() method function offers
bootstrap and Rao-Scott second-order adjustments (type = "boot" and type = "rs2", respectively,
or type = "all" for both methods) to obtain appropriate tests for comparing the model specified in
genloglin() to an alternative model given by its model.HA argument. Comparing the Y-main effects
model to the saturated model shows moderate evidence of lack-of-fit:

> anova(object = mod.fit, model.HA = "saturated", type = "all")

Model comparison statistics for
H0 = y.main
HA = saturated

Pearson chi-square statistic = 5.34
LRT statistic = 5.88

Second-Order Rao-Scott Adjusted Results:
Rao-Scott Pearson chi-square statistic = 10.85, df = 5.23, p = 0.0624
Rao-Scott LRT statistic = 11.96, df = 5.23, p = 0.0409

Bootstrap Results:
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Final results based on 1999 resamples
Pearson chi-square p-value = 0.0385
LRT p-value = 0.0255

Our residuals() method function provides Pearson standardized residuals, where bootstrap or
asymptotic standard errors can be used in their formation. For the Y-main effects model, we find that
lack-of-fit occurs for the (W3, Y1) association. This suggests the need to estimate a new model that
explicitly accounts for the heterogeneity:

mod.fit.w3y1 <- genloglin(data = farmer2, I = 3, J = 4, model = count ~ -1 + W:Y +
wi %in% W:Y + yj %in% W:Y + wi:yj + wi:yj %in% Y +
wi:yj %in% W3:Y1, B = 1999)

where the wi:yj %in% W3:Y1 term forces a perfect fit to the (W3, Y1) association while still maintaining
a Y-main effects model elsewhere.

Once an appropriate model has been identified, our predict() method function can be used to
obtain observed and model-estimated odds ratios with corresponding asymptotic and bootstrap BCa
(Efron, 1987) confidence intervals. These odds ratios help to facilitate interpretation of the association
among items between the two MRCVs.

Summary

The equivalents of many traditional categorical data analysis methods are implemented within our
package in the context of MRCVs. We demonstrated a few of the package’s primary functions for
analyzing the association between two MRCVs. While not shown here, these functions can be used to
analyze MRCVs in other settings. For instance, tests for multiple marginal independence (MMI; Agresti
and Liu, 1999) between an MRCV and an SRCV can be performed by MI.test(), where the I argument
is set to a value of 1. An example is given within the help file for this function. Additionally, the
MRCV package can be used to analyze the association between three MRCVs. For example, Bilder and
Loughin (2007) discuss a third “choose all that apply” question asked of the swine farmers that relates
to the farmers’ sources of veterinary information. We show in the help file for genloglin() how to
estimate a generalized loglinear model for this setting.

Agresti and Liu (1999, 2001) show how to take advantage of many commonly used modeling
methods (e.g., generalized linear mixed models) for MRCV data. Most of these methods have
disadvantages to their use—for example, standard generalized linear mixed models induce a positive
correlation between binary responses within subjects, but a negative correlation can occur with MRCV
data. Their recommended modeling method, a generalized loglinear model fit through generalized
estimating equation (GEE) methodology, can work reasonably well in very large sample sizes (Bilder
et al., 2000). The help file for MI.test() shows how to use functions in the geepack package (Yan et al.,
2012) to estimate this model and then subsequently test for MMI via a Wald test.

We envision future additions to the package that will allow for extensions to other situations.
For example, “choose all that apply” questions are often asked in complex survey sampling settings.
Bilder and Loughin (2009) propose using the same generalized loglinear models, where now different
Rao-Scott adjustments are needed to take into account the sampling design. Also, MRCV data can
arise over a longitudinal setting, and Suesse and Liu (2013) propose the use of GEE methodology to fit
models for this situation. Finally, Nandram et al. (2009) offer a Bayesian perspective to the MMI testing
problem. Due to the ubiquitous nature of “choose all that apply” type data formats, we expect there to
be many other unique settings where new statistical methods need to be developed. We encourage
readers to contact us about their novel methods and/or interest in collaboration.
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