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available at the end of the article value for such parameter is not always a trivial task. Within this context, this paper

proposes a novel method called adaptive convex combination maximum correntropy
criterion (ACCMCC), which combines an adaptive kernel algorithm with convex
combination techniques. ACCMCC takes advantage from a convex combination of two
adaptive MCC-based filters, whose kernel widths are adjusted iteratively as a function
of the minimum error value obtained in a predefined estimation window. Results
obtained in impulsive noise environment have shown that the proposed approach
achieves equivalent convergence rates but with increased accuracy and robustness
when compared with other similar algorithms reported in literature.
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Introduction

Correntropy is a similarity measure based on Rényi entropy capable of extracting high-
order statistical information from data, thus generalizing the correlation concept [1]. In
the past few years, this concept been successfully applied in the solution of various engi-
neering problems, such as the kernel Kalman filtering [2], adaptive time delay estimation
[3], automatic modulation classification [4, 5], nonlinear auto-regressive with exogenous
(NARX) for identification system [6], compressive sensing problem in an impulsive noise
environment [7], signal detector in MIMO systems [8], and fuzzy neural system [9]. Train-
ing adaptive systems with cost functions such as the error correntropy criterion requires
the selection of a proper kernel width. This parameter essentially controls the nature of
the performance surface over which the system parameters are adapted. Therefore, it has
important effects on distinct aspects e.g. convergence speed, presence of local optima,
and stability of weight tracks [10].
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The maximum correntropy criteria (MCC) uses correntropy as a cost function in opti-
mization problems such as adaptive filtering. It has been shown in literature that MCC
is able to achieve better performance than second-order methods [11-15]. Clearly, the
use of a fixed value for the kernel width to estimate the error correntropy through-
out the adaptation process would be suboptimal. However, several works fix this
parameter imposing tradeoffs among convergence rate, robustness, and steady-state
accuracy[10].

A series of adaptive kernel width algorithms has been proposed in order to properly
choose iteratively the value for this parameter in optimization problems. An algorithm
called adaptive kernel width MCC (AMCC) is proposed in [16] aiming to improve
the learning speed, especially when the initial weight vector is far from being opti-
mal. Another method called switch kernel width method of correntropy (SMCC) in [17]
updates the kernel width based on the instantaneous error between the estimation and the
desired signal in order to adjust such parameter for each iterations. Recently, it has been
shown the technique developed in [18] called variable kernel width (VKW-MCC) is able
to search for the best kernel width at each iteration, implying reduced error. This strat-
egy is able to provide fast convergence rate and stable steady-state performance. On the
other hand, the work presented in [19] report a novel robust adaptive algorithm associ-
ated to the convex combination of maximum correntropy (CCMC) with MCC employing
distinct step sizes and fixed kernel width to satisfy the conflicting requirements between
convergence rate and the steady-state mean square error.

Within this context, this work proposes an algorithm called adaptive convex com-
bination kernel width method for maximum correntropy criterion (ACCMCC), which
combines two MCC-based adaptive algorithms with different step sizes while adjusting
the kernel size. The introduced approach is based on the gradient method, as two learn-
ing rates are used and then combined in order to keep fast convergence rate and small
error. Simulation results are presented to validate the performance of ACCMCC method
compared with other similar algorithms previously reported in literature, e.g., MCC,
VKW-MCC, SMCC, AMCCC, and CMCC.

The remainder of the paper is organized as follows. the “Methods” section reviews the
correntropy function concepts. The “Adaptive kernel algorithms” section describes in
detail each kernel adaptive algorithm evaluated in this work. The “Adaptive convex com-
bination kernel width MCC (ACCMCC)” section proposes an algorithm called adaptative
convex combination kernel width for maximum correntropy criterion. The “Impulsive
noise” section shows the noise model used by the simulations, while the “Results and dis-
cussion” section presents the performance of the proposed method compared with other
similar solutions. Finally, the “Conclusion” section discusses the main contributions and
results regarding the study carried out in this work.

Methods

Correntropy

Correntropy is a similarity measure between two arbitrary signals or random variables.
Given two random variables X and Y, correntropy is defined by [1]

VO(X’ Y):E[KG(XiY)]’ (1)



Fontes et al. Journal of the Brazilian Computer Society (2021) 27:7 Page 3 of 13

where E[ -] denote the expectation operator, k; (-, -) is any positive definite kernel with
bandwidth o. In this work, the kernel function is a Gaussian kernel given by

2
exp <_ (XY)> @)

ke (X,Y) = 2

1
V2o
where o corresponds to the kernel bandwidth, also referred to as the kernel size or kernel
width. Using the Taylor series expansion of the Gaussian function in (1), it is possible to

obtain:
o0
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VX, ¥) = e kX_:O%Zkk!E[(X—Y) ] 3)

By using the Gaussian kernel, the correntropy function becomes a weighted sum of all

the even moments from a random variable (X — Y). It is interesting to observe that the
kernel size in Eq. (3) appears as a weighting parameter that controls which moments are
effectively used. For sufficiently large values, the second-order moments are dominant
and the measure gets closer to the correlation [20].

Maximum correntropy criterion (MCC)

Due to the well-know ability of correntropy to deal with outliers, it is often used as a
cost function in regression problems [1]. The goal is to maximize the similarity between
a given desired signal, d;, and an estimated output, y; = w’x;, where w is the esti-
mated weight vector and x; the input vector. In many cases, only a finite number of data
[d;, yi]f\i | is available, as it is possible to employ a sample mean estimator of correntropy
[20]:

1 N
Vo= ;KU (dy,y)). (4)

By using the Gaussian kernel, a cost function / can be expressed as:

N
1 —(di — yi)*
1= v oo (F52). ©

i=1
Then, by maximizing (5) associated to a stochastic gradient ascent, it is possible to
obtain an update rule for weights w in the form:

e

2

m

Wi = Wi_1 + — exp <—k2> exXk, 6)
o 20

where e; = dj — yx = di — w!xy is the error in the kth algorithm iteration and s is the
step or learning rate parameter obtained from the stochastic gradient ascent method.

Adaptive kernel algorithms

In most cases, replacing the mean square error for MCC as a cost function makes the
algorithm robust to outliers. On the other hand, another parameter is introduced, i.e., the
kernel width, which is an inherent characteristic to correntropy.

The kernel size works as a scale parameter that controls the width of the Gaussian kernel
used by correntropy, being directly associated to the steady-state performance, conver-
gence rate, and impulsive noise rejection. Since it is a free parameter, the kernel width
must be chosen by the user, whose value changes according to data and application nature.
Then, the definition of an optimal value for the kernel width is not an easy task [20].
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In this context, many works have been proposed in order to help determining the opti-
mal kernel width, e.g., [16—18, 21]. This work introduces a novel algorithm to address this
issue, as the forthcoming section is dedicated to the detailed discussion of some methods
that eventually led to the conception of the proposed approach.

Adaptive kernel width MCC (AMCC)

According to [16], AMCC consists in selecting the kernel as a combination of a fixed ker-
nel bandwidth, which could be defined using the Silverman rule [22], and the prediction
error ey as expressed by:

2
Ok

= ei +02 (7)

The authors in [16] showed that this approach makes the algorithm to converge faster,
especially when the initial weight vector is far away from the optimal one. Besides the
fast convergence rate, prominent advantages of the method lie in simplicity, no extra
computational cost, and no extra free parameters are required.

Switch kernel width MCC (SMCC)

In order to improve the convergence rate of the method, the switch kernel width MCC
(SMCC) algorithm introduced in [17] proposes a maximum adaptive kernel between the
absolute value of the instantaneous error divided by two and a fixed kernel width, i.e.,

&2
akzzmax Ek,oz , (8)

where o is a predetermined value which can be obtained using the Silverman rule [22] or
any similar method or a different method.

This is another example of a simple update rule for the kernel that does not add new
free parameters to the traditional MCC algorithm, although robustness is maintained.

Variable kernel width MCC (VKW-MCC)

The VKW-MCC algorithm calculates the kernel size at each iteration by maximizing
exp(—e?/20%) with respect to the kernel width o [18]. For this purpose, the authors
employ a modified cost function to reduce the interference of the kernel size. Instead of
making J,, = E[ G, (e)], the following statement is considered:

Jk=E[0°Go(e)]. ©)
Using the gradient ascent approach, the modified MCC algorithm is given as
€k
Wil = Wi + /L exp (—272> €iXk. (10)

Assuming that the noise is not impulsive, the work developed in [18] has also shown
that the optimal kernel size in the ktk iteration is given by:

O :ko' Iekl, (11)

where k, is a positive constant. In order to ensure a robust response to impulsive noise
[23], the VKW-MCC method computes E[ |e| ] instead of |e| in Eq. (11), i.e.,

e =ter—1 + (1 — )min (Ae) - (12)
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where 7 is a smoothing factor that can assume any value between 0 and 1, and A, is a set

of values |eg| in the form:

Aci = [lexl lex=1] .. |ex—n,+1]]- (13)
being N, the length of the estimation window. Then, Eq. (11) can be rewritten as:

ox = kye. (14)

The authors in [18] also mention that the VKW-MCC algorithm lacks robustness when
o is too large. To prevent this from happening, the kernel size must be within an interval
[0, o0].

Adaptive convex combination kernel width MCC (ACCMCC)

Recently, the authors from [19] defined a novel robust adaptive algorithm by convexly
combining two MCC-based adaptive algorithms as in Eq. (6) with different step-sizes
parameters u, a larger and a smaller one. The two adaptive filters are then combined
based in the error. However, this approach does not use any adaptive kernel technique in
order to update the kernel size used by correntropy, which is another free parameter that
could be optimized.

Given the recognized importance to properly define the kernel size parameter in algo-
rithms based on correntropy, this work proposes the combination of the kernel size
optimization strategy from [18] with the CMCC algorithm described in [19] in order
to obtain an new algorithm with improved performance, which we defined as adaptive
convex combination kernel width MCC (ACCMCC). This novel method is based on
the convex combination of two adaptive filters with distinct convergence rates. This is
achieved by setting a larger step u for the faster filter, and a smaller step p for the slower
one. The parameter vectors wj, j = 1,2, are then updated according to the following rule:

2

e

k

Wik = Wjk—1) + Ij €Xp <—2;2> €k X (15)
jk

The outputs of the adaptive filters employed in ACCMCC are combined with a so-called
mix parameter A to obtain the overall output as:

Yk = MYk + (1 — A)yaks (16)

where y1; = wlTkxk, Yok = w2T Xk and wig and wyy are the weight vectors of the filter with
large step size and small step size, respectively. Once the overall output is calculated, the
overall filter output error can be obtained as:

ex = dr — Y. (17)

Analogously to (16), the overall filter weight vector can be determined by combining

w1 and wyg with the mixing parameter, resulting in:
Wk = Mwix + (1 = A wa. (18)

The desired behavior for the mixing parameter A in (18) lies in keeping it as close to 1
as possible when the algorithm starts, while it should tend to 0 as the ACCMCC begins to
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converge. According to [19], this behavior can be obtained by using a sigmoidal function
to update parameter A i.e.
_ 1

(Ut exp(—op))’

Expression 19, denotes that o controls the update rate of 1. In order to maintain

Ak (19)

robustness to impulsive noise, the adaptation of o is expressed by an adaptive rule,
which is obtained from the correntropy maximization with the stochastic ascent gradient

method:
2
d exp <—22‘2>

2
Qk+1 = O + a0

dog

2

€k
= o + ni exp (—2) €l (20)

20
where 1, is the adaptation step and n; corresponds to a simplified mathematical notation

in the form:

Mk = Mark(1 — A 1k — yox)- (21)

Similarly to the former CMCC method, the range for k is restricted to a symmetric
interval [ —4, 4].

The proposed ACCMCC is summarized as Algorithm 1, where it is possible to notice
that the VKW-MCC mechanism is adopted to adjust the kernel width for each one of
the adaptive filters. Therefore, it is possible to state that ACCMCC is a hybrid approach
derived from the combination of CMCC and VKW-MCC.

Impulsive noise

Several statistical models have been proposed so far to describe impulsive noise. One
of the most popular statistical distributions for this purpose is the a-stable distribu-
tion [24]. The fundamental principles associated with alpha-stable modeling are based
on the generalized central limit theorem [25]. By adjusting its respective free parame-
ters, it is possible to generate various probability distribution functions, such as Gaussian,
CauchyLorentz, or Lévy.

In traditional signal processing, Gaussian noise is commonly used in system modeling
due to its simple probability distribution function (PDF). With the rapid development of
technology, it is nearly impossible to ignore the impact of nonGaussian noise, thus leading
to the adoption of a generalized distribution. It is reported in literature as the so-called
alpha-stable distribution, which is a unique solution that satisfies the generalized central
limit theorem. Due to the lack of closed formulas for density and distribution functions,
the alpha-stable distribution is commonly expressed in terms of a characteristic function
[25]. Firstly, let us consider that the characteristic function of a random variable X has the

form described in [26] as:
¢(w,a,B,y,8) = exp{y*(—|w|* + jod(v,a, B)) + jéw}, (22)

where

Blw* tan (%) a#1

O(w,a,B) =
(@@ p) —21n 0| «=1

(23)
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Algorithm 1 ACCMCC
Free parameters: T = 0.98, u1 = 0.05, up = 0.01, og = 20, k, = 200

Initialization values: ag = Lo = 1, wjo = 0, €jo = |d1]

1: for each iteration k do

2 forj=1to2do
3 Jjk = W{kxk
4 ejk = dk — y/k
5 Agk = [ |e/k| |ei<k71>| e |€j(kaw+1)| ]
6 E]’k = ‘L’Ej(kfl) + (1 — T)min(Ae/,k)
o
7: ifey > 20 then
ks
8: Ujk =09
9: else
10: O‘}'k = ko'é}k
11: end if
2
W . ik \
12 Wik = Wjk—1) + 1 exp | =75 | ejxXk
20}.,(
13: end for
14 Y= My + (1 — Ay
15: ex = dk — Yk
(1 + exp(—ag))
17: Nk = Mare(X = A Y1k — y2k)
2

e
18: Q41 = O + Nk €Xp _7](2 ex

20
19: Upq1 = min{max{oyq, —4}, 4}

20: Wi = Wik + (1 — Ag)wog
21: end for

It can be seen that « is the characteristic exponent in (22), which mainly characterizes
the intensity of the impulsive noise (0 < o < 2). This parameter is responsible for control-
ling the impulsivity of the density function, i.e., the smaller the value of alpha, the longer
the distribution tail will be. Particularly for o = 2, it determines the sign and degree of
asymmetry. If 8 = 0, the distribution is symmetric. Finally, y is the dispersion parameter,

2

which is similar to the variance ¢ in a Gaussian distribution and capable of measuring

the degree of discretization of sample data.

Results and discussion

In this section, Monte-Carlo simulations are carried to verify the theoretical analysis and
validate the behavior of the ACCMCC algorithm. The novel method is used in a system
identification problem, while its performance is compared with those regarding the tra-
ditional MCC with fixed kernel width and four other methods reported in literature i.e.
AMCC, SMCC, CMCC, and VKW-MCC, which use adaptive kernel widths. The sys-
tem adopted in the simulation tests has nine taps and its respective vector of weight
parameters is defined as in [27]

w=[0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1] (24)
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Table 1 Alpha-stable parameters employed in simulation tests

Distribution parameters Value
Location (§) 0
Skewness (B) 0
Characteristic exponent («) 12102
GSNR 12t020dB

The parameter settings are listed in Table 1. Two different nonGaussian noise signals
are individually used to contaminate the signal of the system identified by the MCC-based
algorithms. Besides, each one of them corresponds to a distinct scenario. The perfor-
mance of ACCMCC is compared with those regarding other similar methods using the
weighted signal-to-noise ratio (WSNR) metric, which is expressed as [13]:

wlw
WSNRy, = 101ogy, T " (25)
n n

It is worth to mention that the convergence curves for WSNR are usually used to

compare the convergence performance of distinct algorithms.

Scenario 1—System under bimodal noise
In the first scenario, the system is under a nonGaussian noise described by a bimodal
signal given by [1]:

0.95 N (0,10™%) + 0.05 N (0, 10) (26)

Figure 1 presents a COMPARISON among several methods under this condition. After
the 500th sample, ACCMCC achieves improved performance if compared to the other
methods. In steady-state, ACCMCC becomes stable when WSNR = 33dB. It can be also
stated that the proposed method presents good convergence rate.

35
30
=25
o
o
= 20
%)
< 15
o) AMCC
= 10 sSMcC
—CMCC
5 — VKW
—— ACCMC(Q
0
0 1000 2000 3000 4000

Iterations

Fig. 1 Performance comparison among several algorithms in terms of WSNR as a function of the number of
points using bimodal noise 11 = 0.01 e wy = 0.02 are adopted for ACCMCC
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Fig. 2 Evolution of adaptive kernel widths associated to the adaptive filters

Figure 2 shows the values assumed by the adaptive kernel width for both adaptive fil-
ters used in ACCMCC. The initial values are initially large towards the search for a more
convex space, i.e., where only few local minimums exist. When the algorithm is close
to the solution, the kernel size is adjusted to find a more accurate solution. In particu-
lar, ACCMCC comprises a combination of two MCC adaptive filters with distinct kernel
widths and steps.

Scenario 2—System under alpha-stable noise

The alpha-stable noise defined by 22 is used in the second scenario to contaminate the
system under study. Tests using different noise intensities are performed to evaluate
the behavior of ACCMCC. In this case, the generalized signal-to-noise ratio (GSNR) is
employed and defined as [13]:

M
1
GSNR = 10log1o (M Z |s(t)2|) , (27)
14 t=1

where s is the original signal and recalling that y is the dispersion parameter from the
alpha-stable distribution.

Different values of GSNR are used in the simulation tests, which range from 12 to 20
dB as shown in Fig. 3. All MCC-based algorithms present reduced efficiency as GSNR
decreases. However, ACCMCC and CMCC are the only two methods with good perfor-
mance over the entire range adopted for GSNR. The specifications for the alpha-stable
parameters are listed in Table 2.

The performance of ACCMCC is compared with those regarding other MCC-based
methods while varying GNSR from 12 dB to 20 dB according to Fig. 3. In particular, the
method proposed in this work achieves the best results for all values assumed by GSNR.

Figure 4 represents the performance of ACCMCC when the system is under an alpha-
stable noise as « = 1.3 and GSRN = 15. It is possible to notice that ACCMCC becomes
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20 AMCC
—6—SMCC
-6—CMCC

15] —e— VKW
-6—ACCMCC

10

12 14 16 18 20
GSNR (dB)
Fig. 3 Performance comparison among several methods in terms of WSNR as a function of GSNR for o = 1.3

stable with about WSNR = 25dB after the 500th iteration, being this the best result
achieved among all analyzed methods.

It worth to mention that the performances of AMCC and SMCC are significantly
improved if compared to that regarding ACCMCC as the noise becomes Gaussian, i.e.,
a tends to 2. According to Fig. 5, the proposed algorithm still outclasses MCC, CMCC,
AMCC, SMCC, and VKW-MCC in terms of convergence rate, steady-state misalignment,
and tracking performance in nonGaussian environments.

According to the previous analysis, the results demonstrate that the proposed method
presents better accuracy and robustness in both noisy scenarios.

Conclusion

This work has presented a novel algorithm called adaptive convex combination maximum
correntropy criterion, which is based on the VKW-MCC and CMCC methods. Since the
kernel is used to calculate the value assumed by the cost function, modifying the kernel
width implies changing the estimator of the cost function. The proposed method to adapt
the kernel size can also be seen as a mechanism to use different cost functions depending
on the nature of the data seen by the adaptive system.

Table 2 Relationship between kernel size and step size

Methods Scenario 1 Scenario 2

ACCMCC o =3,u1 =001, u; =002 o =2, =001, =002
VKW-MCC o=3u =003 o =2,u =003

SMCC o =4u =0015 o =2,u =0015

AMCC o =1, = 00025 o =2u =0018

CMCC o =3u =001, u, =002 o =2,u =001, u, =002

MCC o =311 =003 o =12,p; = 0069

Page 10 0f 13
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Fig. 4 Performance comparison among several methods in terms of WSNR as a function of the number of
iterations for @=1.3 and GSNR = 15

In order to provide robustness against impulsive interference, the adaptive rule of the
mixing factor is derived by maximizing correntropy with the stochastic gradient ascent
method with two distinct learning rates. This approach has presented improved per-
formance than those achieved by other existing methods, especially in the presence of
highly impulsive noise. Simulation results have also shown that, even including new free
parameters to the method, the proposed algorithm was able to effectively eliminate

40 T T T
35 ]
) D
=2 ‘
o 307 o
Z
w
- Iy
..5_’ 25 L - MCC ~O
o AMCC
= —e—SMCC o
20 -6—-CMCC |-
=-— VKW
=6—ACCMCC
15 1 1 1
1.2 1.4 1.6 1.8 2
Characteristic exponent a
Fig. 5 Performance comparison among several methods in terms of WSNR as a function of the characteristic
exponent
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interference caused by impulsive noise conditions while also improving the estimation
accuracy.
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