
Journal of the
Brazilian Computer Society

Almeida et al. Journal of the Brazilian Computer
Society (2019) 25:12
https://doi.org/10.1186/s13173-019-0093-7

RESEARCH Open Access

Testing tools for Android context-aware
applications: a systematic mapping
Diego R. Almeida* , Patrícia D. L. Machado and Wilkerson L. Andrade

Abstract

Context: Mobile devices, such as smartphones, have increased their capacity of information processing and sensors
have been aggregated to their hardware. Such sensors allow capturing information from the environment in which
they are introduced. As a result, mobile applications that use the environment and user information to provide services
or perform context-based actions are increasingly common. This type of application is known as context-aware
application. While software testing is an expensive activity in general, testing context-aware applications is an even
more expensive and challenging activity. Thus, efforts are needed to automate testing for context-aware applications,
particularly in the scope of Android, which is currently the most used operating system by smartphones.

Objective: This paper aims to identify and discuss the state-of-the-art tools that allow the automation of testing
Android context-aware applications.

Method: In order to do so, we carried out a systematic mapping study (SMS) to find out the studies in the existing
literature that describe or present Android testing tools. The discovered tools were then analyzed to identify their
potential in testing Android context-aware applications.

Result: A total of 68 works and 80 tools were obtained as a result of the SMS. From the identified tools, five are
context-aware Android application testing tools, and five are general Android application testing tools, but support
the test of the context-aware feature.

Conclusion: Although context-aware application testing tools do exist, they do not support automatic generation or
execution of test cases focusing on high-level contexts. Moreover, they do not support asynchronous context
variations.

Keywords: Android, Context-aware application, Testing automation

Introduction
Mobile applications have become more than entertain-
ment stuff in our lives. Such applications have become
increasingly pervasive in such a way that humans are
quite dependent on mobile devices and their applications.
According to the research conducted by the Statistics web
site portal [1], the number of mobile users can reach the
five billion mark by 2019.
While mobile applications have been developed primar-

ily for the entertainment industry, they are now touch-
ing more critical sectors such as payment systems. The
exponential growth of this market and the criticality of

*Correspondence: diegor@copin.ufcg.edu.br
Federal University of Campina Grande - UFCG, Aprigio Veloso Street, 882,
Campina Grande, Brazil

system development demands greater attention to the reli-
ability aspects of applications of these mobile devices. As
demonstrated in some studies [2], [3], [4], mobile appli-
cations are not bug-free, and new software engineering
approaches are required to test these applications [5].
Software testing is a commonly applied activity to assess

whether a software behaves as expected. However, test-
ing mobile applications can be challenging. Accordingly
to Muccini et al. [4], mobile applications have a few pecu-
liarities that make testing more difficult when compared
to other kinds of computer software. Some of the pecu-
liarities are connectivity, limited resources, autonomy,
user interface, context-awareness, new operating systems
updates, diversity of phones, and operating systems and
touch screens.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-019-0093-7&domain=pdf
http://orcid.org/0000-0001-7873-6470
mailto: diegor@copin.ufcg.edu.br
http://creativecommons.org/licenses/by/4.0/

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 2 of 22

Therefore, as the test difficulty increases, the demand
for tools to automate the testing process of mobile appli-
cations also increases. Currently, most researchers’ and
practitioners’ efforts in this area target the Android plat-
form, formultiple reasons [6]: (a) At themoment, Android
has the largest share of the mobile market (representing
approximately 76% of the total of mobile operating system
market share worldwide from June 2018 until June 2019
accordingly to the Statcounter Web Site [7]), which makes
Android extremely appealing for industry practitioners;
(b) as Android is installed in a range of different devices
and has different releases, Android apps often suffer from
cross-platform and cross-version incompatibilities, which
makes manual testing of these apps particularly expensive
and thus, particularly worth automating; and (c) Android
is an open-source platform, which makes it a more suit-
able target for academic researchers, making it possible
the complete access to both apps and the underlying
operating system.
Nowadays, mobile devices are equipped with several

sensors such as touch screen, compass, gyroscope, GPS,
accelerometer, pedometer, and so on. These sensors make
the development of context-aware applications possible.
This paper considers context as any information that may
characterize the situation of an entity. An entity can be
defined as a person, a place, or an object that is relevant
when considering the interaction between a user and an
application [8]. A system is context-aware if it considers
context information to perform its task of providing rel-
evant information or services to a user [9]. Therefore, a
context-aware application takes the information provided
by the sensors to make relevant information or to direct
its behavior.
This paper intends to identify tools capable of testing

context-aware applications. Therefore, a systematic map-
ping study (SMS for short) was carried out in order to
answer the following main research questions: (a) what
are the Android testing tools published in the literature?
And (b) what are the Android context-aware testing stud-
ies and tools published in the literature? From the answers
to these research questions, we were able to analyze if the
existing tools can test context-aware applications.
The SMS resulted in a total of 68 works. From them,

we could see which are the research groups that work on
Android application testing and which are more directly
related to context awareness. Moreover, we identified 80
general Android testing tools. We analyzed these tools,
identified which techniques are used mostly, which meth-
ods are implemented, which tools are available for down-
load, and which tools are used mostly. Among the 80
general Android testing tools, we have identified five tools
for testing Android context-aware applications and five
tools for testing general Android applications, also allow-
ing the testing of context-aware features. We have noticed

that these tools are not able to automatically generate or
execute test cases that use high-level context and that
support asynchronous context variation.
The remainder of this paper is organized as follows: the

“Background and related work” section presents the main
concepts needed to understand this paper and the related
work. The “Research method” section describes how
the SMS was conducted. The “Results” section and the
“Analysis and discussion” section present the results of
the SMS and expose our discussions about the found
tools in the context-aware Android application testing
field, respectively. Finally, the “Conclusions and future
works” section concludes the paper.

Background and related work
This section presents the main concepts related to this
work. Also, it presents related work that addresses prob-
lems and solutions of concepts that touch the objective of
this paper.

Android operating system
Android is Google’s mobile operating system, and it is cur-
rently the world leader in this segment. Android is avail-
able for several platforms such as smartphones, tablets,
TV (Google TV), watches (Android Wear), and glasses
(Google Glass), cars (Android Auto), and it is the most
widely used mobile operating system in the world.
Although Android applications are developed using the

Java language, there is no Java virtual machine (JVM)
in the Android operating system. In fact, until before
the Android 4.4 (KitKat), what existed was a virtual
machine called Dalvik, which is optimized to run on
mobile devices. After that, Dalvik was replaced by ART
(Android Runtime). Therefore, as soon as the bytecode
(.class) is compiled, it is converted to the .dex (Dalvik Exe-
cutable) format, which represents the compiled Android
application. After that, the .dex files and other resources
like images are compressed into a single .apk (Android
Package File) file, which represents the final application.
Android applications run on top of the Android frame-
work, as can be seen in Fig. 1.
Android has a set of core apps for calendars, email,

contacts, text messaging, internet browsing, and so on.
Included apps have the same status of installed apps so
that any app can become a default app [10].
All features of the Android OS are available to devel-

opers through APIs written in the Java language. Android
APIs allow developers to reuse central and modular
system components and services, making it easier to
develop Android applications. Furthermore, Android pro-
vides Java framework APIs to expose the functionality
of native code that requires native libraries written in
C and C++. For example, a developer can manipulate
2D and 3D graphics in his/her app through the Java

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 3 of 22

Fig. 1 Android Platform Architecture (from [10])

OpenGL API of the Android framework by accessing
OpenGL ES.
As already told, from Android 4.4 (KitKat), each app

runs on its process and with its instance of the Android
Runtime (ART). ART is designed to run multiple virtual
machines on low-memory devices by executing DEX files,
a bytecode format designed especially for Android that is
optimized for minimal memory footprint.
The hardware abstraction layer (HAL) provides inter-

faces that give access to the hardware features of the
device to the higher-level Java API framework such as
the camera, GPS, or Bluetooth module. When a frame-
work API makes a call to access the device hardware,
the Android system loads the library module for that
hardware component.
The Android platform was built based on the Linux ker-

nel. For example, the Android Runtime (ART) relies on the
Linux kernel for underlying functionalities such as thread-
ing and low-level memory management. Another advan-
tage of the Linux kernel is the possibility of reusing the
key security features and allowing device manufacturers
to develop hardware drivers for a well-known kernel.

Android applications
Initially, Android applications were written only in Java
and run on the top of the Android framework presented
in the “Android operating system” section. After Google
I/O 2017 [11], Android applications can be written using
either Java or Kotlin1. An android application can be
composed of four component categories: (a) activity, (b)
broadcast receiver, (c) content provider, and (d) service.

1https://kotlinlang.org

(a) Activities are focused on windows, and they are the
only type of components that contain graphical user
interfaces (GUI) in which the user interaction takes
place; only one activity can be active at a time.
Activities behavior are implemented in a .java file
while the activities structure graphical interface are
described in a .xml file.

(b) Services run in the background and can perform
long-running operations, e.g., an email client may
check for new mails while users are running another
application. Since they do not provide a user
interface, Android testing tools do not directly test
them.

(c) Content providers are structured interfaces to shared
data stores, such as contacts, photos, and calendar
databases. Applications may have their own content
providers and may make them available to other apps.

(d) Broadcast receivers handles broadcast
announcements. For example, an email client may
receive a notification that the battery is low and, as a
result, proceed to save email drafts.

There is a mandatory XML manifest file to build
Android apps that provides information regarding their
life cycle management.
Although Android applications are GUI-based and

mainly written in Java, they differ from Java GUI applica-
tions, particularly by the kinds of bugs they can present
[2, 12]. Existing test input generation tools for Java
[13–15] cannot be directly used to test Android apps, and
custom tools must be adopted instead. For this reason, the
academic community has made a lot of effort to research
Android application testing tools and techniques. Several
test input generation techniques and tools for Android
applications have been proposed [16–19].

Context-aware applications
The first mobile applications had desktop application fea-
tures adapted for mobile devices. Muccini et al. [4] dif-
ferentiate mobile applications into two sets: (a) traditional
applications that have been rewritten to run on a mobile
device, which are called App4Mobile, and (b) mobile
applications that use context information to generate
context-based output, called MobileApps. Thus, mobile
applications have become, as time goes by, increasingly
pervasive. Its behavior depends not only on user inputs
but also on context information. Therefore, current appli-
cations are increasingly characterized as context-aware
applications.
To better understand what a context-aware application

is, it is first necessary to define what context is. Some
authors consider the context to be the user’s environment,
while others consider it to be the application’s environ-
ment. Some examples are as follows:

https://kotlinlang.org

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 4 of 22

• Brown [20] defines context to be the elements of the
user’s environment that the computer knows about;

• For Franklin and Flaschbart [21], context is the
situation of the user;

• Ward et al. [22] view context as the state of the
application’s surroundings;

• Rodden et al. [23] define it to be the application’s
setting;

• Hull et al. [24] consider context as aspects of the
current situation of the entire environment.

These definitions do not agree with each other and
appear to be more author-specific definitions than a gen-
eral definition of context. The definition most commonly
accepted by several authors is the definition provided by
Abowd et al.:

Context: “any information that can be used to
characterize the situation of
entities (i.e., whether a person, place or object) that are
considered relevant
to the interaction between a user and an application,
including the user and
the application themselves. Context is typically the
location, identity and
state of people, groups, and computational and physi-
cal objects.” [25]

Besides beingmore general, this definition facilitates the
understanding of what information can be considered as
context information. The entities we identified as most
relevant are places, people, and things. Places are regions
of geographical space such as rooms, offices, buildings,
or streets. People can be either individuals or groups, co-
located or distributed. Things are either physical objects
or software components and artifacts, for instance, an
application or a file. The context information most com-
monly used by mobile applications is location, but there
are several other types of context information that may
be relevant to a mobile application such as tempera-
ture, brightness, time, date, mobile device tilt, geographic
orientation (north, south, east, west), and so on.
Vaninha et al. [26] model context into four layers: low-

level context, high-level context, situations, and scenario.
In their model, context information is divided into two
levels (low-level and high-level). Combinations of values
of context information form situations and chronologi-
cal sequences of situations form scenarios. Following the
Vaninha et al. [26] model, we can divide context informa-
tion into two levels:

• Low-level context: This is divided into two types:

– Physical context: They are directly acquired
from the hardware sensor measurement (e.g.,

location, light, sound, movement, touch,
temperature or air pressure);

– Virtual contexts: These are related to virtual
data, acquired from software applications or
services (for example, weather conditions, a
person’s mood, current speed).

• High-level context: It is the result of a combination of
low-level context and virtual context processing. It
uses various sources of information and combines
physical and virtual sensors with additional
information to solve higher tasks. For example, the
“high-speed vehicle” context is an aggregation of the
following low-level contexts: (a) GPS coordinates to
identify at which point of a given highway the vehicle
is located, b current vehicle speed, and (c) the
maximum speed on that highway.

Related work
Matalonga et al. [27] performed a quasi-systematic review
aiming to characterize the methods used for testing
context-aware software systems (CASS). From the 1820
analyzed technical papers, 12 studies that address testing
of CASS were identified. Matalonga et al. argue that, after
analyzing the 12 studies, it did not found evidence that
there is a complete context-aware test method for testing
CASS.
Guinea et al. [28] conducted a systematic review eval-

uating the different phases of the software development
life cycle for ubiquitous systems. Themain limitations and
interests of each of the phases were classified according
to each phase of the development cycle. The system-
atic review resulted in 132 approaches addressing issues
related to different phases of the software development
cycle for ubiquitous systems. From the 132 approaches,
only 10 are related to the test phase. Guinea et al. clas-
sified the 10 approaches by their focus or concern and
obtained 5 dedicated to context-aware testing, 3 to simu-
lators, and 2 to test adequacy. For this reason, the authors
state that testing is perhaps where the results reflect that
more research is needed.
Shauvik et al. [6] present a paper that performs a thor-

ough comparison of the main existing test input genera-
tion tools for Android. In the comparison, it is evaluated
the effectiveness of these tools, and their corresponding
techniques, according to four metrics: (a) code coverage,
b ability to detect faults, (c) ability to work on multi-
ple platforms, and (d) ease of use. Shauvik et al. affirm
Android is event-driven. Consequently, inputs are nor-
mally in the form of events, such as clicks, scrolls, and text
inputs, or system events, such as the notification of newly
received text messages. Thus, testing tools can generate
such inputs by randomly or following a systematic explo-
ration strategy. Considering the last case, exploration can

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 5 of 22

either be guided by amodel of the app, which construction
can be done statically or dynamically, or exploit tech-
niques that aim to achieve as much code coverage as
possible. Besides that, testing tools can generate events
by considering Android apps as either a black box or a
white box. Gray box approaches are also possible. The
gray box strategy can be used to extract high-level prop-
erties of the app, such as the list of activities and the
list of UI elements contained in each activity, in order to
generate events that will likely expose unexplored behav-
ior. While Shauvik et al. present unexpected results and
also an analysis of weaknesses and limitations of the tools,
none of the tools or any of the analyses and conclu-
sions about the work take into account context-aware
applications.
Due to the growing number of context-aware applica-

tions in recent years, many other researchers have been
interested in investigating testing of such applications,
[16, 17, 29, 30].
Wang et al. [17] introduced an approach to improve

the test suite of a context-aware application by identify-
ing context-aware program points where context changes
may affect the application’s behavior. Their approach sys-
tematically manipulates the context data fed into the
application to increase its exposure to potentially valu-
able context variations. To do so, the technique performs
the following tasks: (1) it identifies key program points
where context information can effectively affect the appli-
cation’s behavior, (2) it generates potential variants for
each existing test case that explore the execution of differ-
ent context sequences, and (3) it attempts to dynamically
direct application execution towards the generated con-
text sequences.
Songhui et al. [16] investigate challenges and proposed

resolutions for testing context-aware software from the
perspective of four categories of challenges: context data,
adequacy criteria, adaptation, and testing execution. They
conclude there is no automatic testing framework that
considers all of the discussed challenges, and they say
they are building such a framework as an execution
platform to ease the difficulty of testing context-aware
software.
Thought a quasi systematic literature review, Santiago

et al. [29] identified 11 relevant sources that mentioned
15 problems and 4 proposed solutions. The data were
analyzed and classified into 3 groups of challenges and
strategies for dealing with context-aware software systems
testing.
Sanders and Walcott [30] propose an approach to test

multiple states of Android devices based on existing test
suites to address the testing of context-aware applications.
They introduce the TADS (Testing Application to Device
State) library. However, the approach currently handles
only the Wi-Fi and Bluetooth sensors.

Holzmann et al. [31] and the AWARE framework2
present very similar applications for sharing mobile
context information. Holzmann et al. present an appli-
cation called the “Automate toolkit” and, similar to the
AWARE framework, they are able to store the usage data
and context information of a device, so it is possible to
store device usage scenarios such as visited screens and
performed gestures. So, using scenarios that can cause
failures in some application can be more carefully stud-
ied and repeated. While “Automate toolkit” emphasizes
on the logging of interactions such as opened apps, vis-
ited pages, and number of interactions per page, AWARE
focuses on presenting and explaining context informa-
tion, that is, the main purpose of the AWARE frame-
work is to collect data from a series of sensors on
the mobile device and infer context information from
them. Neither of these applications is intended to test
context-aware applications, but rather to store usage
scenarios.
Usman et al. [32] present a comparative study of mobile

app testing approaches focusing on context events. The
authors defined as comparison criteria the following six
key points: events identification, method of analyzing
mobile apps, the testing technique, classification of con-
text event, validation method, and evaluation metrics.
Usman et al. resemble our work on some results, such
as the categorization of Android context-aware testing
tools into testing approaches such as script-based test-
ing, capture-replay, random, systematic exploration, and
model-based testing. The primary search process was
performed on databases and indexing system of Scopus
and Google Scholar. The search was performed to return
results between 2010 and 2017. In our work, a system-
atic mapping was performed to return results between
2008 and 2018. Therefore, we obtained a greater amount
of tools and found studies. In addition, Usman et al. do
not make a further reflection on the obtained results
such as those we have done in our work (i.e., main
authors in the field of research, key conferences, and most
used tools).
Although relevant, except Usman et al. [32], none of

these studies discussed so far have conducted an investi-
gation of the ability of current testing tools for handling
Android context-aware applications. Matalonga et al. [27]
presented a quasi-systematic review to characterize meth-
ods but did not discuss whether the current tools are capa-
ble of testing context-aware applications. Shauvik et al. [6]
perform a thorough comparison of the main current test
input generation tools for Android but does not analyze
context awareness features. The other authors present
studies of challenges and solutions, some with tools, but
with their respective limitations.

2http://www.awareframework.com

http://www.awareframework.com

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 6 of 22

Researchmethod
The purpose of an SMS is to comprehensively identify,
evaluate, and interpret all work relevant to the defined
research questions. Thus, this section is based on the work
of Petersen et al. [33] and details the central research ques-
tions of this paper, as well as the procedure followed to
identify the relevant studies required to do so.

Research questions
This systematic mapping aims at summarizing the cur-
rent state of the art concerning test automation tools for
Android context-aware applications. In order to do so,
we conducted an SMS following the recommendations
defined by Petersen et al. [33] and, therefore, proposed the
following research questions (RQs):

• RQ1: What are the Android testing tools published in
the literature?

– RQ1.1: What technique do they implement?
– RQ1.2: What are the most used ones?

• RQ2: What are the Android context-aware testing
studies and tools published in the literature?

– RQ2.1: Which research groups are involved in
Android context-aware testing research?

– RQ2.2: What are the research gaps addressed
in Android context-aware testing?

For each main research question, we formulated sub-
questions as listed above. Those sub-questions are
answered to support our main questions. In RQ1, we aim
to find out what are the existing Android testing tools
currently discussed in the literature. In RQ2, we aim to
identify and better understand the existing research about
Android context-aware testing. To answer the research
questions, we searched for studies from four digital
libraries, as can be seen in the “Sources of information”
section.

Sources of information
In order to gain a broad perspective, as recommended
in Kitchenham’s guidelines [34], we widely searched for
references in electronic sources. The following databases
were covered:

• ACM Digital Library3;
• IEEE eXplore4;
• Science Direct5;
• Springer Link6.

3https://portal.acm.org
4https://ieeexplore.ieee.org
5https://www.sciencedirect.com
6https://link.springer.com

These databases cover the most relevant journals, con-
ferences, and workshop proceedings within Software
Engineering.

Search criteria
In order to select just articles related to potentially
Android context-aware applications testing tools, some
keywords were defined.

• Sensibility to context : Context-aware, context aware,
context driven, context sensitive, context sensitivity,
pervasive, ubiquitous, self adaptive, self adapt.

• Others: Android, test, testing, tool, framework.

As a result of the combination between the keywords
and the connectors AND and OR, the following search
string was defined:
‘‘Android’’ AND

(‘‘context-aware’’ OR ‘‘context aware’’ OR

‘‘context driven’’ OR ‘‘context

sensitive’’ OR

‘‘context sensitivity’’ OR ‘‘pervasive’’

OR

‘‘ubiquitous’’ OR ‘‘self adaptive’’ OR

‘‘self adapt’’) AND

(‘‘test’’ OR ‘‘testing’’) AND

(‘‘tool’’ OR ‘‘framework’’)

However, when executing the search string, the num-
ber of results was too small. Thus, we decided to split the
search string into two search strings: in the first one, we
would address studies related to context-aware Android
applications; the second one, studies related to Android
application testing tools.
Thus, the resulting search strings were the following.
Search String 1:

‘‘Android’’ AND

(‘‘context-aware’’ OR ‘‘context aware’’ OR

‘‘context driven’’ OR ‘‘context

sensitive’’ OR

‘‘context sensitivity’’ OR ‘‘pervasive’’

OR

‘‘ubiquitous’’ OR ‘‘self adaptive’’ OR

‘‘self adapt’’)

Search String 2:
‘‘Android’’ AND

(‘‘test’’ OR ‘‘testing’’) AND

(‘‘tool’’ OR ‘‘framework’’)

Inclusion and exclusion criteria
Studies were selected for the SMS if theymet the following
inclusion criteria:

1. The study describes at least one Android testing tool.
2. The study clearly describes the method and purpose

of the testing tool.

https://portal.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://link.springer.com

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 7 of 22

3. The study is written in English, Portuguese, or
Spanish.

In terms of exclusion criteria, studies were excluded if
they

1. Did not match the inclusion criteria.
2. Did not have relevant information about the tools.
3. Were published before 2008.
4. Described only obsolete Android testing tools.

Study selection and extraction
In order to obtain more confidence in the research results,
the study selection was divided into three steps: elec-
tronic search, selection, and extraction. The electronic
search was conducted executing the search strings in the
sources of information. The search process performed on
all databases was based on the advanced search feature
provided by the online databases. The search strings were
applied using an advanced command search feature and
set to include meta-data of studies with initial data set up
since 2008.
After executing the search strings in each of the sources

of information, a total of 24,005 studies were found.
The search reported too many results diverging from the
objective of the research in two cases: Search String 2
of Science Direct and two Search Strings of the Springer
Link. Thus, some filters were considered to obtain results
closer to the objective of the work. At Science Direct,
the search was filtered to find studies that presented the
search string words in the title, abstract, or keywords. In
Springer Link, the studies that were of the discipline of
computer science and had software engineering as a sub-
discipline were filtered. Thus, after applying the filters, we
found 6648 as can be seen in Table 1.

Table 1 Studies found in the electronic search

First search Filtered search

ACM

Search String 1 462 462

Search String 2 274 274

Total 736

IEEE

Search String 1 725 725

Search String 2 267 267

Total 992 992

Science Direct

Search String 1 2284 2284

Search String 2 4995 294

Total 7276 2578

Springer Link

Search String 1 4062 763

Search String 2 10,939 1549

Total 15,001 2342

Total 24,005 6648

The systematic mapping was followed using the Start
[35] tool. This tool was used in the organization of the
systematic mapping as well as automatic identification of
duplicate articles. Only the results of Springer Link could
not be manipulated in the Start tool because it cannot
be exported in any of the formats accepted by the tool.
Thus, Microsoft Excel7 was used. The file containing the
search results in the search engines and the Start tool file
containing the references can be downloaded here8.
After reading the abstract of the 6648 studies resulted

from the electronic search, a total of 143 studies were
selected. The selection of these studies was carried out by
reading the abstract and verifying if the study belonged
to the SMS area of interest. Table 2 illustrates how many
studies were accepted, rejected, and duplicated in each of
the sources of information.
After the complete reading of each of the 143 selected

studies, 68 studies were accepted and included in this sys-
tematic mapping study. These studies were extracted by
reading each of the selected studies and noting whether
they meet the inclusion and exclusion criteria of the
“Inclusion and exclusion criteria” section. Figure 2 sum-
marizes how the studies resulting from the systematic
mapping of this work were selected and extracted.

Study analysis
All information extracted from the 68 found studies is pre-
sented in the “Results” section. We analyzed the number
of publications per year, the number of publications per
country, the main conferences in which articles were pub-
lished, and the main authors in the area. The main contri-
bution of this information was the inference of which are
the groups that publish most in the area of SMS.
The “Analysis and discussion” section presents the anal-

ysis performed in the 80 tools found in the systematic
mapping conducted in this work. In this analysis, we
discussed which are the used testing techniques, which
tools generate and/or execute test cases, test case gener-
ation strategy, which sensor data each tool considers, test
approach and whether the tool is available for download.
This information allowed us to answer the SMS research
questions.

Validity evaluation
There are validity threats associated with all phases dur-
ing the execution of this SMS. Thus, this section discusses
the threats and possible mitigation strategies according to
each SMS phase.

Study search and selection
We may have excluded studies during the search due to
various reasons such as personal bias; this may negatively

7https://www.microsoft.com
8http://bit.ly/ArticleArchives

https://www.microsoft.com
http://bit.ly/ArticleArchives

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 8 of 22

Table 2 Selected studies

Quantity

ACM

Accepted 64

Rejected 624

Duplicated 48

IEEE

Accepted 45

Rejected 910

Duplicated 37

Science Direct

Accepted 13

Rejected 2536

Duplicated 29

Springer Link

Accepted 21

Rejected 1855

Duplicated 466

Total

Accepted 143

Rejected 5925

Duplicated 580

impact on the SMS result. The following strategies were
used to reduce risks.

1. Four popular databases (e.g., IEEE Explore) on
software engineering were included for the database
search and we also used snowballing in the main
studies;

Fig. 2 Study selection and extraction summary

2. We designed and reached an agreement on inclusion
and exclusion criteria (see 1) for selecting studies,
which helped to avoid wrong exclusions; and

3. The electronic search and the study selection was
executed twice.

Another threat is that we may have missed primary
papers published before the year 2008. The Android oper-
ating system was publicly released on September 2008;
since the research is directed to the Android operating
system, we do not believe there are any publications in the
research area before 2008.

Data extraction and analysis
Personal bias may decrease the quality of the extracted
data from the studies (e.g., the incompleteness of the
extracted data). The strategy used to mitigate this threat
is the conduction of weakly meetings where we discussed
the following:

1. Potential problems in data extraction (e.g., whether
certain data should be extracted);

2. Extracted partial results;
3. Potential problems in data analysis.

Results
The systematic mapping performed resulted in the 68
studies presented in Table 3. We can see that they have
been published since 2012 (Fig. 3). The largest number of
studies (60.3% of the total) was published in 2014, 2015,
and 2016. In 2017 and 2018, the number of publications
has decreased, which supposes the beginning of disinter-
est in the area (Fig. 3). However, the systematic mapping
focused only on studies on Android testing tools, and
thus, we cannot say that the number of studies on Android
testing has diminished.
From Fig. 4, the country that most published Android

testing tool articles was the USA (with 35.3% of the total),
followed by China, Italy, and Brazil.
Figure 5 illustrates the major conferences in which all

accepted studies were published. The International Con-
ference on Software Engineering (ICSE) is the event that
most accepted studies related to our SMS, 11.8% of all of
them.
Figure 6 shows the authors who most published articles

in the research area of this systematic mapping. Ana-
lyzing the Google Scholar [102] profile of each of the
authors, we can see that Iulian Neamtiu9 posted 21 arti-
cles on Android application testing, Anna Rita Fasolino10
posted 9, Domenico Amalfitano11 posted 12, Porfirio

9https://scholar.google.com/citations?user=8qU-5YMAAAAJ&hl=en
10https://scholar.google.com/citations?user=lC5j76YAAAAJ&hl=en
11https://scholar.google.com/citations?user=ReafO6YAAAAJ

https://scholar.google.com/citations?user=8qU-5YMAAAAJ&hl=en
https://scholar.google.com/citations?user=lC5j76YAAAAJ&hl=en
https://scholar.google.com/citations?user=ReafO6YAAAAJ

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 9 of 22

Table 3 Accepted studies

Studies

Imparato [36], Vieira et al. [37], Li et al. [38], Yang et al. [39], Amalfitano et al.
[40] [41–43], Griebe and Gruhn [44], Bernardo et al. [45], Prathibhan et al.
[46], Anand et al. [47], Zaeem et al. [48], Villanes et al. [49], Coppola et al.
[50], Jensen et al. [51], Moran et al. [52], [18], Haoyin et al. [53], Wang et al.
[54], Anbunathan et al. [55], Liu et al. [56], McAfee et al. [57], Nguyen et al.
[58], Anbunathan et al. [59], Li et al. [19], Ye et al. [60], Jamrozik et al. [61],
Machiry et al. [62], Hu et al. [63], Song et al. [64], Linares-Vasquez et al. [65],
Mahmood et al. [66], Merwe et al. [67, 68], Meng et al. [69], Su et al. [70], Hu
et al. [71], Choi et al. [72], Paulovsky et al. [73], Hu et al. [74], Qin et al. [75],
Lin et al. [76], Wen et al. [77], Hao et al. [78], Lam et al. [79], Mirzaei et al.
[80], Gomez et al. [81], Jun et al. [82], Farto et al. [83], Mao et al. [84], Neto
et al. [85], Mirzaei et al. [86], Adamsen et al. [87], Salihu et al. [88], Azim et
al. [89], Kaasila et al. [90], Morgado et al. [91], Zhauniarovich et al. [92], Li et
al. [93], Hu et al. [94], Liu et al. [95], Hu et al. [96], Cao et al. [97], Ami et al.
[98], Yan et al. [99], Chen et al. [100] and Koroglu et al. [101]

Tramontana12 posted 9, Tanzirul Azim13 posted 11, and
Yongjian Hu14 posted 10. In addition, considering the
studies accepted in this systematic mapping, we noticed
that Iulian Neamtiu, Yongjian Hu, and Tanzirul Azim
published 6 articles in which at least two of them wrote
together and Domenico Amalfitano, Anna Rita Fasolino,
and Porfirio Tramontana published 4 articles together.
Thus, from the number of articles about Android appli-
cation testing and the number of articles written together,
we can identify two research groups that have a sig-
nificant amount of published work in the scope of this
study.

Analysis and discussion
From the systematic mapping, we found 68 studies about
Android testing tools. The “Results” section presented
an overview of the found studies. In this section, we
will answer and discuss the research questions elaborated
during the systematic mapping planning.

RQ 1: What are the android testing tools published in the
literature?
From the 68 found studies presented in the
“Results” section, we identified 80 tools (Table 4).
The tools were analyzed and classified with respect to
following:

• Testing technique: The general technique the testing
tool implements to test applications;

• Test case generation: Does the tool generate test
cases to test the application?

• Generation strategy: If the tool generates test cases,
what strategy does the tool apply?

12https://scholar.google.com/citations?user=Q7z44GcAAAAJ&hl=en
13https://scholar.google.com/citations?user=YQ72v64AAAAJ&hl=en
14https://scholar.google.com/citations?user=gFODw24AAAAJ&hl=en

Fig. 3 Year vs quantity

• Use of sensor data: Does the tool consider the data
from sensors to test applications?

• Test case execution: Does the tool execute test cases?
• API: Is the tool an API?
• Download availability: Is the tool currently available

to download?
• Testing approach: Is the tool designed for black-box,

white-box, or gray-box testing?

For the sake of space, the table with the complete classi-
fication of the attributes can be found here15.

RQ 1.1: What technique do they implement?
Each tool tests Android applications through its imple-
mented technique. Table 5 shows the main types of testing
techniques of the identified tools. GUI testing tools are
the most common ones. We found 32 tools that base their
testing by identifying and exploring the interface elements
to test the applications. These represent 40% of the total
found tools. GUI testing tools use algorithms to iden-
tify interface elements such as text views, buttons, check
boxes, and image views to generate and/or execute tests.
Many tools use these graphical elements to construct state
machines and thus determine the application behavioral
model.

15http://bit.ly/Found_Tools

https://scholar.google.com/citations?user=Q7z44GcAAAAJ&hl=en
https://scholar.google.com/citations?user=YQ72v64AAAAJ&hl=en
https://scholar.google.com/citations?user=gFODw24AAAAJ&hl=en
http://bit.ly/Found_Tools

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 10 of 22

Fig. 4 Country vs quantity

Fig. 5Main conferences

Fig. 6Main authors

Some Android applications should be prepared to
react to some events coming from the Android operat-
ing system such as low battery level, battery charging,
incoming call, change of application in the foreground,
airplane mode on/off, and so on. Moreover, the inter-
action between the user and many mobile applications
does not occur exclusively through the interface elements.
Many of the interactions can also be through sensors
like GPS, gyroscope, compass, and accelerometer. Thus,
some tools test Android applications not looking at the
components of the interface, but rather through events
generated for the application simulating the user touch-
ing the screen, events from the system, and also through
data from the sensors of the device. For these tools, we

Table 4 Tools found in the SMS

Tools

SlumDroid [36] and GUIAnalyzer [36], Espresso [50] [45, 79], Espresso
Recorder [79], UIAutomator [50], Selendroid [50], Silk Mobile [50], Sikuli
GUI Automation Tool [50], Segen [85], DroidMate [61], FSMdroid [70],
SwiftHand [72] [72], A3E [89, 103], TrimDroid [80], AMOGA [88], AGRippin
[40], AndroidRipper [43], Extended AndroidRipper [42], T+ [65], QUANTUM
6823880, Collider [51], EvoDroid [66], VeriDroid [95], JPF-ANDROID [68],
Improved JPF-ANDROID [67], Thor [87], Monkey [104], Improved Monkey
[53], PUMA [78], Dynodroid [62], ATT [69], Sapienz [84], DroidFuzzer [60],
VALERA [71] [74, 79, 94, 96], MobiPlay [75] [79], RERAN [81] [79], Test-
droid [90], CrashScope [18, 52], DroidBot [19], M[agi]C [58], ACTEve [47],
PATS [77], BBOXTESTER [92], AppDoctor [63], ORBIT [39], Fest [45], Easy-
Mock [45], Hamcrest [45], JUnit [45], Robolectric [45], Robotium [45] [79],
Android.Test [45], DroidCrawler [54], Custom-built version of the calabash-
android [44], CATE [57], MobiGUITAR [105], [41], Context Simulator [37],
ADAutomation [38], MAT [46], AM-TaaS [49], VTE [55], [59], ACRT [56], EHB-
Droid [64], ATG [73], SPAG-C [76], Appetizer [79], Bot-bot [79], Culebra
[79], monkeyrunner [79], Mosaic [79], Ranorex [79], HiroMacro [79], Repeti-
Touch [79], MAFT [82], MBTS4MA [83], SIG-Droid [86], iMPAcT [91], UGA
[93], Xdroid [97], Automate toolkit [31], FragDroid [100], MobiCoMonkey
[98], LAND [99], AndroFrame [101] and TCM [101]

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 11 of 22

Table 5 Types of testing technique

Technique Quantity of tools

GUI testing 32

System events testing 17

Record and replay 14

Code coverage 6

Others 11

call them system events testing tools because they interact
with the application under test by stimulating events at the
system level. We identified 17 system events testing tools
that represent 21% of the total found tools.
In functional testing, as important as finding a usage

scenario that fails is to be able to replicate it. Replicat-
ing a failing usage scenario allows us to identify whether
the application defect has been fixed. With that in mind,
record and replay testing tools were developed. These
tools can record a user’s usage scenario and then run the
same scenario as many times as the tester wishes. We
identified 14 record and replay tools, representing 18% of
the total found tools.
Many failures occur when executing a bug code. Con-

sequently, the higher code coverage in a usage scenario,
the greater the chance of finding bugs. For this reason,
some tools test applications to maximize the amount of
code covered. Among the tools found in this systematic
mapping, 6 of them are code coverage tools.
Among the identified Android testing tools, 45 of them

are capable of generating test cases. Each of these imple-
ments its own generation algorithms. Thus, 24 different
test strategies were identified in the 45 tools that gen-
erate test cases. The most commonly used strategies are
presented in Table 6.
Model-based testing (MBT) is an approach to gener-

ate test cases using a model of the application under test.
In this strategy, (formal) models are used to describe the
behavior of the application and, thus, generate test cases.
Among the identified tools that generate test cases, we
observed that 20 of them use theMBT strategy to generate
their test cases. The application models mostly describe

Table 6 Types of generation strategy

Generation strategy approach Quantity of tools

MBT 20

GUI ripping 7

Random 6

Others 14

the behavior of the application under test by identify-
ing GUI elements and changing activity based on these
elements.
The second most commonly used generation strategy is

the GUI ripping; it has found seven tools that implement
this strategy. GUI ripping is a strategy that dynamically
traverses an app’s GUI and, based on its GUI elements,
creates its state-machine model or a tree graph.
The third most used strategy by the found tools was the

random strategy. A total of six tools implements a random
strategy. Although it is a less ingenious strategy than the
others, some studies point out that it is a very efficient
strategy to find crashes [6].
Regarding the remaining data acquired from the ques-

tions presented at the beginning of this section about the
characteristics of the tools (use of sensor data, test case
generation, test case execution, download availability, and
testing approach), Table 7 summarizes how many tools
have each of them.

RQ 1.2: What are themost used ones?
Among the studies found by the systematic mapping,
Bernardo et al. [45] present an investigation on 19 open-
source mobile applications for Android in order to iden-
tify how automated tests are employed in practice. They
concluded that 47% of these applications have some
kind of automated tests, and they observed that the
most used testing tools were JUnit, Android.Test, Ham-
crest, Robolectric, EasyMock, Robotium, and Fest. Finally,
Bernardo et al. observed that the most important chal-
lenges in testing Android applications such as rich GUIs,
limited resources, and sensors have not been properly
handled in the automated tests of the analyzed 19 open-
source applications.
Linares-Vásquez et al. [106] conducted a survey on 102

Android mobile developers about their practices when
performing testing. One of the questions to be answered
by the survey was “What tools do you use for automated
testing?”. As a result, Linares-Vásquez et al. concluded that
“The most used tool is JUnit (45 participants), followed
by Roboelectic with 16 answers, and Robotium with 11
answers. 28 participants explicitly mentioned they have
not used any automated tool for testing mobile apps. 39
out of 55 tools were mentioned only by one participant
each, which suggests that mobile developers do not use a
well-established set of tools for automated testing.”
Villanes et al. [107] performed a study using the Stack

Overflow16 with the intention to analyze and cluster the
main topics of interest on Android testing. One of their
results pointed out that recently, developers have shown
increased interest in the Appium17, Espresso, Monkey,
and Robotium tools.
16https://stackoverflow.com
17http://appium.io

https://stackoverflow.com
http://appium.io

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 12 of 22

Table 7 Number of tools that presents a given characteristic

Characteristic Quantity of tools

Use of sensor data 9

Test case generation 45

Test case execution 75

Download availability 43

White box 14

Gray box 7

Black box 59

Bernardo et al. did not present a significant amount of
applications when compared to Vasquez et al. and Vil-
lanes et al. work. Thus, we can say, based on these studies,
with greater certainty that the Robotium, JUnit, Roboelec-
tic, Appium, Espresso, andMonkey tools are, according to
Vasquez et al. and Villanes et al., the most used tools for
testing Android applications.
In addition, we observed which of the studies identified

in the SMS are the most cited in ACM, IEEE, and Google
Scholar. Table 8 presents the studies and their respective
tools that are most cited among the identified studies and
tools.

RQ 2: What are the android context-aware testing studies
and tools published in the literature?
From the 68 selected studies, Griebe and Gruhn [44],
Vieira et al. [37], and Amalfitano et al. [42] explic-
itly focus on testing of context-aware applications. The
“Custom-built version of the Calabash-Android” section,
“Context simulator” section. and “Extended AndroidRip-
per” section discuss the found Android context-aware
application testing tools investigated in these three stud-
ies. Besides that, these three studies cite the other
two tools that also explicitly test context-aware appli-
cations: ContextDrive and TestAWARE. These tools
are discussed in the “ContextDrive” section and the
“TestAWARE” section, respectively.

Custom-built version of the Calabash-Android
Griebe and Gruhn [44] propose a model-based approach
to improve the testing of context-aware mobile appli-
cations. Their approach is based on a four-tier process
system as follows:

• Tier 1: UML activity diagrams models are enriched
with context information using a UML profile
developed for integrating context information into
UML models;

• Tier 2: Models are then transformed into Petri Nets
for analyzing and processing structural model
properties (e.g., parallel or cyclic control flows);

Table 8 Most cited study and tools

Citations

Tool ACM IEEE Scholar

Machiry et al. [62] Dynodroid 119 0 395

Amalfitano et al. [43] AndroidRipper 88 94 356

Anand et al. [47] ACTEve 80 0 292

Azim et al. [89] A3E 88 0 283

Choi et al. [72] SwiftHand 63 0 233

Gomez et al. [81] RERAN 75 60 227

Yang et al. [39] ORBIT 60 0 218

Hao et al. [78] PUMA 69 0 183

Jensen et al. [51] Collider 52 0 155

Amalfitano et al. [41] MobiGUITAR 0 51 148

• Tier 3: From the Petri Net representation, a platform
and technology-independent system testing model is
generated that includes context information relevant
for the test case execution; and

• Tier 4: Platform and technology-specific test cases
are generated that can be executed using
platform-specific automation technology (e.g., JUnit,
Calabash-Android/iOS, Robotium).

To assess the proposed approach, Griebe and Gruhn
have extended the Calabash18 tool to implement it. Cal-
abash is a test automation framework that supports the
creation and execution of automated acceptance tests for
Android and iOS apps without the necessity of coding
skills [108]. It works by enabling automatic UI interactions
within an application such as pressing buttons, inputting
text, validating responses, and so on.
Calabash is a completely free and open-source tool. It

uses the Gherkin pattern. Gherkin is a writing pattern
for an executable specification that, through keywords,
maintains a standard for the writing of execution criteria
called Given,When, and Then. In order to do so, Calabash
expresses the test cases as cucumber features [109].
A limitation of the Griebe and Gruhn approach is the

need for creating a model that describes possible AUT
activities. Modeling is not a widely understood activity
between testers and developers, and a poorly designed
model can lead to false positives or false negatives in test
verdicts.

Context simulator
Vieira et al. [37] argue that testing context-aware appli-
cations in the lab is difficult because of the number
of different scenarios and situations that a user might

18https://github.com/calabash/calabash-android

https://github.com/calabash/calabash-android

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 13 of 22

be involved with. Hence, the Android platform pro-
vides simulation tools to support the physical sensor test.
However, it is not enough to test context-aware applica-
tions only at the physical sensors level. Considering that,
Vieira et al. have developed a simulator that simulates
a real laboratory environment. The simulator provides
support for modeling and simulation of context in dif-
ferent levels: physical and logical context, situations, and
scenarios.
The simulation is separated into two main components:

the desktop application and the mobile component:

• The desktop application: it is responsible for context
modeling, simulation execution, and context
transmission to the mobile device

• The mobile component: it receives signals from the
desktop application and processes the data. The
mobile component is responsible for simulating
context data and for examining the reaction of the
app under the simulated context

The modeling in the context simulator is made in four
different levels:

1. Low-level context: the data can be acquired from
hardware sensor measuring (e.g., location, light,
movement or touch), named as physical context, or
the data can be acquired from software applications
or services (e.g., current activity of an employee
determined by his calendar), named as virtual
context;

2. High-level context (or logical context): the
combination of low-level context and virtual context
processing results in a high-level context. For
example, a context “Room 001 at Fraunhofer” is
identified through an aggregation of two low-level
sources: GPS coordinates from “Fraunhofer” and
Wi-Fi identification of “Room 001”;

3. Situation: it is the composition of high-level contexts.
The situation represents the circumstances in which
someone currently is. For example, the situation
“Meeting 12–13 at Room 001 at Fraunhofer” is a
situation composed by three high-level contexts:
“Meeting” (it can be a specific date and time plus an
appointment in the user’s calendar), “Room 001”, and
“Fraunhofer”; and

4. Scenario: a scenario is a chain of situations for causal
relations. In other words, a scenario is a time-ordered
sequence of situations.

The context simulator supports a large variety of context
sources, 22 contexts divided into 6 categories supporting
41 context sources [37].
A limitation of the context simulator is that the

tester must model each test case. That is, if the
tester wishes to test an AUT under possible adverse

situations such as weak GPS signal, receiving a phone
call and changing Internet connection conditions, then
the tester should model all scenarios that he/she wishes
to test.

Extended AndroidRipper
Amalfitano et al. [42] analyzed bug reports from open-
source applications available at GitHub19 and Google
Code20. From the results, they defined some use scenar-
ios, called by them as event-patterns, that represent a use
case which presents more potential to failure in context-
aware applications. Some examples of event-patterns are
as follows:

• Loss and successive recovery of GPS signal while
walking;

• Network instability;
• The user enables the GPS provider through the

settings menu and starts walking; and
• Incoming of a phone call after any other event.

Amalfitano et al. carried out an experiment with the
objective of examining if, in fact, the event-patterns repre-
sent scenarios of a greater chance of context-aware appli-
cation failures. Thus, they extended the tool AndroidRip-
per [43]. The extended AndroidRipper is able to fire con-
text events such as location changes, enabling/disabling of
GPS, changes in orientation, acceleration changes, recep-
tion of text messages and phone calls, and shooting of
photos with the camera. Both versions of AndroidRip-
per explore the application under test looking for crashes
measuring the obtained code coverage and automatically
generating Android JUnit test cases that reproduce the
explored executions.
The extended AndroidRipper tool generates test cases

watching for events that cause a reaction from the appli-
cation. Once the events that cause a reaction are detected,
the technique of Amalfitano et al. generates test cases
based on event-patterns identified by the authors. There-
fore, the tool does not focus on testing high-level context
variations.

Other tools from cited papers
By studying the papers of Griebe and Gruhn [44], Vieira
et al. [37], and Amalfitano et al. [42], we found two
papers related to testing context-aware Android applica-
tions: Mirza and Khan [110] and Luo et al. [111]. The
corresponding tools are presented in the sequel.

ContextDrive Mirza and Khan [110] argues that test-
ing context-aware applications is a difficult task due to
challenges such as developing test adequacy and cover-
age criteria, context adaptation, context data generation,

19https://github.com
20http://code.google.com

https://github.com
http://code.google.com

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 14 of 22

designing context-aware test cases, developing test oracle,
and devising new testing techniques to test context-aware
applications. In response to these challenges, they argue
that context adaptation cannot be modeled using a stan-
dard notation such as the UML activity diagram. There-
fore, Mirza and Khan extended the UML activity diagram,
by adding a context-aware activity node, for behavior
modeling of context-aware applications.
Mirza and Khan proposed a test automation framework

named as ContextDrive. Its proposedmodel consists of six
phases.

1. First phase: An UML activity diagram is used to
model the application under test. In this phase, it is
proposed a new element for the UML activity
diagram for modeling context-aware applications;

2. Second phase: The UML activity diagram is
transformed into a testing model;

3. Third phase: The test model is annotated in order to
enhance readability and maintainability;

4. Fourth: Abstract test cases are generated;
5. Fifth: Abstract test cases are converted into

platform-specific executable test scripts; and
6. Sixth: The test scripts are executed.

Mirza and Khan’s technique is similar to the one imple-
mented in the tool of the “Custom-built version of the
Calabash-Android” section. Therefore, there is also the
restriction that the tester has experience in UML activity
diagram modeling. In addition, the tool uses static data to
execute test cases. Therefore, testing situations that use a
lot of sensor data becomes infeasible (i.e., testing a GPS
navigator application).

TestAWARE One of the difficulties in testing context-
aware applications is the heterogeneity of context
information and the difficulty and/or high cost of repro-
ducing contextual settings. As an example, Luo et al. [111]
present a real-time fall detection application; the applica-
tion detects when the user drops the mobile phone under
different circumstances such as falling out of the pocket
or falling out of the hand. The application is programmed
to send an email to a caregiver every time a fall event is
detected by the phone. For this application, testing new
versions of the application is very costly. Thus, Luo et al.
[111] introduce the TestAWARE tool.
TestAWARE is able to download, replay, and emulate

contextual data on either physical or emulators devices.
In other words, the tool is able to obtain and replay “con-
text” and thus provide a reliable and repeatable setting for
testing context-aware applications.
Luo et al. compare their tools with other available

tools. In summary, they say TestAWARE aims at a wide
variety of mobile context-aware applications and testing
scenarios. It is possible because TestAWARE incorporates

heterogeneous data (i.e., sensory data, events, and audio),
multiple data sources (i.e., online, local, and manipulated
data), black-box and white-box testing, functional/non-
functional property examination, and the environments of
device/emulator.
A limitation of the tool is that it is not possible to create

test cases without executing each test case at least once
in a real device in the real scenario. That is because it is
a record and replay tool, it is first necessary to record the
test cases and, therefore, it is necessary to submit the AUT
on a real device under each of the conditions to be tested.

Potential tools for testing context-aware applications
Among the found studies, Moran et al. [18, 52], Qin et
al. [75], Yongjian and Iulian [71], Gomez et al. [81], and
Farto et al. [83] present tools that were not intended for
context-aware application testing. However, they support
the testing of context-aware features.

CrashScope Moran et al. [18, 52] argue that one of the
most difficult and important maintenance tasks is the
creation and resolution of bug reports. For this reason,
they introduced the CrashScope tool. The tool is capable
of generating augmented crash reports with screenshots,
crash reproduction steps, and captured exception stack
trace, along with a script to reproduce the crash on a target
device. In order to do so, CrashScope explores the appli-
cation under test by performing input generation by static
and dynamic analyses which include automatic text gen-
eration capabilities based on context information such as
device orientation, wireless interfaces, and sensors data.
The CrashScope GUI ripping engine systematically exe-

cutes the application under test using various strategies.
Then, the tool first checks for contextual features that
should be tested according to the exploration strategy.
So, the GUI ripping engine checks if the current activ-
ity is suitable for exercising a particular contextual feature
in adverse conditions. The testing of contextual features
in adverse conditions consists in setting unexpected val-
ues to the sensors (GPS, accelerometer, etc.) that would
not typically be possible under normal conditions. For
instance, to test the GPS in an adverse contextual con-
dition, CrashScope sets the value to coordinates that do
not represent physical GPS coordinates. In other words,
for each running Activity, CrashScope checks what are
the possible contextual features, checks if contextual fea-
tures should be enabled / disabled, and sets feature val-
ues. CrashScope attempts to produce crashes by disabling
and enabling sensors as well as sending unexpected (e.g.,
highly unfeasible) values. Because of that, there are sce-
narios that cannot be tested in CrashScope (i.e., testing if
the application crashes if the user leaves a pre-established
route).

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 15 of 22

MobiPlay Accordingly to Qin et. al. [75], MobiPlay is the
first record and replay tool that is able to capture all possi-
ble inputs at the application layer, that is, MobiPlay is the
first tool capable of recording and replaying, at the appli-
cation layer, all the interactions between the Android app
and both the user and the environment the mobile phone
is inserted into.
While the user is executing the app, MobiPlay records

every input the application receives and the interval time
between every two consecutive inputs. After that, the tool
can re-execute the application under test with the same
provided inputs when executing it. The expected result
is that the application behaves exactly the same way as
the original execution. Basically, MobiPlay is composed of
two components: a mobile phone and a remote server. Ini-
tially, themobile phone sends and saves all sensor data and
user interactions to the remote server that also stores it.
From there, the remote server can reproduce the executed
scenario by sending back the saved data to the mobile
phone.
The application under test is called target app, and it is

installed at the remote server, not at the mobile phone.
The communication between the mobile phone and the
target app will be done through the client app. The client
app is installed at the mobile phone and it is a typical
Android app that does not require root privilege and is
dedicated to intercepting all the input data for the target
app. The basic idea ofMobiPlay is that the target app actu-
ally runs on the server, while the user interacts with the
client app on the mobile phone in a way that the user is
not explicitly aware that he is, in effect, using a thin client.
The client app shows theGUI of the target app in real-time
on the mobile phone just like the way as if the target app
was actually running on the mobile phone. While the user
interacts with the target app through the client app, the
server records all the touch screen gestures (pinch, swipe,
click, long click, multi touches, and so on) and the other
inputs provided by the sensors like gyroscope, compass,
GPS, and so on, in a transparent way to the user. Once the
inputs are recorded, MobiPlay can re-execute the target
app with the same inputs and at the same interval time,
simulating the interaction between the user and the target
app.
Just like the TestAWARE tool (the “TestAWARE”

section), MobiPlay first needs to record the test cases that
the tester wants to check.

VALERA VersAtile yet Lightweight rEcord and Replay
for Android (VALERA) is a tool capable of record and
replay Android apps by focusing on sensors and event
streams, rather than system calls or the stream instruc-
tion. Its approach promises to be effective yet lightweight.
VALERA is able to record and replay inputs from
the network, GPS, camera, microphone, touchscreen,

accelerometer, compass, and other apps via IPC. Themain
concern of the authors is to be able to record and replay
Android applications with minimal overhead. Therefore,
they claim to be able to maintain performance overhead
low, on average 1.01% for record and 1.02% for replay.
The timing overhead is very important when replaying
an application. The variation of the original time of the
application data entries can cause different behavior than
when recording the iteration data with the application.
For this reason, VALERA is designed to minimize timing
overhead. In order to evaluate VALERA, the tool was exer-
cised against 50 applications with different sensors. The
evaluation consisted in exercising the relevant sensors of
each application, e.g., scanning a barcode for the Bar-
code Scanner, AmazonMobile, andWalmart apps; playing
a song externally so that apps Shazam, Tune Wiki, or
SoundCloud would attempt to recognize it; driving a car
to record a navigation route for Waze, GPSNavig.&Maps,
and NavFreeUSA; and so on.
VALERA has the same limitations as TestAWARE and

MobiPlay.

RERAN It is a black-box record and replay tool capable of
capturing the low-level event stream on the phone, which
includes bothGUI events and sensor events, and replaying
it withmicrosecond accuracy. RERAN is a previous record
and replay system of the authors of VALERA. It is similar
to VALERA but with some limitations. RERAN is unable
to replay sensors whose events are made available to appli-
cations through system services rather than through the
low-level event interface (e.g., camera and GPS). When
validating the tool, the authors declare RERANwas able to
record and replay 86 out of the Top-100 Android apps on
Google Play and to reproduce bugs in popular apps, e.g.,
Firefox, Facebook, and Quickoffice.
RERAN has the same limitations as TestAWARE, Mobi-

Play, and VALERA. Another limitation of RERAN is that
it does not support testing the GPS sensor.

MBTS4MA Farto et al. [83] proposed an MBT approach
for modeling mobile apps in which test models are reused
to reduce the effort on concretization and verify other
characteristics such as device-specific events, unpre-
dictable users’ interaction, telephony events for GSM/text
messages, and sensors and hardware events.
The approach is based on an MBT process with Event

Sequence Graphs (ESGs) models representing the features
of a mobile app under test. Specifically, the models are
focused on system testing, mainly user’s and GUI’s events.
Farto et al. implemented the proposed testing approach
in a tool called MBTS4MA (Model-Based Test Suite For
Mobile Apps).
MBTS4MA provides a GUI for modeling. Thus, it sup-

ports the design of ESGmodels integrated with themobile

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 16 of 22

app data like labels, activity names, and general config-
urations. Although the models are focused on system
testing, mainly user’s and GUI’s events, it is also possible
to test sensors and hardware events. The supported sensor
events are change acceleration data, change GPS data, dis-
able Bluetooth, enable Bluetooth, and update coordinates.
However, the authors argue that it is possible to extend the
stereotypes of the tool to support more sensor events.
Just like the custom-built version of the Calabash-

Android tool (the “Custom-built version of the
Calabash-Android” section), MBTS4MA needs the cre-
ation of a model that represents the features of a mobile
app under test.

RQ 2.1: Which research groups are involved in android
context-aware testing research?
In order to answer this research question, we have
observed the publications of the authors of the Android
context-aware testing studies, such as Griebe and Gruhn
[44], Vieira et al. [37], and Amalfitano et al. [42].
The authors of Griebe and Gruhn [44] are Tobias

Griebe21 and Volker Gruhn22. Both authors have written
only two more publications that refer to context-aware
applications:

• “Towards Automated UI-Tests for Sensor-Based
Mobile Applications” [112]: presents an approach
that integrates sensor information into UI acceptance
testing. The approach uses a sensor simulation
engine to execute test cases automatically.

• “A Framework for Building and Operating
Context-Aware Mobile Applications” [113]: presents
a work-in-progress paper with the description of a
framework architecture design to address the
following context-aware mobile applications
problems: interoperability, dynamic adaptability, and
context handling in a frequently changing
environment.

The authors of Vieira et al. [37] are Vaninha Vieira23,
Konstantin Holl24, and Michael Hassel25. Vaninha Vieira
is a professor of Computer Science at Federal Uni-
versity of Bahia, Brazil. Her research interests include
context-aware computing, mobile and ubiquitous com-
puting, collaborative systems and crowdsourcing, gamifi-
cation and user engagement, and smart cities (crisis and
emergency management, intelligent transportation sys-
tems). Among her publications, we can note the interest
in mobile applications concerning to context modeling,
quality assurance, context-sensitive systems development,

21https://dblp.org/pers/hd/g/Griebe:Tobias
22https://dblp.uni-trier.de/pers/hd/g/Gruhn:Volker
23https://scholar.google.com/citations?user=tkNSlXIAAAAJ&hl
24https://dblp.org/pers/hd/h/Holl:Konstantin
25https://dblp.org/pers/hd/h/Hassel:Michael

context management, and so on. Konstantin Holl has pub-
lished papers related to quality assurance, but nothing can
be seen about the research interest of Michael Hassel due
to the lack of publications.
The authors of Amalfitano et al. [42] are Domenico

Amalfitano26, Anna Rita Fasolino27, Porfirio Tramon-
tana28, and Nicola Amatucci29. Domenico Amalfitano,
Anna Rita Fasolino, and Porfirio Tramontana are not only
professors of the same institution (University of Naples
Federico II) but also most of their articles were written
together. Their publication concerns software engineer-
ing, testing, and reverse engineering. Many of the testing
publications are about Android app testing. In particular,
they have a lot of experience in the GUI ripping tech-
nique. Most of Nicola Amatucci’s publications are about
testing on Android applications. Most of them written
together with Domenico Amalfitano, Anna Rita Fasolino,
or Porfirio Tramontana.
All of these authors have significant publications regard-

ing mobile application testing. Besides them, as men-
tioned in the “Results” section, we can refer to Iulian
Neamtiu, Tanzirul Azim, and Yongjian Hu who have great
contributions in the research area. However, among the
studied authors, Vaninha Vieira is the author who most
directly contributed to the research on context-aware
applications.

RQ 2.2: What are the research gaps addressed in android
context-aware testing?
In this paper, we identify five tools for testing of context-
aware Android applications and five tools that support
testing of context-aware applications, totaling 10 tools.
The context-aware application testing has challenges

such as a wide variety of context data types and context
variation. There is a huge variety of context data types.
The most commonly used context data type is location,
acquired by the GPS sensor. However, there are many
other types of data, such as temperature, orientation,
brightness, time, and date.
Context-aware applications use context data provided

by sensors to provide service or information. Waze30, for
example, uses the GPS, the time, and information pro-
vided by the cloud to inform the driver about obstacles
along the way to the final destination. However, many
context-aware applications use combinations of sensor
information to infer contexts and, from these inferred
contexts, provide service or information. Vieira et al.
[37] call low-level context the context information that
is directly collected from sensors or from other sources

26https://scholar.google.com/citations?user=ReafO6YAAAAJ&hl=en
27https://scholar.google.com/citations?user=lC5j76YAAAAJ&hl=es
28https://scholar.google.com/citations?user=Q7z44GcAAAAJ&hl=en
29https://scholar.google.it/citations?user=AaLCcaAAAAAJ&hl=it
30https://www.waze.com

https://dblp.org/pers/hd/g/Griebe:Tobias
https://dblp.uni-trier.de/pers/hd/g/Gruhn:Volker
https://scholar.google.com/citations?user=tkNSlXIAAAAJ&hl
https://dblp.org/pers/hd/h/Holl:Konstantin
https://dblp.org/pers/hd/h/Hassel:Michael
https://scholar.google.com/citations?user=ReafO6YAAAAJ&hl=en
https://scholar.google.com/citations?user=lC5j76YAAAAJ&hl=es
https://scholar.google.com/citations?user=Q7z44GcAAAAJ&hl=en
https://scholar.google.it/citations?user=AaLCcaAAAAAJ&hl=it
https://www.waze.com

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 17 of 22

of information such as database or cloud, and high-level
context for the contexts that are the product of the com-
bination of low-level contexts.
Many context-aware applications use high-level con-

text to provide their services or information. Samsung
has developed an application called Samsung Health [114]
that tracks user’s physical activities. Combined with its
Smart Watch, the application monitors heartbeat, move-
ment, steps, geographical location, time of day, and other
information. From this information, the application infers
contexts in which the user is and then concludes whether
the user is practicing physical activity or whether he is at
rest. Taking the example of the Samsung Health applica-
tion, Table 9 exposes some examples of high-level contexts
from the composition of low-level contexts.
As we have said, another challenge in testing context-

aware applications is the constant variation of context.
The context changes asynchronously and the application
must respond correctly and effectively to context varia-
tions. Taking Samsung Health as an example, the applica-
tion must realize when the user is changing their activities
throughout the day and thus provides all the information
and services in the correct way. Thus, when the user is
sleeping and getting up, the application should stop count-
ing the time and the quality of sleep. If the user starts
walking, the applicationmust count for time, distance, and

Table 9 High-level context examples

Brief description Low-level contexts High-level
context

If the user has stopped for
more than 1 h since it is not
at night, the application
infers that the user is at rest
for a long time and suggests
that the user take a short
walk or lengthen.

Time, GPS,
pedometer
accelerometer,
heartbeat

Long rest

If the user is in full rest with
low heart rate, the
application infers that the
user is sleeping and counts
the duration of sleep as well
as infers the quality of sleep
based on the luminance,
noise and amount of
movements that the user
makes while sleeping.

Time, GPS,
pedometer
accelerometer,
brightness, noise,
heartbeat

Sleeping

If the user is walking, the
application monitors the
distance and speed. From
this information and the
user’s profile (weight and
age) the application infers
the amount of lost calories.

GPS, pedometer,
age, weight

Walking

If the user is pedaling, the
application infers that the
user is riding a bike and
then calculates the time,
distance and lost calories.

GPS, pedometer
accelerometer,
noise, heartbeat

Riding a
bike

lost calories. When the user stops walking and gets in the
car and drives to home, the application should stop count-
ing the walking information and understand that the user
is at rest, even though he is moving.
Considering the difficulties of testing context-aware

applications, the 10 tools identified in this work were
analyzed and compared according to 11 questions raised:

• Q1: What low-level context data does the tool
support?

• Q2: Does the tool support high-level context data?
• Q3: Are context data treated differently?
• Q4: Is it possible to test context variations?
• Q5: Is it possible to test abnormal context situations?
• Q6: What criteria is used to select the context data?
• Q7: What is the test stop criterion?
• Q8: Does the tool generate test cases?
• Q9: Is the tool white box, black box, or gray box?
• Q10: Does it need instrumentation in the code?
• Q11: Is the tool automatic or semi-automatic?

Table 10 presents the result of the analysis of the 10 tools
by looking at the 11 questions.
The first observation we had of the tools was on the

type of context data they support. With the exception of
RERAN, they all support GPS. It was natural to expect this
result since location is the most commonly used data type
by context-aware applications. We can also see that Con-
text Simulator and ContextDrive are the only tools that
support all low-level context data types. In addition, these
are the only tools that support high-level context data.
Mirza and Khan [110] propose an extension of the UML

activity diagram for modeling high-level context variation.
Thus, their ContextDrive tool can test variations from one
context to another. Authors use static data to execute the
test cases. Therefore, the tool is unable to generate new
test cases automatically.
The Context Simulator tool provides a graphical inter-

face for the tester that enables the creation of application
usage scenarios. Thus, it is possible for the tester to sim-
ulate high-level contexts. To do this, the tester explicitly
describes each test case he/she wants to execute as well as
which sensor values are going to be used in the test.
Context variations occur asynchronously and some of

them in a totally unexpected way. When using a context-
aware application, a phone call can be received and, during
the calling, the user context may change. As another
example, it is possible for the GPS signal to drop and then
return after a few moments.
Although three tools support context variation testing,

none of them is able to automatically generate test cases
that use high-level contexts and test variations of high-
level contexts, taking into account unexpected scenarios
such as the event-patterns described by Amalfitano et al.
[42], presented in the “Extended AndroidRipper” section.

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 18 of 22

Table 10 Tools comparison

Tool

Custom
Calabash
[44]

Context
simulator
[37]

Extended
AndroidRipper
[42]

CrashScope
[18]

MobiPlay
[75, 79]

VALERA
[71, 74, 79,
94, 96]

RERAN
[79, 81]

MBTS4MA
[83]

ContextDrive
[110]

TestAWARE
[111]

Q1

GPS X X X X X X X X X

Wi-Fi X X X X X X X

Accelerometer X X X X X X X X X

Thermometer X X X X X X X

Barometer X X X X X X

Light-sensor X X X X X X

Magnetometer X X X X X X X X X

Gyroscope X X X X X

Clock X X

Calendar X X

Other Camera,
microphone,
battery level,
call, text
message,
alarm, etc.

Call, text
message,
battery level,
USB, etc.

Microphone Bluetooth,
Call, text
message

Q2 No Yes No No No No No No Yes No

Q3 Yes Yes No No No No No No Yes Yes

Q4 Yes Yes No No No No No No Yes No

Q5 Yes Yes No Yes No No No No Yes Yes

Q6 Manually Manually Design
patterns

On/off or
abnormal
values

None None None None None Manually
or
recorded
from
sensor

Q7 All-
transition-
coverage
criterion

All scenarios
executed

Code
coverage

Top-down or
botton-up GUI
hierarchy
transverse

No more
recorded
events left

No more
recorded
events left

No more
recorded
events left

All edges Breadth first
search

No more
recorded
events left

Q8 Yes No Yes Yes No No No Yes Yes No

Q9 Black-box Black-box White-box Black-box Black-box Black-box Black-box Black-box Black-box Black-box
and
white-box

Q10 No No No No No No No No None No

Q11 Automatic Semi-
automatic

Automatic Automatic Semi-
automatic

Semi-
automatic

Semi-
automatic

Semi-
automatic

Automatic Semi-
automatic

Conclusions and future works
In this work, a systematic mapping was carried out

in order to identify and investigate tools that allow the
automation of testing Android context-aware applica-
tions. A total of 6648 studies were obtained, 68 of which
were considered as relevant publications when taking into
account our research questions. These works were first
analyzed according to the conference publication, year,
country, and authors. The main result of this first analysis

was the identification of research groups in the area of
interest.
Another important contribution of this work was the

identification of 80 Android application testing tools.
From these tools, we identified which techniques they
implement, which generate test cases, which execute test
cases, which are the test methods, which ones are available
for download, and which ones are most commonly used.
We noticed that 40% of Android testing tools implement

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 19 of 22

GUI testing. We also note that, among the tools that gen-
erate test cases, 42% use MBT as the generation strategy
approach.
The main contribution and objective of this work was

the identification of context-aware Android application
testing tools and the analysis of their limitations. We have
identified 10 tools that support the test of context-aware
applications. Five of these tools have been developed
explicitly for context-aware applications, and five have
been developed for general applications, but they also
support context-aware features testing.
In our work, we have not done any experimental studies

to evaluate other features of the tools such as test case gen-
eration time and number of revealed failures. This would
require access to all tools, but 3 of the 10 tools are not
available for download. Therefore, as future work, we will
continue trying to gain access to the tools we could not
download to test the same applications using the 10 found
tools. This execution may reveal behaviors or character-
istics that the authors of the tools have not expected, as
well as giving more richness to the evaluation conducted
in our work. We will also investigate techniques for gen-
erating test cases for context-aware applications that use
high-level context with support for asynchronous context
variation. From the identified techniques, we will define
models and algorithms that allow automatic generation of
test cases with asynchronous context variation, possibly
using scenarios that are more likely to fail.

Abbreviations
APIs: Application programming interfaces; ART: Android Runtime; CASS:
Context-aware software systems; GPS: Geographical Positioning System; GSM:
Global System for Mobile Communications; GUI: Graphical user interfaces;
HAL: Hardware abstraction layer; ICSE: International Conference on Software
Engineering; JVM: Java virtual machine; MBT: Model-based testing; OS:
Operating system; RQ: Research question; SMS: Systematic mapping study;
TADS: Testing Application to Device State; UI: User interface; UML: Unified
Modeling Language

Acknowledgements
Not applicable.

Authors’ contributions
The SMS was planned by DR, WA, and PM. The study searching, reading, and
data analysis was performed by DR, supervised by WA and PM. All authors
reviewed and approved the final manuscript.

Authors’ information
M. Diego Rodrigues is professor at the Federal Institute of Pernambuco (IFPE).
Ph.D. Patrícia Machado is professor at the Federal University of Campina
Grande (UFCG). D. Wilkerson Andrade is professor at the Federal University of
Campina Grande (UFCG).

Funding
This work was supported by the National Council for Scientific and
Technological Development (CNPq)/Brazil (Process 437029/2018-2). PM was
supported by CNPq/Brazil (Process 311239/2017-0). WA was supported by
CNPq/Brazil (Process 315057/2018-1).

Availability of data andmaterials
All data generated by our research is available through the following links:

• http://bit.ly/ArticleArchives
• http://bit.ly/Found_Tools

Competing interests
The authors declare that they have no competing interests.

Received: 3 January 2019 Accepted: 4 November 2019

References
1. Number of Mobile Phone Users Worldwide from 2015 to 2020 (in

Billions). https://www.statista.com/statistics/274774/forecast-of-mobile-
phone-users%-worldwide/. Accessed 08 Aug 2019

2. Hu C, Neamtiu I (2011) Automating gui testing for android applications.
In: Proceedings of the 6th International Workshop on Automation of
Software Test – AST ’11. ACM, New York. pp 77–83. https://doi.org/10.
1145/1982595.1982612

3. Maji AK, Hao K, Sultana S, Bagchi S (2010) Characterizing failures in
mobile oses: a case study with android and symbian. In: Proceedings of
the 2010 IEEE 21st International Symposium on Software Reliability
Engineering – ISSRE ’10. IEEE Computer Society, Washington, DC.
pp 249–258. https://doi.org/10.1109/ISSRE.2010.45

4. Muccini H, Di Francesco A, Esposito P (2012) Software testing of mobile
applications: challenges and future research directions. In: Proceedings
of the 7th International Workshop on Automation of Software Test –
AST ’12. IEEE Press, Piscataway. pp 29–35. http://dl.acm.org/citation.cfm?
id=2663608.2663615

5. Wasserman AI (2010) Software engineering issues for mobile application
development. In: Proceedings of the FSE/SDP Workshop on Future of
Software Engineering Research – FoSER ’10. ACM, New York.
pp 397–400. https://doi.org/10.1145/1882362.1882443

6. Choudhary SR, Gorla A, Orso A (2015) Automated test input generation
for android: are we there yet? (e). In: Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software
Engineering (ASE) – ASE ’15. IEEE Computer Society, Washington, DC.
pp 429–440. https://doi.org/10.1109/ASE.2015.89

7. Mobile Operating SystemMarket ShareWorldwide. http://gs.statcounter.
com/os-market-share/mobile/worldwide. Accessed 08 Aug 2019

8. Dey AK (2001) Understanding and using context. Personal Ubiquitous
Comput 5(1):4–7. https://doi.org/10.1007/s007790170019

9. Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P (1999)
Towards a better understanding of context and context-awareness. In:
Proceedings of the 1st International Symposium on Handheld and
Ubiquitous Computing – HUC ’99. Springer, London. pp 304–307. http://
dl.acm.org/citation.cfm?id=647985.743843

10. Android Platform Architecture. https://developer.android.com/guide/
platform/index.html. Accessed 09 Aug 2019

11. Google I/O. https://events.google.com/io. Accessed 10 Aug 2019
12. Kechagia M, Mitropoulos D, Spinellis D (2015) Charting the API minefield

using software telemetry data. Empirical Softw Eng 20(6):1785–1830.
https://doi.org/10.1007/s10664-014-9343-7

13. Gross F, Fraser G, Zeller A (2012) EXSYST: Search-based GUI testing. In:
2012 34th International Conference on Software Engineering (ICSE).
pp 1423–1426. https://doi.org/10.1109/ICSE.2012.6227232

14. Mariani L, Pezze M, Riganelli O, Santoro M (2012) Autoblacktest:
Automatic black-box testing of interactive applications. In: 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation. pp 81–90. https://doi.org/10.1109/ICST.2012.88

15. Memon A, Banerjee I, Nagarajan A (2003) GUI ripping: Reverse
engineering of graphical user interfaces for testing. In: Proceedings of
the 10th Working Conference on Reverse Engineering – WCRE ’03. IEEE
Computer Society, Washington, DC. p 260. http://dl.acm.org/citation.
cfm?id=950792.951350

16. Yue S, Yue S, Smith R (2016) A survey of testing context-aware software:
challenges and resolution. In: Proceedings of the International
Conference on Software Engineering Research and Practice (SERP) 2016.
IEEE Comput Soc, Las Vegas. pp 102–108

17. Wang Z, Elbaum S, Rosenblum DS (2007) Automated generation of
context-aware tests. In: Proceedings of the 29th International
Conference on Software Engineering – ICSE ’07. IEEE Computer Society,
Washington, DC. pp 406–415. https://doi.org/10.1109/ICSE.2007.18

http://bit.ly/ArticleArchives
http://bit.ly/Found_Tools
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users%-worldwide/
https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users%-worldwide/
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1109/ISSRE.2010.45
http://dl.acm.org/citation.cfm?id=2663608.2663615
http://dl.acm.org/citation.cfm?id=2663608.2663615
https://doi.org/10.1145/1882362.1882443
https://doi.org/10.1109/ASE.2015.89
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1007/s007790170019
http://dl.acm.org/citation.cfm?id=647985.743843
http://dl.acm.org/citation.cfm?id=647985.743843
https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html
https://events.google.com/io
https://doi.org/10.1007/s10664-014-9343-7
https://doi.org/10.1109/ICSE.2012.6227232
https://doi.org/10.1109/ICST.2012.88
http://dl.acm.org/citation.cfm?id=950792.951350
http://dl.acm.org/citation.cfm?id=950792.951350
https://doi.org/10.1109/ICSE.2007.18

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 20 of 22

18. Moran K, Linares-Vasquez M, Bernal-Cardenas C, Vendome C,
Poshyvanyk D (2017) Crashscope: A practical tool for automated testing
of android applications. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). pp 15–18.
https://doi.org/10.1109/ICSE-C.2017.16

19. Li Y, Yang Z, Guo Y, Chen X (2017) Droidbot: A lightweight UI-guided
test input generator for android. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). pp 23–26.
https://doi.org/10.1109/ICSE-C.2017.8

20. Brown PJ (1996) The stick-e document: a framework for creating
context-aware applications. In: Proceedings of EP’96, Palo Alto.
pp 182–196. http://www.cs.kent.ac.uk/pubs/1996/396. 10 Aug 2019

21. Franklin D., Flachsbart J. (1998) All gadget and no representation makes
jack a dull environment. In: AAAI 1998 Spring Symposium on Intelligent
Environments. pp 155–160. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.42.1668

22. Ward A, Jones A, Hopper A (1997) A new location technique for the
active office. IEEE Pers Commun 4(5):42–47. https://doi.org/10.1109/98.
626982

23. Rodden T, Chervest K, Davies N, Dix A (1998) Exploiting context in HCI
design for mobile systems. In: Workshop on Human Computer
Interaction with Mobile Devices. pp 21–22. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.57.1279. https://www.alandix.com/
academic/papers/exploting-context-1998/

24. Hull R, Neaves P, Bedford-Roberts J (1997) Towards situated computing.
In: Digest of Papers. First International Symposium on Wearable
Computers. pp 146–153. https://doi.org/10.1109/ISWC.1997.629931

25. Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P (1999)
Towards a better understanding of context and context-awareness. In:
Proceedings of the 1st International Symposium on Handheld and
Ubiquitous Computing – HUC ’99. Springer, London. pp 304–307. http://
dl.acm.org/citation.cfm?id=647985.743843. 10 Aug 2019

26. Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D, Ranganathan A,
Riboni D (2010) A survey of context modelling and reasoning
techniques. Pervasive Mob Comput 6(2):161–180. https://doi.org/10.
1016/j.pmcj.2009.06.002

27. Matalonga S, Rodrigues F, Travassos GH (2017) Characterizing testing
methods for context-aware software systems: results from a
quasi-systematic literature review. J Syst Softw 131:1–21. https://doi.org/
10.1016/j.jss.2017.05.048

28. Guinea AS, Nain G, Traon YL (2016) A systematic review on the
engineering of software for ubiquitous systems. J Syst Softw
118:251–276. https://doi.org/10.1016/j.jss.2016.05.024

29. Matalonga S, Rodrigues F, Travassos G (2015) Challenges in testing
context aware software systems. In: Brazilian Conference on Software:
Theory and Practice – CBSOFT ’15. pp 51–60. https://doi.org/10.13140/
RG.2.1.3361.6080

30. Sanders J, Walcott KR (2018) Tads: Automating device state to android
test suite testing. In: Proceedings of the 2018 International Conference
on Wireless Networks – ICWN’18. pp 10–14. https://csce.ucmss.com/cr/
books/2018/LFS/CSREA2018/ICW4285.pdf. https://csce.ucmss.com/cr/
books/2018/ConferenceReport?ConferenceKey=ICW

31. Holzmann C, Steiner D, Riegler A, Grossauer C (2017) An android toolkit
for supporting field studies on mobile devices. In: Proceedings of the
16th International Conference on Mobile and Ubiquitous Multimedia –
MUM ’17. ACM, New York. pp 473–479. https://doi.org/10.1145/3152832.
3157814

32. Usman A, Ibrahim N, Salihu IA (2018) Comparative study of mobile
applications testing techniques for context events. Adv Sci Lett 24(10)

33. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping
studies in software engineering. In: Proceedings of the 12th
International Conference on Evaluation and Assessment in Software
Engineering–EASE’08. BCS Learning & Development Ltd., Swindon.
pp 68–77. http://dl.acm.org/citation.cfm?id=2227115.2227123

34. Kitchenham B, Charters S (2007) Guidelines for performing Systematic
Literature Reviews in Software Engineering. http://www.dur.ac.uk/ebse/
resources/Systematic-reviews-5-8.pdf. https://www.bibsonomy.org/
bibtex/227b256010a48688388374cf83b619b54/msn

35. Start Tool Home Page. http://lapes.dc.ufscar.br/tools/start_tool.
Accessed 10 Aug 2019

36. Imparato G (2015) A combined technique of GUI ripping and input
perturbation testing for android apps. In: Proceedings of the 37th

International Conference on Software Engineering - Volume 2 – ICSE ’15.
IEEE Press, Piscataway. pp 760–762. http://dl.acm.org/citation.cfm?id=
2819009.2819159

37. Vieira V, Holl K, Hassel M (2015) A context simulator as testing support
for mobile apps. In: Proceedings of the 30th Annual ACM Symposium on
Applied Computing – SAC ’15. ACM, New York. pp 535–541. https://doi.
org/10.1145/2695664.2695782

38. Li A, Qin Z, Chen M, Liu J (2014) Adautomation: An activity diagram
based automated gui testing framework for smartphone applications.
In: Proceedings of the 2014 Eighth International Conference on Software
Security and Reliability – SERE ’14. IEEE Computer Society, Washington,
DC. pp 68–77. https://doi.org/10.1109/SERE.2014.20

39. Yang W, Prasad MR, Xie T (2013) A grey-box approach for automated
GUI-model generation of mobile applications. In: Proceedings of the
16th International Conference on Fundamental Approaches to Software
Engineering–FASE’13. Springer, Berlin, Heidelberg. pp 250–265. https://
doi.org/10.1007/978-3-642-37057-1_19

40. Amalfitano D, Amatucci N, Fasolino AR, Tramontana P (2015) Agrippin: A
novel search based testing technique for android applications. In:
Proceedings of the 3rd International Workshop on Software
Development Lifecycle for Mobile–DeMobile 2015. ACM, New York.
pp 5–12. https://doi.org/10.1145/2804345.2804348

41. Amalfitano D, Fasolino AR, Tramontana P, Ta BD, Memon AM (2015)
Mobiguitar: Automated model-based testing of mobile apps. IEEE
Software 32(5):53–59. https://doi.org/10.1109/MS.2014.55

42. Amalfitano D, Fasolino AR, Tramontana P, Amatucci N (2013)
Considering context events in event-based testing of mobile
applications. In: 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops. pp 126–133. https://doi.
org/10.1109/ICSTW.2013.22

43. Amalfitano D, Fasolino AR, Tramontana P, De Carmine S, Memon AM
(2012) Using gui ripping for automated testing of android applications.
In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering–ASE 2012. ACM, New York.
pp 258–261. https://doi.org/10.1145/2351676.2351717

44. Griebe T, Gruhn V (2014) A model-based approach to test automation
for context-aware mobile applications. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing–SAC ’14. ACM, New
York. pp 420–427. https://doi.org/10.1145/2554850.2554942

45. Silva DB, Endo AT, Eler MM, Durelli VHS (2016) An analysis of automated
tests for mobile android applications. In: 2016 XLII Latin American
Computing Conference (CLEI). pp 1–9. https://doi.org/10.1109/CLEI.
2016.7833334

46. Prathibhan CM, Malini A, Venkatesh N, Sundarakantham K (2014) An
automated testing framework for testing android mobile applications in
the cloud. In: 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies. pp 1216–1219.
https://doi.org/10.1109/ICACCCT.2014.7019292

47. Anand S, Naik M, Harrold MJ, Yang H (2012) Automated concolic testing
of smartphone apps. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering–FSE ’12. ACM, New York. pp 59–15911. https://doi.org/10.
1145/2393596.2393666

48. Zaeem RN, Prasad MR, Khurshid S (2014) Automated generation of
oracles for testing user-interaction features of mobile apps. In: 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation. pp 183–192. https://doi.org/10.1109/ICST.2014.31

49. Villanes IK, Costa EAB, Dias-Neto AC (2015) Automated mobile testing as
a service (AM-TaaS). In: 2015 IEEE World Congress on Services. pp 79–86.
https://doi.org/10.1109/SERVICES.2015.20

50. Coppola R, Raffero E, Torchiano M (2016) Automated mobile ui test
fragility: an exploratory assessment study on android. In: Proceedings of
the 2Nd International Workshop on User Interface Test
Automation–INTUITEST 2016. ACM, New York. pp 11–20. https://doi.org/
10.1145/2945404.2945406

51. Jensen CS, Prasad MR, Møller A (2013) Automated testing with targeted
event sequence generation. In: Proceedings of the 2013 International
Symposium on Software Testing and Analysis–ISSTA 2013. ACM, New
York, NY, USA. pp 67–77. https://doi.org/10.1145/2483760.2483777

52. Moran K, Linares-Vásquez M, Bernal-Cárdenas C, Vendome C,
Poshyvanyk D (2016) Automatically discovering, reporting and

https://doi.org/10.1109/ICSE-C.2017.16
https://doi.org/10.1109/ICSE-C.2017.8
http://www.cs.kent.ac.uk/pubs/1996/396
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1668
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1668
https://doi.org/10.1109/98.626982
https://doi.org/10.1109/98.626982
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1279
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1279
https://www.alandix.com/academic/papers/exploting-context-1998/
https://www.alandix.com/academic/papers/exploting-context-1998/
https://doi.org/10.1109/ISWC.1997.629931
http://dl.acm.org/citation.cfm?id=647985.743843
http://dl.acm.org/citation.cfm?id=647985.743843
https://doi.org/10.1016/j.pmcj.2009.06.002
https://doi.org/10.1016/j.pmcj.2009.06.002
https://doi.org/10.1016/j.jss.2017.05.048
https://doi.org/10.1016/j.jss.2017.05.048
https://doi.org/10.1016/j.jss.2016.05.024
https://doi.org/10.13140/RG.2.1.3361.6080
https://doi.org/10.13140/RG.2.1.3361.6080
https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/ICW4285.pdf
https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/ICW4285.pdf
https://csce.ucmss.com/cr/books/2018/ConferenceReport?ConferenceKey=ICW
https://csce.ucmss.com/cr/books/2018/ConferenceReport?ConferenceKey=ICW
https://doi.org/10.1145/3152832.3157814
https://doi.org/10.1145/3152832.3157814
http://dl.acm.org/citation.cfm?id=2227115.2227123
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
https://www.bibsonomy.org/bibtex/227b256010a48688388374cf83b619b54/msn
https://www.bibsonomy.org/bibtex/227b256010a48688388374cf83b619b54/msn
http://lapes.dc.ufscar.br/tools/start_tool
http://dl.acm.org/citation.cfm?id=2819009.2819159
http://dl.acm.org/citation.cfm?id=2819009.2819159
https://doi.org/10.1145/2695664.2695782
https://doi.org/10.1145/2695664.2695782
https://doi.org/10.1109/SERE.2014.20
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1007/978-3-642-37057-1_19
https://doi.org/10.1145/2804345.2804348
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1109/ICSTW.2013.22
https://doi.org/10.1109/ICSTW.2013.22
https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1145/2554850.2554942
https://doi.org/10.1109/CLEI.2016.7833334
https://doi.org/10.1109/CLEI.2016.7833334
https://doi.org/10.1109/ICACCCT.2014.7019292
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1145/2393596.2393666
https://doi.org/10.1109/ICST.2014.31
https://doi.org/10.1109/SERVICES.2015.20
https://doi.org/10.1145/2945404.2945406
https://doi.org/10.1145/2945404.2945406
https://doi.org/10.1145/2483760.2483777

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 21 of 22

reproducing android application crashes. In: 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST).
pp 33–44. https://doi.org/10.1109/ICST.2016.34

53. Haoyin LV (2017) Automatic android application GUI testing - a random
walk approach. In: 2017 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET).
pp 72–76. https://doi.org/10.1109/WiSPNET.2017.8299722

54. Wang P, Liang B, You W, Li J, Shi W (2014) Automatic android GUI
traversal with high coverage. In: 2014 Fourth International Conference
on Communication Systems and Network Technologies. pp 1161–1166.
https://doi.org/10.1109/CSNT.2014.236

55. Anbunathan R, Basu A (2017) Automation framework for test script
generation for android mobile. In: 2017 2nd IEEE International
Conference on Recent Trends in Electronics, Information
Communication Technology (RTEICT). pp 1914–1918. https://doi.org/10.
1109/RTEICT.2017.8256930

56. Liu CH, Lu CY, Cheng SJ, Chang KY, Hsiao YC, Chu WM (2014)
Capture-replay testing for android applications. In: 2014 International
Symposium on Computer, Consumer and Control. pp 1129–1132.
https://doi.org/10.1109/IS3C.2014.293

57. McAfee P, Mkaouer MW, Krutz DE (2017) Cate: Concolic android testing
using java pathfinder for android applications. In: 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). pp 213–214. https://doi.org/10.1109/MOBILESoft.2017.35

58. Nguyen CD, Marchetto A, Tonella P (2012) Combining model-based and
combinatorial testing for effective test case generation. In: Proceedings
of the 2012 International Symposium on Software Testing and
Analysis–ISSTA 2012. ACM, New York. pp 100–110. https://doi.org/10.
1145/2338965.2336765

59. Anbunathan R, Basu A (2015) Data driven architecture based automated
test generation for android mobile. In: 2015 IEEE International
Conference on Computational Intelligence and Computing Research
(ICCIC). pp 1–5. https://doi.org/10.1109/ICCIC.2015.7435772

60. Ye H, Cheng S, Zhang L, Jiang F (2013) Droidfuzzer: Fuzzing the android
apps with intent-filter tag. In: Proceedings of International Conference
on Advances in Mobile Computing & Multimedia–MoMM ’13. ACM, New
York. pp 68–686874. https://doi.org/10.1145/2536853.2536881

61. Jamrozik K, Zeller A (2016) Droidmate: A robust and extensible test
generator for android. In: Proceedings of the International Conference
on Mobile Software Engineering and Systems–MOBILESoft ’16. ACM,
New York. pp 293–294. https://doi.org/10.1145/2897073.2897716

62. Machiry A, Tahiliani R, Naik M (2013) Dynodroid: An input generation
system for android apps. In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering–ESEC/FSE 2013. ACM, New
York. pp 224–234. https://doi.org/10.1145/2491411.2491450

63. Hu G, Yuan X, Tang Y, Yang J (2014) Efficiently, effectively detecting
mobile app bugs with appdoctor. In: Proceedings of the Ninth European
Conference on Computer Systems–EuroSys ’14. ACM, New York.
pp 18–11815. https://doi.org/10.1145/2592798.2592813

64. Song W, Qian X, Huang J (2017) Ehbdroid: Beyond GUI testing for
android applications. In: Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering–ASE
2017. IEEE Press, Piscataway. pp 27–37. http://dl.acm.org/citation.cfm?
id=3155562.3155570

65. Linares-Vásquez M (2015) Enabling testing of android apps. In:
Proceedings of the 37th International Conference on Software
Engineering - Volume 2–ICSE ’15. IEEE Press, Piscataway. pp 763–765.
http://dl.acm.org/citation.cfm?id=2819009.2819160

66. Mahmood R., Mirzaei N., Malek S. (2014) Evodroid: Segmented
evolutionary testing of android apps. In: Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering–FSE 2014. ACM, New York. pp 599–609. https://doi.org/10.
1145/2635868.2635896

67. van der Merwe H, van der Merwe B, Visser W (2014) Execution and
property specifications for jpf-android. SIGSOFT Softw Eng Notes
39(1):1–5. https://doi.org/10.1145/2557833.2560576

68. van der Merwe H, van der Merwe B, Visser W (2012) Verifying android
applications using java pathfinder. SIGSOFT Softw Eng Notes 37(6):1–5.
https://doi.org/10.1145/2382756.2382797

69. Meng Z, Jiang Y, Xu C (2015) Facilitating reusable and scalable
automated testing and analysis for android apps. In: Proceedings of the

7th Asia-Pacific Symposium on Internetware–Internetware ’15. ACM,
New York, NY, USA. pp 166–175. https://doi.org/10.1145/2875913.
2875937

70. Su T (2016) Fsmdroid: Guided GUI testing of android apps. In:
Proceedings of the 38th International Conference on Software
Engineering Companion–ICSE ’16. ACM, New York, NY, USA.
pp 689–691. https://doi.org/10.1145/2889160.2891043

71. Hu Y, Neamtiu I (2016) Fuzzy and cross-app replay for smartphone apps.
In: Proceedings of the 11th International Workshop on Automation of
Software Test–AST ’16. ACM, New York. pp 50–56. https://doi.org/10.
1145/2896921.2896925

72. Choi W, Necula G, Sen K (2013) Guided GUI testing of android apps with
minimal restart and approximate learning. In: Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications–OOPSLA ’13. ACM,
New York. pp 623–640. https://doi.org/10.1145/2509136.2509552

73. Paulovsky F., Pavese E., Garbervetsky D. (2017) High-coverage testing of
navigation models in android applications. In: 2017 IEEE/ACM 12th
International Workshop on Automation of Software Testing (AST).
pp 52–58. https://doi.org/10.1109/AST.2017.6

74. Hu Y, Azim T, Neamtiu I (2015) Improving the android development
lifecycle with the VALERA record-and-replay approach. In: Proceedings
of the 3rd International Workshop on Mobile Development
Lifecycle–MobileDeLi 2015. ACM, New York. pp 7–8. https://doi.org/10.
1145/2846661.2846670

75. Qin Z, Tang Y, Novak E, Li Q (2016) Mobiplay: A remote execution based
record-and-replay tool for mobile applications. In: Proceedings of the
38th International Conference on Software Engineering–ICSE ’16. ACM,
New York. pp 571–582. https://doi.org/10.1145/2884781.2884854

76. Lin YD, Rojas JF, Chu ETH, Lai YC (2014) On the accuracy, efficiency, and
reusability of automated test oracles for android devices. IEEE Trans
Softw Eng 40(10):957–970. https://doi.org/10.1109/TSE.2014.2331982

77. Wen HL, Lin CH, Hsieh TH, Yang CZ (2015) Pats: A parallel GUI testing
framework for android applications. In: 2015 IEEE 39th Annual Computer
Software and Applications Conference Vol. 2. pp 210–215. https://doi.
org/10.1109/COMPSAC.2015.80

78. Hao S, Liu B, Nath S, Halfond WGJ, Govindan R (2014) Puma:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps. In: Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services–MobiSys ’14. ACM, New
York. pp 204–217. https://doi.org/10.1145/2594368.2594390

79. Lam W, Wu Z, Li D, Wang W, Zheng H, Luo H, Yan P, Deng Y, Xie T (2017)
Record and replay for android: Are we there yet in industrial cases?. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering–ESEC/FSE 2017. ACM, New York. pp 854–859. https://doi.
org/10.1145/3106237.3117769

80. Mirzaei N, Garcia J, Bagheri H, Sadeghi A, Malek S (2016) Reducing
combinatorics in GUI testing of android applications. In: Proceedings of
the 38th International Conference on Software Engineering–ICSE ’16.
ACM, New York. pp 559–570. https://doi.org/10.1145/2884781.2884853

81. Gomez L, Neamtiu I, Azim T, Millstein T (2013) Reran: Timing- and
touch-sensitive record and replay for android. In: Proceedings of the
2013 International Conference on Software Engineering–ICSE ’13. IEEE
Press, Piscataway. pp 72–81. http://dl.acm.org/citation.cfm?id=2486788.
2486799

82. Zun D, Qi T, Chen L (2016) Research on automated testing framework
for multi-platform mobile applications. In: 2016 4th International
Conference on Cloud Computing and Intelligence Systems (CCIS).
pp 82–87. https://doi.org/10.1109/CCIS.2016.7790229

83. de Cleva Farto G, Endo AT (2017) Reuse of model-based tests in mobile
apps. In: Proceedings of the 31st Brazilian Symposium on Software
Engineering–SBES’17. ACM, New York. pp 184–193. https://doi.org/10.
1145/3131151.3131160

84. Mao K, Harman M, Jia Y (2016) Sapienz: Multi-objective automated
testing for android applications. In: Proceedings of the 25th
International Symposium on Software Testing and Analysis–ISSTA 2016.
ACM, New York. pp 94–105. https://doi.org/10.1145/2931037.2931054

85. Neto NML, Vilain P, Mello RdS (2016) Segen: Generation of test cases for
selenium and selendroid. In: Proceedings of the 18th International
Conference on Information Integration and Web-based Applications

https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/WiSPNET.2017.8299722
https://doi.org/10.1109/CSNT.2014.236
https://doi.org/10.1109/RTEICT.2017.8256930
https://doi.org/10.1109/RTEICT.2017.8256930
https://doi.org/10.1109/IS3C.2014.293
https://doi.org/10.1109/MOBILESoft.2017.35
https://doi.org/10.1145/2338965.2336765
https://doi.org/10.1145/2338965.2336765
https://doi.org/10.1109/ICCIC.2015.7435772
https://doi.org/10.1145/2536853.2536881
https://doi.org/10.1145/2897073.2897716
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2592798.2592813
http://dl.acm.org/citation.cfm?id=3155562.3155570
http://dl.acm.org/citation.cfm?id=3155562.3155570
http://dl.acm.org/citation.cfm?id=2819009.2819160
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/2635868.2635896
https://doi.org/10.1145/2557833.2560576
https://doi.org/10.1145/2382756.2382797
https://doi.org/10.1145/2875913.2875937
https://doi.org/10.1145/2875913.2875937
https://doi.org/10.1145/2889160.2891043
https://doi.org/10.1145/2896921.2896925
https://doi.org/10.1145/2896921.2896925
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1109/AST.2017.6
https://doi.org/10.1145/2846661.2846670
https://doi.org/10.1145/2846661.2846670
https://doi.org/10.1145/2884781.2884854
https://doi.org/10.1109/TSE.2014.2331982
https://doi.org/10.1109/COMPSAC.2015.80
https://doi.org/10.1109/COMPSAC.2015.80
https://doi.org/10.1145/2594368.2594390
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1145/3106237.3117769
https://doi.org/10.1145/2884781.2884853
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://dl.acm.org/citation.cfm?id=2486788.2486799
https://doi.org/10.1109/CCIS.2016.7790229
https://doi.org/10.1145/3131151.3131160
https://doi.org/10.1145/3131151.3131160
https://doi.org/10.1145/2931037.2931054

Almeida et al. Journal of the Brazilian Computer Society (2019) 25:12 Page 22 of 22

and Services–iiWAS ’16. ACM, New York. pp 433–442. https://doi.org/10.
1145/3011141.3011154

86. Mirzaei N, Bagheri H, Mahmood R, Malek S (2015) Sig-droid: Automated
system input generation for android applications. In: 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE).
pp 461–471. https://doi.org/10.1109/ISSRE.2015.7381839

87. Adamsen CQ, Mezzetti G, Møller A (2015) Systematic execution of
android test suites in adverse conditions. In: Proceedings of the 2015
International Symposium on Software Testing and Analysis–ISSTA 2015.
ACM, New York. pp 83–93. https://doi.org/10.1145/2771783.2771786

88. Salihu I. A., Ibrahim R. (2016) Systematic exploration of android apps’
events for automated testing. In: Proceedings of the 14th International
Conference on Advances in Mobile Computing and Multi Media–MoMM
’16. ACM, New York. pp 50–54. https://doi.org/10.1145/3007120.3011072

89. Azim T, Neamtiu I (2013) Targeted and depth-first exploration for
systematic testing of android apps. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications–OOPSLA ’13. ACM, New York.
pp 641–660. https://doi.org/10.1145/2509136.2509549

90. Kaasila J, Ferreira D, Kostakos V, Ojala T (2012) Testdroid: Automated
remote UI testing on android. In: Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia–MUM ’12. ACM, New
York. pp 28–1284. https://doi.org/10.1145/2406367.2406402

91. Morgado IC, Paiva ACR (2015) The impact tool: Testing ui patterns on
mobile applications. In: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). pp 876–881. https://doi.org/
10.1109/ASE.2015.96

92. Zhauniarovich Y, Philippov A, Gadyatskaya O, Crispo B, Massacci F (2015)
Towards black box testing of android apps. In: 2015 10th International
Conference on Availability, Reliability and Security. pp 501–510. https://
doi.org/10.1109/ARES.2015.70

93. Li X, Jiang Y, Liu Y, Xu C, Ma X, Lu J (2014) User guided automation for
testing mobile apps. In: 2014 21st Asia-Pacific Software Engineering
Conference Vol. 1. pp 27–34. https://doi.org/10.1109/APSEC.2014.13

94. Hu Y, Neamtiu I (2016) Valera: An effective and efficient record-and-
replay tool for android. In: Proceedings of the International Conference
on Mobile Software Engineering and Systems–MOBILESoft ’16. ACM,
New York. pp 285–286. https://doi.org/10.1145/2897073.2897712

95. Liu Y, Xu C (2013) Veridroid: Automating android application verification.
In: Proceedings of the 2013 Middleware Doctoral Symposium–MDS ’13.
ACM, New York. pp 5–156. https://doi.org/10.1145/2541534.2541594

96. Hu Y, Azim T, Neamtiu I (2015) Versatile yet lightweight
record-and-replay for android. In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications–OOPSLA 2015. ACM, New York.
pp 349–366. https://doi.org/10.1145/2814270.2814320

97. Cao C, Meng C, Ge H, Yu P, Ma X (2017) Xdroid: Testing android apps
with dependency injection. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC) Vol. 1. pp 214–223.
https://doi.org/10.1109/COMPSAC.2017.268

98. Ami AS, Hasan MM, Rahman MR, Sakib K (2018) Mobicomonkey: Context
testing of android apps. In: Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems–MOBILESoft
’18. ACM, New York. pp 76–79. https://doi.org/10.1145/3197231.3197234

99. Yan J, Pan L, Li Y, Yan J, Zhang J (2018) Land: A user-friendly and
customizable test generation tool for android apps. In: Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis–ISSTA 2018. ACM, New York. pp 360–363. https://doi.org/
10.1145/3213846.3229500

100. Chen J, Han G, Guo S, Diao W (2018) Fragdroid: Automated user
interface interaction with activity and fragment analysis in android
applications. In: 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). pp 398–409. https://doi.org/
10.1109/DSN.2018.00049

101. Koroglu Y, Sen A (2018) Tcm: Test case mutation to improve crash
detection in android. In: Russo A, Schürr A (eds). Fundamental
Approaches to Software Engineering. Springer, Cham. pp 264–280

102. Google Scholar. https://scholar.google.com. Accessed 10 Aug 2019
103. Azim T, Neamtiu I (2013) Targeted and depth-first exploration for

systematic testing of android apps. SIGPLAN Not 48(10):641–660.
https://doi.org/10.1145/2544173.2509549

104. Zeng X, Li D, Zheng W, Xia F, Deng Y, Lam W, Yang W, Xie T (2016)
Automated test input generation for android: are we really there yet in
an industrial case?. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering–FSE
2016. ACM, New York. pp 987–992. https://doi.org/10.1145/2950290.
2983958

105. Amalfitano D, Fasolino AR, Tramontana P, Ta BD, Memon AM (2015)
MobiGUITAR: Automated Model-Based Testing of Mobile Apps. IEEE
Softw 32(5):53-59. https://doi.org/10.1109/MS.2014.55.

106. Linares-Vásquez M, Bernal-Cardenas C, Moran K, Poshyvanyk D (2017)
How do developers test android applications?. In: 2017 IEEE
International Conference on Software Maintenance and Evolution
(ICSME). pp 613–622. https://doi.org/10.1109/ICSME.2017.47

107. Villanes IK, Ascate SM, Gomes J, Dias-Neto AC (2017) What are software
engineers asking about android testing on stack overflow?. In:
Proceedings of the 31st Brazilian Symposium on Software
Engineering–SBES’17. ACM, New York. pp 104–113. https://doi.org/10.
1145/3131151.3131157

108. Helppi V-V (2016) Calabash 101 - Basics, Getting Started, and Advanced
Tips. https://offers.bitbar.com/ebook/calabash-101-basics-getting-
started-and-advanced-tips. Access 14 Aug 2019

109. Automated UI Testing with Cucumber and Calabash. https://
praeclarum.org/2014/01/17/automated-ui-testing-with-cucumber-
and-calabash.html. Accessed 14 Aug 2019

110. Mirza AM, Khan MNA (2018) An automated functional testing framework
for context-aware applications. IEEE Access 6:46568–46583. https://doi.
org/10.1109/ACCESS.2018.2865213

111. Luo C, Kuutila M, Klakegg S, Ferreira D, Flores H, Goncalves J, Mäntylä M,
Kostakos V (2017) Testaware: A laboratory-oriented testing tool for
mobile context-aware applications. Proc ACM Interact Mob Wearable
Ubiquitous Technol 1(3):80–18029. https://doi.org/10.1145/3130945

112. Griebe T, Hesenius M, Gruhn V (2015) Towards automated UI-tests for
sensor-based mobile applications. In: Intelligent Software
Methodologies, Tools and Techniques - 14th International Conference,
SoMeT 2015, Naples, Italy, September 15-17, 2015. Proceedings.
pp 3–17. https://doi.org/10.1007/978-3-319-22689-7_1

113. Shrestha A, Biel B, Griebe T, Gruhn V (2011) A framework for building and
operating context-aware mobile applications. In: Mobile Wireless
Middleware, Operating Systems, and Applications - 4th International
ICST Conference, Mobilware 2011, London, UK, June 22-24, 2011,
Revised Selected Papers. pp 135–142. https://doi.org/10.1007/978-3-
642-30607-5_13

114. Samsung Health. https://health.apps.samsung.com. Accessed 10 Aug
2019

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/3011141.3011154
https://doi.org/10.1145/3011141.3011154
https://doi.org/10.1109/ISSRE.2015.7381839
https://doi.org/10.1145/2771783.2771786
https://doi.org/10.1145/3007120.3011072
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2406367.2406402
https://doi.org/10.1109/ASE.2015.96
https://doi.org/10.1109/ASE.2015.96
https://doi.org/10.1109/ARES.2015.70
https://doi.org/10.1109/ARES.2015.70
https://doi.org/10.1109/APSEC.2014.13
https://doi.org/10.1145/2897073.2897712
https://doi.org/10.1145/2541534.2541594
https://doi.org/10.1145/2814270.2814320
https://doi.org/10.1109/COMPSAC.2017.268
https://doi.org/10.1145/3197231.3197234
https://doi.org/10.1145/3213846.3229500
https://doi.org/10.1145/3213846.3229500
https://doi.org/10.1109/DSN.2018.00049
https://doi.org/10.1109/DSN.2018.00049
https://scholar.google.com
https://doi.org/10.1145/2544173.2509549
https://doi.org/10.1145/2950290.2983958
https://doi.org/10.1145/2950290.2983958
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1109/ICSME.2017.47
https://doi.org/10.1145/3131151.3131157
https://doi.org/10.1145/3131151.3131157
https://offers.bitbar.com/ebook/calabash-101-basics-getting-started-and-advanced-tips
https://offers.bitbar.com/ebook/calabash-101-basics-getting-started-and-advanced-tips
https://praeclarum.org/2014/01/17/automated-ui-testing-with-cucumber-and-calabash.html
https://praeclarum.org/2014/01/17/automated-ui-testing-with-cucumber-and-calabash.html
https://praeclarum.org/2014/01/17/automated-ui-testing-with-cucumber-and-calabash.html
https://doi.org/10.1109/ACCESS.2018.2865213
https://doi.org/10.1109/ACCESS.2018.2865213
https://doi.org/10.1145/3130945
https://doi.org/10.1007/978-3-319-22689-7_1
https://doi.org/10.1007/978-3-642-30607-5_13
https://doi.org/10.1007/978-3-642-30607-5_13
https://health.apps.samsung.com

	Abstract
	Context
	Objective
	Method
	Result
	Conclusion
	Keywords

	Introduction
	Background and related work
	Android operating system
	Android applications
	Context-aware applications
	Related work

	Research method
	Research questions
	Sources of information
	Search criteria
	Inclusion and exclusion criteria
	Study selection and extraction
	Study analysis
	Validity evaluation
	Study search and selection
	Data extraction and analysis

	Results
	Analysis and discussion
	RQ 1: What are the android testing tools published in the literature?
	RQ 1.1: What technique do they implement?
	RQ 1.2: What are the most used ones?

	RQ 2: What are the android context-aware testing studies and tools published in the literature?
	Custom-built version of the Calabash-Android
	Context simulator
	Extended AndroidRipper
	Other tools from cited papers
	ContextDrive
	TestAWARE

	Potential tools for testing context-aware applications
	CrashScope
	MobiPlay
	VALERA
	RERAN
	MBTS4MA

	RQ 2.1: Which research groups are involved in android context-aware testing research?
	RQ 2.2: What are the research gaps addressed in android context-aware testing?

	Conclusions and future works
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

