
Journal of the
Brazilian Computer Society

Dias et al. Journal of the Brazilian Computer
Society (2018) 24:16
https://doi.org/10.1186/s13173-018-0079-x

RESEARCH Open Access

Who drives company-owned OSS
projects: internal or external members?
Luis Felipe Dias1, Igor Steinmacher2,3 and Gustavo Pinto4*

Abstract

Open-source software (OSS) communities leverage the workforce of volunteers to keep the projects sustainable.
Some companies support OSS projects by paying developers to contribute to them, while others share their products
under OSS licenses, keeping their employees in charge of maintaining the projects. In this paper, we investigate the
activity of internal (employees) and external (volunteers) developers in this kind of setting. We conducted a case study
using a convenience sample of five well-known OSS projects: atom, electron, hubot, git-lfs, and linguist.
Analyzing a rich set of ∼ 12K contributions performed by means of pull requests to these projects, complemented
with a manual analysis of∼ 500 accepted pull requests, we derived a list of interesting findings. For instance, we found
that both internal and external developers are rather active when it comes to submitting pull requests and that the
studied projects are receptive for external developers. Considering all the projects, internal developers are responsible
for 43.3% of the pull requests performed (external developers placed 56.7%). We also found that even with high
support from the external community, employees still play the central roles in the project. We also found that the
majority of the external developers are casual contributors (developers that placed only a single contribution to the
project). However, we also observed that some external members play core roles (in addition to submitting code), like
triaging bugs, reviewing, and integrating code to the main branch. Finally, when manually inspecting some code
changes, we observed that external developers’ contributions range from documentation to complex code. Our
results can benefit companies willing to open-source their code and developers that want to take part and actively
contribute to company-owned code.

Keywords: Company-owned OSS projects, Employees, Volunteers

Introduction
Open-source software (OSS) is one of the cornerstones
of modern software development practice. Many existing
software projects rely on OSS solutions either at com-
pile time (e.g., build tools or testing tools) or runtime
(e.g., webservers or databases). In spite of its ubiquitous-
ness, several OSS projects rely on a single contributor
to perform most of their needed tasks [1]. Due to this
grim scenario, it is not uncommon to see core develop-
ers becoming tired and abandoning their own software
projects [2].
To alleviate this situation, recently, many software com-

panies started to support open-source activities. For
instance, open-source programming languages such as

*Correspondence: gpinto@ufpa.br
4Faculty of Computing, Federal University of Pará, Belém, Brazil
Full list of author information is available at the end of the article

Swift1 and Scala2 have their development process primar-
ily driven by employees of a software company (Apple
and Typesafe, respectively). In fact, there is a recurrent
belief that most of the OSS contribution softwares are
made by paid developers. As a recent article pointed out,
“More than 80 percent of [the Linux] kernel develop-
ment is done by developers who are being paid for their
work”3. While commercial contributions to the Linux
kernel have been widely acknowledged, in a large-scale
study of more than 9000 OSS projects, Riehle and col-
leagues [3] observed that about 50% of the OSS con-
tributors are actually paid ones. However, in their work,
the authors consider “paid developers” the ones that per-
formed commits from 9am to 5pm, local time. Using this
simple rule, students, unemployed, or workers with flex-
ible time schedules could be wrongly sampled as “paid
developers.” Therefore, we believe that more systematic
approaches should be employed to shed additional light

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-018-0079-x&domain=pdf
http://orcid.org/0000-0001-7598-2799
mailto: gpinto@ufpa.br
http://creativecommons.org/licenses/by/4.0/

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 2 of 17

on the proportion of paid/non-paid developers. There are
at least two reasons that support our claim:

1 If there are, indeed, too many paid developers, OSS
communities may need to better explore these
workforces. For instance, instead of concentrating
too many paid developers in one single OSS project,
OSS communities could try to gather some paid
developers to OSS projects that are more in need.

2 On the other hand, if there are too few paid
developers, this finding might not only refute
previous studies, but yet can be used to better
motivate software companies to support OSS
projects.

It is important to note that the source of payment can
vary greatly. For instance, one can get paid to fix a bug via
a crowdsourcing system, whereas others can be full-time
OSS contributors. In this study, we pay particular atten-
tion to developers that contribute to company-owned OSS
projects.

Company-owned OSS projects: This term refers to
software companies that started and curated OSS
projects in a private environment, but later on decided
to open-source them. Therefore, the OSS project that
was previously restricted to the company’s employees
could now potentially receive contributions from con-
tributors that are not anyhow affiliated with the given
company.

This transition from proprietary to open-source is par-
ticularly relevant to our work. Although proprietary from
birth, the software companies that built these software
projects have perceived benefits that motivated them to
open-source their software [4]. In order to differentiate
the developers that are paid by the companies to work
in the OSS projects and the OSS contributors that con-
tribute for personal reasons, throughout this paper, we
refer to contributors that work for the company that open-
sourced the project as “internal developers.” Developers
that do not work for the company that open-sourced the
given OSS project are referred as “external developers.”
More technical details on how we differentiate external
and internal developers can be seen at the “Internal and
external classification” section.
In this paper, we extend a previous analysis [5], bringing

a multi-case study investigating the contribution behav-
ior of pull requests provided by internal and external
developers in OSS projects. We used a convenience sam-
ple, composed by five GitHub-owned projects: atom,
electron, hubot, git-lfs, and linguist. We
chose these projects because they were initially developed
by (and are maintained at) GitHub; therefore, we could
take advantage of GitHub features to understand whether

a contributor is an internal or external one (more details
at the “Method” section). Through a set of quantitative
and qualitative analysis, this paper makes the following
contributions:

• We provide evidence that there is a workforce of
developers who are external to the company who
opened the code contributing to the project, creating
a community that extends the boundaries of the
company. The number of external developers can be
up to 32× greater than internal ones.

• We show that, although the external community is
engaging, external members face a hard time to get a
contribution accepted. In 4 out of the 5 studied
projects, most of the rejected pull requests were
made by external developers. In terms of time taken
to process a pull request, on average, externals take
11.37 days to be processed. Internals, on the other
hand, take 2.61 days.

• We find that internal developers still play a crucial
role in the project, playing the integrator role in two
of the analyzed projects. However, external members
are also acquiring this role. In project hubot, for
instance, ∼ 80% of the team of integrators is
composed by external developers.

Method
In this section, we report the studied projects (“Studied
projects” section) andresearchapproach, detailed according
to our research questions (“Overall approach” section).

Studied projects
We provide an in-depth investigation of the contributions
(i.e., a pull request) made to five well-knownOSS projects.
They are as follows:

• atom, a cross-platform text editor. It has ∼ 34,300
commits, ∼ 3750 pull requests, 400 contributors,
∼ 43,000 stars, and ∼ 8400 forks. It is mostly written
in JavaScript and CoffeeScript and has ∼ 7 years of
historical records. GitHub started its development in
20114 and open-sourced it in May 20145.

• electron, a tool to build cross-platform desktop
apps with JavaScript, HTML, and CSS. It has
∼ 18,000 commits, ∼ 3800 pull requests, 721
contributors, ∼ 56,000 stars, and ∼ 7200 forks. It is
mostly written in C++ and has ∼ 5 years of historical
records. GitHub started its development in March
20136 and open-sourced it in October 20157.

• hubot, a customizable life embetterment robot. It
has ∼ 2000 commits, ∼ 700 pull requests, 253
contributors, ∼ 13,700 stars, and ∼ 3200 forks. It is
mostly written in JavaScript and has ∼ 7 years of

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 3 of 17

historical records. GitHub started its development in
August 20118 and open-sourced it in October 20119.

• git-lfs, a git extension for versioning large files. It
has ∼ 6300 commits, ∼ 1300 pull requests, 99
contributors, ∼ 5300 stars, and ∼ 900 forks. It is
mostly written in Go and has ∼ 5 years of historical
records. GitHub started its development in
September 201310 and open-sourced it on April
201511.

• linguist, a library to detect blob languages. It has
5600 commits, ∼ 2400 pull requests, 684 source code
contributors, ∼ 5400 stars, and ∼ 2000 forks. It is
mostly written in Ruby and has ∼ 7 years of historical
records. GitHub started its development in May
201112 and open-sourced it in October 201513.

When analyzing the software history of these projects,
we perceived that all of them but linguist started as
a stand-alone software project. linguist, on the other
hand, started as a unification of code scattered around the
whole software system. Such a pattern of open-sourcing
software projects was already reported elsewhere [4].
Figure 1 shows a distribution of additional characteris-

tics of these projects.

Overall approach
We followed a mix-methods approach, combining quan-
titative and qualitative research method. In this section,
we will present the common ground for all the research
questions—including pull requests data collection, and
how internal and external developers are classified—and,
afterwards, we dive in the details of each specific RQ.

Pull request collection
The data reported in this paper is based on pull requests
that were performed from the very beginning of the stud-
ied projects, up to January 2018—when we collected data.
All data used in this study is available online at https://
github.com/fronchetti/JBCS-2018.

We started our study by investigating all performed pull
requests. A pull request can be found in three different
stages:

• open: waiting for code reviews and/or a final decision.
• closed : the code reviews were done, but the pull

request was not accepted (the status in GitHub is
closed/unmerged).

• merged : the code reviews were done, and the pull
request was accepted (the status in GitHub is
closed/merged).

We studied the contribution behavior of internal and
external developers taking into account each possible
stage of a pull request. Additionally, we investigated other
characteristics associated with the pull request, such as:

• The time taken to process a pull request
• The number of comments during the code reviews

per pull request
• The number of commits per pull request
• The number of changes (e.g., additions/deletions) per

pull request

Internal and external classification
Since the analyzed projects are developed by (and main-
tained at) GitHub, we reduce false positives by taking
advantage of GitHub features used to identify develop-
ers’ roles. Within GitHub organizations, one coordinator
can set the site_admin flag true for another user. If
enabled, this flag promotes an ordinary user to be a site
administrator. According to GitHub official documenta-
tion, a site administrator can “manage high-level applica-
tion and VM settings, all users and organization account
settings, and repository data.14” Therefore, for each pull
request investigated, we verified whether the author has
the site_admin flag enabled. If so, we marked she as
internal; external otherwise.
To avoid false negatives (a paid developer that does

not have its site_admin flag enabled), we analyzed the

0 50 100 150 200

Occurrence (in thousand)

Com
m

its

Com
m

itte
rsSta
rsFo

rk
sIss

ue
sPRsLo
C

Fig. 1 Characteristics of the analyzed projects

https://github.com/fronchetti/JBCS-2018
https://github.com/fronchetti/JBCS-2018

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 4 of 17

public profiles (e.g., GitHub affiliation, LinkedIn infor-
mation, personal web page, among other sources) of the
top 10 contributors (either internal or external). From the
48 profiles analyzed (2 members appeared in 2 different
projects), we found 12 that worked for GitHub previously,
but were not categorized as staff members. We manu-
ally identified these users as internal developers for our
analysis. This misidentification is a potential threat and is
further described in the “Limitations” section.

Research question
To guide our research, we investigated the following
important but overlooked research questions:

RQ1. Are OSS contributions mostly made by internal
developers?

Rationale: This exploratory research question guides
our case study on GitHub company-owned OSS projects.
It also provides evidence to understand the role that the
external developers play in this kind of endeavor.
Approach: To answer this RQ, we quantitatively com-

pared the number of internal and external contributors, as
well as the number of pull requests submitted by them. In
addition to characterizing and discussing the values using
descriptive statistics, we compared the evolution of the
number of pull requests submitted monthly by external
and internal members, in a per project basis. It is impor-
tant to mention that we computed the number of pull
requests submitted per state (open, closed, merged). Since
we compared the number of pull requests per month by
two different samples, we applied the Wilcoxon signed-
rank test for paired samples [6] to perform this compari-
son.We used Cliff ’s delta to verify how often values in one
distribution are larger than values in another distribution.
The thresholds are defined as follows: delta < 0.147 (neg-
ligible), delta < 0.33 (small), delta < 0.474 (medium), and
delta >= 0.474 (large) [7].
We also graphically reported the distributions to enable

the visualization of the temporal evolution of contribu-
tions. The results for this question are presented through-
out the “RQ1. Are OSS contributions mostly made by
internal developers?” section.

RQ1.1. Are internals the top contributors of company-
owned OSS projects?

Rationale: In this question, we are aimed to provide
a fine-grained perspective about the involvement of the
contributors of company-owned OSS project. Answers to
this question will further substantiate the role that our
subjects play.
Approach: To answer this question we, firstly, analyzed

the top 10 contributors for each project to check how
many of them are internal and how many are external

members. Then, we compared internals and externals in
terms of the number of pull requests per contributor in
each project.

RQ2. Who faces a harder time to get the contributions
accepted?

Rationale: In this research question, we focus our inter-
est on understanding the how pull requests of internal and
external are received. We focused on (i) acceptance and
rejection rates and (ii) on the priority given to the pull
requests. As the literature suggests, it is not always easy
to contribute to open-source projects [8]. We, therefore,
explore whether external developers are facing a harder
time in terms of rejections and time to process when com-
pared to their internal peers. If that is the case, answers
to this question might help improve how company-owned
OSS projects treat external developers.
Approach: We built upon the results of the compar-

isons made for RQ1 to understand the acceptance rate
(number of merged pull requests versus the total submit-
ted pull requests) for internal and external members. To
compare the time to process, we first computed the num-
ber of days from the submission date until the decision
date (when the pull request was closed or merged). Then,
we compared this characteristic for pull requests sub-
mitted by internal and external members. We also used
Mann-Whitney-Wilcoxon (MWW) tests [6] and, as for
RQ1, Cliff ’s delta effect size measures [9] to perform this
comparison.

RQ3. Are externals more participative in the pull
request review cycle?

Rationale: This research question explores the
degree of involvement of externals and internals in
company-owned OSS projects in terms of (1) comment-
ing/discussing pull requests and (2) playing the integrator
role. Commits or pull requests are not the only ways
to measure participation. In fact, contributors might
provide comments to pull requests under review as an
attempt to contribute to the project. On GitHub, anyone
can freely provide comments to a pull request, regardless
if the GitHub user has contributed before to the project.
Another facet of participation regards integrating pull
requests. Since processing pull requests is a notorious
activity that only experienced contributors are willing to
perform [10], it is more likely that internal developers
should conduct this process. However, if external devel-
opers are also playing this role, this might indicate that
the company-owned OSS project succeeds in decreasing
the barriers for external developers to join the project.
Approach: To analyzed these two participation per-

spectives of internal and external members in the code
review cycle, we collected the number of comments

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 5 of 17

per pull request, classifying them as comments made
by internal or external members. We also verified who
was responsible for integrating the pull requests submit-
ted: internal or external members. We characterized this
aspect in terms of the number of pull requests integrated
by internal and external members, and the number of
internal and external members who played the integrator
role. We used descriptive statistics and graphics, in addi-
tion to the MWW test and Cliff ’s delta effect size to com-
pare the involvement of internal and external members as
commenters and integrators.

RQ4. What are the characteristics of the contributions
made by external developers?

Rationale:We are intended to understand what are the
kinds of contributions performed by external members.
We complemented this analysis with an investigation over
the differences of pull requests placed by internal and
external members in terms of the size of the commits,
including the number of files changed and code churn.
Answers to this question might enable companies to have
a better picture of what to expect from the external com-
munity. Moreover, the literature is particularly rich when
it comes to changes made by internal developers [11–13].
Approach: We selected a representative sample of a

small number of pull requests that reflect the larger pop-
ulation. We selected 334 random pull requests made
at atom for manual analysis, which represents a confi-
dence level of 95% with a ± 5% confidence interval. We
also validated this analysis with another manual analy-
sis in a random sample of 150 pull requests accepted at
hubot. The qualitative analysis was conducted in paral-
lel by two researchers, who investigated the pull requests
individually. We also quantitatively compared the charac-
teristics of the pull requests placed by internal and exter-
nal members in terms of number files changed, added
lines, deleted lines, and the number of commits per pull
request. We considered each pull request as an observa-
tion and, once again, we used MWW tests [6] and Cliff ’s
delta effect size measures [9] to compare the groups. The
results for this question are presented throughout the
“RQ4.What are the contributions’ characteristics made by
externals?” section.

Results
In this section, we discuss the results of our study orga-
nized in terms of the research questions.

RQ1. Are OSS contributions mostly made by internal
developers?
Generally speaking, both internal and external develop-
ers are rather active when it comes to submitted pull
requests, as it can be observed in Table 1. On the one

Table 1 Pull request submitted by external and internal
developers

Projects External Internal

#Contributors #Pull requests #Contributors #Pull requests

Atom 365 1546 35 2206

Electron 681 2442 21 1385

Git-lfs 82 435 6 938

Hubot 241 557 20 131

Linguist 645 1860 29 579

hand, internals contribute more pull requests on atom
and git-lfs; on the other hand, external developers
made a higher number of pull request in electron,
hubot, and linguist. For hubot and linguist,
external developers are responsible for more than 75% of
the pull requests in the project. If we consider all projects,
we found 5895 pull requests provided by internal develop-
ers (43.3%) and 6266 by external ones (56.7%). However,
the number of contributors greatly differ between inter-
nals and externals, as it can be observed in Table 1. As
an extreme case, project electron has 681 external
contributors, and only 21 internal (while the number of
contributions made by external developers is almost two
times greater than those made by internal developers).
That is, although the number of external developers is
up to 32× greater than internal ones, most of external
developers perform few contributions.
To provide a more detailed perspective, Fig. 2 depicts

the evolution of pull requests, grouped by their states
(open, closed, and merged) at collection time (Jan 2018).
Each observation corresponds to the total number of pull
request submitted per month by each type of member
(internal and external). The same data was used to statisti-
cally compare (p values and effect size values) submissions
by internal and external members, which is shown in
Table 2. Our effect size test follows the order internals,
then externals. Therefore, negative values indicate effect
size greater to the external developers. Positive values,
otherwise.
From the figures, it is first possible to see that the main-

tainers do a great job in processing pull requests, given
the small number of pull requests kept open. Projects
electron, git-lfs, and hubot present low rates of
open pull requests, 0.88, 0.13, and 0.08%(!), respectively.
For the latter, at the time of data collection, only 3 pull
requests were left open.

RQ1.1. Are internals the top contributors of
company-owned OSS projects?
By analyzing the top 10 contributors for each project,
we could observe that the “top contributor” of all
projects are internal developers. As it can be observed

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 6 of 17

Fig. 2 Time series for open, closed/merged, and closed/unmerged pull requests submitted by internals and externals

in Table 3, in only one of the projects (git-lfs), the
number of external developers is greater than the num-
ber of internal developers in the top 10 (6 externals, 4
internals). This finding suggests that externals are well
participative. However, even in this case, by analyzing the
code-churn, the top 2 developers (both internal) are by
far the main contributors of the git-lfs project (top 1:
124,197 additions and 75,831 deletions; top 2: 89,065 addi-
tions and 74,576 deletions; sum of top 3 to top 5: ≈61,300
additions and ≈33,600 deletions).
Finally, we also analyzed the number of pull requests

placed per contributor, as shown in Fig. 3. It is possible

to observe that the small number of internal contribu-
tors place a higher amount of pull requests than external
developers. It is also straight-forward to notice that the
external contributors’ population is mostly composed of
casual contributors [14, 15], that is, developers that con-
tributed only once to the project. Table 4 brings the
absolute number and the percentage of internal and exter-
nal casual contributors per project. Overall, 76% of the
external contributors of the analyzed projects made only
one pull request to the project. This finding complements
the study of Pinto and colleagues [14], which suggests that
casual contributors are responsible for 49% of the whole

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 7 of 17

Table 2 Comparing monthly number of pull requests submitted
by internal and external members

cells indicate large effect size, whereas cells indicate medium
effect size. Projects hubot, electron, and git-lfs have NA in their p values
and effect size due to their small sample size

population of contributors.More interestingly, we observe
that there are internal developers that only contributed
once (e.g., for hubot, 65% of the internals are casual).

RQ2. Who faces a harder time to get the contributions
accepted?
As aforementioned, we focus on understanding how pull
requests of internal and external are received. We ana-
lyzed the reception in terms of acceptance rate and time
to process the pull requests from internal and external
members.
Regarding the acceptance rate, when studying the

merged pull requests (the accepted ones) in RQ1, we
can see that both groups are also fairly active in all the
five projects analyzed. We can observe, though, differ-
ent patterns depending on the project. For example, for
linguist, we can see that the number of pull requests
from externals outperforms those from employees by far,
and for every month. However, analyzing the closed but
unmerged pull requests (the ones that were not accepted),
we could notice that many external developers are having
a hard time attempting to get their contributions accepted.
This is noticeable in the second column of graphics in
Fig. 2. In Table 2, we could confirm that most of the
unmerged (closed) pull requests were done by external
developers for 4 out of 5 projects (p value ≤ 0.001), with a
medium or large (negative) effect size. A possible explana-
tion is that employees work on critical and follow project
directions (defined inside the company), while external
submissions are, sometimes, motivated by specific needs,
not necessarily aligned with the project’s direction.

Table 3 Number of external and internal developers among top
10 contributors

Projects # External # Internal

Atom 1 9

Electron 4 6

Git-lfs 6 4

Hubot 4 6

Linguist 3 7

In terms of time to process the pull requests, we analyzed
the number of days taken between when the pull request
was opened to when the pull request was merged. On
average, pull requests filled by externals take 11.37 days to
be processed (min: 0, max: 1144, 3rd quartile: 5, std devia-
tion: 55). In comparison, pull requests from internals take
2.61 days (min: 0, max: 558, 3rd quartile: 1, std deviation:
18). Figure 4 shows the average number of days for each
studied project.
As we can see in the figure, for all studied projects, on

average, pull requests submitted by internals are process
faster than the ones submitted by externals; a small effect
size confirmed this trend (p value = 0.001, delta = 0.243).
In particular, projects hubot and linguist are the ones
that take more time to process pull requests, either from
internals (333 and 426 days for hubot and linguist,
respectively) or externals (1144 and 832 days for hubot
and linguist, respectively). To better understand why
these pull requests made by externals are taking too much
time to be processed, we investigated the ones that lasted
the most.
The pull request #678 submitted to hubot project was

aimed to improve the documentation (it adds 32 lines in
a Markdown file); five commits had been made to this
pull request. Although project maintainers needed some
time to review the contribution (the final modification
suggested was about 300 days after the pull request was
created), it seems that the pull request was forgotten,
and only 2 years after the last change was made, another
project maintainer passed through the pull request and
merged the patch. On the other hand, the pull request
#2070 submitted to the project linguist is a bit more
complex. It was aimed to introduce PEP8 support, which
is the code convention for writing Python code. Simi-
lar to the previous pull request, in this one, the main-
tainers also seem to forgot to follow-up with the code
review. The external member brought back the atten-
tion to this pull request, mentioning: “I’m recalling this
pull request has been open for over a year now (wow,
nearly two, time flies), is there anything I can do to help
it being merged into master aside from fixing the con-
flicts that have arisen since its opening?”. Four months
after this message, another maintainer provided addi-
tional comments, and 1 month after the pull request
was merged.

RQ3. Are externals more participative in the pull request
review cycle?
In this RQ, we are interested in exploring how inter-
nal and external members participate in the process by
both commenting/discussing pull requests and acting as
integrators.
We first investigated how internal and external contrib-

utors differ in terms of the number of comments received

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 8 of 17

Fig. 3 Distribution of number of pull requests made by internal and external developers (we dismissed outliers to ease visualization)

during the code review of a pull request. Figure 5 shows
the distribution of this metric.
As we can see, both groups receive comments on their

pull requests, with external developers receiving more in
most of the projects. Although internal developers might
be more aware of project domain, the integration process,
and their peers, they face a similar pull request review pro-
cess (in terms of receiving comments), when compared

Table 4 Population of casual contributors, grouped by external
and internal developers

Projects External Internal

Casuals % # Casuals %

Atom 269 74 5 14

Electron 480 70 6 29

Git-lfs 55 67 6 33

Hubot 200 82 13 65

Linguist 534 83 9 31

Total 1538 76 39 35

to external developers. By analyzing Table 5, it is possi-
ble to confirm what is shown in Fig. 5: external developers
receive more comments than internal developers (p value
< 0.01 for four out of 5 projects, with small and medium
effect size). This finding, to some extent, shows that our
studied projects welcome external developers, by pro-
viding comments, which might be used for reviewing,
guiding, and supporting developers getting their changes
merged.
To understand the participation in the review cycle,

we also studied whether the integrator role (the devel-
oper that integrates a pull request play) is performed by
an internal or by an external member. Figure 6 shows
the percentage of pull request processed by internals and
externals members.
As we can see, the majority of the pull requests

submitted to projects atom and electron are pro-
cessed by internal developers (83 and 94%, respectively).
However, for the remaining projects, the number of
pull requests processed by external developers is indeed
greater than the ones processed by internal developers.

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 9 of 17

Fig. 4 Average of days needed to process a pull request

In particular, project linguist is an extreme example,
with 78% of the pull requests being processed by external
developers. However, after a closer look at the data, we
found that few integrators are responsible for processing
themajority of the pull requests. For instance, two internal
integrators processed 85% of the pull requests submitted
to project electron. Figure 7 shows a different perspec-
tive: the percentage of unique integrators that are internal
or external developers.
The number of unique integrators for both kind of con-

tributors is roughly similar in four out of the five analyzed
project (e.g., the linguist project has 15 internal inte-
grators and 17 external). The only exception to this trend
is the project hubot, in which 11 (78%) of the integrators
are external developers (which corroborates with the find-
ings of the “RQ1.1. Are internals the top contributors
of company-owned OSS projects?” section, that indicates
a large proportion of internals are casual contributors
for this particular project). Regarding the amount of
work devoted to each kind of contributor (either internal
or external), we observed that internal integrators pro-
cessed more pull requests on projects atom, hubot, and

electron. In particular, internal integrators of project
electron processed 28× more pull requests than their
counterparts. Moreover, although the project hubot has
more unique external integrators (11 externals and 3 inter-
nals), internal integrators are responsible for managing
the majority of the pull requests (internals integrators
processed 3× more than external ones). On the other
hand, on projects linguist and git-lfs, external
integrators processed more pull requests than internals
(3.26× and 1.82×, respectively).
Additionally, we also investigated the proportion of

pull requests submitted by internals that are also pro-
cessed by internals (and vice-versa). We observed that
86.4% of the pull requests submitted by internals are
also processed by internals. In comparison, 55.4% of the
pull requests submitted by externals are also processed
by externals.

RQ4. What are the contributions’ characteristics made by
externals?
To better understand the characteristics of the accepted
contributions, we conducted a qualitative analysis aimed

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 10 of 17

Fig. 5 Number of comments received per pull request (we dismissed outliers to ease visualization)

at investigating the reasons for pull request acceptance, in
particular, the ones proposed by external members.
For the atom project, before creating a pull request,

internal developers create an issue that describes what
are the project needs. Therefore, most of the pull
requests proposed are accepted because internal devel-
opers were expecting it. For externals, pull requests
that fix documentation problems are the most com-
mon ones (we found 27 instances of them). Some

Table 5 Statistical results: comments received by internal and
external contributors’ pull requests

Projects p value Delta

Atom < 2.2e–16 – 0.223

Electron < 2.2e–16 – 0.419

Git-lfs < 2.2e–16 – 0.334

Hubot 0.8572 0.010

Linguist < 2.2e–16 – 0.390

Green cells indicate large effect size, yellow cells indicate medium effect size, and

red cells indicate small effect size

examples include broken URL15, not enough informa-
tion16, and code comments17. Notwithstanding, non-
trivial code changes often come with a detailed descrip-
tion (images are common). We found a similar pattern for
hubot. Most of the pull requests from external develop-
ers are related to documentation issues18, although com-
plex code changes exist19. Finally, these two projects seem
to welcome external users: they not only answer most
of the requests from external developers, but they also
guide their contributions to an acceptable state (as men-
tioned before, providing comments to improve the pull
request).
In addition, as presented in Fig. 8, contributions from

external developers are, in general, slightly shorter than
internal ones in terms of lines added, lines removed, and
files changed. For electron, for example, internal devel-
opers added 173,319 lines in total (mean = 130.51 lines
per pull request, median = 19.5, q3 = 71.25, stdev =
630.50) and changed 10,092 files (mean = 7.60 files per
pull request, median = 3, q3 = 6, stdev = 20.57), while
external added 150,667 lines (mean = 75.30 lines per pull

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 11 of 17

Internals Externals

%
 P

R
 p

ro
ce

ss
ed

0
20

60
10

0

atom electron git−lfs hubot linguist

Fig. 6 Percentage of pull requests integrated by external and internal members

request, median = 12, q3 = 52, stdev = 267.56) and
changed a total of 8067 files (mean = 4.03 files per pull
request, median = 1, q3 = 4, stdev = 10.52).
As one can observe in Table 6, in general, internal devel-

opers indeed include more files that external ones in all
analyzed projects. For number of deleted lines, this does
not hold true for project hubot; for additions, there is no
statistically significance for both hubot and linguist.
Overall, we can see that both internal and external con-
tributions are small (few files, and small additions and
deletions). As noted elsewhere, smaller changes are more
likely to be accepted [10] and can also reduce the chance
of breaking the continuous integration build [16].
By observing Fig. 9, we also notice that external develop-

ers’ pull requests are also smaller in terms of the number
of commits. Single-commit pull requests are rather com-
mon, accounting for more than 50% of the pull requests
received from externals (overall, and for each project).
This is expected since shorter contributions (mainly doc-
umentation and typo fixes) are made in single files. For
internals, we can observe a higher number of commit
per pull request—which can be noticed by comparing the
median and the whiskers. This was statistically confirmed
for all projects (p values � 0.01), with small effect size

for all projects, except for hubot in which we found a
medium effect size (delta = 0.350). of commits are not
common. This finding suggests that both groups follow
well-known guidelines for contributing to OSS (small
commits and few commits per pull request [10, 17]).

Discussion
In this section, we summarize the main findings of
this study (“The main takeaways” section) and provide
additional reflections on them (“Wrap up” section).

Themain takeaways
External developers are welcome. Our results showed

that the external community is supporting the com-
panies maintaining the project by means of con-
tributing to them. In particular, we found cases
which external members play crucial roles in the
projects, such as reviewing and integrating pull
requests. This could only be possible because the
studied projects welcome external members (which
is not always the case of open-source software
[18]). We further support this claim by inspecting
welcoming-community features 20 available in the
studied projects. All of the studied projects present a

Internals Externals

%
 In

te
gr

at
or

s

0
20

60
10

0

atom electron git−lfs hubot linguist

Fig. 7 Percentage of unique integrators per project

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 12 of 17

Fig. 8 Files changes, lines removed, and lines added per pull request (we dismissed outliers to ease visualization)

description, a README.md file, a Code of Conduct
file, a CONTRIBUTING.md file, and a license file.

External developers still need guidance. Some
projects tag the issues to make it easier for externals
to find a task to solve (including atom, electron,
and linguist which provide specific tags for
newcomer-friendly tasks). However, given the high
number of unmerged pull requests from external
developers (Fig. 2), external developers have to
understand the project’s direction and follow its
guidelines when submitting a pull request; other-
wise, their contributions are more likely not to be
accepted [19].

Table 6 Statistical comparison on changes submitted by internal
vs. external developers

cells indicate large effect size, cells indicate medium effect size,

and cells indicate small effect size

Fewexternal developers become long-term contributors.
Even though we found external developers sup-
porting the studied projects, few of them have a
long-term contribution history (the only exceptions
are the outliers). As one can observe in Fig. 3, the
majority of external developers place a single con-
tribution to the projects and never show up again.
For some projects (hubot and linguist, in par-
ticular), even internal developers do not place too
many pull requests. However, when looking from
a different perspective, the total number of pull
requests placed by external developers is greater
than those submitted by employees, as it can be
noticed from Table 1. Similarly, there are projects
with small participation from employees (although
they company keep contributing to it). This result
might indicate that the company-owned project is
now a community effort.

External developers can wear the integrator hat.
Although integrators are usually employees, we also
found externals that play this role, which indicates
a high involvement from the external community
in company-owned OSS projects. However, when
analyzing atom, we could find external developers
who are in charge of triaging and commenting on

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 13 of 17

Fig. 9 Number of commits per pull request (we dismissed outliers to ease visualization)

issues (who are also among the top contributors).
These externals describe themselves as “@atom
community volunteer” or “@atom maintainer.”
Therefore, further research is needed to understand
what are the actual roles played by external and
internal developers in this kind of project. Figuring
out the boundaries of responsibilities is an interest-
ing future direction for this research that can benefit
companies and communities.

Wrap up
From previous studies on casual contributors [14] and
quasi-contributors [19], we found out that the main rea-
son for a developer to place a contribution to a project is
to “scratch his/her own itch.” In many cases, this motiva-
tion was triggered by the company where the developer
worked.We hypothesize that this can be the case for many
contributors to these company-owned projects. Interest-
ingly, we found cases in which developers voluntarily
contribute, for a long period. It is the case of one of the
top 10 contributors of atom, who, in his personal home
page, mention that “In my free time I contribute to Atom,
GitHub’s text editor, as one of the community maintainers

of the project.” We found similar when analyzing the top
contributors of git-lfs and electron. This might
suggest that altruism is still present in open-source com-
munities.
However, we are not aware of the motivations that drive

external contributors that volunteer to these projects. One
can hypothesize that this can be a way to showcase their
skills to the project maintainers, so they can be hired by
the company. However, an interesting point of discussion
is whether the company is indeed interested in hiring key
or highly productive members of the external community.
From the hiring perspective, observing potential candi-
dates contributing to the project can be seen as a live
screening process, in which the company can cherry pick
good contributors. From a community perspective, taking
“core external contributors” can harm the externals struc-
ture, since the role they play outside the company can
change. Moreover, it is also important to understand the
goals of the company when they open their code and if
they are willing to pay for someone who is already con-
tributing voluntarily to the project. Although we did not
investigate this specific point (using the community con-
tributions as a hiring area), we believe that our findings

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 14 of 17

might foster other researchers to conduct more research,
especially from the perspective of the company willing to
make that move.

Related work
In this section, we discuss some of the studies that relate
with the scope of this work.

Commercial involvement/paid developers in OSS projects
It is possible to notice an increase in the participa-
tion of companies in OSS and in the contributions of
employees paid to work on OSS projects [3, 20]. Hom-
scheid and Schaarschmidt [21] investigated the role of
external developers who are paid by third-party com-
panies (“firm-sponsored developers”). By conducting a
survey with Linux developers, they found that the per-
ceived external reputation of the employing organization
reduces turnover intention towards the company, and
the perceived own reputation dampens turnover inten-
tion towards the OSS community. Atiq and Tripathi [22]
explored how the developers perceive the differences
in rewards in OSS projects, by analyzing their opinion
on how the project’s financial resources influence the
progress of the project. By analyzing an open question
sent to OSS developers, they found that OSS projects
where only some people get directly paid may fail if they
are mismanaged.
Riehle et al. [3] analyzed more than 5000 active OSS

projects, from 2000 to 2007, and found that around 50%
of all contributions have been paid work. Their perspec-
tive is that any contribution made fromMonday to Friday,
between 9am and 5pm are paid contributions. However,
as highlighted by Crowston [23], even employed devel-
opers are not paid directly by the projects to which they
contribute, so from the project perspective, they are vol-
unteers. Thus, differently from Riehle and colleagues, we
analyzed the amount of effort put by the developers of the
company that open-sourced the project—directly paid by
the “owner”—comparing with the contributions made by
any external developer. Our results showed that, for the
analyzed projects, 45% of the pull requests are placed by
internal developers (GitHub employees). The results seem
to be in line with previous work, except for the fact that
the concept of paid developers used previously, is not the
same as the concept of external developers applied here.
In a previous work, we studied the challenges that soft-

ware companies face when ope-sourcing their software
products [24]. In this work, we studied 8 well-known pro-
prietary projects that kept their software history while
transitioning to open-source. Two of these eight projects
were also studied in this current work: atom and hubot.
Analyzing the software history, we observed that external
developers often onboard company-owned OSS projects
in the very first weeks after open-sourcing, but abandon

few commits ahead (the so-called newcomers’ wave). In
this work, we also observed that the majority of exter-
nal contributors are casual ones (e.g., have contributed
at most with one commit). We also observed a burst in
the number of issues and pull requests right after open-
sourcing the software project. In a follow-up study, we
studied the reasons that motivated 50 company-owned
OSS projects to delete their software history before going
open-source [4]. Among the reasons, we observed that
code that contains sensitive information (e.g., user cre-
dentials) is one of the most common reasons for deleting
the history, although other so far uncommon reasons such
as the lawyers having to inspect each commit was also
observed.

Casual contributors’ phenomenon
Some recent studies explore the casual contributors’ phe-
nomenon (or drive-by commits) in the context of social
coding environments. Several authors have acknowl-
edged the existence and the growth of this behavior
[14, 17, 25–29]. It is found that this kind of behavior can
be beneficial for both projects and developers [14]. We
could observe that this phenomenon is also quite com-
mon in this scenario, accounting for 76% of the external
contributors, reaching up to 83% for linguist project.
This is larger than the results we have in a previous
study [14], in which we identified that casual contribu-
tors account for up to 61% of the contributors of open-
source projects written in JavaScript (4 out of the 5
projects analyzed here are written in JavaScript). Inves-
tigating the reasons behind this large number of casual
contributors in this kind of project can be an interesting
future direction.

Limitations
In a study such as this, there are always many limitations
and threats to validity.
Our first limitation is regarding the number of projects

studied. Although one might consider difficult to draw
conclusions based on five projects owned by the same
software company, we argue that our intention was
not to picture a definitive landscape of company-
owned OSS projects. Instead, our intention was two-
fold: (1) to call the attention to this relevant yet not
fully understood problem and (2) to help us to bet-
ter evaluate the approach used to classify the contrib-
utors manually. With our approach, we expect similar
analysis can be conducted in the future when other
aspects of company-owned open-source projects become
relevant.
Moreover, we rely on our inference algorithm to verify

whether a contributor is an internal or external one. We
made use of a flag (site_admin) made available in the pull
request to make this decision. We acknowledge that this

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 15 of 17

can be a threat, since even relying on this flag, it is possible
that some developers had left the company previously, so
they would be incorrectly identified. Still, we got in touch
with GitHub support regarding this issue and they men-
tioned that “not every employee will have that flag set as
some employees choose not to make their affiliation with
the company known.” To minimize this threat, we ana-
lyzed the profile of the top 10 external contributors (in
terms of numbers of pull requests) and found that 12 of
them left GitHub and were working in other companies.
We classified these developers as external to conduct our
analysis, reducing the threats.
For those classified as internal developers, all listed

themselves as GitHub staff in their profile. Still, we
got in touch with GitHub representatives whether this
flag can be employed in other OSS projects, and they
answered that “The site_admin flag is only true for GitHub
employees.”
One might argue that we could differentiate paid and

non-paid developers by looking at the email address used
for their contributions (if it is a company email, then the
developer is a paid one). We argue that many developers
are free to choose whenever email account they want to
use at the git repository. Therefore, a paid developer can
also contribute with her personal email account (which
would represent a false positive). We use the site_admin
flag to mitigate this threat.
Another limitation is related to the GitHub API. We

found some inconsistencies while mining data and meta-
data of the studied projects. For instance, in the API, some
pull requests appear with strange characteristics such as
zero additions, zero deletions in zero files21, even though
the original pull request on the web interface does have
additions and deletions22. We found 1107 pull requests
with this characteristic. Instead of discarding them, we
manually verified the number of changes in the web inter-
faced and fixed these numbers in our dataset. However,
we also found 8 pull requests with zero changes in the
GitHub API and on its web interface. We removed these
pull requests.

Conclusions
In this paper, we analyzed the contribution behavior
of internal and external developers of five well-
known company-owned open-source projects: atom,
electron, git-lfs, linguist, and hubot projects.
We found that these projects are very receptive for exter-
nal developers: many externals play important role in the
studied projects, such as reviewing and integrating pull
requests. Considering all the projects, internal developers
are responsible for 43.3% of the pull requests performed
(external developers placed 56.7%). Analyzing just hubot
project, we observed that only 18% of the pull requests
had been placed by internal developers. However, the

absolute number of external members is many more
times greater than internal ones. As a consequence, many
externals are casual contributors (i.e., developers that only
contributed once (although we also identified internals
that are also casual contributors).
These differences indicate that it is necessary to analyze

each project individually to better understand this phe-
nomenon, since there can be different factors influencing
the behavior, like the priority the company is giving to the
project; the project attractiveness; and vendors who make
use of the project.We also noticed that contributions from
external developers are shorter than those sent by internal
ones and that external developers contribute more doc-
umentation related pull request, although we also found
complex code pull request.

Future work
This study can be a fruitful research area which can
benefit companies willing to open-source their code and
developers who are afraid of contributing to recently
open-sourced projects. For future work, we plan to
expand the scope of this study by investigating additional
OSS projects. In addition, we plan to conduct surveys and
interviews with developers in order to cross-validate the
findings from the repositories.

Endnotes
1 https://github.com/apple/swift/
2 https://github.com/scala/scala
3 https://www.linuxfoundation.org/press-release/2015/

02/the-linux-foundation-releases-linux-development-
report/

4 https://github.com/atom/atom/commit/
3a09528a62f29e86bc15140a13d1bdbd9322e0e9

5 http://blog.atom.io/2014/05/06/atom-is-now-open-
source.html

6 https://github.com/electron/electron/commit/
e451d9212179197b88abeb752602de3859bb1765

7 https://www.infoworld.com/article/2995384/
application-development/easy-cross-platform-app-dev-
with-githubs-electron.html

8 https://github.com/hubotio/hubot/commit/
b253e94e051c017eb7c8c0101c30a24f0851a499

9 https://blog.github.com/2011-10-25-say-hello-to-
hubot/

10 https://github.com/git-lfs/git-lfs/commit/
d8f780329b64e789553bc8ccccfb993ebc430325

11 https://blog.github.com/2015-04-08-announcing-
git-large-file-storage-lfs/

12 https://blog.github.com/2011-06-27-linguist/

https://github.com/apple/swift/
https://github.com/scala/scala
https://www.linuxfoundation.org/press-release/2015/02/the-linux-foundation-releases-linux-development-report/
https://www.linuxfoundation.org/press-release/2015/02/the-linux-foundation-releases-linux-development-report/
https://www.linuxfoundation.org/press-release/2015/02/the-linux-foundation-releases-linux-development-report/
https://github.com/atom/atom/commit/3a09528a62f29e86bc15140a13d1bdbd9322e0e9
https://github.com/atom/atom/commit/3a09528a62f29e86bc15140a13d1bdbd9322e0e9
http://blog.atom.io/2014/05/06/atom-is-now-open-source.html
http://blog.atom.io/2014/05/06/atom-is-now-open-source.html
https://github.com/electron/electron/commit/e451d9212179197b88abeb752602de3859bb1765
https://github.com/electron/electron/commit/e451d9212179197b88abeb752602de3859bb1765
https://www.infoworld.com/article/2995384/application-development/easy-cross-platform-app-dev-with-githubs-electron.html
https://www.infoworld.com/article/2995384/application-development/easy-cross-platform-app-dev-with-githubs-electron.html
https://www.infoworld.com/article/2995384/application-development/easy-cross-platform-app-dev-with-githubs-electron.html
https://github.com/hubotio/hubot/commit/b253e94e051c017eb7c8c0101c30a24f0851a499
https://github.com/hubotio/hubot/commit/b253e94e051c017eb7c8c0101c30a24f0851a499
https://blog.github.com/2011-10-25-say-hello-to-hubot/
https://blog.github.com/2011-10-25-say-hello-to-hubot/
https://github.com/git-lfs/git-lfs/commit/d8f780329b64e789553bc8ccccfb993ebc430325
https://github.com/git-lfs/git-lfs/commit/d8f780329b64e789553bc8ccccfb993ebc430325
https://blog.github.com/2015-04-08-announcing-git-large-file-storage-lfs/
https://blog.github.com/2015-04-08-announcing-git-large-file-storage-lfs/
https://blog.github.com/2011-06-27-linguist/

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 16 of 17

13 https://github.com/github/linguist/commit/
559097ed6bae9b58987f969937f6c1de622b6487

14 https://enterprise.github.com/security
15 https://github.com/atom/atom/pull/1929
16 https://github.com/atom/atom/pull/2602
17 https://github.com/atom/atom/pull/8452
18 https://github.com/hubotio/hubot/pull/788
19 https://github.com/hubotio/hubot/pull/489
20 https://opensource.guide/building-community/
21 https://api.github.com/repos/atom/atom/pulls/16491
22 https://github.com/atom/atom/pull/16491/files

Abbreviations
MWW: Mann-Whitney-Wilcoxon; OSS: Open-source software; RQ: Research
question

Acknowledgements
We thank the reviewers for their valuable comments.

Funding
This work is supported by the CNPq (grants nos. 406308/2016-0 and
430642/2016-4), PROPESP/UFPA, and FAPESP (grant no. 2015/24527-3).

Availability of data andmaterials
All data used in this paper can be found online at https://github.com/
fronchetti/JBCS-2018.

Authors’ contributions
LFD carried out the experiments and drafted the manuscript. IS conceived of
the study and participated in the design of the study and performed the
statistical analysis. GP participated in its design and helped to draft the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Institute of Mathematics and Statistics, University of São Paulo, São Paulo,
Brazil. 2Department of Computing, Federal University of Technology, Paraná,
Campo Mourão, Brazil. 3Northern Arizona University, Flagstaff, AZ, USA.
4Faculty of Computing, Federal University of Pará, Belém, Brazil.

Received: 19 February 2018 Accepted: 10 October 2018

References
1. Avelino G, Passos LT, Hora AC, Valente MT (2016) A novel approach for

estimating truck factors. In: 24th IEEE International Conference on
Program Comprehension, ICPC 2016, Austin, TX, USA, May 16-17, 2016.
IEEE, Washington, DC. pp 1–10

2. Coelho J, Valente MT (2017) Why modern open source projects fail. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017.
IEEE, Washington, DC. pp 186–196

3. Riehle D, Riemer P, Kolassa C, Schmidt M (2014) Paid vs. volunteer work in
open source. In: HICSS ’ 14. IEEE, Washington, DC. pp 3286–3295. https://
doi.org/10.1109/HICSS.2014.407

4. Pinto G, Steinmacher I, Gerosa MA (2018) Leaving behind the software
history when transitioning to open source: reasons and implications.
Proceedings, Athens. In: Open Source Systems: Enterprise Software and
Solutions - 14th IFIP WG 2.13 International Conference, OSS 2018, June
8-10, 2018. pp 50–60

5. Dias LF, Santos J, Steinmacher I, Pinto G (2017) Who drives company-owned
OSS projects: employees or volunteers? In: V Workshop on Software
Visualization, Evolution and Maintenance. Sociedade Brasileira de
ComputaÃğÃčo, Porto Alegre. p 10

6. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic
Press, Cambridge. https://books.google.com.br/books?id=IJuCVtQ0ySIC

7. Romano J, Kromrey J, Coraggio J, Skowronek J (2006) Should we really be
using t-test and Cohen’s d for evaluating group differences on the NSSE
and other surveys? In: Annual Meeting of the Florida Association of
Institutional Research

8. Steinmacher I, Wiese IS, Conte T, Gerosa MA, Redmiles D (2014) The hard
life of open source software project newcomerCHASE ’14. In: Proceedings
of the International Workshop on Cooperative and Human Aspects of
Software Engineering. ACM, New York. pp 72–78

9. Grissom RJ, Kim JJ (2005) Effect sizes for research: univariate and
multivariate applications. Routledge, Abingdon

10. Gousios G, Zaidman A, Storey MD, van Deursen A (2015) Work practices
and challenges in pull-based development: the integrator’s perspective.
In: 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, May 16-24, 2015, Volume 1. IEEE Press, Piscataway. pp 358–368

11. Guo PJ, Zimmermann T, Nagappan N, Murphy B (2010) Characterizing
and predicting which bugs get fixed: an empirical study of microsoft
windows. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE 2010, 1-8 May 2010. ACM, New
York. pp 495–504

12. Potvin R, Levenberg J (2016) Why google stores billions of lines of code in
a single repository. Commun ACM 59(7):78–87

13. Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open
source software development: Apache and Mozilla. ACM Trans Softw Eng
Methodol 11(3):309–346

14. Pinto G, Steinmacher I, Gerosa MA (2016) More common than you think:
an in-depth study of casual contributors. In: IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, March 14-18, 2016 - Volume 1. IEEE Press, Piscataway. pp 112–123

15. Lee A, Carver JC, Bosu A (2017) Understanding the impressions,
motivations, and barriers of one time code contributors to FLOSS projects:
a survey. In: Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, May 20-28, 2017, Buenos Aires. pp 187–197

16. Rebouças M, Santos RO, Pinto G, Castor F (2017) How does contributors’
involvement influence the build status of an open-source software
project? MSR ’17. In: Proceedings of the 14th International Conference on
Mining Software Repositories. IEEE Press, Piscataway. pp 475–478

17. Gousios G, Pinzger M, van Deursen A (2014) An exploratory study of the
pull-based software development model. In: 36th International
Conference on Software Engineering, ICSE ’14, May 31 - June 07, 2014.
ACM, New York. pp 345–355

18. Dias LF, Steinmacher I, Pinto G, da Costa DA, Gerosa MA (2016) How does
the shift to GitHub impact project collaboration? In: 2016 IEEE
International Conference on Software Maintenance and Evolution, ICSME
2016, Raleigh, NC, USA, October 2-7, 2016. IEEE, Washington, DC.
pp 473–477

19. Steinmacher I, Pinto G, Wiese IS, Gerosa MA (2018) Almost there: a study
on quasi-contributors in open-source software projects. In: Proceedings
of the 40th International Conference on Software Engineering, ICSE 2018,
May 27 - June 03, 2018. ACM, New York. pp 256–266

20. Zhou M, Mockus A, Ma X, Zhang L, Mei H (2016) Inflow and retention in
OSS communities with commercial involvement: a case study of three
hybrid projects. ACM TOSEM 25(2):13

21. Homscheid D, Schaarschmidt M (2016) Between organization and
community: investigating turnover intention factors of firm-sponsored
open source software developers. In: WebSci ’16. ACM, New York.
pp 336–337

22. Atiq A, Tripathi A (2016) Impact of financial benefits on open source
software sustainability. In: 37th International Conference on Information
Systems (ICIS 2016). Association for Information Systems, Atlanta. p 10

23. Crowston K (2016) Open source technology development. In: Bainbridge
W, Roco M (eds). Handbook of Science and Technology Convergence.
Springer, Cham. pp 475–486

24. Pinto G, Steinmacher I, Dias LF, Gerosa M (2018) On the challenges of
open-sourcing proprietary software projects. Empir Softw Eng. https://
doi.org/10.1007/s10664-018-9609-6

https://github.com/github/linguist/commit/559097ed6bae9b58987f969937f6c1de622b6487
https://github.com/github/linguist/commit/559097ed6bae9b58987f969937f6c1de622b6487
https://enterprise.github.com/security
https://github.com/atom/atom/pull/1929
https://github.com/atom/atom/pull/2602
https://github.com/atom/atom/pull/8452
https://github.com/hubotio/hubot/pull/788
https://github.com/hubotio/hubot/pull/489
https://opensource.guide/building-community/
https://api.github.com/repos/atom/atom/pulls/16491
https://github.com/atom/atom/pull/16491/files
https://github.com/fronchetti/JBCS-2018
https://github.com/fronchetti/JBCS-2018
https://doi.org/10.1109/HICSS.2014.407
https://doi.org/10.1109/HICSS.2014.407
https://books.google.com.br/books?id=IJuCVtQ0ySIC
https://doi.org/10.1007/s10664-018-9609-6
https://doi.org/10.1007/s10664-018-9609-6

Dias et al. Journal of the Brazilian Computer Society (2018) 24:16 Page 17 of 17

25. Pham R, Singer L, Liskin O, Figueira Filho F, Schneider K (2013) Creating a
shared understanding of testing culture on a social coding siteICSE ’13.
In: Proceedings of the 2013 International Conference on Software
Engineering. IEEE, Washington, DC. pp 112–121

26. Pham R, Singer L, Schneider K (2013) Building test suites in social coding
sites by leveraging drive-by commits. In: 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. IEEE, Washington, DC. pp 1209–1212

27. Vasilescu B, Filkov V, Serebrenik A (2015) Perceptions of diversity on
GitHub: a user survey. In: 8th IEEE/ACM International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 2015,
May 18, 2015. IEEE, Washington, DC. pp 50–56

28. Lee A, Carver JC (2017) Are one-time contributors different? A
comparison to core and periphery developers in floss repositories. In:
Proceedings of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. IEEE Press, Piscataway. pp 1–10.
https://doi.org/10.1109/ESEM.2017.7

29. Barcomb A (2016) Episodic volunteering in open source communities
EASE ’16. In: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering. ACM, New York.
pp 3–133. http://doi.acm.org/10.1145/2915970.2915972

https://doi.org/10.1109/ESEM.2017.7
http://doi.acm.org/10.1145/2915970.2915972

	Abstract
	Keywords

	Introduction
	Method
	Studied projects
	Overall approach
	Pull request collection
	Internal and external classification

	Research question

	Results
	RQ1. Are OSS contributions mostly made by internal developers?
	RQ1.1. Are internals the top contributors of company-owned OSS projects?
	RQ2. Who faces a harder time to get the contributions accepted?
	RQ3. Are externals more participative in the pull request review cycle?
	RQ4. What are the contributions' characteristics made by externals?

	Discussion
	The main takeaways
	Wrap up

	Related work
	Commercial involvement/paid developers in OSS projects
	Casual contributors' phenomenon

	Limitations
	Conclusions
	Future work

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

