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21 Abstract

22   It is well-known in rainfall ensemble forecasts that ensemble means suffer substantially 

23 from the diffusion effect resulting from the averaging operator. Therefore, ensemble means 

24 are rarely used in practice. The use of the arithmetic average to compute ensemble means 

25 is equivalent to the definition of ensemble means as centers of mass or barycenters of all 

26 ensemble members where each ensemble member is considered as a point in a 

27 high-dimensional Euclidean space. This study uses the limitation of ensemble means as 

28 evidence to support the viewpoint that the geometry of rainfall distributions is not the 

29 familiar Euclidean space, but a different space. The rigorously mathematical theory 

30 underlying this space has already been developed in the theory of optimal transport (OT) 

31 with various applications in data science.

32

33   In the theory of OT, all distributions are required to have the same total mass. This 

34 requirement is rarely satisfied in rainfall ensemble forecasts. We, therefore, develop the 

35 geometry of rainfall distributions from an extension of OT called unbalanced OT. This 

36 geometry is associated with the Gaussian-Hellinger (GH) distance, defined as the optimal 

37 cost to push a source distribution to a destination distribution with penalties on the mass 

38 discrepancy between mass transportation and original mass distributions. Applications of 

39 the new geometry of rainfall distributions in practice are enabled by the fast and scalable 

40 Sinkhorn-Knopp algorithms, in which GH distances or GH barycenters can be 
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41 approximated in real-time. In the new geometry, ensemble means are identified with GH 

42 barycenters, and the diffusion effect, as in the case of arithmetic means, is avoided. New 

43 ensemble means being placed side-by-side with deterministic forecasts provide useful 

44 information for forecasters in decision-making.

45
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46 1. Introduction

47   Nowadays, ensemble forecasts play a vital role in numerical weather prediction. With 

48 advanced high-performance computing, the number of ensemble members is anticipated 

49 to continue increasing in the future. Therefore, it is important to extract useful information 

50 from a large number of individual forecasts that give equally possible realizations. The 

51 standard technique in ensemble forecast is to reduce all ensemble members to a small 

52 number of important fields, such as quantile and probabilistic maps, ensemble means and 

53 spreads, and ensemble clusters. Quantile and probabilistic maps turn the high-dimensional 

54 probability distribution from an ensemble forecast into scalar quantities derived from 

55 one-dimensional marginal distributions at grid points. In contrast, ensemble means and 

56 ensemble clusters retain the high dimensionality of forecast fields and their coherent 

57 structures, but only show typical representatives of all ensemble members. This is the 

58 multivariate nature of the latter approach that makes the resulting forecast fields more 

59 interesting and complicated in use. At the same time, it opens rooms for new 

60 interpretations and explorations. In this study, we demonstrate this interesting problem with 

61 the ensemble mean.

62

63   The ensemble mean is chosen due to its simplicity, which is, in fact, the arithmetic 

64 average of all forecast members. This operator tends to filter out random noise but, at the 

65 same time, diffuse informative processes in individual members, leading to a smooth mean 
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66 field. The diffusion effect is noticeably clear when this operator is applied to rainfall. The 

67 resulting rain field tends to spread out and is noticeably different from each member. Figure 

68 1 illustrates this phenomenon with 20 rainfall forecasts over Kyushu Japan from the 

69 mesoscale ensemble prediction system MEPS of Japan Meteorology Agency (JMA) (Ono 

70 et al., 2021) using the JMA’s operational limited area model ASUCA (Ishida et al., 2022). 

71 The arithmetic mean of 20 rainfall distributions differs greatly from the deterministic 

72 forecast. As a result, ensemble means of rainfall are rarely used in practice.

73

74   Figure 2a conceptually explains this fact using two one-dimensional rainfall distributions 

75 with the same shapes but a small displacement error. We expect that the mean should 

76 retain a similar shape with its location between the locations of the two individual 

77 distributions. However, the arithmetic average yields an undesirable result: a bimodal 

78 distribution with peaks much smaller than those of the two members. Furthermore, the 

79 mean distribution covers a wide area spreading from the left leg of the first member to the 

80 right leg of the second member. Although this explanation is employed in a 

81 one-dimensional space, it can be carried out in higher spaces without any significant 

82 difference. 

83

84   An important reason for using the ensemble mean as a representative forecast is that if 

85 the probability distribution of forecasts is a multivariate normal distribution, the forecast 
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86 mean also gives the mode of this probability distribution. As a result, the forecast mean 

87 becomes the most probable forecast and can be taken as the best approximation of the 

88 true state. Under this assumption, the expected error between the ensemble mean and the 

89 observation is proved to be proportional to the reciprocal of the square root of the number 

90 of ensemble members (see Appendix A). Thus, by increasing the number of ensemble 

91 members, we expect to obtain a more accurate forecast through the ensemble mean. 

92 However, this is not the case even with a relatively large number of ensemble members, as 

93 observed in Fig. 3a (1000 members in this case). Instead of two-dimensional rainfall 

94 distributions, the problem is simplified by only plotting the time series of 1-hour precipitation 

95 averaged over the Ichifusa catchment in Kyushu Japan. The forecasts are obtained from a 

96 1000-member ensemble prediction system LETKF1000 (Duc et al., 2021) using the JMA’s 

97 former operational limited area model NHM (Saito et al., 2006). Like the two-dimensional 

98 case, the ensemble mean does not show a similar pattern as the corresponding time series 

99 from the observations. However, intriguingly, if we plot the time series of accumulated 

100 rainfall instead of rain rates (Fig. 3b), the ensemble mean becomes nearly identical to the 

101 accumulated rainfall observations. This striking fact has been observed in several studies 

102 using a large number of ensemble members (Kobayashi et al. 2020, 2023) without any 

103 adequate explanation.

104  

105   Geometrically, if we consider each distribution with n elements as a point in an 
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106 n-dimensional space , the ensemble mean is simply the center of mass or the ℝ𝑛

107 barycenter of all members, assuming that all members have the same mass. Figure 3b 

108 implies that if we want to retain the meaning of the ensemble mean as a barycenter, we 

109 need to work in the space of cumulative rainfall distributions. In other words, the 

110 appropriate use of the ensemble mean of rainfall in one-dimensional cases is with 

111 accumulated rainfall distributions rather than rain rate distributions. We can easily verify the 

112 validity of this hypothesis with the simple example in Fig. 2a. Figure 2b plots the cumulative 

113 distributions corresponding to the distributions in Fig. 2a. As expected, the cumulative 

114 distribution of the expected mean lies between the two cumulative distribution members. 

115 However, what is notable here is that in cumulative forms, the expected mean is nearly 

116 identical to the arithmetic mean of the inverses of the cumulative distributions. Note that in 

117 Fig. 2b, since the cumulative distributions are one-to-one maps, their graphs also represent 

118 their inverses, in which time is considered as a function of cumulative rainfall. 

119

120   Figure 2b suggests the following procedure to find the expected ensemble mean for any 

121 number of one-dimensional distributions:

122 (1) Transforming all distributions to the space of inverses of cumulative distributions;

123 (2) Calculating the arithmetic mean in the transformed space;

124 (3) Transforming the resulting ensemble mean back to the space of distributions.

125 Of course, the important problem is how we can justify such a procedure with a robust 
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126 theoretical base. Note that Fig. 2b demonstrates the first two steps (1) and (2) of this 

127 procedure, while Fig. 2a demonstrates the last step (3).

128  

129   The above procedure shows a potential way of finding expected ensemble means in 

130 high-dimensional cases. Thus, all we need is finding an appropriate space in which the 

131 ensemble mean retains its meaning as barycenters while being robust to the diffusion 

132 effect in the presence of displacement errors among members. However, an attempt to 

133 extend cumulative distributions from one-dimensional cases to high-dimensional cases 

134 does not work since it is unclear how to define a high-dimensional cumulative field from a 

135 high-dimensional distribution. A natural question is whether this space exists at all in 

136 general cases. It is noted that even in one-dimensional cases, the arithmetic average 

137 operator only makes sense if all one-dimensional distributions have the same total mass. 

138 This means that even in the simplest cases, the existence of such a space is still 

139 questionable. 

140

141   In this study, we show that the theory of optimal transport (OT) (Villani, 2009; 

142 Santambrogio, 2015; Peyré and Cuturi, 2019) proposes an elegant solution to this 

143 problem. Instead of working in a transformed space, we continue to stick with the space of 

144 rainfall distributions but endowed with a new geometry. Thus, the similarity between any 

145 distributions is no longer measured by the normal Euclidean distance but is replaced by a 
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146 new distance defined in the context of OT. In particular, this distance becomes the normal 

147 Euclidean distance between inverses of cumulative distributions in one-dimensional cases. 

148 The theory of OT relevant to this study, i.e., unbalanced OT, is presented in the next 

149 section. The barycenters, resulting from the new geometry of rainfall distributions defined 

150 by unbalanced OT, are described and analyzed in Section 3. Finally, Section 4 

151 summarizes the main points of this study and discusses some potential applications.

152

153 2. Unbalanced optimal transport

154   Although OT has been successfully applied in many fields of data science, there is only a 

155 limited number of applications of OT in geosciences (Farchi et al., 2016; Métivier et al., 

156 2016; Yang et al., 2018; Sambridge et al., 2022). However, it is worth noting that in recent 

157 years, we have seen an increase in studies using OT in geophysical data assimilation 

158 (Reich and Cotter, 2015; Feyeux et al., 2018; Li et al., 2018; Tamang et al., 2021; 

159 Vanderbecken et al., 2023). In order to make OT accessible to the meteorology community, 

160 the theory of OT will be adapted to rainfall distributions and simplified in this section. A 

161 more rigorous treatment for probabilistic distributions can be found in Villani (2009) and 

162 Santambrogio (2015). Our mathematical treatment in this section mainly follows Peyré and 

163 Cuturi (2019). 

164

165   Let two vectors  denote two rainfall distributions with the same total rain mass 𝐚,𝐛 ∈ ℝ𝑛
+

Page 9 of 48 For Peer Review



10

166 over the same domain D. We consider rainfall in the same domain, however, in the theory 

167 of OT, two distributions need not be on the same domain. We call a matrix  a 𝐏 ∈ ℝ𝑛 × 𝑛
+

168 transport plan that moves  to  in the sense that the element  denotes the rain mass 𝐚 𝐛 𝑃𝑖𝑗

169 from the bin i to the bin j. A bin corresponds to a grid box in the domain. For mass 

170 conservation, we impose two constraints on the elements of 𝐏

171 , (1a)𝐏𝟏 = 𝐚

172 , (1b)𝐏T𝟏 = 𝐛

173 where  denotes a vector with all elements equal one. From the constraints (1), it is easy 𝟏

174 to verify that the total rain mass is conserved

175 . (2)𝟏T𝐚 = 𝟏T𝐏𝟏 = (𝐏𝟏)T𝟏 = 𝟏T𝐏T𝟏 = 𝟏T𝐛

176 Associated with , we have a matrix  whose element  denotes the 𝐏 𝐂 ∈ ℝ𝑛 × 𝑛
+ 𝐶𝑖𝑗

177 transportation cost from the bin i to the bin j.

178

179   The original theory of OT seeks the OT plan  that minimizes the following objective 𝐏 ∗

180 function

181 , (3)L𝐂(𝐚,𝐛) = min
𝐏

〈𝐂,𝐏〉 = min
𝐏

∑𝐶𝑖𝑗𝑃𝑖𝑗

182 subject to the constraints (1) where the symbol  denotes the inner product of two 〈〉

183 matrices. With the linear constraints (1), the linear programming problem (3) is convex and 

184 therefore has a global minimum. This formulation is known as the Kantorovich problem in 

185 OT (Kantorovich, 1942), an extension of the Monge problem in which mass splitting is not 
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186 allowed (the entire mass from a bin is moved to another bin). What is the connection 

187 between the optimal cost  and the geometry of rainfall distributions? L𝐂(𝐚,𝐛)

188

189   The connection follows from an important theorem: if  where 𝐶𝑖𝑗 = ‖𝐱𝑖 ― 𝐱𝑗‖𝑝
𝑝 ‖𝐱𝑖 ― 𝐱𝑗‖𝑝 =

190  is the Minkowski distance of order p between two grid points , then  induces 𝐷𝑖𝑗 𝐱𝑖,𝐱𝑗 L𝐂(𝐚,𝐛)

191 a distance between  and , which is called the p-Wasserstein distance𝐚 𝐛

192 . (4)W𝑝(𝐚,𝐛) = L𝐃𝑝(𝐚,𝐛)1/𝑝

193 We replace  with  in (4) to emphasize that the new distance is defined by using the 𝐂 𝐃𝑝

194 Minkowski distance as the transportation cost. Also, recall that the Minkowski distance of 

195 order 2 is the familiar Euclidean distance. In order to be a distance, the distance function 

196 has to be positive, symmetric, and has to obey the triangular inequality. The p-Wasserstein 

197 distance usually does not have an analytic form, and can only be estimated numerically. 

198

199   However, for one-dimensional distributions,  has a closed form given byW𝑝(𝐚,𝐛)

200 , (5)W𝑝(𝐚,𝐛) = ‖F ―1(𝐚) ― F ―1(𝐛)‖𝑝

201 where  denotes the inverse of the cumulative distribution constructed from . Thus, F ―1(𝐚) 𝐚

202 when , i.e.,  is the Euclidean distance between  and , the 𝑝 = 2 ‖𝐱𝑖 ― 𝐱𝑗‖2 𝐱𝑖 𝐱𝑗

203 2-Wasserstein distance is identical to the Euclidean distance between  and . F ―1(𝐚) F ―1(𝐛)

204 This fact supports our averaging operation in Fig. 2b, where we take the arithmetic mean of 

205 two inverses of cumulative distributions. This step is equivalent to taking the barycenter  𝐜
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206 of two distributions  and  with respect to the 2-Wasserstein distance𝐚 𝐛

207 . (6)min
𝐜

[0.5W2(𝐚,𝐜)2 + 0.5W2(𝐜,𝐛)2]

208 Of course, in practice, we avoid minimizing (6) by simply taking the average of   F ―1(𝐚)

209 and , and we transform it back to the space of distributions.F ―1(𝐛)

210

211   Recall that the OT problem (3) strictly requires the same total mass between  and . 𝐚 𝐛

212 However, rainfall distributions from different ensemble members rarely satisfy this 

213 condition. Therefore, rainfall distributions cannot be considered in the same Wasserstein 

214 space. This limitation prevents the application of OT for rainfall distributions. Clearly, the 

215 averaging operation does not make sense in Fig. 2b if the two cumulative distributions have 

216 two different heights.

217

218   There are many attempts to relax the requirement of the same total mass in OT. The 

219 most successful approach is known under the name unbalanced optimal transport (UOT) 

220 (Frogner et al., 2015; Chizat et al., 2018a; Liero et al., 2018), which relaxes the objective 

221 function (3) with the new form

222 , (7)L𝐂(𝐚,𝐛) = min
𝐏

[〈𝐂,𝐏〉 + 𝜏KL(𝐏𝟏,𝐚) + 𝜏KL(𝐏T𝟏,𝐛)]

223 where  is the marginal relaxation parameter that penalizes the discrepancy between 𝜏

224 mass transportation and original mass distributions. This discrepancy is measured with the 
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225 Kullback-Leibler (KL) divergence

226 . (8)KL(𝐚,𝐛) = ∑
𝑖[𝑎𝑖log (𝑎𝑖/𝑏𝑖) + 𝑏𝑖 ― 𝑎𝑖]

227 The existence of the term  in (8) is due to unequal total mass between  and . 𝑏𝑖 ― 𝑎𝑖 𝐚 𝐛

228 Thus, (7) replaces the strong constraints (1) with weak constraints through the marginal 

229 relaxation terms, and controls these constraints by . It can be verified that (7) reduces to 𝜏

230 (3) in the limit  under the total mass constraint . 𝜏→∞ 𝟏T𝐚 = 𝟏T𝐛

231

232   Like the 2-Wasserstein distance, when  is the square of the Euclidean 𝐶𝑖𝑗 = ‖𝐱𝑖 ― 𝐱𝑗‖2
2

233 distance, the optimal cost (7) defines a distance between  and , called the 𝐚 𝐛

234 Gaussian-Hellinger (GH) distance 

235 . (9)GH(𝐚,𝐛) = L𝐃2(𝐚,𝐛)1/2

236 However, unlike ,  can only be estimated numerically even for W𝑝(𝐚,𝐛) GH(𝐚,𝐛)

237 one-dimensional distributions. Using this new distance, we can estimate the barycenter of 

238 an ensemble of rainfall distributions  from the following minimization problem{𝐚𝑘}𝑘 = 1,𝐾

239 . (10)min
𝐛

[∑
𝑘

1
𝐾GH(𝐚𝑘,𝐛)2]

240 In other words, we seek the distribution  that minimizes the averaged GH distances from 𝐛

241  to all . Figure 4 illustrates this barycenter problem by showing GH-barycenters of two 𝐛 𝐚𝑘

242 different rainfall distributions in terms of both volumes and spreads. The computation is 

243 employed by using the algorithm described in the next section. 

244
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245 3. Regularized Gaussian-Hellinger barycenters

246   The most common method to solve the linear programing problem (3) is the simplex 

247 algorithm. In general, the computational complexity of the simplex method is  𝒪(𝑛3𝑙𝑜𝑔𝑛)

248 which limits the applications of OT in practice. Recall that  denotes the size of the vectors 𝑛

249 , which is the number of grid points in the domain D. With the introduction of the 𝐚,𝐛

250 marginal relaxation, the UOT minimization problem (7) is no longer a linear programing 

251 problem. The closed solution exists when distributions have Gaussian forms (Janati et al., 

252 2020). Blondel et al. (2018) proposed to solve this using the L-BFGS-B algorithm with the 

253 squared norm in place of the KL divergence. Sato et al. (2020) provided an effective 

254 solution when distributions have a tree structure. Chapel et al. (2021) showed that (7) can 

255 be turned into a non-negative linear regression problem, and solved with non-negative 

256 matrix factorization. However, what makes UOT applicable in practice is the introduction of 

257 entropic regularization into UOT, leading to scalable and fast algorithms.

258

259   The idea of adding an entropic regularization term into (3) has been proposed by Cuturi 

260 (2012) to make the problem strictly convex and, therefore, simpler to solve. In particular, 

261 regularization enables the use of the fast Sinkhorn-Knopp algorithm (Sinkhorn and Knopp, 

262 1967; Benamou et al., 2015) with the complexity  to approximate the optimal plan. 𝒪(𝑛2)

263 This idea has been introduced into UOT by Chizat et al. (2018b) to derive matrix scaling 

264 algorithms for UOT problems in the vein of the Sinkhorn-Knopp algorithm. Thus, we 
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265 regularize the minimization problem (7) by adding an entropic regularization term

266 , (11)L𝜀
𝐂(𝐚,𝐛) = min

𝐏
[〈𝐂,𝐏〉 + 𝜏KL(𝐏𝟏,𝐚) + 𝜏KL(𝐏T𝟏,𝐛) ― 𝜀H(𝐏)]

267 where  is the entropic regularization parameter, and  represents the entropy of 𝜀 H(𝐏) 𝐏

268 . (12)H(𝐏) = ― ∑
𝑖𝑗[𝑃𝑖𝑗log (𝑃𝑖𝑗) ― 𝑃𝑖𝑗]

269 The regularized GH distance associated with the regularized UOT problem (11) is 

270 expressed as , which transforms our barycenter problem (10) toGH𝜀(𝐚,𝐛)

271 . (13)min
𝐛

[∑
𝑘

1
𝐾GH𝜀(𝐚𝑘,𝐛)2]

272 By letting  go to zero in minimizing (13), we obtain the GH barycenter of the original 𝜀

273 barycenter problem (10).

274

275   The matrix scaling algorithm developed by Chizat et al. (2018b) for the barycenter 

276 problem (13) is reproduced here with some adaptations

277 Algorithm 1:

278    Input: , , , 𝜀 𝜏 {𝐚𝑘}𝑘 = 1,𝐾 𝐂

279    Local variables: , , , 𝜙 𝐊 {𝐮𝑘}𝑘 = 1,𝐾 {𝐯𝑘}𝑘 = 1,𝐾

280    Initialization: , , 𝜙 = 𝜏/(𝜏 + 𝜀) 𝐊 = exp ( ― 𝐂/𝜀) 𝐯𝑘←𝟏 (𝑘 = 1,𝐾)

281    Repeat:

282       , (14a)𝐮𝑘←[𝐚𝑘 ⊘ 𝐊𝐯𝑘]𝜙 (𝑘 = 1,𝐾)

283       , (14b)𝐛←[∑
𝑘

1
𝐾(𝐊T𝐮𝑘)1 ― 𝜙]1/(1 ― 𝜙)

284       , (14c)𝐯𝑘←[𝐛 ⊘ 𝐊T𝐮𝑘]𝜙 (𝑘 = 1,𝐾)
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285    Until convergence

286    Output: 𝐛

287 The symbol  in (14a) and (14c) denotes the element-wise division operator. The matrix ⊘

288  is the element-wise exponential matrix of . It is worth noting that this algorithm is 𝐊 ― 𝐂/𝜀

289 prone to numerical underflow and overflow when  is small. Therefore, it is better to work 𝜀

290 with , , , than , , . This strategy is known as the log-domain ― 𝐂/𝜀 log𝐮𝑘 log𝐯𝑘 𝐊 𝐮𝑘 𝐯𝑘

291 Sinkhorn-Knopp algorithm.

292

293   Figure 4 shows the impact of the entropic regularization and the marginal relaxation on 

294 approximations of GH barycenters using Algorithm 1. Due to the fact that OT plans become 

295 less sparse under the entropic regularization,  with large values cause the mass spread 𝜀

296 in approximated GH barycenters, as illustrated in Fig. 4a. This implies that to avoid the 

297 diffusion effect,  should be set to small values. However, if  are too small, the 𝜀 𝜀

298 Sinkhorn-Knopp algorithm will suffer from numerical underflow and overflow, and fail to 

299 terminate. For the marginal relaxation , it is interesting to see that when a large mass 𝜏

300 discrepancy is enabled, i.e.,  are small, the UOT barycenter problem leads back to a 𝜏

301 distribution similar to the arithmetic mean of two ensemble members. Therefore,  should 𝜏

302 be set to large values to avoid arithmetic means. However, if  are too large, the algorithm 𝜏

303 will converge slower due to . The settings of  and   will be applied in 𝜙~1 𝜀 = 10 ―4 𝜏 = 10

304 all the computations using Algorithm 1. 
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305

306   When applying the matrix scaling algorithm to two-dimensional rainfall distributions, the 

307 most challenging issue is the exponential increase in computational costs. For the 

308 one-dimensional case in Fig. 4, the size of the problem is . Let us consider 𝑛 = 100

309 two-dimensional distributions with the same size in each direction. The problem size 

310 becomes , leading to an increase of  times in the 𝑛 = 1002 = 104 108/104 = 104

311 computational cost. Notice that the computation cost in Algorithm 1 is mainly dominated by 

312 the matrix-vector products,  and , which takes  operations. In order to 𝐊𝐯𝑘 𝐊T𝐮𝑘 𝒪(𝑛2)

313 mitigate the huge computational cost in two-dimensional cases, we model  as a tensor 𝐊

314 product , so that the matrix-vector products can be done in each x, y direction 𝐊 = 𝐊𝑥 ⊗ 𝐊𝑦

315 separately. As a result, the computation cost reduces to  resulting in  time 𝒪(𝑛3/2) 102

316 increase in the computational cost as compared to one-dimensional cases, which is 

317 affordable in practice. 

318

319   Figure 5 shows the GH barycenters for consecutive 3-hour precipitation from 00 to 09 

320 JST on July 4th 2020, estimated from 20 members of MEPS. Corresponding deterministic 

321 forecasts and arithmetic means are also plotted for comparison. Clearly, all GH 

322 barycenters avoid the diffusion effect as observed in the arithmetic means. Furthermore, 

323 the GH barycenters provide additionally useful information for the deterministic forecasts 

324 by showing locations where all members disagree with the deterministic forecasts, 
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325 therefore, overconfidence from the deterministic forecasts may be avoided. This 

326 information is important for forecasters in decision-making.

327

328   Objective verification using the Fractions Skill Score (FSS) (Roberts and Lean, 2008) is 

329 performed to quantify the performances of the two kinds of barycenters in addition to the 

330 deterministic forecasts. The verification results are shown in Fig. 6. Clearly, for the 

331 arithmetic means, due to the diffusion effect, their FSSs drop rapidly to zero when the 

332 rainfall thresholds increase. This means the GH barycenters outperform the arithmetic 

333 means for intense rain. However, the arithmetic means are not entirely worse than the GH 

334 barycenters. At the rainfall thresholds smaller than 10 mm (3h)-1, the arithmetic means 

335 yield forecasts slightly better than the GH barycenters. The reason can be traced back to 

336 Fig. 1, where a large rainfall area forecasted by the arithmetic means (Fig. 1c) because the 

337 diffusion effect is unexpectedly in accordance with the observed rainfall area (Fig. 1a). In 

338 contrast, individual forecasts similar to the deterministic forecasts tend to predict a rainfall 

339 area much smaller than that of the observations. As a result, the GH barycenters become 

340 slightly worse than the arithmetic means in predicting the rainfall area.

341

342   The computing program for the barycenters in Fig. 5 is parallelized along the direction of 

343 ensemble members, i.e., each processor only works with a subset of ensemble members. 

344 With 20 Intel Xeon processors and the domain consisting of 311x242 grid points, each GH 
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345 barycenter takes three minutes to calculate. The running time can be accelerated 

346 considerably if parallelization in the x and y directions is employed. Since all GH 

347 barycenters are independent with respect to different lead times, they can be produced in 

348 parallel. This enables GH barycenters to be deployed in real-time.

349

350 4. Discussions and conclusions

351   It is well-known in rainfall ensemble forecasts that ensemble means suffer substantially 

352 from the diffusion effect resulting from the averaging operator. Therefore, ensemble means 

353 are usually not comparable with any ensemble members, and as a result, are rarely used 

354 in practice. The use of the arithmetic average to compute ensemble means is equivalent to 

355 the definition of ensemble means as centers of mass of all ensemble members where each 

356 member is considered as a point in a high-dimensional Euclidean space. This study uses 

357 the limitation of ensemble means as evidence to support the viewpoint that the geometry of 

358 rainfall distributions is not the familiar Euclidean space, but a different metric space 

359 associated with a certain distance. The rigorously mathematical theory underlying this 

360 space has already been developed in the theory of OT with various applications in other 

361 disciplines, of which objects are the same kind of distributions as rainfall distributions.

362

363   In the theory of OT, all distributions are required to have the same total mass. This 

364 requirement is, of course, rarely satisfied in rainfall ensemble forecasts. We, therefore, 
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365 develop the geometry of rainfall distributions from an extension of OT called UOT. This 

366 geometry is associated with the GH distance defined in UOT. This distance is the optimal 

367 cost to push a source distribution to a destination distribution with penalties on the mass 

368 discrepancy between mass transportation and original mass distributions. The applications 

369 of the new geometry of rainfall distributions in practice are enabled by the fast and scalable 

370 Sinkhorn-Knopp algorithms, in which GH distances or GH barycenters can be 

371 approximated in real-time. By replacing arithmetic means with GH barycenters, the 

372 diffusion effect is avoided. Furthermore, new ensemble means, with respect to the GH 

373 distance, being placed side-by-side with deterministic forecasts provide useful information 

374 for forecasters in decision-making.

375

376 A new view on the geometry of rainfall distributions should provide solutions for a 

377 broader range of problems, not limited to ensemble means. We now try to tackle the 

378 reason underlying the resemblance of the ensemble means and the observations for 

379 one-dimensional cumulative distributions in Fig. 3b that is left in the introduction. In the 

380 metric space defined by the GH distance, GH barycenters are expected to approach 

381 observations with increasing the number of ensemble members. Recall that the 

382 2-Wasserstein distance is equivalent to the Euclidean distance of inverses of cumulative 

383 distributions. This suggests that to grasp the convergence with respect to the GH distance, 

384 a distance similar to the 2-Wasserstein distance, GH barycenters should be plotted in 
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385 cumulative forms. As expected, Fig. 7 shows that when the number of ensemble members 

386 increases from 20 (MEPS) to 100 (LETF100) and 1000 (LETKF1000) (see Duc et al., 2001, 

387 for detailed descriptions of the three ensemble prediction systems), the GH barycenters 

388 gradually approach the observations. However, what is more surprising is that the 

389 arithmetic means also converge to the GH barycenters. This explains why the arithmetic 

390 means converge to the observations in Fig. 3b.

391

392 Since arithmetic means are, in fact, Euclidean barycenters, this raises a question on 

393 how we explain the convergence of two barycenters with increasing the number of 

394 ensemble members. In general, it is easy to show a counter-example for this property, e.g., 

395 many pairs of ensemble members with a fixed Wasserstein mean in Fig. 2b. Therefore, we 

396 hypothesize that this is a special property of rainfall ensemble forecasts in numerical 

397 weather prediction. In order to provide evidence for this hypothesis, Fig. 8 plots 

398 two-dimensional GH barycenters and arithmetic means from the same ensemble forecast 

399 systems in Fig. 7. Clearly, the arithmetic means again become nearly identical to the GH 

400 barycenters when the number of ensemble members reaches 1000. Thus, 

401 two-dimensional rainfall distributions also show evidence for this property as in 

402 one-dimensional distributions. Of course, this hypothesis should be verified for more 

403 cases.

404
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405 What are the other potential applications of the UOT-based geometry of rainfall 

406 distributions? In this study, we use ensemble means to illustrate one of the potential 

407 applications of the new geometry. However, it is important to verify the performance of GH 

408 barycenters in comparison with deterministic forecasts or traditional ensemble means. This 

409 verification is usually quantified by objective verification scores as demonstrated in Fig. 6 

410 with FSS. Due to its nature as a similarity measure, the GH distance should be a natural 

411 verification score in rainfall verification. Also, ensemble means do not make sense if 

412 forecasts show a bi-modal probability distribution. In such cases, clustering needs to be 

413 deployed first, and clusters are represented by appropriate representatives. Then, the 

414 clustering can use the GH distance as a similarity measure, while clusters can be 

415 expressed by their corresponding GH barycenters. We will address these problems in the 

416 near future.

417
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429 Appendix

430 A. Statistics of the forecast skill

431   In this section, all quantities are given in observation space. First, we suppose that an 

432 ensemble forecast with  ensemble members is equivalent to  samples randomly 𝐾 𝐾

433 drawn from a multivariate normal distribution , where  is the forecast mean, and 𝒩(𝐱𝑓,𝐐) 𝐱𝑓

434  is the forecast error covariance. Thus, any ensemble member  can be written under 𝐐 𝐱𝑘

435 the form

436 , (A1)𝐱𝑘 = 𝐱𝑓 + 𝛆𝑘

437 where  is a realization of forecast errors . The corresponding observation  is 𝛆𝑘 𝒩(𝟎,𝐐) 𝐲

438 assumed to be the true state , which is unknown, contaminated by observation errors𝐱𝑡

439 , (A2)𝐲 = 𝐱𝑡 + 𝛆𝑜

440 where  is a realization of observation errors , and  is the observation error 𝛆𝑜 𝒩(𝟎,𝐑) 𝐑

441 covariance.

442

443   We define the forecast skill to be the difference between the ensemble mean  𝐱 = ∑𝐱𝑘/𝐾

444 and the observation 𝐲
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445 , (A3)𝐬 = 𝐱 ― 𝐲 = 𝐱𝑓 ― 𝐱𝑡 +
1
𝐾∑𝛆𝑘 ― 𝛆𝑜

446 where we use (A1) and (A2) to obtain the last expression. Clearly,  is a random variable, 𝒔

447 and it is straightforward to calculate its statistics

448 . (A4)E[𝐬] = 𝐱𝑓 ― E[𝐱𝑡]

449 . (A5)E[𝐬𝐬T] = E[(𝐱𝑓 ― 𝐱𝑡)(𝐱𝑓 ― 𝐱𝑡)T] +
1
𝐾𝐐 + 𝐑

450 The right-hand sides of (A4) and (A5) are derived using the fact that  are 𝐱𝑡,𝛆𝑘,𝛆𝑜

451 independent.  

452

453   In order to get the final forms of (A4) and (A5), we need to make an assumption on the 

454 true state . Since  is the mode of the probability distribution of the forecasts , 𝐱𝑡 𝐱𝑓 𝒩(𝐱𝑓,𝐐)

455 we assume that  is a good approximation of 𝐱𝑓 𝐱𝑡

456 . (A6)𝐱𝑡 ≈ 𝐱𝑓

457 This means rather than a random variable,  is considered as a fixed quantity given 𝐱𝑡

458 approximately by . Under this assumption, (A4) and (A5) respectively become𝐱𝑓

459 . (A7)E[𝐬] = 𝟎

460 . (A8)E[𝐬𝐬T] =
1
𝐾𝐐 + 𝐑

461 If observation errors  are negligible compared to forecast errors , (A8) points out that  𝐑 𝐐 𝐱

462 asymptotically converges to  with the error being proportional to .𝐲 1/ 𝐾

463

464   The assumption (A6) can be further relaxed only by requiring  to follow the same 𝐱𝑡
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465 probability distribution of the forecasts 𝒩(𝐱𝑓,𝐐)

466 . (A9)𝐱𝑡 = 𝐱𝑓 + 𝛆𝑡

467 where  is a realization of forecast errors . This means  is considered as a 𝛆𝑡 𝒩(𝟎,𝐐) 𝐱𝑡

468 random variable now, and is indistinguishable from all ensemble members. Under this 

469 assumption, (A4) and (A5) respectively become

470 . (A10)E[𝐬] = 𝟎

471 . (A11)E[𝐬𝐬T] =
𝐾 + 1

𝐾 𝐐 + 𝐑

472 Again, if observation errors  are negligible, (A11) represents the well-known spread-skill 𝐑

473 relationship in ensemble forecast.
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555 List of Figures

556 Figure 1: (a) Accumulated precipitations observed by radars and rain gauges between 

557 00-09 JST on July 4th 2020. (b) The corresponding 5-km deterministic forecast by ASUCA 

558 started at 18 JST on July 4th 2020. (c) The corresponding 5-km ensemble mean forecast by 

559 MEPS started at 18 JST on July 4th 2020.

560 Figure 2: (a) A one-dimensional simple model explaining undesirable behavior of ensemble 

561 means: two identical rainfall distributions (circles) with a displacement error result in an 

562 ensemble mean distribution (squares) with two modes, which is far from the expected mean 

563 (triangles). (b) The same distributions when viewed under cumulative forms.

564 Figure 3: (a) Time series of the 1-hour precipitation averaged over the Ichifusa catchment 

565 as forecasted by LETKF1000. The ensemble mean, the GH barycenter, and the 

566 observations are denoted by triangles, squares, and stars, respectively. (b) The same 

567 forecasts when viewed under cumulative forms.

568 Figure 4: Dependence of regularized GH barycenters on (a) the entropic regularization 

569 parameter, and (b) the marginal relaxation parameter. The GH barycenters are estimated 

570 from two different rainfall distributions in terms of both volumes and spreads using the 

571 Sinkhorn-Knoop algorithm.

572 Figure 5: Consecutive 3-hour precipitation between 00-09 JST on July 4th 2020 forecasted 

573 by MEPS with the deterministic forecasts (left columns), the ensemble means (right 

574 columns), and the GH barycenters (center columns).
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575 Figure 6: FSSs of the MEPS forecasts of consecutive 03-hour precipitation given by the 

576 deterministic forecasts, the ensemble means, and the GH barycenters between 00-09 JST 

577 on July 4th 2020 over Kyushu. A fixed spatial scale of 15 km is used for all forecasts.

578 Figure 7: As Fig. 3b but with the ensemble forecasts of (a) MEPS, (b) LETKF100, and (c) 

579 LETKF1000. Figure 3b is reproduced in Fig. 7c for comparison. The number of ensemble 

580 members increases from 20 in MEPS to 100 and 1000 in LETKF100, and LETKF1000, 

581 respectively.

582 Figure 8: As Fig. 5 but with the accumulated precipitation between 00-09 JST on July 4th 

583 2020 and forecasts from three ensemble forecast systems: (a,b,c) MEPS, (d,e,f) 

584 LETKF100, and (g,h,i) LETKF1000.

585
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586

587 Figure 1: (a) Accumulated precipitations observed by radars and rain gauges between 

588 00-09 JST on July 4th 2020. (b) The corresponding 5-km deterministic forecast by ASUCA 

589 started at 18 JST on July 4th 2020. (c) The corresponding 5-km ensemble mean forecast by 

590 MEPS started at 18 JST on July 4th 2020.
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592

593 Figure 2: (a) A one-dimensional simple model explaining undesirable behavior of ensemble 

594 means: two identical rainfall distributions (circles) with a displacement error result in an 

595 ensemble mean distribution (squares) with two modes, which is far from the expected mean 

596 (triangles). (b) The same distributions when viewed under cumulative forms. 

597
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598

599 Figure 3: (a) Time series of the 1-hour precipitation averaged over the Ichifusa catchment 

600 as forecasted by LETKF1000. The ensemble mean, the GH barycenter, and the 

601 observations are denoted by triangles, squares, and stars, respectively. (b) The same 

602 forecasts when viewed under cumulative forms.
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604

605 Figure 4: Dependence of regularized GH barycenters on (a) the entropic regularization 

606 parameter, and (b) the marginal relaxation parameter. The GH barycenters are estimated 

607 from two different rainfall distributions in terms of both volumes and spreads using the 

608 Sinkhorn-Knoop algorithm.  

609
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610

611 Figure 5: Consecutive 3-hour precipitation between 00-09 JST on July 4th 2020 forecasted 

612 by MEPS with the deterministic forecasts (left columns), the ensemble means (right 

613 columns), and the GH barycenters (center columns).

614
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615

616 Figure 6: FSSs of the MEPS forecasts of consecutive 03-hour precipitation given by the 

617 deterministic forecasts, the ensemble means, and the GH barycenters between 00-09 JST 

618 on July 4th 2020 over Kyushu. A fixed spatial scale of 15 km is used for all forecasts.
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619

620 Figure 7: As Fig. 3b but with the ensemble forecasts of (a) MEPS, (b) LETKF100, and (c) 

621 LETKF1000. Figure 3b is reproduced in Fig. 7c for comparison. The number of ensemble 

622 members increases from 20 in MEPS to 100 and 1000 in LETKF100, and LETKF1000, 

623 respectively.
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624

625 Figure 8: As Fig. 5 but with the accumulated precipitation between 00-09 JST on July 4th 

626 2020 and forecasts from three ensemble forecast systems: (a,b,c) MEPS, (d,e,f) 

627 LETKF100, and (g,h,i) LETKF1000.

628
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