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Abstract

While kernel canonical correlation analysis (CCA) has been applied in many contexts, the conver-
gence of finite sample estimates of the associated functions to their population counterparts has
not yet been established. This paper gives a mathematical proof of the statistical convergence of
kernel CCA, providing a theoretical justification for the method. The proof uses covariance opera-
tors defined on reproducing kernel Hilbert spaces, and analyzes the convergence of their empirical
estimates of finite rank to their population counterparts, which can have infinite rank. The result
also gives a sufficient condition for convergence on the regularization coefficient involved in kernel
CCA: this should decrease as n−1/3, where n is the number of data.
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1. Introduction

Kernel methods (Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2002) have recently
been developed as a methodology for nonlinear data analysis with positive definite kernels. In
kernel methods, data are represented as functions or elements in reproducing kernel Hilbert spaces
(RKHS), which are associated with positive definite kernels. The application of various linear meth-
ods in these Hilbert spaces is possible due to the reproducing property, which makes computation
of inner product in the Hilbert spaces tractable. Many methods have been proposed as nonlinear
extensions of conventional linear methods, such as kernel principal component analysis (Schölkopf
et al., 1998), kernel Fisher discriminant analysis (Mika et al., 1999), and so on.

Kernel canonical correlation analysis (kernel CCA) was proposed (Akaho, 2001; Melzer et al.,
2001; Bach and Jordan, 2002) as a nonlinear extension of canonical correlation analysis with pos-
itive definite kernels. Given two random variables X and Y , kernel CCA aims at extracting the
information which is shared by the two random variables. More precisely, the purpose of kernel
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CCA is to provide nonlinear mappings f (X) and g(Y ), where f and g belong to the respective
RKHS HX and HY , such that their correlation is maximized. Kernel CCA has been successfully
applied in practice for extracting nonlinear relations between variables in genomic data (Yamanishi
et al., 2003), fMRI brain images (Hardoon et al., 2004), chaotic time series (Suetani et al., 2006)
and independent component analysis (Bach and Jordan, 2002).

As in many statistical methods, the target functions defined in the population case are in practice
estimated from a finite sample. Thus, the convergence of the estimated functions to the population
functions with increasing sample size is very important to justify the method. Since the goal of
kernel CCA is to estimate a pair of functions, the convergence should be evaluated in an appropriate
functional norm; we thus need tools from functional analysis to characterize the type of conver-
gence.

The purpose of this paper is to rigorously prove the statistical consistency of kernel CCA. In
proving the consistency of kernel CCA, we show also the consistency of a pair of functions which
may be used as an alternative method for expressing the nonlinear dependence of two variables. The
latter method uses the eigenfunctions of a NOrmalized Cross-Covariance Operator, and we call it
NOCCO for short.

Both kernel CCA and NOCCO require a regularization coefficient, which is similar to Tikhonov
regularization (Groetsch, 1984), to enforce smoothness of the functions in the finite sample case
(thus avoiding a trivial solution) and to enable operator inversion; but the decay of this regularization
with increased sample size has not yet been established. The main theorems in this paper give a
sufficient condition on the decay of the regularization coefficient for the finite sample estimators to
converge to the desired functions in the population limit.

Another important issue in establishing convergence is an appropriate distance measure for func-
tions. For NOCCO, we obtain convergence in the norm of the associated RKHS. This result is very
strong: if the positive definite kernels are continuous and bounded, the norm is stronger than the
uniform norm in the space of continuous functions, and thus the estimated functions converge uni-
formly to the desired ones. For kernel CCA, we prove convergence in the L2 norm, which is a
standard distance measure for functions.

There are earlier studies relevant to the convergence of functional correlation analysis. Among
others, Breiman and Friedman (1985) propose alternating conditional expectation (ACE), an itera-
tive algorithm for functional CCA and more general regression, and demonstrate statistical consis-
tency of the algorithm for an infinite amount of data.

Most relevant to this paper are several studies on the consistency of CCA with positive definite
kernels, notably the work on nonlinear CCA for stochastic processes by Leurgans et al. (1993);
He et al. (2003), who also provide consistency results. An alternative approach is to study the
eigenfunctions of the cross-covariance operators, without normalising by the variance, as in the
constrained covariance (COCO, Gretton et al., 2005b). We will discuss the relation between our
results and these studies.

We begin our presentation in Section 2 with a review of kernel CCA and related methods, formu-
lating them in terms of cross-covariance operators, which are the basic tools to analyze correlation
in functional spaces. In Section 3, we describe the two main theorems, which respectively show
the convergence of kernel CCA and NOCCO. Section 4 contains numerical results to illustrate the
behavior of the methods. Section 5 is devoted to the proof of the main theorems. Some basic facts
from functional analysis and general lemmas are summarized in the Appendix.
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2. Kernel Canonical Correlation Analysis

In this section, we briefly review kernel CCA, following Bach and Jordan (2002), and reformulate
it with covariance operators on RKHS. For the detail of positive definite kernels and RKHS, see
Aronszajn (1950).

In this paper, a Hilbert space always means a separable Hilbert space, and an operator a linear
operator. The operator norm of a bounded operator T is denoted by ‖T‖ and defined as ‖T‖ =
sup‖ f‖=1 ‖T f‖. The null space and the range of an operator T : H1 → H2 are denoted by N (T ) and
R (T ), respectively; that is, N (T ) = { f ∈ H1 | T f = 0} and R (T ) = {T f ∈ H2 | f ∈ H1}.

Throughout this paper, (X ,BX ) and (Y ,BY ) are measurable spaces, and (HX ,kX ) and (HY ,kY )
are RKHS of functions on X and Y , respectively, with measurable positive definite kernels kX and
kY . We consider a random vector (X ,Y ) : Ω → X ×Y with law PXY . The marginal distributions
of X and Y are denoted by PX and PY , respectively. It is always assumed that the positive definite
kernels satisfy

EX [kX (X ,X)] < ∞ and EY [kY (Y,Y )] < ∞. (1)

Note that under this assumption HX and HY are continuously included in L2(PX) and L2(PY ), re-
spectively, where L2(µ) denotes the Hilbert space of square integrable functions with respect to the
measure µ. This is easily verified by EX [ f (X)2] = EX [〈 f ,kX ( · ,X)〉2] ≤ EX [‖ f‖2

HX
‖kX ( · ,X)‖2

HX
] =

‖ f‖2
HX

EX [kX (X ,X)] for f ∈ HX .

2.1 CCA in Reproducing Kernel Hilbert Spaces

Classical CCA (e.g., Greenacre, 1984) looks for linear mappings aT X and bTY that achieve maxi-
mum correlation. Kernel CCA extends this approach by looking for functions f ∈ HX and g ∈ HY
such that the random variables f (X) and g(Y ) have maximal correlation. More precisely, kernel
CCA solves the following problem:1

max
f∈HX ,g∈HY

f 6=0,g6=0

Cov[ f (X),g(Y )]

Var[ f (X)]1/2Var[g(Y )]1/2
. (2)

The maximizing functions f and g are decided up to scale.

In practice, we have to estimate the desired function from a finite sample. Given an i.i.d. sample
(X1,Y1), . . . ,(Xn,Yn) from the distribution PXY , an empirical estimate of Eq. (2) is

max
f∈HX ,g∈HY

f 6=0,g6=0

Ĉov[ f (X),g(Y )]
(
V̂ar[ f (X)]+ εn‖ f‖2

HX

)1/2(
V̂ar[g(Y )]+ εn‖g‖2

HY

)1/2
, (3)

1. In Eq. (2) we assume Var[ f (X)] 6= 0 and Var[g(Y )] 6= 0. See Section 2.2 for discussion on conditions under which an
RKHS includes a function leading to null variance.
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Figure 1: An example of kernel CCA. A Gaussian RBF kernel k(x,y) = exp
(
− 1

2σ2 (x−y)2
)

is used

for both X and Y . Left: the original data. Center: derived functions f̂ (Xi) and ĝ(Yi).
Right: transformed data.

where

Ĉov[ f (X),g(Y )] =
1
n

n

∑
i=1

(
f (Xi)−

1
n

n

∑
j=1

f (X j)
)(

g(Yi)−
1
n

n

∑
j=1

g(Y j)
)
,

V̂ar[ f (X)] =
1
n

n

∑
i=1

(
f (Xi)−

1
n

n

∑
j=1

f (X j)
)2

,

V̂ar[g(Y )] =
1
n

n

∑
i=1

(
g(Yi)−

1
n

∑n
j=1g(Y j)

)2
,

and a positive constant εn is the regularization coefficient (Bach and Jordan, 2002). As we shall
see, the regularization terms εn‖ f‖2

HX
and εn‖g‖2

HY
make the problem well-formulated statistically,

enforce smoothness, and enable operator inversion, as in Tikhonov regularization (Groetsch, 1984).
For this smoothing effect, see also the discussion by Leurgans et al. (1993, Section 3).

Figure 1 shows the result of kernel CCA for a synthetic data set. The nonlinear mappings clarify
the strong dependency between X and Y . Note that the dependency of the original data cannot be
captured by classical CCA, because they have no linear correlation.

2.2 Cross-covariance Operators on RKHS

Kernel CCA and related methods can be formulated using cross-covariance operators, which make
the theoretical analysis easier. Cross-covariance operators have also been used to derive practical
methods for measuring the dependence of random variables (Fukumizu et al., 2004; Gretton et al.,
2005a). This subsection reviews the basic properties of cross-covariance operators. For more de-
tails, see Baker (1973), Fukumizu et al. (2004), and Gretton et al. (2005a). The cross-covariance

364



STATISTICAL CONSISTENCY OF KERNEL CCA

operator2 of (X ,Y ) is an operator from HX to HY , which is defined by

〈g,ΣYX f 〉HY
= EXY

[
( f (X)−EX [ f (X)])(g(Y )−EY [g(Y )])

]
(= Cov[ f (X),g(Y )])

for all f ∈HX and g∈HY . By regarding the right hand side as a linear functional on the direct prod-
uct HX ⊗HY , Riesz’s representation theorem (Reed and Simon, 1980, for example) guarantees the
existence and uniqueness of a bounded operator ΣY X . The cross-covariance operator expresses the
covariance between functions in the RKHS as a bilinear functional, and contains all the information
regarding the dependence of X and Y expressible by nonlinear functions in the RKHS.

Obviously, ΣY X = Σ∗
XY , where T ∗ denotes the adjoint of an operator T . In particular, if Y

is equal to X , the self-adjoint operator ΣXX is called the covariance operator. Note that f ∈
N (ΣXX) if and only if VarX [ f (X)] = 0. The null space N (ΣXX) is equal to { f ∈ HX | f (X) =
constant almost surely}. Under the assumptions that X is a topological space with continuous ker-
nel kX and the support of PX is X , the null space N (ΣXX) is equal to HX ∩R, where R denotes the
constant functions. For the Gaussian RBF kernel k(x,y) = exp

(
− 1

2σ2 ‖x−y‖2
)

defined on X ⊂R
m, it

is known (Steinwart et al., 2004) that if the interior of X is not empty, a nontrivial constant function
is not included in the RKHS; thus N (ΣXX) = {0} in such cases.

The mean element mX ∈ HX with respect to a random variable X is defined as

〈 f ,mX〉HX = EX [ f (X)] = EX [〈 f ,kX (·,X)〉HX ] (∀ f ∈ HX ). (4)

The existence and uniqueness of mX is proved again by Riesz’s representation theorem. Using the
mean elements, the cross-covariance operator ΣY X is rewritten

〈g,ΣYX f 〉HY
= EXY [〈 f ,kX (·,X)−mX〉HX 〈kY (·,Y )−mY ,g〉HY

].

Let (X1,Y1), . . . ,(Xn,Yn) be i.i.d. random vectors on X ×Y with distribution PXY . The empir-

ical cross-covariance operator Σ̂(n)
Y X is defined as the cross-covariance operator with the empirical

distribution 1
n ∑n

i=1 δXiδYi . By definition, for any f ∈ HX and g ∈ HY , the operator Σ̂(n)
Y X gives the

empirical covariance as follows;

〈g, Σ̂(n)
YX f 〉HY

=
1
n

n

∑
i=1

〈
g,kY (·,Yi)−

1
n

n

∑
s=1

kY (·,Ys)

〉

HY

〈
kX (·,Xi)−

1
n

n

∑
t=1

kX (·,Xt), f

〉

HX

= Ĉov[ f (X),G(Y )].

Obviously, the rank of Σ̂(n)
Y X is finite, because R (Σ̂(n)

Y X) and N (Σ̂(n)
Y X)⊥ are included in the linear hull

of {kY (·,Yi)− 1
n ∑n

s=1 kY (·,Ys)}n
i=1 and {kX (·,Xi)− 1

n ∑n
t=1 kX (·,Xt)}n

i=1, respectively.
Let QX and QY be the orthogonal projection which maps HX onto R (ΣXX) and HY onto

R (ΣYY ), respectively. It is known (Baker, 1973, Theorem 1) that ΣY X has a representation

ΣY X = Σ1/2
YY VY X Σ1/2

XX , (5)

where VY X : HX → HY is a unique bounded operator such that ‖VY X‖ ≤ 1 and VY X = QYVY X QX .
Note that the inverse of an operator may not exist in general, or may not be continuous if it exists.
We often write VY X by Σ−1/2

YY ΣY X Σ−1/2
XX , however, by abuse of notation, even when Σ−1/2

XX or Σ−1/2
YY

are not appropriately defined as operators.

2. Cross-covariance operator have been defined for Banach spaces by Baker (1973). However, we confine our discussion
to RKHS.
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2.3 Representation of Kernel CCA and Related Methods with Cross-covariance Operators

With cross-covariance operators for (X ,Y ), the kernel CCA problem can be formulated as

sup
f∈HX ,g∈HY

〈g,ΣYX f 〉HY
subject to

{
〈 f ,ΣXX f 〉HX = 1,

〈g,ΣYY g〉HY
= 1.

As with classical CCA (Anderson, 2003, for example), the solution of the above kernel CCA prob-
lem is given by the eigenfunctions corresponding to the largest eigenvalue of the following general-
ized eigenproblem: {

ΣY X f = ρ1ΣYY g,

ΣXY g = ρ1ΣXX f .
(6)

For an i.i.d. sample (X1,Y1), . . . ,(Xn,Yn), the empirical estimator in Eq. (3) is

sup
f∈HX ,g∈HY

〈g, Σ̂(n)
YX f 〉HY

subject to

{
〈 f ,(Σ̂(n)

XX + εnI) f 〉HX = 1,

〈g,(Σ̂(n)
YY + εnI)g〉HY

= 1,

and Eq. (6) becomes {
Σ̂(n)

Y X f = ρ̂(n)
1

(
Σ̂(n)

YY + εnI
)
g,

Σ̂(n)
XY g = ρ̂(n)

1

(
Σ̂(n)

XX + εnI
)

f .
(7)

Let us assume that the operator VY X given by Eq. (5) is compact,3 and let φ and ψ be the unit
eigenfunctions of VY X corresponding to the largest singular value;4 that is,

〈ψ,VYX φ〉HY
= max

f∈HX ,g∈HY
‖ f‖HX =‖g‖HY

=1

〈g,VY X f 〉HY
. (8)

Given that φ ∈ R (ΣXX) and ψ ∈ R (ΣYY ), it is easy to see from Eq. (6) that the solution of the kernel
CCA is given by the inverse images5

f = Σ−1/2
XX φ, g = Σ−1/2

YY ψ,

where f and g are determined up to an almost sure constant function. In the empirical case, let
φ̂n ∈ HX and ψ̂n ∈ HY be the unit eigenfunctions corresponding to the largest singular value of the
finite rank operator

V̂ (n)
Y X :=

(
Σ̂(n)

YY + εnI
)−1/2Σ̂(n)

Y X

(
Σ̂(n)

XX + εnI
)−1/2

.

From Eq. (7), the empirical estimators f̂n and ĝn of kernel CCA are

f̂n = (Σ̂(n)
XX + εnI)−1/2φ̂n, ĝn = (Σ̂(n)

YY + εnI)−1/2ψ̂n.

3. See Appendix A for compact operators.
4. While we presume that the eigenspaces are one dimensional in this section, we can easily relax it to multidimensional

spaces by considering the eigenspaces corresponding to the largest eigenvalues. See the remarks after Theorem 2.

5. The operators Σ1/2
XX and Σ1/2

YY may not be invertible, but their inverses are well-defined up to an almost sure constant

function when applied to functions belonging to the respective ranges of Σ1/2
XX and Σ1/2

YY .
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The empirical operators and the estimators described above can be expressed using Gram ma-
trices, as is often done in kernel methods. The solutions f̂n and ĝn are exactly the same as those
given in Bach and Jordan (2002), as we confirm below. Let ui ∈ HX and vi ∈ HY (1 ≤ i ≤ n) be
functions defined by

ui = kX (·,Xi)−
1
n

n

∑
j=1

kX (·,X j), vi = kY (·,Yi)−
1
n

n

∑
j=1

kY (·,Yj).

Because R (Σ̂(n)
XX) and R (Σ̂(n)

YY ) are spanned by (ui)
n
i=1 and (vi)

n
i=1, respectively, the eigenfunctions

of V̂ (n)
Y X are given by a linear combination of ui and vi. Letting φ = ∑n

i=1 αiui and ψ = ∑n
i=1 βivi,

direct calculation of 〈ψ,V̂ (n)
Y X φ〉HY

shows that the eigenfunctions φ̂n and ψ̂n of Σ̂(n)
Y X corresponding to

the largest singular value are given by the coefficients α̂ and β̂ that satisfy

max
α,β∈R

n

αT GX α=βT GY β=1

βT (
GY +nεnIn

)−1/2
GY GX

(
GX +nεnIn

)−1/2α,

where GX is the centered Gram matrix,

(GX)i j = kX (Xi,X j)−
1
n

n

∑
b=1

kX (Xi,Xb)−
1
n

n

∑
a=1

kX (Xa,X j)+
1
n2

n

∑
a=1

n

∑
b=1

kX (Xa,Xb),

with GY defined accordingly. The solution of the kernel CCA problem is

f̂n = (Σ̂(n)
XX + εnI)−1/2φ̂n =

n

∑
i=1

ξ̂iui, ĝn = (Σ̂(n)
YY + εnI)−1/2ψ̂n =

n

∑
i=1

ζ̂ivi,

where
ξ̂ =

√
n(GX +nεnIn)

−1/2α̂ and ζ̂ =
√

n(GY +nεnIn)
−1/2β̂.

Thus, the linear coefficients ξ̂ and ζ̂ are the solution of

max
ξ,ζ∈R

n

ξT (G2
X +nεnGX )ξ=ζT (G2

Y +nεnGY )ζ=n

ζT GY GX ξ,

which is exactly the same as the one proposed by Bach and Jordan (2002). Bach and Jordan approx-
imate (G2

X +nεnGX) by (GX + nεn
2 In)

2 for computational simplicity. Note that our theoretical results
in the next section still hold with this approximation, because this modification causes only higher
order changes in α̂ and β̂, which perturbs the empirical eigenfunctions φ̂n, ψ̂n, f̂n, and ĝn only in
higher order.

There are additional, related methods to extract nonlinear dependence of two random variables
with positive definite kernels. The Constrained Covariance (COCO, Gretton et al., 2005b) uses the
unit eigenfunctions of the cross-covariance operator ΣY X . Thus the solution of COCO is

max
f∈HX ,g∈HY

‖ f‖HX =‖g‖HY
=1

〈g,ΣYX f 〉HY
= max

f∈HX ,g∈HY
‖ f‖HX =‖g‖HY

=1

Cov[ f (X),g(Y )].
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The consistency of COCO has been proved by Gretton et al. (2005a). Unlike kernel CCA, COCO
normalizes the covariance by the RKHS norms of f and g. Kernel CCA is a more direct nonlinear
extension of the ordinary CCA than COCO. COCO tends to find functions with large variance for
f (X) and g(Y ), which may not be the most correlated features. On the other hand, kernel CCA
may encounter situations where it finds functions with moderately large covariance but very small
variances for f (X) or g(Y ), since ΣXX and ΣYY can have arbitrarily small eigenvalues.

A possible compromise between these methods is to use φ and ψ in Eq. (8), and their estimates
φ̂n and ψ̂n. While the statistical meaning of this approach is not as direct as kernel CCA, it can
incorporate the normalization by ΣXX and ΣYY . We call this variant NOrmalized Cross-Covariance
Operator (NOCCO). We will establish the consistency of kernel CCA and NOCCO in the next
section, and give experimental comparisons of these methods in Section 4.

3. Main Theorems

First, the following theorem asserts the consistency of the estimator of NOCCO in the RKHS norm,
when the regularization parameter εn goes to zero slowly enough.

Theorem 1 Let (εn)
∞
n=1 be a sequence of positive numbers such that

lim
n→∞

εn = 0, lim
n→∞

n−1/3

εn
= 0. (9)

Assume VY X is a compact operator and the eigenspaces which attain the singular value problem

max
φ∈HX ,ψ∈HY

‖φ‖HX =‖ψ‖HY
=1

〈ψ,VYX φ〉HY

are one-dimensional. Let φ̂n and ψ̂n be the unit eigenfunctions for the largest singular value of V̂ (n)
Y X .

Then,
|〈φ̂n,φ〉HX | → 1, |〈ψ̂n,ψ〉HY

| → 1

in probability, as n goes to infinity.

The next main result shows the convergence of kernel CCA in the norm of L2(PX) and L2(PY ).

Theorem 2 Let (εn)
∞
n=1 be a sequence of positive numbers which satisfies Eq. (9). Assume that φ

and ψ are included in R (ΣXX) and R (ΣYY ), respectively, and that VY X is compact. Then,
∥∥( f̂n −EX [ f̂n(X)])− ( f −EX [ f (X)])

∥∥
L2(PX )

→ 0

and ∥∥(ĝn −EY [ĝn(Y )])− (g−EY [g(Y )])
∥∥

L2(PY )
→ 0

in probability, as n goes to infinity.

While in the above theorems we confine our attention to the first eigenfunctions, it is not difficult
to verify the convergence of eigenspaces corresponding to the m-th largest eigenvalue by extending
Lemma 10 in the Appendix. See also the remark after the lemma.

368



STATISTICAL CONSISTENCY OF KERNEL CCA

The convergence of NOCCO in RKHS norm is a very strong result. If X and Y are topological
spaces, and if the kernels kX and kY are continuous and bounded, all the functions in HX and
HY are continuous and the RKHS norm is stronger than the uniform norm in C(X ) and C(Y ),
where C(Z) is the Banach space of all the continuous functions on a topological space Z with
the supremum norm. In fact, for any f ∈ HX , we have supx∈X | f (x)| = supx∈X |〈kX (·,x), f 〉HX | ≤
supx∈X (kX (x,x))1/2‖ f‖HX . In such cases, Theorem 1 implies φ̂n and ψ̂n converge uniformly to φ
and ψ, respectively. This uniform convergence is useful in practice, because in many applications
the function value at each point is important.

The above theorems assume the compactness of VY X , which requires that for any complete
orthonormal systems (CONS) {φi}∞

i=1 of HX and {ψi}∞
i=1 of HY , the correlation of Σ−1/2

XX φi(X) and

Σ−1/2
YY ψi(Y ) decay to zero as i → ∞. This is not necessarily satisfied in general. A trivial example is

the case of variables with Y = X . In this case, VY X = I is not compact, and the problem in Theorem
1 is solved by an arbitrary function. In this situation, the kernel CCA problem in Theorem 2 does
not have solutions if ΣXX has arbitrarily small eigenvalues.

We give a useful sufficient condition that VY X is Hilbert-Schmidt, which necessarily implies
compactness. The condition is described in terms of mean square contingency, which is one of the
standard criteria to measure the dependency of two random variables (Rényi, 1970). It is known
(Buja, 1990) that the covariance operator considered on L2 is Hilbert-Schmidt if the mean square
contingency is finite. We modify the result to the case of the covariance operator on RKHS.

Assume that the measure spaces (X ,BX ) and (Y ,BY ) admit measures µX and µY , respectively,
and that PXY is absolutely continuous with respect to the product measure µX ×µY with a probability
density function pXY (x,y). Let ζ(x,y) be a function on X ×Y defined by

ζ(x,y) =
pXY (x,y)

pX(x)pY (y)
−1,

where pX(x) and pY (y) are the probability density functions of the marginal distributions PX and
PY , respectively. The mean square contingency C(X ,Y ) is defined by

C(X ,Y ) =
{Z Z

ζ(x,y)2dPX dPY

}1/2
.

It is easy to see C(X ,Y ) = 0 if and only if X and Y are independent. Obviously we have

C(X ,Y )2 =
Z Z

pXY (x,y)2

pX(x)pY (y)
dµX dµY −1 =

Z

ζ(x,y)dPXY .

Thus, C(X ,Y )2 is an upper bound of the mutual information MI(X ,Y ) =
R

log pXY (x,y)
pX (x)pY (y)dPXY , be-

cause log(z+1) ≤ z for z > 0.

Theorem 3 Suppose that the measurable spaces (X ,BX ) and (Y ,BY ) have measures µX and µY ,
respectively, so that PXY is absolutely continuous with respect to the product measure µX ×µY with
a probability density function pXY (x,y). If the mean square contingency C(X ,Y ) is finite, that is, if

Z Z

pXY (x,y)2

pX(x)pY (y)
dµX dµY < ∞,

then the operator VY X : HX → HY is Hilbert-Schmidt, and

‖VY X‖HS ≤C(X ,Y ) = ‖ζ‖L2(PX×PY ).
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The proof is given in Section 5. The assumption that the mean square contingency is finite is very
natural when we consider the dependence of two different random variables, as in the situation
where kernel CCA is applied. It is interesting to see that Breiman and Friedman (1985) also discuss
a similar condition for the existence of optimal functions for functional canonical correlation.

He et al. (2003) discuss the eigendecomposition of the operator VY X . They regard random pro-
cesses in L2 spaces as data. In our case, transforms of the original random variables, kX (·,X) and
kY (·,Y ), also induce processes in RKHS. He et al. (2003) give a condition for the eigendecomposi-
tion of VY X in terms of the eigendecomposition of the data processes, while our condition is a more
direct property of the original random variables.

Leurgans et al. (1993) discuss canonical correlation analysis on curves, which are represented
by stochastic processes on an interval, and use the Sobolev space of functions with square integrable
second derivative. Since this Sobolev space is an RKHS, their method is an example of kernel CCA
in a specific RKHS. They also prove the consistency of estimators under the condition n−1/2/εn → 0.
Although the proof can be extended to a general RKHS, the convergence is measured by that of the
correlation, ∣∣〈 f̂n,ΣXX f 〉HX

∣∣
(
〈 f̂n,ΣXX f̂n〉HX

)1/2(〈 f ,ΣXX f 〉HX

)1/2
→ 1.

Note that in the denominator the population covariance 〈 f̂n,ΣXX f̂n〉HX is used, which is not com-
putable in practice. The above convergence of correlation is weaker than the L2 convergence in
Theorem 2. In fact, since the desired eigenfunction f is normalized so that 〈 f ,ΣXX f 〉HX = 1, it
is easy to derive the above convergence of correlation from Theorem 2. On the other hand, the
convergence of correlation does not imply 〈( f̂n − f ),ΣXX( f̂n − f )〉HX . From the equality

〈( f̂n − f ),ΣXX( f̂n − f )〉HX =
(
〈 f̂n,ΣXX f̂n〉1/2

HX
−〈 f ,ΣXX f 〉1/2

HX

)2

+2

(
1−

〈 f̂n,ΣXX f 〉HX

‖Σ1/2
XX f̂n‖HX ‖Σ1/2

XX f‖HX

)
‖Σ1/2

XX f̂n‖HX ‖Σ1/2
XX f‖HX ,

we require the convergence 〈 f̂n,ΣXX f̂n〉HX → 〈 f ,ΣXX f 〉HX = 1 in order to guarantee the left hand

side converges to zero. With the normalization 〈 f̂n,(Σ̂
(n)
XX + εnI) f̂n〉HX = 〈 f ,ΣXX f 〉HX = 1, however,

the convergence of 〈 f̂n,ΣXX f̂n〉HX is not clear. We use the stronger assumption n−1/3/εn → 0 to

prove 〈( f̂n − f ),ΣXX( f̂n − f )〉HX → 0 in Theorem 2.

4. Numerical Simulations

In this section, we show results of numerical simulations for kernel CCA and related methods. We
use a synthetic data set for which the optimal nonlinear functions in the population kernel CCA
(Eq. (2)) are explicitly known, and demonstrate the convergence behavior for various values of εn.
For the quantitative evaluation of convergence, we consider only kernel CCA, because the exact
solutions for NOCCO or COCO in population are not known in closed form.

To generate our test data, we provide two univariate random variables X and Y for which the
true transforms f (X) and g(Y ) are highly linearly correlated for some f ∈ HX and g ∈ HY . We
generate a sample from PXY as follows: first, we sample Z1, . . . ,Zn uniformly on the unit interval
[0,1]. Next, we derive two i.i.d. linearly correlated random samples Ui and Vi from these Zi. Finally,
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Figure 2: The plot of (RX
i ,RY

i ) of the data used in the experiment.

we transform these variables to radius data RX
i and RY

i by the inverse of the Gaussian function
exp(−aR2) for some a > 0. The explicit form of these relations are

Ui = Zi +0.06+ eX
i , Vi = Zi +3+ eY

i ,

RX
i =

(
−4log(Ui/1.5)

)1/2
, RY

i =
(
−4log(Vi/4.1)

)1/2
,

where eX
i and eY

i are independent noise following a zero-mean saturated Gaussian distribution so
that Ui and Vi are positive. See Figure 2 for an example data set. The samples Xi and Yi are
taken uniformly on the 2 dimensional circles with the radius RX

i and RY
i , respectively. Thus, the

maximum canonical correlation in population is attained by f (x) = 1.5exp(− 1
4‖x‖2) and g(y) =

4.1exp(− 1
4‖y‖2) up to scale and shift.

We perform kernel CCA, NOCCO, and COCO with Gaussian RBF kernel k(x,y) = exp(−‖x−
y‖2) on the data. Note that the true functions f and g for kernel CCA are included in RKHS with
this kernel. The graphs of resulting functions for X , the true function f (x), and the transformed data
are shown in Figure 3. We see that the functions obtained by Kernel CCA, NOCCO, and COCO
have a similar shape to f (x). Note that, because the data exist only around the area f (x) ≤ 1.0,
the estimation accuracy in the flat area including the origin is low. In the plots (e)-(g), kernel CCA
gives linearly correlated feature vectors, while NOCCO and COCO do not aim at obtaining linearly
correlated vectors. However, we see that these two methods also give the features that contain the
sufficient information on the dependency between X and Y .

Next, we conduct numerical simulations to verify the convergence rate of kernel CCA. Figure 4
shows the convergence to the true functions for various decay rates of the regularization coefficient
εn = 0.001× n−a with a = 0.1 ∼ 0.8. For the estimated functions f̂n and ĝn with the data sizes
n = 10, 25, 50, 75, 100, 250, 500, 750, and 1000, the L2(PX ) and L2(PY ) distances between the
estimated and true functions are evaluated by generating 10000 samples from the true distribution.
The curves show an average over 30 experiments with different random data. It should be noted that,
although the theoretical sufficient condition for convergence requires a slower order of εn than n−1/3,
faster orders give better convergence in these simulations. The convergence is best at a = 0.6, and
becomes worse for faster decay rates; the optimum rate likely depends on the statistical properties
of the data. It might therefore be interesting to find the best rate or best value of εn for the given
data, although this is beyond the scope of the present paper.
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Figure 3: The true function f (x) and the estimated functions based on 100 data points are shown
in (a)-(d). The plots of the transformed data ( f̂n(Xi), ĝn(Yi)) are given in (e)-(g). Note
that in (e)-(g) the clear linear correlation is seen in (e), only because it is the criterion
of the kernel CCA; the other two methods use different criterion, but still show strong
correlation.
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Figure 4: L2 distances between the true function and its estimate using kernel CCA. The regular-
ization parameter is εn = 0.001×n−a, where the decay rate a ranges from 0.1 to 0.8.

5. Proof of the Main Theorems

In this section, we prove the main theorems in Section 3.

5.1 Hilbert-Schmidt Norm of Covariance Operators

Preliminary to the proofs, in this subsection we show some results on the Hilbert-Schmidt norm of
cross-covariance operators. For convenience, we provide the definition and some basic properties
of Hilbert-Schmidt operators in the Appendix. See also Gretton et al. (2005a).

We begin with a brief introduction to random elements in a Hilbert space (Vakhania et al., 1987;
Baker, 1973). Let H be a Hilbert space equipped with Borel σ-field. A random element in the
Hilbert space H is a measurable map F : Ω → H from a measurable space (Ω,S). Let H be an
RKHS on a measurable set X with a measurable positive definite kernel k. For a random variable X
in X , the map k(·,X) defines a random element in H .

A random element F in a Hilbert space H is said to have strong order p (0 < p < ∞) if E‖F‖p

is finite. For a random element F of strong order one, the expectation of F is defined as the element
mF in H such that

〈mF ,g〉H = E[〈F,g〉H ]

holds for all g ∈ H . The existence and the uniqueness of the mean element is a consequence
of Riesz’s representation theorem. The expectation mF is denoted by E[F]. Then, the equality
〈E[F],g〉H = E[〈F,g〉H ] is justified, which means the expectation and the inner product are in-
terchangeable. If F and G have strong order two, E[|〈F,G〉H |] is finite. If further F and G are
independent, the relation

E[〈F,G〉H ] = 〈E[F],E[G]〉H (10)

holds.
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It is easy to see that the example F = k(·,X) in an RKHS H has strong order two, that is,
E[‖F‖2] < ∞, under the assumption E[k(X ,X)] < ∞. The expectation of k(·,X) is equal to mX in
Eq. (4) by definition. For two RKHS HX on X and HY on Y with kernels kX and kY , respectively,
under the conditions Eq. (1), the random element kX (·,X)kY (·,Y ) in the direct product HX ⊗HY
has strong order one.

The following lemma is straightforward from Lemma 1 in Gretton et al. (2005a) and Eq. (10).
See Appendix for definitions of the Hilbert-Schmidt operator and Hilbert-Schmidt norm.

Lemma 4 The cross-covariance operator ΣY X is a Hilbert-Schmidt operator, and its Hilbert-Schmidt
norm is given by

‖ΣY X‖2
HS

= EY X EỸ X̃

[
〈kX (·,X)−mX ,kX (·, X̃)−mX〉HX 〈kY (·,Ỹ )−mY ,kY (·,Y )−mY 〉HY

]

=
∥∥EY X [(kX (·,X)−mX)(kY (·,Y )−mY )]

∥∥2
HX ⊗HY

where (X̃ ,Ỹ ) and (X ,Y ) are independently and identically distributed with distribution PXY .

From the facts HX ⊂ L2(PX) and HY ⊂ L2(PY ), the law of large numbers implies for each
f ∈ HX and g ∈ HY

lim
n→∞

〈g, Σ̂(n)
YX f 〉HY

= 〈g,ΣYX f 〉HY

in probability. Moreover, the central limit theorem shows the above convergence is of order6

Op(n−1/2). The following lemma shows the tight uniform result that ‖Σ̂(n)
Y X − ΣY X‖HS converges

to zero in the order of Op(n−1/2).

Lemma 5 ∥∥Σ̂(n)
Y X −ΣY X

∥∥
HS = Op(n

−1/2) (n → ∞).

Proof Write for simplicity F = kX (·,X)−EX [kX (·,X)], G = kY (·,Y )−EY [kY (·,Y )], Fi = kX (·,Xi)−
EX [kX (·,X)], Gi = kY (·,Yi)−EY [kY (·,Y )], and F = HX ⊗HY . Then, F,F1, . . . ,Fn are i.i.d. random
elements in HX , and a similar fact holds for G,G1, . . . ,Gn. Lemma 4 implies

∥∥Σ̂(n)
Y X

∥∥2
HS =

∥∥∥1
n

n

∑
i=1

(
Fi −

1
n

n

∑
j=1

Fj

)(
Gi −

1
n

n

∑
j=1

G j

)∥∥∥
2

F
,

and the same argument as in the proof of the lemma yields

〈ΣY X , Σ̂(n)
YX〉HS =

〈
E[FG],

1
n

n

∑
i=1

(
Fi −

1
n

n

∑
j=1

Fj

)(
Gi −

1
n

n

∑
j=1

G j

)〉
F

.

From these equations, we have
∥∥Σ̂(n)

Y X −ΣY X
∥∥2

HS =
∥∥ΣY X

∥∥2
HS −2

〈
ΣY X , Σ̂(n)

YX

〉
HS +

∥∥Σ̂(n)
Y X

∥∥2
HS

=
∥∥∥1

n

n

∑
i=1

(
Fi −

1
n

n

∑
j=1

Fj

)(
Gi −

1
n

n

∑
j=1

G j

)
−E[FG]

∥∥∥
2

F

=
∥∥∥1

n

n

∑
i=1

FiGi −E[FG]−
(

2− 1
n

)(1
n

n

∑
i=1

Fi

)(1
n

n

∑
i=1

Gi

)∥∥∥
2

F
,

6. A random variable Zn is said to be of order Op(an) if for any ε > 0 there exists M > 0 such that supn Pr(|Zn| >
Man) < ε. See, for example, van der Vaart (1998).
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which provides a bound

∥∥Σ̂(n)
Y X −ΣY X

∥∥
HS ≤

∥∥∥1
n

n

∑
i=1

FiGi −E[FG]
∥∥∥

F
+2

∥∥∥
(1

n

n

∑
i=1

Fi

)(1
n

n

∑
i=1

Gi

)∥∥∥
F

. (11)

Let Zi = FiGi−E[FG]. Since the variance of a sum of independent random variables is equal to
the sum of their variances, we obtain

E
∥∥∥1

n

n

∑
i=1

Zi

∥∥∥
2

F
=

1
n

E‖Z1‖2
F , (12)

which is of order O(1/n) because E‖Z1‖2
F < ∞. From the inequality

E
∥∥∥
(1

n

n

∑
i=1

Fi

)(1
n

n

∑
i=1

Gi

)∥∥∥
F

= E
[∥∥∥1

n

n

∑
i=1

Fi

∥∥∥
HX

∥∥∥1
n

n

∑
i=1

Gi

∥∥∥
HY

]

≤
(

E
∥∥∥1

n

n

∑
i=1

Fi

∥∥∥
2

HX

)1/2(
E

∥∥∥1
n

n

∑
i=1

Gi

∥∥∥
2

HY

)1/2
,

in a similar way to Eq. (12), we have E
∥∥(

1
n ∑n

i=1 Fi
)(

1
n ∑n

i=1 Gi
)∥∥

F = O(1/n).

From Eq. (11), we have E
∥∥Σ̂(n)

Y X −ΣY X
∥∥

HS = O(1/
√

n), and the proof is completed by Cheby-
shev’s inequality.

5.2 Preliminary Lemmas

For the proof of the main theorems, we show the empirical estimate V̂ (n)
Y X converges in norm to

the normalized cross-covariance operator VY X = Σ−1/2
YY ΣY X Σ−1/2

XX for an appropriate order of the
regularization coefficient εn. We divide the task into two lemmas: the first evaluates the difference
between the empirical estimate V̂ (n)

Y X and a regularized version of VY X , and the second asserts that
the regularized version converges to VY X if εn goes to zero at the appropriate rate.

Lemma 6 Let εn be a positive number such that εn → 0 (n → ∞). Then, for the i.i.d. sample
(X1,Y1), . . . ,(Xn,Yn), we have

∥∥V̂ (n)
Y X − (ΣYY + εnI)−1/2ΣY X(ΣXX + εnI)−1/2

∥∥ = Op(ε
−3/2
n n−1/2).

Proof The operator in the left hand side is decomposed as

V̂ (n)
Y X − (ΣYY + εnI)−1/2ΣY X(ΣXX + εnI)−1/2

=
{
(Σ̂(n)

YY + εnI)−1/2 − (ΣYY + εnI)−1/2}Σ̂(n)
Y X(Σ̂(n)

XX + εnI)−1/2

+(ΣYY + εnI)−1/2{Σ̂(n)
Y X −ΣY X

}
(Σ̂(n)

XX + εnI)−1/2

+(ΣYY + εnI)−1/2ΣY X
{
(Σ̂(n)

XX + εnI)−1/2 − (ΣXX + εnI)−1/2}. (13)

From the equality

A−1/2 −B−1/2 = A−1/2(B3/2 −A3/2)B−3/2 +(A−B)B−3/2,
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the first term in the right hand side of Eq. (13) is equal to

{
(Σ̂(n)

YY + εnI)−1/2{(
ΣYY + εnI

)3/2 −
(
Σ̂(n)

YY + εnI
)3/2}

+
(
Σ̂(n)

YY −ΣYY
)}

×
(
Σ̂(n)

YY + εnI
)−3/2Σ̂(n)

Y X(Σ̂(n)
XX + εnI)−1/2.

From
∥∥(Σ̂(n)

YY + εnI)−1/2
∥∥ ≤ 1√

εn
,
∥∥(

Σ̂(n)
YY + εnI

)−1/2Σ̂(n)
Y X

(
Σ̂(n)

XX + εnI
)−1/2∥∥ ≤ 1, and Lemma 8 in the

Appendix, the norm of the above operator is bounded from above by

1
εn

{ 3√
εn

max
{
‖ΣYY + εnI‖3/2,‖Σ̂(n)

YY + εnI‖3/2}+1
}
‖Σ̂(n)

YY −ΣYY‖.

A similar bound also applies to the third term of Eq. (13). An upper bound on the second term of
Eq. (13) is 1

εn
‖ΣY X − Σ̂(n)

YX‖. Thus, the proof is completed using ‖Σ̂(n)
XX‖ = ‖ΣXX‖+ op(1), ‖Σ̂(n)

YY‖ =
‖ΣYY‖+op(1), and Lemma 5.

In the next theorem, the compactness assumption on VY X plays an essential role.

Lemma 7 Assume VY X is compact. Then, for a sequence εn → 0,

∥∥(ΣYY + εnI)−1/2ΣY X(ΣXX + εnI)−1/2 −VY X
∥∥ → 0 (n → ∞).

Proof An upper bound of the left hand side of the assertion is given by

∥∥{
(ΣYY + εnI)−1/2 −Σ−1/2

YY

}
ΣY X(ΣXX + εnI)−1/2

∥∥

+
∥∥Σ−1/2

YY ΣY X
{
(ΣXX + εnI)−1/2 −Σ−1/2

XX

}∥∥. (14)

The first term of Eq. (14) is upper bounded by

∥∥{
(ΣYY + εnI)−1/2Σ1/2

YY − I
}

VY X
∥∥. (15)

Note that the range of VY X is included in R (ΣYY ), as pointed out in Section 2.2. Let v be an arbitrary
element in R (VY X)∩R (ΣYY ). Then there exists u ∈ HY such that v = ΣYY u. Noting that ΣYY and
(ΣYY + εnI)1/2 are commutative, we have

∥∥{
(ΣYY + εnI)−1/2Σ1/2

YY − I
}

v
∥∥

HY

=
∥∥{

(ΣYY + εnI)−1/2Σ1/2
YY − I

}
ΣYY u

∥∥
HY

=
∥∥(ΣYY + εnI)−1/2Σ1/2

YY

{
Σ1/2

YY − (ΣYY + εnI)1/2}Σ1/2
YY u

∥∥
HY

≤
∥∥Σ1/2

YY − (ΣYY + εnI)1/2
∥∥∥∥Σ1/2

YY u
∥∥

HY
.

Since ΣYY + εnI → ΣYY in norm means (ΣYY + εnI)1/2 → Σ1/2
YY in norm, the convergence

{
(ΣYY + εnI)−1/2Σ1/2

YY − I
}

v → 0 (n → ∞) (16)
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holds for all v ∈ R (VY X)∩R (ΣYY ). Because VY X is compact, Lemma 9 in the Appendix shows
Eq. (15) converges to zero. The convergence of the second term in Eq. (14) can be proved similarly.

Note that the assertion of the above theorem does not necessarily hold without the compactness
assumption. In fact, if Y = X and the RKHS is infinite dimensional, VY X = I is not compact, and the
norm in the left hand of the assertion is ‖ΣXX(ΣXX + εnI)−1 − I‖. Since ΣXX has arbitrarily small
positive eigenvalues, it is easy to see that this norm is equal to one for all n.

5.3 Proof of the Main Theorems

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1 From Lemmas 6 and 7, V̂ (n)
Y X converges to VY X in norm. Because φ and ψ are

the eigenfunctions corresponding to the largest eigenvalue of VY XVXY and VXYVY X , respectively, and
a similar fact holds for φ̂n and ψ̂n, the assertion is obtained by Lemma 10 in Appendix.

Proof of Theorem 2 We show only the convergence of f̂n. Without loss of generality, we can
assume φ̂n → φ in HX . The squared L2(PX) distance between f̂n −EX [ f̂n(X)] and f −EX [ f (X)] is
given by

∥∥Σ1/2
XX ( f̂n − f )

∥∥2
HX

=
∥∥Σ1/2

XX f̂n
∥∥2

HX
−2〈φ,Σ1/2

XX f̂n〉HX +‖φ‖2
HX

.

Thus, it suffices to show Σ1/2
XX f̂n converges to φ ∈ HX in probability. We have

∥∥Σ1/2
XX f̂n −φ

∥∥
HX

≤
∥∥Σ1/2

XX

{(
Σ̂(n)

XX + εnI
)−1/2 −

(
ΣXX + εnI

)−1/2}φ̂n
∥∥

HX

+
∥∥Σ1/2

XX

(
ΣXX + εnI

)−1/2(φ̂n −φ
)∥∥

HX

+
∥∥Σ1/2

XX

(
ΣXX + εnI

)−1/2φ−φ
∥∥

HX
. (17)

Using the same argument as in the bound of the first term of Eq. (13), the first term in Eq. (17) is
shown to converge to zero. The second term obviously converges to zero. Using the assumption
φ ∈ R (ΣXX), the same argument as in the proof of Eq. (16) in Lemma 7 ensures the convergence of
the third term to zero, which completes the proof.

With the definition of mean square contingency, Theorem 3 can be proved as follows.

Proof of Theorem 3 Since under the assumptions EX [kX (X ,X)] < ∞ and EY [kY (Y,Y )] < ∞ the op-
erators ΣXX and ΣYY are compact and self-adjoint, there exist complete orthonormal systems {ϕi}∞

i=1
and {ψi}∞

i=1 for HX and HY , respectively, such that 〈ϕ j,ΣXX ϕi〉HX = λiδi j and 〈ψ j,ΣYY ψi〉HY
=

νiδi j, where λi and νi are nonnegative eigenvalues and δi j is Kronecker’s delta. Let φ̃i = (ϕi −
EX [ϕi(X)])/

√
λi and ψ̃i = (ψi − EY [ψi(Y )])/

√
νi. It follows that (φ̃i, φ̃ j)L2(PX ) = δi j and

(ψ̃i, ψ̃ j)L2(PY ) = δi j, where (·, ·)L2(PX ) and (·, ·)L2(PY ) denote the inner product of L2(PX) and L2(PY ),
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respectively. We have

∞

∑
i, j=1

〈ψ j,Σ
−1/2
YY ΣY X Σ−1/2

XX ϕi〉2
HY

=
∞

∑
i, j=1

〈 ψi√ν j
,ΣY X

ϕi√
λi

〉2

HY

=
∞

∑
i, j=1

EXY [φ̃i(X)ψ̃ j(Y )]2.

Note that we do not need to consider the eigenfunctions with respect to the zero eigenvalue in the
sum, because R (VY X) = R (ΣYY ) = N (ΣYY )⊥ and N (VY X) = N (ΣXX).

Since the set {φ̃iψ̃ j} is orthonormal in L2(PX ×PY ), we obtain

∞

∑
i, j=1

EXY [φ̃i(X)ψ̃ j(Y )]2 =
∞

∑
i, j=1

{Z Z

pXY (x,y)
pX(x)pY (y)

φ̃i(x)ψ̃ j(y)dPX dPY

}2

≤ ‖ζ+1‖2
L2(PX×PY ),

which is finite by assumption.

6. Concluding Remarks

We have established the statistical convergence of kernel CCA and NOCCO, showing that the finite
sample estimators of the relevant nonlinear mappings converge to the desired population functions.
This convergence is proved in the RKHS norm for NOCCO, and in the L2 norm for kernel CCA.
These results give a theoretical justification for using the empirical estimates of NOCCO and kernel
CCA in practice.

We have also derived a sufficient condition, n1/3εn → ∞, for the decay of the regularization
coefficient εn, which ensures the convergence described above. As Leurgans et al. (1993) suggest,
the order of the sufficient condition seems to depend on the functional norm used to determine
convergence. An interesting question is whether the theoretical order n1/3εn → ∞ can be improved
for convergence in the L2 or RKHS norm.

A result relevant to the convergence of kernel principal component analysis (KPCA) has recently
been obtained by Zwald and Blanchard (2006). They show a probabilistic upper bound on the
difference between the projectors onto the D-dimensional population eigenspaces and the empirical
eigenspaces. Since KPCA needs no inversion operation, the theoretical analysis is easier than for
kernel CCA. That said, it would be very interesting to consider the applicability of the methods
developed by Zwald and Blanchard (2006) to kernel CCA.

There are some practical problems that remain to be addressed when applying kernel CCA and
related methods. One of the problems is how to choose the regularization coefficient εn in practice.
As the numerical simulations in Section 4 show, the order n−1/3 is only a sufficient condition for
convergence in general cases, and the optimal εn to estimate the true functions may depend on
statistical properties of the given data, such as spectral distribution of Gram matrices. This problem
should be studied more in future to make the methods more applicable.

The choice of kernel is another important unsolved problem. The kernel defines the meaning of
”nonlinear correlation” through an assumed class of functions, and thus determines how to measure
the dependence structure of the data. If a parameterized family of kernels such as the Gaussian RBF
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kernel is provided, then cross-validation might be a reasonable method to select the best kernel (see
Leurgans et al., 1993), however this remains to be established.

One of the methods related to kernel CCA is independent component analysis (ICA), since Bach
and Jordan (2002) use kernel CCA in their kernel ICA algorithm. The theoretical results developed
in this paper will work as a basis for analyzing the properties of the kernel ICA algorithm; in par-
ticular, for demonstrating statistical consistency of the estimator. Since ICA estimates the demixing
matrix as a parameter, however, we need to consider covariance operators parameterized by this ma-
trix, and must discuss how convergence of the objective function depends on the parameter. It is not
a straightforward task to obtain consistency of kernel ICA from the results of this paper. Extending
our results to the parametric case is an interesting topic for future work.
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Appendix A. Basics from Functional Analysis

We briefly give definitions and basic properties of compact and Hilbert-Schmidt operators. For
complete references, see, for example, Reed and Simon (1980), Dunford and Schwartz (1963), and
Lax (2002), among others.

Let H1 and H2 be Hilbert spaces. A bounded operator T : H1 → H2 is called compact if for
every bounded sequence { fn} ⊂ H1 the image {T fn} has a subsequence which converges in H2.
By the Heine-Borel theorem, finite rank operators are necessarily compact. Among many useful
properties of compact operators, singular value decomposition is available. For a compact operator
T : H1 → H2, there exist N ∈ N∪{∞}, a non-increasing sequence of positive numbers {λi}N

i=1, and
(not necessarily complete) orthonormal systems {φi}N

i=1 ⊂ H1 and {ψi}N
i=1 ⊂ H2 such that

T =
N

∑
i=1

λi〈φi, ·〉H1
ψi.

If N = ∞, then λi → 0 (i → ∞) and the infinite series in the above equation converges in norm.
Let H1 and H2 be Hilbert spaces. A bounded operator T : H1 → H2 is called Hilbert-Schmidt

if ∑∞
i=1 ‖T ϕi‖2

H2
< ∞ for a CONS {ϕi}∞

i=1 of H1. It is known that this sum is independent of the
choice of a CONS. For two Hilbert-Schmidt operators T1 and T2, the Hilbert-Schmidt inner product
is defined by

〈T1,T2〉HS =
∞

∑
i=1

〈T1ϕi,T2ϕi〉H2
,

with which the set of all Hilbert-Schmidt operators from H1 to H2 is a Hilbert space. The Hilbert-
Schmidt norm ‖T‖HS is defined by ‖T‖2

HS = 〈T,T 〉HS = ∑∞
i=1 ‖T ϕi‖2

H2
as usual. Obviously, for a
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Hilbert-Schmidt operator T , we have
‖T‖ ≤ ‖T‖HS.

Appendix B. Lemmas Used in the Proofs

We show three lemmas used in the proofs in Section 5. Although they may be basic facts, we show
the complete proofs for convenience.

Lemma 8 Suppose A and B are positive self-adjoint operators on a Hilbert space such that 0 ≤
A ≤ λI and 0 ≤ B ≤ λI hold for a positive constant λ. Then,

‖A3/2 −B3/2‖ ≤ 3λ1/2‖A−B‖.

Proof Without loss of generality we can assume λ = 1. Define functions f and g on {z | |z| ≤ 1}
by f (z) = (1− z)3/2 and g(z) = (1− z)1/2. Let

f (z) =
∞

∑
n=1

bnzn and g(z) =
∞

∑
n=0

cnzn

be the power series expansions. They converge absolutely for |z| ≤ 1. In fact, because direct differ-
entiation yields b0 = 1, b1 = − 3

2 , and bn > 0 for n ≥ 2, the inequality

N

∑
n=0

|bn| = 1+
3
2

+
N

∑
n=2

bn = 1+
3
2

+ lim
x↑1

N

∑
n=2

bnxn

≤ 1+
3
2

+ lim
x↑1

{
f (x)−1+

3
2

}
= 3

shows the convergence of ∑∞
n=0 bnzn for |z| = 1. The bound ∑∞

n=0 |cn| ≤ 2 can be proved similarly.
From 0 ≤ I −A, I−B ≤ I, we have f (I −A) = A3/2, f (I −B) = B3/2, and thus,

‖A3/2 −B3/2‖ =
∥∥∥

∞

∑
n=0

bn(I −A)n −
∞

∑
n=0

bn(I −B)n
∥∥∥ ≤

∞

∑
n=0

|bn|‖(I −A)n − (I −B)n‖.

It is easy to see ‖T n−Sn‖≤ n‖T −S‖ by induction for operators T and S with ‖T‖≤ 1 and ‖S‖≤ 1.
From f ′(z) = − 3

2 g(z), the relation nbn = − 3
2 cn holds for all n. Therefore, we obtain

‖A3/2 −B3/2‖ ≤
∞

∑
n=0

n|bn|‖A−B‖ =
3
2

∞

∑
n=0

|cn|‖A−B‖ ≤ 3‖A−B‖.

The following lemma is a slight extension of Exercise 9, Section 21.2 in Lax (2002).

Lemma 9 Let H1 and H2 be Hilbert spaces, and H0 be a dense linear subspace of H2. Suppose An

and A are bounded operators on H2, and B is a compact operator from H1 to H2 such that

Anu → Au

for all u ∈ H0, and
sup

n
‖An‖ ≤ M

for some M > 0. Then AnB converges to AB in norm.
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Proof First, we prove that Anu → Au holds for an arbitrary u ∈ H2. For any ε > 0, there is u0 ∈ H0

so that ‖u−u0‖H2
≤ ε/(2(M +‖A‖)). For u0 ∈ H0, there is N ∈ N such that ‖Anu0 −Au0‖H2

≤ ε/2
for all n ≥ N. Then for all n ≥ N we have

‖Anu−Au‖H2
≤ ‖An‖‖u−u0‖H2

+‖Anu0 −Au0‖H2
+‖A‖‖u−u0‖H2

≤ ε.

Next, assume that the operator norm ‖AnB−AB‖ does not converge to zero. Then there exist
δ > 0 and a subsequence (n′) such that ‖An′B−AB‖ ≥ 2δ. For each n′ there exists vn′ ∈ H1 such that
‖vn′‖H1

= 1 and ‖An′Bvn′ −ABvn′‖H2
≥ δ. Let un′ = Bvn′ . Because B is compact and ‖vn′‖H1

= 1,
there is a subsequence un′′ and u∗ in H2 such that un′′ → u∗. We have

‖An′′un′′ −Aun′′‖H2

≤ ‖An′′(un′′ −u∗)‖H2
+‖(An′′ −A)u∗‖H2

+‖A(un′′ −u∗)‖H2

≤ (M +‖A‖)‖un′′ −u∗‖H2
+‖(An′′ −A)u∗‖H2

,

which converges to zero as n′′ → ∞. This contradicts the choice of vn′ .

Lemma 10 Let A be a compact positive operator on a Hilbert space H , and An (n ∈N) be bounded
positive operators on H such that An converges to A in norm. Assume that the eigenspace of A
corresponding to the largest eigenvalue is one-dimensional spanned by a unit eigenvector φ, and
the maximum of the spectrum of An is attained by a unit eigenvector fn. Then

|〈 fn,φ〉H | → 1 (n → ∞).

Proof Because A is compact and positive, the eigendecomposition

A =
∞

∑
i=1

ρiφi〈φi, · 〉H

holds, where ρ1 > ρ2 ≥ ρ3 ≥ ·· · ≥ 0 are eigenvalues and {φi} is the corresponding eigenvectors so
that {φi} is the CONS of H .

Let δn = |〈 fn,φ1〉|. We have

〈 fn,A fn〉 = ρ1〈 fn,φ1〉2 +
∞

∑
i=2

ρi〈φi, fn〉2

≤ ρ1〈 fn,φ1〉2 +ρ2
(
1−〈 fn,φ1〉2) = ρ1δ2

n +ρ2(1−δ2
n).

On the other hand, the convergence

|〈 fn,A fn〉−〈φ1,Aφ1〉| ≤ |〈 fn,A fn〉−〈 fn,An fn〉|+ |〈 fn,An fn〉−〈φ1,Aφ1〉|
≤ ‖A−An‖+

∣∣‖An‖−‖A‖
∣∣ → 0

implies that 〈 fn,A fn〉 must converges to ρ1. These two facts, together with ρ1 > ρ2, result in δn → 1.

Note that from the norm convergence QnAnQn → QAQ, where Qn and Q are the orthogonal
projections onto the orthogonal complements of φn and φ, respectively, we have convergence of the
eigenvector corresponding to the second eigenvalue. It is not difficult to obtain convergence of the
eigenspaces corresponding to the m-th eigenvalue in a similar way.
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