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Abstract
Bagging is a commonly used ensemble technique in statistics and machine learning to im-
prove the performance of prediction procedures. In this paper, we study the prediction
risk of variants of bagged predictors under the proportional asymptotics regime, in which
the ratio of the number of features to the number of observations converges to a constant.
Specifically, we propose a general strategy to analyze the prediction risk under squared
error loss of bagged predictors using classical results on simple random sampling. Special-
izing the strategy, we derive the exact asymptotic risk of the bagged ridge and ridgeless
predictors with an arbitrary number of bags under a well-specified linear model with arbi-
trary feature covariance matrices and signal vectors. Furthermore, we prescribe a generic
cross-validation procedure to select the optimal subsample size for bagging and discuss its
utility to eliminate the non-monotonic behavior of the limiting risk in the sample size (i.e.,
double or multiple descents). In demonstrating the proposed procedure for bagged ridge
and ridgeless predictors, we thoroughly investigate the oracle properties of the optimal
subsample size and provide an in-depth comparison between different bagging variants.
Keywords: subagging, divide-and-conquer, proportional asymptotics, ridge regression

1. Introduction

Modern machine learning models often use a large number of parameters relative to the
number of observations. In this regime, several commonly used procedures exhibit a pe-
culiar risk behavior, which is referred to as double or multiple descents in the risk profile
(Belkin et al., 2019). The precise nature of the double or multiple descent behavior in the
generalization error has been studied for various procedures: e.g., linear regression (Belkin

†Equal contribution.

©2023 Pratik Patil, Jin-Hong Du, and Arun Kumar Kuchibhotla.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/23-0887.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0887.html


Patil, Du, and Kuchibhotla

et al., 2020; Muthukumar et al., 2020; Hastie et al., 2022), logistic regression (Deng et al.,
2022), random features regression (Mei and Montanari, 2022), kernel regression (Liu et al.,
2021), among others. We refer the readers to the survey papers by Bartlett et al. (2021);
Belkin (2021); Dar et al. (2021) for a more comprehensive review and other related refer-
ences. In these cases, the asymptotic prediction risk behavior is often studied as a function
of the data aspect ratio (the ratio of the number of parameters/features to the number of
observations). The double descent behavior refers to the phenomenon where the (asymp-
totic) risk of a sequence of predictors first increases as a function of the aspect ratio, peaks
at a certain point (or diverges to infinity), and then decreases with the aspect ratio. From
a traditional statistical point of view, the desirable behavior as a function of aspect ratio
is not immediately obvious. We can, however, reformulate this behavior as a function of
ϕ = p/n, in terms of the observation size n with a fixed p; imagine a large but fixed p and
n changing from 1 to ∞. In this reformulation, the double descent behavior translates to
a pattern in which the risk first decreases as n increases, then increases, peaks at a certain
point, and then decreases again with n. This is a rather counter-intuitive and sub-optimal
behavior for a prediction procedure. The least one would expect from a good prediction pro-
cedure is that it yields better performance with more information (i.e., more data). However,
the aforementioned works show that many commonly used predictors may not exhibit such
“good” behavior. Simply put, the non-monotonicity of the asymptotic risk as a function of
the number of observations or the limiting aspect ratio implies that more data may hurt
generalization (Nakkiran, 2019).

Several ad hoc regularization techniques have been proposed in the literature to mitigate
the double/multiple descent behaviors. Most of these methods are trial-and-error in nature
in the sense that they do not directly target monotonizing the asymptotic risk but instead
try a modification and check that it yields a monotonic risk. The recent work of Patil et al.
(2022) introduces a generic cross-validation framework that directly addresses the problem
and yields a modification of any given prediction procedure that provably monotonizes the
risk. In a nutshell, the method works by training the predictor on subsets of the full data
(with different subset sizes) and picking the optimal subset size based on the estimated pre-
diction risk computed using testing data. Intuitively, it is clear that this yields a prediction
procedure whose risk is a decreasing function of the observation size. In the proportional
asymptotic regime, where p/n → ϕ as n, p → ∞, the paper proves that this strategy re-
turns a prediction procedure whose asymptotic risk is monotonically increasing in ϕ. The
paper theoretically analyzes the case where only one subset is used for each subset size and
illustrates via numerical simulations that using multiple subsets of the data of the same size
(i.e., subsampling) can yield better prediction performance in addition to monotonizing the
risk profile. Note that averaging a predictor computed on M different subsets of the data of
the same size is referred to in the literature as subagging, a variant of the classical bagging
(bootstrap aggregation) proposed by Breiman (1996). The focus of the current paper is to
analyze the properties of bagged predictors in two directions (in the proportional asymp-
totics regime): (1) what is the asymptotic predictive risk of the bagged predictors with M
bags as a function of M , and (2) does the cross-validated bagged predictor provably yield
improvements over the predictor computed on full data and does it have a monotone risk
profile (i.e., the asymptotic risk is a monotonic function of ϕ)?
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In this paper, we investigate several variants of bagging, including subagging as a spe-
cial case. The second variant of bagging, which we call splagging (that stands for split-
aggregating), is the same as the divide-and-conquer or the data-splitting approach (Rosen-
blatt and Nadler, 2016; Banerjee et al., 2019). The divide-and-conquer approach is widely
used in distributed learning, although not commonly featured in the bagging literature (Do-
briban and Sheng, 2020, 2021; Mücke et al., 2022). Formally, splagging splits the data
into non-overlapping parts of equal size and averages the predictors trained on these non-
overlapping parts. We refer to the equal size of each part of the data as subsample size.
We use the same terminology for subagging also for the sake of simplicity. Using classical
results from survey sampling and some simple lemmas about almost sure convergence, we
are able to analyze the behavior of subagged and splagged predictors1 with M bags for
arbitrary prediction procedures and general M ≥ 1. In fact, we show that the asymptotic
risk of bagged predictors for general M ≥ 1 (or simply, M -bagged predictor) can be written
in terms of the asymptotic risks of bagged predictors with M = 1 and M = 2. Rather
interestingly, we prove that the M -bagged predictor’s finite sample predictive risk is uni-
formly close to its asymptotic limit over all M ≥ 1. These results are established in a
model-agnostic setting and do not require the proportional asymptotic regime. Deriving the
asymptotic risk behavior of bagged predictors with M = 1 and M = 2 has to be done on a
case-by-case basis, which we perform for ridge and ridgeless prediction procedures. In the
context of bagging for general predictors, we further analyze the cross-validation procedure
with M -bagged predictors for arbitrary M ≥ 1 to select the “best” subsample size for both
subagging and splagging. These results show that subagging and splagging for any M ≥ 1
outperform the predictor computed on the full data. We further present conditions under
which the cross-validated predictor with M -bagged predictors has an asymptotic risk mono-
tone in the aspect ratio. Specializing these results to the ridge and ridgeless predictors leads
to somewhat surprising results connecting subagging to optimal ridge regression as well as
the advantages of interpolation.

Before proceeding to discuss our specific contributions, we pause to highlight the two
most significant take-away messages from our work. These messages hold under a well-
specified linear model, where the features possess an arbitrary covariance structure, and the
response depends on an arbitrary signal vector, both of which are subject to certain bounded
norm regularity constraints.

(T1) Subagging and splagging (the data-splitting approach) of the ridge and ridgeless pre-
dictors, when properly tuned, can significantly improve the prediction risks of these
standalone predictors trained on the full data. This improvement is most pronounced
near the interpolation threshold. Importantly, subagging always outperforms splagging.
See the left panel of Figure 1 for a numerical illustration and Proposition 12 for a formal
statement of this result.

(T2) A model-agnostic algorithm exists to tune the subsample size for subagging. This al-
gorithm produces a predictor whose risk matches that of the oracle-tuned subagged
predictor. Notably, the oracle-tuned subsample size for the ridgeless predictor is always

1A note on terminology for the paper: when referring to subagging and splagging together, we use the
generic term bagging. Similarly, when referring to subagged and splagged predictors together, we simply
say bagged predictors.
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Figure 1: Overview of optimal bagging over both the subsample aspect ratio and the number of
bags. (a) Optimal asymptotic excess risk curves for ridgeless predictors with and without bagging,
under model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1. The excess risk is the difference between the
prediction risk and the noise level σ2. The risk for the unbagged ridgeless predictor is represented
by a blue dashed line, and the null risk is marked as a gray dotted line. (b) The corresponding
optimal limiting subsample aspect ratio ϕs = p/k versus the data aspect ratio ϕ = p/n for bagged
ridgeless predictors. The line ϕs = ϕ is colored in green. The optimal subsample aspect ratios are
larger than one (above the horizontal red dashed line). See Section 4.3 for more details on the setup
and further related discussion.

smaller than the number of features. As a result, subagged ridgeless interpolators al-
ways outperform subagged least squares, even when the full data has more observations
than the number of features. The same observation holds true for splagging whenever
it provides an improvement. See the right panel of Figure 1 for numerical illustrations
and Proposition 13 for formal statements of this result.

Intuitively, although bagging may induce bias due to subsampling, it can significantly
reduce the prediction risk by reducing the variance for a suitably chosen subsample size that
is smaller than the feature size. This tradeoff arises because of the different rates at which the
bias and variance of the ridgeless predictor increase near the interpolation threshold. This
advantage of interpolation or overparameterization is distinct from other benefits discussed
in the literature, such as self-induced regularization (Bartlett et al., 2021).

1.1 Summary of main results

Below we provide a summary of the main results of this paper.

1. General predictors. In Section 2, we formulate a generic strategy for analyzing the
limiting squared data conditional risk (expected squared error on a future data point,
conditional on the full data) of general M -bagged predictors, showing that the existence
of the limiting risk for M = 1 and M = 2 implies the existence of the limiting risk for
every M ≥ 1. Moreover, we show that the limiting risk of the M -bagged predictor can
be written as a linear combination of the limiting risks of M -bagged predictors with
M = 1 and M = 2. Interestingly, the same strategy also works for analyzing the limit
of the subsample conditional risk, which considers conditioning on both the full data and
the randomly drawn subsamples. See Theorem 5 for a formal statement. In this general
framework, Theorem 5 implies that both the data conditional and subsample conditional
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risks are asymptotically monotone in the number of bags M . Moreover, for general
strongly convex and smooth loss functions, we can sandwich the risks between quantities
of the form C1 + C2/M , for some fixed random variables C1 and C2 (Proposition 18).

2. Ridge and ridgeless predictors. In Section 3, we specialize the aforementioned
general strategy to characterize the data conditional and subsample conditional risks
of M -bagged ridge and ridgeless predictors. The results are formalized in Theorem 6
for subagging with and without replacement, and Theorem 8 for splagging without
replacement. All these results assume a well-specified linear model, with an arbitrary
covariance matrix for the features and an arbitrary signal vector. Notably, we assume
neither Gaussian features nor isotropic features nor a randomly generated signal. These
results reveal that for the three aforementioned bagging strategies, the bias and variance
risk components are non-increasing in the number of bags M .

3. Cross-validation. In Section 4, we develop a generic cross-validation strategy to select
the optimal subsample or split size (or equivalently, the subsample aspect ratio) and
present a general result to understand the limiting risks of cross-validated predictors.
Our theoretical results provide a way to verify the monotonicity of the limiting risk of the
cross-validated predictor in terms of the limiting data aspect ratio ϕ (Theorem 10). In
Section 4.2, we specialize in the cross-validated ridge and ridgeless predictors to obtain
the optimal subsample aspect ratio for every M (Theorem 11). Moreover, when optimiz-
ing over both the subsample aspect ratio and the number of bags, we show that optimal
subagging always outperforms optimal splagging (Proposition 12). Rather surprisingly,
in our investigation of the oracle choice of the subsample size for optimal subagging with
M = ∞, we find that the subsample ratio is always large than one (Proposition 13). In
Section 5, we also show optimally-tuned subbaged ridgeless predictor yields the same
prediction risk as the optimal ridge predictor for isotropic features (Theorem 16).

From a technical perspective, during the course of our risk analysis of the bagged ridge
and ridgeless predictors, we derive novel deterministic equivalents for ridge resolvents with
random Tikhonov-type regularization. We extend ideas of conditional asymptotic equiva-
lents and related calculus, which may be of independent interest. See Section H, and in
particular Section H.3.2.

1.2 Related work

The risk non-monotonicity of commonly used predictors has been well documented in the
literature. For instance, a recent line of work by Belkin et al. (2019); Viering et al. (2019);
Nakkiran (2019); Loog et al. (2019), among others, illustrates the non-monotonic risk behav-
ior of several prediction procedures. See also the survey papers by Belkin (2021); Bartlett
et al. (2021); Dar et al. (2021); Loog et al. (2020) for other related references. As highlighted
by Loog et al. (2020), the phenomenon of multiple descents can be traced back to empirical
findings in the 1990s, including earlier papers by Vallet et al. (1989); Hertz et al. (1989);
Opper et al. (1990); Hansen (1993); Barber et al. (1995); Duin (1995); Opper (1995); Opper
and Kinzel (1996); Raudys and Duin (1998), among others.

Since non-monotonic risk leads to suboptimal use of the data, several methods have
been proposed that modify a given (class of) prediction procedure(s) to construct a new
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prediction procedure with a monotonic risk profile. In particular, Nakkiran et al. (2021)
investigates the role of optimal tuning in the context of ridge regression and demonstrates
that the optimally-tuned ℓ2 regularization achieves monotonic generalization performance
for a class of linear models under isotropic design. Mhammedi (2021) provides an algorithm
to monotonize the risk profile for bounded loss functions. Patil et al. (2022) propose a general
framework to monotonize the prediction risk for general predictors under both bounded and
unbounded loss functions, using cross-validation. The paper also empirically shows that
bagging can further improve the performance of the predictors while achieving a monotonized
risk profile. In this paper, we characterize the risk behavior of bagging, which was left as
an open direction in Patil et al. (2022). Below we provide a brief overview of the literature
pertaining to bagging and its relation to our work.

Ensemble methods are widely used in machine learning and statistics and combine several
weak predictors to produce one powerful predictor. One important class of ensemble methods
is bagging (Breiman, 1996; Bühlmann and Yu, 2002), and its variants, such as subagging
(Bühlmann and Yu, 2002), that operate by averaging predictors trained on independent
subsamples of the data. Numerous empirical studies have demonstrated that bagging leads
to significant improvements in predictive performance (Breiman, 1996; Strobl et al., 2009;
Fernández-Delgado et al., 2014). However, the theoretical analysis of bagging has primarily
focused on smooth predictors (predictors that are smooth functions of the empirical data
distribution); see Buja and Stuetzle (2006); Friedman and Hall (2007). For some work on
bagging for non-parametric estimators, see Hall and Samworth (2005); Samworth (2012);
Wu et al. (2021); Bühlmann and Yu (2002); Athey et al. (2019). In addition to sample-wise
bagging, bagging over linear combinations of features has also been considered in Lopes et al.
(2011); Srivastava et al. (2016); Cannings and Samworth (2017). This approach broadly
falls under the umbrella of feature side sketching; we refer readers to Wang et al. (2017);
Derezinski et al. (2020); Lopes et al. (2018); Dereziński (2023); LeJeune et al. (2022); Patil
and LeJeune (2023), among others, for related results and further references.

Bagging in the proportional asymptotic regime has also been considered in the literature.
LeJeune et al. (2020) study subagging of both features and observations and derive the
limiting risk of the resulting subagged predictor. Dobriban and Sheng (2020, 2021); Mücke
et al. (2022) consider the divide-and-conquer approach, or splagging, and investigate their
properties. These works are set in the context of distributed learning. Specifically, under
proportional asymptotics, Dobriban and Sheng (2020) derive the limiting mean squared error
of the distributed ridge estimator in the underparameterized regime. On the other hand,
Mücke et al. (2022) provide finite-sample upper bounds on the prediction risk for ridgeless
regression in the overparameterized regime.

The closest works to ours are those of LeJeune et al. (2020) and Mücke et al. (2022).
LeJeune et al. (2020) investigate bagged least squares predictor obtained by subsampling
both features and observations in a Gaussian isotropic design. They impose a restriction
on subsampling such that the final subsampled data always has more observations than the
features (so that ordinary least squares are well-defined). Consequently, they do not allow
for overparameterized subsampled datasets. Similar to our work, they also study the mono-
tonicity of the asymptotic expected squared risk with respect to the number of bags in their
restricted setting. Further, they study the best subsampling ratios for optimal asymptotic
risk, but do not consider the question of how to select the best subsample size. The most sig-
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nificant difference between their work and ours is that we subsample observations, and they
effectively subsample features, which is only appropriate under isotopic covariance. On the
other hand, Mücke et al. (2022) consider splagging and provide finite-sample upper bounds
on the bias and variance components of the squared prediction risk under the assumption of
sub-Gaussian features. In contrast, our results do not assume sub-Gaussianity for either the
feature or response distributions and only impose minimal bounded moment assumptions.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we provide risk decompositions
conditional on both the full dataset and subsampled datasets for different bagging variants
for general predictors. Based on the form of decompositions, we provide a series of reductions
and a generic strategy for analyzing the squared prediction risk of general bagged predictors.
In Section 3, we give risk characterizations for bagging ridge and ridgeless predictors. We give
results for both subagging with and without replacement and splagging without replacement,
and show monotonicities of the bias and variance components in the number of bags. In
Section 4, we prescribe a framework for monotonizing the risk profile of any given predictor
based on cross-validation over subsample size. The result is then specialized to the ridge
and ridgeless predictors. Furthermore, we compare the monotonized risk profiles of bagged
ridgeless and ridge predictors. In Section 5, we specialize our results for isotropic features and
provide explicit analytic expressions for the risks of bagged ridgeless regression. In addition,
we present the analysis of the optimal subsample size and the corresponding optimal bagged
risk. In Section 6, we conclude the paper by discussing related open questions.

In the supplement to this paper, we provide proof of all the results. The organization
structure for the supplement is outlined in the first section of the supplement, which also
presents an overview of the general notation employed throughout the paper. The source
code generating all the experimental illustrations in this paper can be accessed at https:
//jaydu1.github.io/overparameterized-ensembling/bagging/.

2. Bagging general predictors

In this section, we will describe different versions of subagged predictors. But first, let us
define the index sets pertinent to our study. Fix any k ∈ {1, 2, . . . , n} and any permutation
π : {1, 2, . . . , n} → {1, 2, . . . , n}. Define the sets Ik and Iπk as follows:

Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n},

Iπk :=
{
{π((j − 1)k + 1), π((j − 1)k + 2), . . . , π(jk)} : 1 ≤ j ≤

⌊n
k

⌋}
.

(1)

Note that both the sets Ik and Iπk technically need to be indexed by n, but for notation
convenience, we will not explicitly indicate the dependence on n. The set Ik represents the
set of all k subset choices from {1, 2, . . . , n}. There are

(
n
k

)
many of them. The set Iπk , on

the other hand, represents the set of indices in a non-overlapping split of {1, 2, . . . , n} into
blocks of size k. If we split {1, 2, . . . , n} randomly into different non-overlapping blocks each
of size k, then this corresponds to choosing a permutation π randomly from the set of all
permutations and splitting them in order. Finally, observe that Iπk ⊆ Ik for any permutation
π and ∪πIπk = Ik.
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Suppose now Dn = {(x1, y1), . . . , (xn, yn)} represents a dataset with random vectors
from Rp × R. A prediction procedure f̃(·; ·) is defined as a map from Rp × P(Dn) → R,
where P(A) for any set A represents the power set of A. For any I ∈ Ik (or I ∈ Iπk ),
let DI and the corresponding subsampled predictor be defined as DI = {(xj , yj) : j ∈ I}
and f̂(x;DI) = f̂(x; {(xj , yj) : j ∈ I}). Given two sets of indices and two types of simple
random samplings one can draw, we have four different versions of subagged predictors.
When employing simple random sampling with replacement, the corresponding predictors
can be expressed as follows:

f̃WRM,Ik(x; {DIℓ}
M
ℓ=1) =

1

M

M∑
ℓ=1

f̂(x;DIℓ), where I1, . . . , IM
SRSWR∼

{
Ik for subagging
Iπk for splagging,

(2)

and the predictors f̃WORM,Ik using simple random sampling without replacement are defined
analogously.

Traditionally, bagging (as in bootstrap-aggregating) refers to computing predictors mul-
tiple times based on bootstrapped data (Breiman, 1996), which can involve repeated obser-
vations. In this paper, we do not allow for repeated observations and consider only the
four versions of bagging mentioned in (2). Bühlmann and Yu (2002, Section 3.2) call f̃WRM,Ik
as subagging (as in subsample-aggregating). Given that SRSWOR mean estimator has
a smaller mean squared error than SRSWR mean estimator, we also consider the variant
f̃WORM,Ik of subagging. Because for any fixed M , the expectation and variance of f̃WRM,Ik and
f̃WORM,Ik are the same as N → ∞, the asymptotic risk behavior of f̃WRM,Ik and f̃WORM,Ik is the same
if |Ik| =

(
n
k

)
→ ∞ (which holds, for example, if 1 ≤ k ≤ n − 1 and n → ∞). Given this

equivalence and the relative prevalence of subagging (i.e., f̃WRM,Ik), in Section 3.2, we focus
our results on f̃WRM,Ik although we indicate the implications for f̃WORM,Ik . In what follows, we
refer to f̃WRM,Ik and f̃WORM,Ik as subagging with and without replacement, respectively.

In contrast, the predictors f̃WRM,Iπ
k

and f̃WORM,Iπ
k

do not frequently appear in the bagging
literature. Rather, they are more common in distributed learning, where the predictors are
trained on different parts of the data and averaged to yield a final predictor. We call these
versions as “splagging” (as in split-aggregating). Among these, the without replacement
predictor f̃WORM,Iπ

k
tends to be more prevalent (Dobriban and Sheng, 2020; Mücke et al., 2022).

Owing to its popularity and the fact that SRSWOR is superior to SRSWR in general, in
Section 3.3, we primarily focus on f̃WORM,Iπ

k
. In what follows, we refer to f̃WRM,Iπ

k
and f̃WORM,Iπ

k

as splagging with and without replacement. For the sake of simplicity, we define f̃WORM,Iπ
k

as

f̃WOR⌊n/k⌋,Iπ
k

if M > ⌊n/k⌋. In doing so, we are effectively substituting M with min{M, ⌊n/k⌋}.
The results to be discussed below are general and apply to all four versions of the bagged

predictors in (2). Consider the finite population {f̂(x;DI) : I ∈ Ik} or {f̂(x;DI) : I ∈ Iπk },
but with the data Dn treated as fixed (non-stochastic). We know that f̃WRM,Ik(x) and f̃WORM,Ik(x)
has the same expectation, given by

f̃∞,Ik(x) =
1

|Ik|
∑
I∈Ik

f̂(x;DI).
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However, the variance is smaller for f̃WORM,Ik(x). Using the bias and variance formulas from
Chaudhuri (2014, Section 2.5), the following result can be derived for the subagged predic-
tors.

Proposition 1 (Conditional risk decomposition). Without any assumptions on the data
and the prediction procedure f̂(·; ·), we have for every (x, y) ∈ Rp × R,

E[(y − f̃WRM,Ik(x; {DIℓ}
M
ℓ=1))

2 | Dn] = BIk(x, y) +
1

M
VIk(x, y),

E[(y − f̃WORM,Ik(x; {DIℓ}
M
ℓ=1))

2 | Dn] = BIk(x, y) +
|Ik| −M

|Ik| − 1

1

M
VIk(x, y),

(3)

where BIk(x, y) = (y − f̃∞,Ik(x))
2, and VIk(x, y) =

1

|Ik|
∑
I∈Ik

(
f̂(x;DI)− f̃∞,Ik(x)

)2
.

(4)

The results still hold by replacing Ik with Iπk . Here in (3), the expectation is with respect to
the randomness of I1, . . . , IM only.

In line with traditional predictive thinking, we care about the performance of our pre-
dictors computed on Dn on future data from the same distribution P . As we have access to
a single dataset Dn, we consider the behavior of the predictors in terms of the conditional
risk, conditional on Dn. To be precise, for a predictor f̂ fitted on Dn and its subagged
predictor f̃WRM,Ik fitted on {DIℓ}Mℓ=1, with I1, . . . , IM being M samples of size k from Ik, the
conditional risks (conditional on Dn) are defined as follows:

R(f̂ ;Dn) :=

∫
(y − f̂(x;Dn))

2 dP (x, y),

R(f̃WRM,Ik(·; {DIℓ}
M
ℓ=1); Dn) :=

∫
E
[(
y − f̃WRM,Ik(x; {DIℓ}

M
ℓ=1)

)2 ∣∣∣ Dn

]
dP (x, y).

(5)

The conditional risk of f̃WORM,Ik(·; {DIℓ}Mℓ=1) is defined similarly, and so are the conditional risks
for the splagged predictors with and without replacement from Iπk for a fixed permutation π.
Observe that the conditional risk of the subagged predictor f̃WRM,Ik(·; {DIℓ}Mℓ=1) integrates over
the randomness of the future observation (x, y) as well as the randomness due to the simple
random sampling of Iℓ, ℓ = 1, . . . ,M . Given that only a single dataset Dn is observed in
practice and one typically only draws one simple random sample Iℓ, ℓ = 1, . . . ,M , it is also
insightful to consider an alternate version of the conditional risk that ignores the expectation
over the simple random sample:

R(f̃WRM,Ik(·; {DIℓ}
M
ℓ=1); Dn, {Iℓ}Mℓ=1) :=

∫ (
y − f̃WRM,Ik(x; {DIℓ}

M
ℓ=1)

)2
dP (x, y). (6)

We call the former type of conditional risk (conditional on Dn) as data conditional risk and
the latter type of conditional risk (conditional on Dn and {Iℓ}Mℓ=1) as subsample conditional
risk.
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Proposition 1 implies that the data conditional risks of the predictors f̃WRM,Ik(·) and
f̃WORM,Ik(·) can be written as

R(f̃M ;Dn) =

∫
BIk(x, y) dP (x, y) +K|Ik|,M

1

M

∫
VIk(x, y) dP (x, y)

= R(f̃∞;Dn) +
K|Ik|,M

M

∫
VIk(x, y) dP (x, y),

(7)

where for N ≥ 1, KN,M is defined as

KN,M =

{
1 if f̃ = f̃WRM,Ik
(N −M)+/(N − 1) if f̃ = f̃WORM,Ik .

(8)

The advantage of the representation (7) for the data conditional risk of f̃WRM,Ik(·) and f̃WORM,Ik(·)
is that it allows us to obtain the limiting behavior of their risks for any M ≥ 1 by just
studying their limiting risk behavior for M = 1 and M = 2. This is trivially shown by
solving a system of linear equations in two variables and is formalized in the following
result.

Proposition 2 (Data conditional risk for arbitrary M). Let R(f̃M ;Dn) be as defined in (5).
For f̃M ∈ {f̃WRM,Ik , f̃

WOR
M,Ik , f̃

WR
M,Iπ

k
, f̃WORM,Iπ

k
}, suppose there exist non-stochastic numbers a1 and

a2 such that as n→ ∞,

|R(f̃M ;Dn)− aM | a.s.−−→ 0, for M = 1, 2, (9)

where the almost sure convergence is with respect to the randomness of Dn. Then, we have2

sup
M∈N

∣∣∣∣R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]∣∣∣∣ a.s.−−→ 0. (10)

Note that according to Proposition 1, we have a1 ≥ a2, irrespective of the prediction
procedure. In Proposition 2, if a1 > a2 (instead of just a1 ≥ a2), then the asymptotic
approximations of the conditional risk R(f̃M ;Dn) are strictly decreasing in M . Similarly,
we can also derive the asymptotic subsample conditional risk defined in (6) of subagged
predictors with an arbitrary number of bags M if we know the limiting risk for M = 1 and
M = 2, as summarized in Proposition 3 below.

Proposition 3 (Subsample conditional risk for arbitrary M). Let R(f̃M ;Dn, {Iℓ}Mℓ=1) be as
defined in (6). For f̃M ∈ {f̃WRM,Ik , f̃

WOR
M,Ik , f̃

WR
M,Iπ

k
, f̃WORM,Iπ

k
}, suppose there exist non-stochastic

numbers b1 and b2 such that

|R(f̃1;Dn, I
(n))− b1|

a.s.−−→ 0, for all I(n) ∈ Ik or Iπk , (11)

|R(f̃2;Dn, {I(n)1 , I
(n)
2 })− b2|

a.s.−−→ 0, for random samples I(n)1 , I
(n)
2

3, (12)

2For SRSWOR, supremum over M ∈ N should be understood as either M ≤ |Ik| or M ≤ |Iπ
k | depending

on whether f̃M is f̃ WOR
M,Ik

or f̃ WOR
M,Iπ

k
. The same convention is used for all the other results in this section.

10
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where the almost sure convergence is with respect to the randomness of both Dn and I (or I1,
I2). For any M ∈ N, suppose {Iℓ}Mℓ=1 is a simple random sample according to the definition
of f̃M . Then

sup
M∈N

∣∣∣∣R(f̃M ;Dn, {Iℓ}Mℓ=1)−
[
(2b2 − b1) +

2(b1 − b2)

M

]∣∣∣∣ p−→ 0. (13)

A few remarks regarding the assumptions of Proposition 3 are warranted. First, the
requirement (11) may, on the surface, seem demanding as it necessitates almost sure con-
vergence for all I ∈ Ik. However, recall that, for any fixed I ∈ Ik, f̃1,Ik(·;DI) is the same
as the prediction procedure f̂ computed on the subset DI with cardinality k. Consequently,
if the original prediction procedure exhibits almost sure convergence as the training sample
size goes to ∞, then as k → ∞, the requirement (11) holds for every fixed I ∈ Ik. Second, in
Propositions 2 and 3, we noticed that only the limiting risks for M = 1 and M = 2 matter.
This is because the data conditional risk can be split as:

R(f̃M,Ik ; Dn) = −
(
1− 2

M

)
R(f̃1,Ik ; Dn) + 2

(
1− 1

M

)
R(f̃2,Ik ; Dn).

The subsample conditional risk admits similar decomposition as well. See Section B for the
derivations for both of them. Essentially, the interaction of subsampled datasets is only up
to order two. This may not be true for other loss functions. However, a simple monotonicity
property and bounds can be obtained for a large class of loss functions. See Proposition 18
in the supplement. It is also worth mentioning that while Propositions 2 and 3 are derived
under the assumption that the distribution of the out-of-sample test point (x, y), P (x, y),
is the same as the distribution of the training data, it is not difficult to see that the same
conclusions hold for a test point sampled from any arbitrary distribution. The results are
thus also applicable to out-of-distribution scenarios.

The forthcoming lemma establishes a connection between the data conditional risk and
the subsample conditional risk for M = 1, 2. In practice, the ingredient predictor is fitted on
the subsampled datasets and the subsample conditional risk is evaluated on these subsampled
datasets. Thanks to Lemma 4, we are able to infer the data conditional risk based on the
subsample conditional risk for the simple cases of M = 1, 2.

Lemma 4 (From subsample conditional to data conditional risk for M = 1, 2). If the
conditions in Proposition 3 hold, then (9) holds with aM = bM for M = 1, 2. As a result,
the conclusions of Proposition 2 hold.

It is worth highlighting the proof of Lemma 4 leverages the convexity of the square loss
function. Therefore, analogous results can be obtained for other convex loss functions, as
long as the limiting subsample conditional risks exist for M = 1, 2.

Finally, combining Proposition 2, Proposition 3, and Lemma 4 yields a general strategy
for obtaining both limiting subsample and data conditional risks for an arbitrary number
M of bags. The end-to-end result is presented in the form of Theorem 5. This theorem

3According to (2), I
(n)
1 and I

(n)
2 are drawn using SRSWR if f̃M ∈ {f̃ WR

M,Ik
, f̃ WR

M,Iπ
k
} and SRSWOR if

f̃M ∈ {f̃ WOR
M,Ik

, f̃ WOR
M,Iπ

k
}. From now on, for notational simplicity, we drop the dependence on n and simply

write I1 and I2.
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R(f̃M ;Dn, {Iℓ}Mℓ=1),
M = 1, 2

R(f̃M ;Dn, {Iℓ}Mℓ=1), M ∈ N

R(f̃M ;Dn), M = 1, 2 R(f̃M ;Dn), M ∈ N

Proposition 3

Lemma 4

Proposition 2

Theorem 5

Figure 2: A general reduction strategy for obtaining limiting risks of subagged predictors with M
bags.

establishes that it is sufficient to obtain the limiting subsample conditional risks forM = 1, 2;
see Figure 2.

Theorem 5 (From subsample conditional to data conditional for general M). Suppose the
conditions (11) and (12) hold, then the conclusions in Propositions 2 and 3 hold.

For general predictors, both the data conditional risk and the subsample conditional risk
for M = 1 (required for (11) to hold) are typically available from known results. In such
cases, it remains to first derive limiting subsample conditional risk for M = 2 (required for
(12) to hold) depending on the sampling strategies, and then verify the properties of the
limiting conditional risks required in Theorem 5. In this paper, we focus on the asymptotic
risk characterization for the bagged ridge and ridgeless predictors and verify the conditions
(11) and (12) in the next section.

3. Bagging ridge and ridgeless predictors

In this section, we adopt the reduction strategy proposed in Section 2 to characterize the risk
of subagged ridge and ridgeless predictors. The formal definitions of these predictors and
data assumptions imposed for our results are given in Section 3.1. Subsequently, the risk
characterizations for subagging and splagging are presented in Section 3.2 and Section 3.3,
respectively.

3.1 Predictors and assumptions

Consider a dataset Dn = {(x1, y1), . . . , (xn, yn)} consisting of random vectors in Rp × R.
Let X ∈ Rn×p denote the corresponding feature matrix whose j-th row contains x⊤

j , and
let y ∈ Rn denote the corresponding response vector whose j-th entry contains yj . For any
index set I ⊆ {1, 2, . . . , n}, let DI = {(xj , yj) : j ∈ I} be a subsampled dataset, and let
L ∈ Rn×n denote a diagonal matrix such that Ljj = 1 if and only if j ∈ I.

Recall that the ridge estimator with regularization parameter λ > 0 fitted on DI is
defined as

β̂λ(DI) = argmin
β∈Rp

1

|I|
∑
j∈I

(yj − x⊤
j β)

2 + λ∥β∥22

= (X⊤LX/|DI |+ λIp)
−1(X⊤Ly/|DI |).

12
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The associated ridge predictor is given by f̂λ(x;DI) = x⊤β̂λ(DI). The ridgeless estimator is
the limiting estimator β̂λ(DI) as λ→ 0+. When |DI | ≥ p, and assuming that the p feature
vectors are linearly independent in Rp, it is simply the least squares estimator:

β̂0(DI) = (X⊤LX/|DI |)−1(X⊤LY /|DI |).

When |DI | < p, it is the minimum ℓ2-norm least squares estimator:

β̂0(DI) = argmin
β′∈Rp

∥β′∥2
∣∣∣ β′ ∈ argmin

β∈Rp

∑
j∈I

(yj − x⊤
j β)

2


= (X⊤LX/|DI |)+(X⊤Ly/|DI |).

Here A+ denotes the Moore-Penrose inverse of matrix A. Assuming that DI has |DI | linearly
independent observation vectors in Rp, this estimator also interpolates the data, i.e., we
have yj = x⊤

j β̂0(DI) for j ∈ I, and has the minimum ℓ2-norm among all interpolators. The
associated ridgeless predictor is again given by f̂0(x;Dn) = x⊤β̂0(Dn).

Given their relevance to the subagged predictors studied in the literature, we will pri-
marily focus on only two of the four subagged predictors as defined in (2), although the
implications for the other two can be trivially obtained. For λ ≥ 0, the subagged and
splagged predictors respectively are defined as

f̃WRM,Ik(x;Dn) = x⊤β̃λ,M ({DIℓ}
M
ℓ=1), I1, . . . , IM

SRSWR∼ Ik,

f̃WORM,Iπ
k
(x;Dn) = x⊤β̃λ,M ({DIℓ}

M
ℓ=1), I1, . . . , IM

SRSWOR∼ Iπk ,
(14)

where β̃λ,M ({DIℓ}Mℓ=1) = M−1
∑M

ℓ=1 β̂λ(DIℓ). For M > |Iπk |, the splagged predictor is
defined to be the predictor with M = |Iπk |. When λ = 0, the base predictors become the
ridgeless predictors.

We impose the following Assumptions 1-5 on the dataset Dn to characterize the risk.
These assumptions are standard in the study of the ridge regression under proportional
asymptotics; see, e.g., Hastie et al. (2022).

Assumption 1. The feature vectors xi ∈ Rp, i = 1, . . . , n, multiplicatively decompose as
xi = Σ1/2zi, where Σ ∈ Rp×p is a positive semidefinite matrix and zi ∈ Rp is a random
vector containing i.i.d. entries with mean 0, variance 1, and bounded moment of order 4+ δ
for some δ > 0.

Assumption 2. The response variables yi ∈ R, i = 1, . . . , n, additively decompose as yi =
x⊤
i β0 + ϵi, where β0 ∈ Rp is an unknown signal vector and ϵi is an unobserved error that

is assumed to be independent of xi with mean 0, variance σ2, and bounded moment of order
4 + δ for some δ > 0.

Assumption 3. The signal vector β0 has bounded limiting energy, i.e., limp→∞ ∥β0∥22 =
ρ2 <∞.

Assumption 4. There exist real numbers rmin and rmax independent of p with 0 < rmin ≤
rmax <∞ such that rminIp ⪯ Σ ⪯ rmaxIp.
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Assumption 5. Let Σ = WRW⊤ denote the eigenvalue decomposition of the covariance
matrix Σ, where R ∈ Rp×p is a diagonal matrix containing eigenvalues (in non-increasing
order) r1 ≥ r2 ≥ · · · ≥ rp ≥ 0, and W ∈ Rp×p is an orthonormal matrix containing
the associated eigenvectors w1,w2, . . . ,wp ∈ Rp. Let Hp denote the empirical spectral
distribution of Σ (supported on R>0) whose value at any r ∈ R is given by

Hp(r) =
1

p

p∑
i=1

1{ri≤r} .

Let Gp denote a certain distribution (supported on R>0) that encodes the components of the
signal vector β0 in the eigenbasis of Σ via the distribution of (squared) projection of β0 along
the eigenvectors wj , 1 ≤ j ≤ p, whose value at any r ∈ R is given by

Gp(r) =
1

∥β0∥22

p∑
i=1

(β⊤
0 wi)

2 1{ri≤r} .

Assume there exist fixed distributions H and G such that Hp
d−→ H and Gp

d−→ G as p→ ∞.

3.2 Subagging with replacement

In this section, we delve into the risk asymptotics and properties for subagging. In Sec-
tion 3.2.1, we provide exact risk characterization of subagged ridge and ridgeless predictors.
The monotonicity properties of the asymptotic bias and variance components of the risk are
presented in Section 3.2.2.

3.2.1 Risk characterization

In preparation for our first result on the risk characterization of subagged ridge and ridgeless
predictors, let us establish some notations. We will analyze the subagged predictors (with
M bags) in the proportional asymptotics regime, in which the original data aspect ratio
(p/n) converges to ϕ ∈ (0,∞) as n, p → ∞, and the subsample data aspect ratio (p/k)
converges to ϕs as k, p→ ∞. Because k ≤ n, ϕs is always no less than ϕ.

A fixed-point equation defines one of the key quantities that recurs throughout our
analysis of subagged ridge predictors. Such fixed point equations have appeared in the
literature before in the context of risk analysis of regularized estimators under proportional
asymptotics regime. For instance, see Dobriban and Wager (2018); Hastie et al. (2022); Mei
and Montanari (2022) in the context of ridge regression; and more generally, for other M -
estimators, see Thrampoulidis et al. (2015, 2018), Sur et al. (2019), El Karoui (2013, 2018),
Miolane and Montanari (2021), among others. For any λ > 0 and θ > 0, define v(−λ; θ) as
the unique nonnegative solution to the fixed-point equation:

1

v(−λ; θ)
= λ+ θ

∫
r

1 + v(−λ; θ)r
dH(r), (15)

and for λ = 0, θ > 1, we define:

v(0; θ) =

 lim
λ→0+

v(−λ; θ), if θ > 1

+∞, if θ ∈ (0, 1].
(16)
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The fact that the fixed-point equation (15) has a unique nonnegative solution is well
known in the random matrix theory literature. See, e.g., Bai and Silverstein (2010); Couillet
and Debbah (2011). For completeness, we also provide a proof in Section H.3. The existence
of the limit of v(−λ; θ) as λ→ 0+ is due to the fact that v(−λ; θ) is monotonically decreasing
in λ > 0 (Patil et al., 2022, Lemma S.6.15 (4)). Additionally, we define non-negative
constants ṽ(−λ;ϑ, θ) and c̃(−λ; θ) via the following equations:

ṽ(−λ;ϑ, θ) =
ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

, c̃(−λ; θ) =
∫

r

(1 + v(−λ; θ)r)2
dG(r).

(17)

Theorem 6 (Risk characterization of subagged ridge and ridgeless predictors). Let f̃WRM,Ik
be the predictor as defined in (14) for λ ≥ 0. Suppose Assumptions 1-5 hold for the dataset
Dn. Then, as k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞] (and
ϕs ̸= 1 if λ = 0), there exist deterministic functions Rsub

λ,M (ϕ, ϕs) for M ∈ N, such that for

I1, . . . , IM
SRSWR∼ Ik,

sup
M∈N

|R(f̃WRM,Ik ;Dn, {Iℓ}Mℓ=1)− Rsub
λ,M (ϕ, ϕs)|

p−→ 0,

sup
M∈N

|R(f̃WRM,Ik ;Dn)− Rsub
λ,M (ϕ, ϕs)|

a.s.−−→ 0.
(18)

The guarantee (18) also holds true if f̃WRM,Ik is replaced by f̃WORM,Ik . Furthermore, the function
Rsub
λ,M (ϕ, ϕs) decomposes as

Rsub
λ,M (ϕ, ϕs) = σ2 + Bsub

λ,M (ϕ, ϕs) + V sub
λ,M (ϕ, ϕs), (19)

where the bias and variance terms are given by

Bsub
λ,M (ϕ, ϕs) =M−1Bλ(ϕs, ϕs) + (1−M−1)Bλ(ϕ, ϕs), (20)

V sub
λ,M (ϕ, ϕs) =M−1Vλ(ϕs, ϕs) + (1−M−1)Vλ(ϕ, ϕs), (21)

and the functions Bλ(·, ·) and Vλ(·, ·) are defined as

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ) and Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ) for θ ∈ (0,∞], ϑ ≤ θ.
(22)

Theorem 6 provides precise asymptotics for the data conditional as well as the subsample
conditional risks of subagged ridge and ridgeless predictors. We have also derived the bias-
variance decomposition for the asymptotic risk in (19). Interestingly, the individual bias
term is a convex combination of Bλ(ϕs, ϕs) and Bλ(ϕ, ϕs), which correspond to the biases
for M = 1 and M = ∞, respectively. The same conclusion also holds for the variance term.
Although the risk behavior for M = 1 has been studied by Patil et al. (2022), the risk
characterization for general (data-dependent) M is new. As we shall see later in Section 5,
the risk behavior for M = ∞ is significantly different from that for M = 1.

When θ > 1, the parameter v(0; θ) defined in (16) can also be seen as the unique
nonnegative solution to the following fixed-point equation (Patil et al., 2022, Lemma S.6.14):

1

v(0; θ)
= θ

∫
r

1 + v(0; θ)r
dH(r). (23)
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Figure 3: Asymptotic prediction risk curves in (19) for subagged ridgeless predictors (λ = 0),
under model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying subsample sizes k = ⌊p/ϕs⌋ and
numbers of bags M . The null risk is marked as a dotted line. For each value of M , the points denote
finite-sample risks averaged over 100 dataset repetitions, with n = ⌊pϕ⌋ and p = 500. The left and
the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.

When θ ∈ (0, 1], since limλ→0+ v(−λ; θ) = ∞, we have that limλ→0+ c̃(−λ; θ) = 0 and
limλ→0+ ṽ(−λ;ϑ, θ) = ϑ(1 − ϑ)−1. Therefore, the bias and variance functions in (22) for
ϑ ≤ θ reduce to

B0(ϑ, θ) =

{
0 θ ∈ (0, 1]

ρ2(1 + ṽ(0;ϑ, θ))c̃(0; θ) θ ∈ (1,∞]
, V0(ϑ, θ) =


σ2

ϑ

1− ϑ
θ ∈ (0, 1)

∞ θ = 1

σ2ṽ(0;ϑ, θ) θ ∈ (1,∞].

(24)

As a sanity check when ϑ = θ, it is easy to see that the bias and variance components
collapse to that of the minimum ℓ2-norm least squares estimator with limiting aspect ratio
θ.

A few additional remarks on Theorem 6 are in order. Note that Theorem 6 shows that
the data conditional risk and the subsample conditional risk both converge to the same
deterministic limit. This is intuitively expected because the data conditional risk is the
average subsample conditional risks over all subsamples. Lastly, Theorem 6 assumes λ ≥ 0.
For λ < 0, the fixed-point equation (15) may have more than one solution. However, a
solution to (15) still exists with which Theorem 6 holds whenever λ > −(1 −

√
ϕ)2rmin

where rmin is the uniform lower bound on the smallest eigenvalue of Σ. For simplicity, we
restrict to the case when λ ≥ 0 in this paper. When λ = 0, the base predictors are ridgeless
predictors. In this case, the variance function θ 7→ V0,M (ϑ, θ) is unbounded if M is finite
and θ → 1 because V0(θ, θ) in (24) diverges as θ → 1. This can be empirically explained by
the singularity of the empirical covariance matrices with aspect ratios close to 1. However,
the asymptotic risk for M = ∞ is always bounded.

Illustration of Theorem 6. Before we delve into the proof outline for Theorem 6, we first
provide some numerical illustrations under the AR(1) data model. The covariance matrix
of an auto-regressive process of order 1 (AR(1)) is denoted by Σar1, where (Σar1)ij = ρ

|i−j|
ar1
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Figure 4: Asymptotic prediction risk curves in (19) for subagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying subsample sizes k = ⌊p/ϕs⌋ and
numbers of bags M . The null risk is marked as a dotted line. For each value of M , the points denote
finite-sample risks averaged over 100 dataset repetitions, with n = ⌊pϕ⌋ and p = 500. The left and
the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.

for some parameter ρar1 ∈ (0, 1). The AR(1) data model is defined as follows:

yi = x⊤
i β0 + ϵi, xi ∼ N (0,Σar1), β0 =

1

5

5∑
j=1

w(j), ϵi ∼ N (0, σ2), (M-AR1-LI)

where w(j) is the eigenvector of Σar1 associated with the top jth eigenvalue r(j). From
Grenander and Szegö (1958, pp. 69-70), the top j-th eigenvalue can be written as r(j) =
(1−ρ2ar1)/(1−2ρar1 cos θjp+ρ

2
ar1) for some θjp ∈ ((j−1)π/(p+1), jπ/(p+1)). Under model

(M-AR1-LI), the signal strength ρ2 defined in Assumption 3 is 5−1(1 − ρ2ar1)/(1 − ρar1)
2,

which is the limit of 25−1
∑5

j=1 r(j). The (M-AR1-LI) model is thus parameterized by two
parameters ρar1 and σ2 satisfies Assumption 1-5.

Figures 3 and 4 display the limiting risk for the subagged ridgeless predictor and subagged
ridge predictor, respectively, with the number of bags M varying from 1 to ∞. In the figures,
the limiting aspect ratio ϕ of the full data is fixed to be either 0.1 or 1.1, corresponding to the
cases when n > p and n < p, respectively. For each case, the limiting aspect ratio ϕs of each
bag takes values in (ϕ,∞). We observe that the empirical risks align with the deterministic
approximations for both cases, and they are more concentrated around the deterministic
approximations as M increases. This is expected as the variance of the subagged predictors
reduces withM . Furthermore, for any fixed ϕs, the asymptotic risk decreases asM increases.

Due to the non-monotonic risk behavior of the underlying ridge and ridgeless predic-
tors, Figures 3 and 4 show that the best subsample aspect ratio (ϕs) in terms of prediction
risk might be strictly larger than ϕ. This holds true for any choice of M ≥ 1. The case
of M = 1 was already mentioned in Patil et al. (2022). This observation is intriguing as
it suggests it is better to bag predictors that use even fewer observations than the original
data. Similar phenomena are also observed in our simulations with varying signal-to-noise
ratios; see Section J. We discuss an actionable algorithm for finding the optimal choice of
ϕs in practice in Section 4.

Proof outline of Theorem 6. The proof of Theorem 6 employs the reduction strategy
discussed in Section 3. In particular, we apply Theorem 5 (subsample conditional for M = 1
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and M = 2 to subsample and data subsample for any M) to prove the theorem. Below we
outline the main steps:

1. The deterministic risk approximation to the subsample conditional risk for M = 1 can
be obtained from the results of Patil et al. (2022) that build on those of Hastie et al.
(2022).

2. Under the linear model, to analyze the subsample conditional risk for M = 2, we first
decompose it as follows:

R(f̃2;Dn, {I1, I2})

= σ2 +
1

4

2∑
i=1

(β0 − β̂(DIi))
⊤Σ(β0 − β̂(DIi)) +

1

2
(β0 − β̂(DI1))

⊤Σ(β0 − β̂(DI2))

=
σ2

2
+
R(f̃1;Dn, I1) +R(f̃1;Dn, I2)

4
+

(β0 − β̂(DI1))
⊤Σ(β0 − β̂(DI2))

2
. (25)

The first term in the display above is non-random. The asymptotic risk approximation
for the second term follows from the asymptotics of the subsample conditional risk for
M = 1. The challenging part is the analysis of the final cross term (β0−β̂(DI1))

⊤Σ(β0−
β̂(DI2)), due to the non-trivial dependence implied by the overlap between DI1 and
DI2 . Our strategy to obtain a deterministic approximation for such a term is to write
h(β̂(DI1), β̂(DI2)) = h(β̂(DI′1

∪DI0), β̂(DI′2
∪DI0)) for any univariate function h. Here

I0 = I1 ∩ I2 denotes the indices of the overlap, and I ′j = Ij \ I0 for j = 1, 2 are the
indices of non-overlapping observations. Observe that conditioning on DI0 , DI′1

and DI′2
are independent datasets. This conditional independence, coupled with the closed-form
expression of the ridge predictor, forms a crucial piece in our argument. To carry out
this program, we derive conditional deterministic equivalence results for ridge resolvents.
The resulting new results here are collected in Section H.3.2.

3. To prove the results for the ridgeless predictor, we essentially take the limit as λ→ 0+

of the deterministic risk approximation for the ridge predictor with regularization λ.
This process requires appealing to a uniformity argument in λ. See Section D for more
details.

3.2.2 Monotonicity of bias and variance in number of bags

Monotonicity in the number of bags M for both the data conditional risk R(f̃WRM,Ik ;Dn)

and the subsample conditional risk R(f̃WRM,Ik ;Dn, {Iℓ}Mℓ=1) follow from (7). In the classical
literature of bagging and subagging, however, it has been of interest to better understand the
effect of aggregation on not just the risk, but also on the bias and variance. In this section,
we show for the ridge and ridgeless predictors, subagging reduces both the bias and the
variance. Monotonicity of the risk proved in Theorem 6, does not imply the monotonicity
of asymptotic bias and variance components. Fortunately, the risk decomposition derived in
Theorem 6 demonstrates that both asymptotic bias and variance components are monotonic
in M , as summarized below.
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Figure 5: Asymptotic bias and variance curves in (22) for subagged ridgeless predictors (λ = 0),
under model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 0.25, for varying subsample aspect ratio ϕs
and numbers of bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1)
and p > n (ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown on a log-10 scale.

Proposition 7 (Improvement due to subagging). For all M = 1, 2, . . . and λ ∈ [0,∞), it
holds that

Bsub
λ,∞(ϕ, ϕs) ≤ Bsub

λ,M+1(ϕ, ϕs) ≤ Bsub
λ,M (ϕ, ϕs) (26)

V sub
λ,∞(ϕ, ϕs) ≤ V sub

λ,M+1(ϕ, ϕs) ≤ V sub
λ,M (ϕ, ϕs). (27)

The inequalities in (26) are strict whenever ρ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ̸= 1 when λ = 0),
while the inequalities in (27) are strict when σ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ̸= 1 when
λ = 0). Thus, the asymptotic risk is monotonically decreasing in M , i.e., Rsub

λ,∞(ϕ, ϕs) ≤
Rsub
λ,M+1(ϕ, ϕs) ≤ Rsub

λ,M (ϕ, ϕs).

The monotonicity property in Proposition 7 does not immediately follow from the de-
composition of Bsub

λ,M (ϕ, ϕs) and V sub
λ,M (ϕ, ϕs) in (20) and (21). All that is implied by (20) and

(21) is that Bsub
λ,M (ϕ, ϕs) and V sub

λ,M (ϕ, ϕs) either monotonically increase or decrease in M ≥ 1.
However, Proposition 7 confirms that they are both decreasing in M . We establish this by
demonstrating that Bsub

λ,1 (ϕ, ϕs) ≥ Bsub
λ,∞(ϕ, ϕs) and V sub

λ,1 (ϕ, ϕs) ≥ V sub
λ,∞(ϕ, ϕs). Moreover,

the proposition explicitly distinguishes the cases of non-increasing and strict decreasing of
the bias and variance components.

The monotonicity properties claimed in Proposition 7 are supported by Figure 5, which
shows the bias and variance components for subagged ridgeless predictors under the model
(M-AR1-LI). For a similar illustration for subagged ridge predictors, see Section J.1.

3.3 Splagging without replacement

In this section, we focus on analyzing the risk asymptotics and properties for splagging. More
formally, we consider the risk asymptotics of the splagged predictor obtained by averaging
the predictors computed on M non-overlapping subsets of the data, each of size k. This is
precisely the splagged predictor f̃WORM,Iπ

k
. Throughout all the asymptotics below, we consider

the permutation π to be fixed. Because the limiting risk below does not depend on the
permutation π, the conclusions continue to hold true even when the data or subsample
conditional risk is averaged over all permutations π. However, it should be emphasized that
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this is not the same as the data conditional risk of the splagged predictor averaged over
all permutations π. In Section 3.3.1, we provide exact risk characterization of splagging
without replacement for both ridge and ridgeless predictors. The monotonicity properties
of asymptotic bias and variance are then established in Section 3.3.2.

3.3.1 Risk characterization

Recall our convention is defining the splagged predictor f̃WORM,Iπ
k

as f̃WORmin{M,⌊n/k⌋},Iπ
k
, so that

the splagged predictor is well defined for all M ∈ N.

Theorem 8 (Risk characterization for splagged ridge and ridgless predictors). Let f̃WORM,Iπ
k

be the predictor as defined in (14) for λ ≥ 0. Suppose Assumptions 1-5 hold for the dataset
Dn. Then as k, n, p → ∞, p/n → ϕ ∈ (0,∞), p/k → ϕs ∈ [ϕ,∞] (and ϕs ̸= 1 for λ = 0),
there exist deterministic functions Rspl

λ,M (ϕ, ϕs) for all M ∈ N, and ϕs ≥ ϕ, such that for

I1, . . . , IM
SRSWOR∼ Iπk ,

sup
M∈N

|R(f̃WORM,Iπ
k
;Dn, {Iℓ}Mℓ=1)− Rspl

λ,M (ϕ, ϕs)|
p−→ 0,

sup
M∈N

|R(f̃WORM,Iπ
k
;Dn)− Rspl

λ,M (ϕ, ϕs)|
a.s.−−→ 0.

Here Rspl
λ,M (ϕ, ϕs) = Rspl

λ,⌊ϕs/ϕ⌋(ϕ, ϕs) for M ≥ ⌊ϕs/ϕ⌋, and for M ≤ ⌊ϕs/ϕ⌋, the function

Rspl
λ,M (ϕ, ϕs) decomposes as

Rspl
λ,M (ϕ, ϕs) = σ2 + Bspl

λ,M (ϕ, ϕs) + V spl
λ,M (ϕ, ϕs), (28)

where Bspl
λ,M (ϕ, ϕs) = M−1Bλ(ϕs, ϕs) + (1 −M−1)Cλ(ϕs), V spl

λ,M (ϕ, ϕs) = M−1Vλ(ϕs, ϕs),
Cλ(ϕs) = ρ2c̃(−λ;ϕs), and Bλ(ϕs, ϕs) and Vλ(ϕs, ϕs) are quantities as defined in Theorem 6.

We next provide some remarks on Theorem 8. Firstly, for every pair (ϕ, ϕs) satisfying
ϕs ≥ ϕ, note that the splagged predictor and the risks are defined in a non-trivial manner
only for M = 1, . . . , ⌊ϕs/ϕ⌋, and is defined as a constant for M > ⌊ϕs/ϕ⌋. In particular, for
a fixed pair (ϕ, ϕs), the sequence of risks as M varies looks like:

Rspl
λ,1 (ϕ, ϕs), Rspl

λ,2 (ϕ, ϕs), . . . , Rspl
λ,⌊ϕs/ϕ⌋(ϕ, ϕs), Rspl

λ,⌊ϕs/ϕ⌋(ϕ, ϕs), . . . .

Secondly, although splagging does not formally involve repeated observations like boot-
strapping, we will still refer to ϕs = p/k as the subsample aspect ratio, where k is the number
of observations in each split part of the full dataset. In Theorem 6 for the subagged predictor
with replacement, the asymptotic risk depends on both the data aspect ratio ϕ as well as
the subsample aspect ratio ϕs. In contrast, the asymptotic risk for the splagged predictor
without replacement in Theorem 8 does not depend on the data aspect ratio ϕ. This can
be seen from the expressions for Bspl

λ,M (ϕ, ϕs) and V spl
λ,M (ϕ, ϕs). However, it is interesting to

note that the asymptotic risk for f̃WRM,Iπ
k

depends on both ϕ and ϕs because lim supk,n→∞ |Iπk |
is finite, which makes the limiting risk of f̃WRM,Iπ

k
and f̃WORM,Iπ

k
different. Because KN,M defined

in (8) is bounded above by 1 and lim supk,n→∞K|Iπ
k |,M < 1 for any M > 1, f̃WORM,Iπ

k
is a
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Figure 6: Asymptotic prediction risk curves in (28) for splagged ridgeless predictors (λ = 0), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying split sizes k = ⌊p/ϕs⌋ and numbers
of bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The null risk is marked as a dotted line. For each value of M , the points
denote finite-sample risks averaged over 100 dataset repetitions, with p = 500 and n = ⌊pϕ⌋.

strictly better predictor then f̃WRM,Iπ
k

in terms of the squared risk. In other words, f̃WRM,Iπ
k

is
inadmissible, even asymptotically.

Thirdly, Theorem 6 takes into account the simple average of base predictors fitted on non-
overlapped samples. This is also closely related to distributed learning (Mücke et al., 2022)
that leverages multiple computing devices to reduce overall training time. While Mücke
et al. (2022) provide finite-sample upper bounds for the prediction risk of distributed ridgeless
predictor, Theorem 6 gives exact risk characterization. The distributed ridge predictors are
also studied in Dobriban and Sheng (2020). However, their goal is to obtain the optimal
weight and the optimal regularization parameter and they only consider estimation risk in
the underparameterized regime.

Illustration of Theorem 8. In Figures 6 and 7, we provide numerical illustrations for The-
orem 8 (bagged ridgeless and ridge predictors with λ = 0.1) under the model (M-AR1-LI),
with the number of bags M varying from 1 to ∞. The limiting data aspect ratio is fixed at
0.1 when n > p and at 1.1 when n < p. We find that the empirical risks align remarkably
well with the deterministic approximations, as stated in Theorem 8, for both bagged ridge
and ridgeless predictors. Mirroring the findings in Figure 3, for any fixed M , the optimal
ϕs may be strictly larger than ϕ, an implication of the non-monotonic risk behavior.

Proof outline of Theorem 8. The proof of Theorem 8 follows a similar reduction strategy
as in the proof of Theorem 6, where we first analyze the subsample conditional risks for
M = 1 and M = 2, and appeal to Theorem 5 to obtain the result for data conditional and
subsample conditional risks for any M . Below we briefly outline the main steps:

1. The deterministic risk approximation to the subsample conditional risk for M = 1
splagging is exactly the same as that of subagging.

2. Under the linear model, the subsample conditional risk for M = 2 decomposes in a
similar manner as (25), except in this case, the datasets DI1 and DI2 are independent of
each other (conditional on I1, I2), which makes the analysis in this case slightly easier
compared to the one for subagging. By conditioning on each of the datasets successively
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Figure 7: Asymptotic prediction risk curves in (28) for splagged ridge predictors (λ = 0.1), under
model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1, for varying split sizes k = ⌊p/ϕs⌋ and numbers
of bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The null risk is marked as a dotted line. For each value of M , the points
denote finite-sample risks averaged over 100 dataset repetitions, with p = 500 and n = ⌊pϕ⌋.

and utilizing the closed-form expression of the ridge estimator, we obtain the desired
deterministic approximations.

3. Finally, akin to what we did for Theorem 6, we prove results for the ridgeless predictor
in the form of the limiting risk approximations to the risk of the ridge predictor in the
limit as λ→ 0+, based on uniformity arguments.

3.3.2 Monotonicity of bias and variance in number of bags

Just as with subagging, the asymptotic bias and variance components of the conditional risk
for splagging are also monotonically decreasing in the number of bags M . This is formalized
below.

Proposition 9 (Improvement due to splagging). Fix any pair (ϕ, ϕs) such that ϕs ≥ ϕ.
Then for all M ∈ {1, . . . , ⌊ϕs/ϕ⌋},

Bspl
λ,⌊ϕs/ϕ⌋(ϕ, ϕs) ≤ Bspl

λ,M+1(ϕ, ϕs) ≤ Bspl
λ,M (ϕ, ϕs), (29)

V spl
λ,⌊ϕs/ϕ⌋(ϕ, ϕs) ≤ V spl

λ,M+1(ϕ, ϕs) ≤ V spl
λ,M (ϕ, ϕs). (30)

The inequalities in (29) are strict whenever ρ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ̸= 1 when λ = 0),
while the inequalities in (30) are strict when σ2 > 0 and ϕs ∈ (ϕ,∞) (and ϕs ̸= 1 when
λ = 0). Thus, the asymptotic risk is monotonically decreasing in M , i.e., Rspl

λ,M+1(ϕ, ϕs) ≤
Rspl
λ,M (ϕ, ϕs).

As a concluding remark, because the deterministic risk approximation for splagging is
defined as a constant in M for M ≥ ⌊ϕs/ϕ⌋, Proposition 9 implies that the for every fixed
pair (ϕ, ϕs), the optimal splagged predictor utilizes M = ⌊ϕs/ϕ⌋ bags.

4. Risk profile monotonization

The results presented in the previous sections provide risk characterizations for different
variants of bagged predictors, per (2), for all possible subsample aspect ratios ϕs. In practice,
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the choice of ϕs is crucial for achieving optimal prediction performance. Following the cross-
validation strategy discussed in Patil et al. (2022), one can apply cross-validation to choose
the optimal ϕs in order to obtain the best possible prediction performance by subagging
or splagging the base predictor across different subsample sizes. In Section 4.1, we first
describe the risk monotonization results for general predictors, going back to the general
setting in Section 2. In Section 4.2, we then specialize the general risk monotonization
results to the bagged ridge and ridgeless predictors. In Section 4.3, we provide a comparison
between the best subagged and the best splagged predictors, considering all possible choices
of both ϕs and M , when the base predictor is either ridge or ridgeless.

4.1 Bagged general predictors

Several commonly used prediction procedures, such as min-ℓ2-norm least squares and ridge
regression, exhibit a non-monotonic risk behavior as a function of the data aspect ratio
ϕ. This is referred to in the literature as double/multiple descents (Belkin et al., 2019;
Hastie et al., 2022). The deterministic risk approximation, as a function of the aspect
ratio ϕ, first increases, reaches a peak, and then decreases. This can be understood in the
context of fixed dimension and changing sample size n as follows: the risk first decreases
as the sample size increases up to a certain threshold, after which it starts increasing with
a further increase in sample size. This is a counter-intuitive behavior from a conventional
statistical viewpoint, as this indicates that more data may hurt performance. However, from
a theoretical perspective, additional information should only lead to improved performance.
The underlying issue here lies not in the theory but in the sub-optimality of the prediction
procedures when applied as-is on the full data.

There are at least two ways in which one can think of improving a given predictor:

1. Obtain a new predictor whose risk is the greatest monotone minorant of the risk of
the given prediction procedure. This can be achieved by computing the predictor on
a smaller sample size if necessary. Such a procedure is referred to as the zero-step
procedure (with M = 1) in Patil et al. (2022); see Algorithm 1 for details. The zero-
step procedure does the bare minimum to achieve monotone risk.

2. The zero-step procedure (with M = 1) is not a genuine improvement of the base pre-
dictor, as it simply computes the same predictor on a smaller dataset. Building upon
the positive effects of subagging or splagging mentioned in previous sections, we can
further improve on the zero-step procedure by aggregating over multiple subsets of the
data. This was already hinted at and illustrated in Patil et al. (2022). In this section,
we delve deeper into this point.

We note from Theorem 6 and Figures 3 and 4 that for each ϕ, there are essentially
infinitely many risk values possible (one for each pair of subsample aspect ratio ϕs and the
number of bags M). The zero-step procedure (with M = 1) improves on the base predictor
by optimizing over ϕs, while keeping M = 1 fixed. Taking a step further, based on our
aforementioned results, we can consider optimizing over ϕs and M ≥ 1 (or just over ϕs,
while fixing M ≥ 1). In the following, we present an actionable algorithm to achieve the
optimum over ϕs for any fixed M ≥ 1. (It is worth noting that we have already established
monotonicity over M ≥ 1, and one can always choose M to be as large as feasible in
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Algorithm 1 Cross-validation for subagging or splagging
Input: A dataset Dn = {(xi, yi) ∈ Rp × R : 1 ≤ i ≤ n}, a positive integer nte < n

(number of test samples), a base prediction procedure f̂ , a real number ν ∈ (0, 1) (bag
size unit parameter), a natural number M (number of bags), a centering procedure
CEN ∈ {AVG, MOM}, a real number η when CEN = MOM.

1: Data splitting: Randomly split Dn into training set Dtr and test set Dte as:

Dtr = {(xi, yi) : i ∈ Str}, and Dte = {(xj , yj) : j ∈ Ste},

where Ste ⊂ [n] with |Ste| = nte, and Str = [n] \ Ste.
2: Bag sample sizes grid construction: Let k0 = ⌊nν⌋ and Kn =

{k0, 2k0, . . . , ⌊n/k0⌋k0}.
3: Subagging or splagging predictors: For each k ∈ Kn, define f̃M,k trained on Dtr as:

• For subagging, let f̃M,k(·) = f̃M (·; {DIk,ℓ}Mℓ=1) denote the subagged predictor as in
(2) with M bags. Here, Ik,1, . . . , Ik,M represent a simple random sample with or
without replacement from the set of all subsets of Str of size k.

• For splagging, f̃M,k(·) is the same as above but now Ik,1, . . . , Ik,M represent a simple
random sample without replacement from a random split of Str into ⌊n/k⌋ parts with
each part containing k elements. As explained in Section 3.1, for M > ⌊n/k⌋, no
such splitting exists. In this case, we return f̃⌊n/k⌋,k. Hence in general, we have
f̃M,k = f̃min{M,⌊n/k⌋},k.

4: Risk estimation: For each k ∈ Kn, estimate the conditional prediction risk on Dte of
f̃M,k as:

R̂(f̃M,k) :=


|Ste|−1

∑
j∈Ste

(yj − f̃M,k(xj))
2, if CEN=AVG

median(R̂1(f̃M,k), . . . , R̂B(f̃M,k)), if CEN=MOM,

(31)

(32)

where B = ⌈8 log(1/η)⌉, and R̂j(f̃M,k), 1 ≤ j ≤ B is defined similarly to (31) for B
random splits of the test dataset Dte.

5: Cross-validation: Set k̂ ∈ Kn to be the bagging sample size that minimizes the esti-
mated prediction risk using

k̂ ∈ argmin
k∈Kn

R̂(f̃M,k). (33)

Output: Return the predictor f̂ cvM (·;Dn) = f̃
M,k̂

(·) = f̃M (·; {DI
k̂,ℓ
}Mℓ=1).

practice.) We then present Theorem 10, in which we prove that the general cross-validation
attains the optimum over ϕs (asymptotically). Theorem 10 provides theoretical guarantees
for the cross-validation procedure for general base predictors, extending the results of Patil
et al. (2022) to subagging and splagging.
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Theorem 10 (Risk monotonization by cross-validation). Suppose that as n, p→ ∞, p/n→
ϕ ∈ (0,∞). Let Kn be the set of subsample sizes defined in Algorithm 1 and Ik be the set
of subsets of Str of size k ∈ Kn according to the sampling scheme. Suppose that for any
k ∈ Kn, as n, k, p → ∞, and p/k → ϕs ∈ [ϕ,∞), there exists a deterministic function
R : (0,∞]2 → [0,∞] such that:

(i) For any I ∈ Ik and {Ik,1, Ik,2} a simple random sample from Ik,

R(f̃1;Dn, {I})
a.s.−−→ R(ϕs, ϕs), and R(f̃2;Dn, {Ik,1, Ik,2})

a.s.−−→ R(ϕ, ϕs).

(ii) For any ϕ ∈ (0,∞), ϕs 7→ R(ϕ, ϕs) is proper and lower semi-continuous over [ϕ,∞],
and is continuous on the set argmin{ψ:ψ≥ϕ} R(ϕ, ψ).

Let f̂ cvM be the cross-validated predictor returned by Algorithm 1 with base predictor f̂ . If
the estimated risk R̂(f̃M,k) defined in (31) or (32) is uniformly (in k ∈ Kn) close to the
subsample conditional risk R(f̃M,k;Dn, {Ik,ℓ}Mℓ=1) with probability converging to 1, then the
following conclusions hold. For subagging with or without replacement, or splagging without
replacement, for all M ∈ N, we have(

R(f̂ cvM ;Dn, {Ik̂,ℓ}
M
ℓ=1)− min

ϕs≥ϕ
RM (ϕ, ϕs)

)
+

p−→ 0,

where the function RM (ϕ, ϕs) is defined as

RM (ϕ, ϕs) := (2R(ϕ, ϕs)− R(ϕs, ϕs)) +
2

M
(R(ϕs, ϕs)− R(ϕ, ϕs)).

Furthermore, if for any ϕs ∈ (0,∞), ϕ 7→ R(ϕ, ϕs) is non-decreasing over (0, ϕs], then the
function ϕ 7→ minϕs≥ϕ RM (ϕ, ϕs) is monotonically increasing for every M .

Some remarks regarding Theorem 10 are worth noting. Firstly, although Theorem 10
presents a unified framework for subagging and splagging, the actual limiting risks can be
(and in most cases are) different. This discrepancy arises due to the distinct expressions for
assumed asymptotic risks in assumption (i) of Theorem 10.

Secondly, Theorem 10 does not exactly characterize the risk of cross-validated bagged
predictor; it only states that the subsample conditional risk of f̃ cvM is asymptotically no larger
than minϕs RM (ϕ, ϕs). However, this is an important improvement over the results of Patil
et al. (2022), who proved that the subsample conditional risk of f̃ cvM is asymptotically no
larger than minϕs R1(ϕ, ϕs). To precisely characterize the risk of f̃ cvM , one can make stronger
assumptions that as n, p→ ∞ and p/n→ ϕ,

sup
k≤n

|R(f̃1;Dn, {I1
SRSWR∼ Ik})− R(p/k, p/k)| p−→ 0, sup

k≤n
|R(f̃2;Dn, {I1, I2

SRSWR∼ Ik})− R(ϕ, p/k)| p−→ 0,

which can be used to conclude

R(f̂ cvM ;Dn, {Ik̂,ℓ}
M
ℓ=1)

p−→ min
ϕs≥ϕ

RM (ϕ, ϕs).

The result for bagging without replacement can be extended analogously.
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Thirdly, the assumption of uniform (in k ∈ Kn) closeness of the estimated risk R̂(f̃M,k)

to the subsample conditional risk R(f̃M,k;Dn, {Ik,ℓ}Mℓ=1) is intended to represent either

max
k∈Kn

|R̂(f̃M,k)−R(f̃M,k;Dn, {Ik,ℓ}Mℓ=1)| = op(1), or max
k∈Kn

∣∣∣∣∣ R̂(f̃M,k)

R(f̃M,k;Dn, {Ik,ℓ}Mℓ=1)
− 1

∣∣∣∣∣ = op(1).

In Section 2 of Patil et al. (2022), the authors provide several assumptions on the data dis-
tribution and the predictors that validate this uniform closeness assumption. In Section 4.2,
we will apply Theorem 10 for bagged linear predictors, which are themselves linear pre-
dictors. In this specific case, Theorem 2.22 in the aforementioned work demonstrates that
uniform closeness holds true under assumptions on the data distribution alone (irrespective
of the specific linear predictor used, even if they have diverging risks); see Remarks 2.19 and
2.20. We do not delve further into this uniform closeness condition here, but we note that
Assumptions 1-5 imply the assumptions of Theorem 2.22 with CEN = MOM (the median-of-
means estimator). Additionally, sub-Gaussian features satisfy the assumptions of Theorem
2.22 with CEN = AVG.

4.2 Bagged ridge and ridgeless predictors

Theorem 10 provides a general result that describes the risk behavior of cross-validated
bagged predictors. Building on our results in previous sections that verify condition (i)
of Theorem 10 for both ridge and ridgeless predictors, we now specialize Theorem 10 to
these specific predictors under Assumptions 1-5.

Theorem 11 (Risk monotonicity in aspect ratio). Suppose that the cross-validated predictor
f̂ cvM is returned by Algorithm 1 with base predictor f̂λ and M bags, and the conditions in
Theorem 6 (or Theorem 8) hold4 with Rλ,M (ϕ, ϕs) being the limiting risk Rsub

λ,M (ϕ, ϕs) (or
Rspl
λ,M (ϕ, ϕs)). Then for all M ∈ N, it holds that(

R(f̂ cvM ;Dn, {Ik̂,ℓ}
M
ℓ=1)− min

ϕs≥ϕ
Rλ,M (ϕ, ϕs)

)
+

p−→ 0. (34)

Furthermore, ϕ 7→ minϕs≥ϕ Rλ,M (ϕ, ϕs) is a monotonically increasing function of ϕ for every
M .

The monotonicity of ϕ 7→ minϕs≥ϕ Rλ,M certified by Theorem 11 implies that for every
M , for the optimal bagged predictor, more data (i.e., increasing n) cannot hurt. This is
illustrated in Figure 8. An observant reader may notice slight non-monotonicity of the
empirical risk profile for M = 1. This happens because of the small sample size, which
restricts the optimal cross-validated predictor from being the null predictor. To prevent this
scenario, a default “null” predictor can always be included in general in the set of predictors
tuned with cross-validation in Algorithm 1.

For splagging without replacement, the numerical illustrations are displayed in Fig-
ure 8(b). As expected, as the limiting aspect ratio ϕ increases, the empirical excess risks

4The statement as stated holds for CEN = MOM in Algorithm 1. For CEN = AVG, we need to assume
sub-Gaussian features as discussed after Theorem 10.
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Figure 8: Asymptotic excess risk curves for cross-validated bagged ridgeless predictors (λ = 0) for
(a) subagging and (b) splagging, under model (M-AR1-LI) when σ2 = 1 for varying SNR, subsample
sizes k = ⌊p/ϕs⌋ and numbers of bags M . The left and the right panels correspond to the cases when
SNR = 0.33 (ρar1 = 0.25) and 0.6 (ρar1 = 0.5), respectively. The excess null risks and the risks for
the ridgeless predictors without bagging are marked as dotted lines and dashed lines, respectively.
For each value of M , the points denote finite-sample risks averaged over 100 dataset repetitions, and
the shaded regions denote the values within one standard deviation, with n = 1000, nte = 63, and
p = ⌊nϕ⌋.

largely exhibit a monotonic increase and match with theoretical curves. Another observa-
tion from Figure 8 (splagging without replacement) is that the asymptotic risk may not be
monotonically decreasing in M when ϕ is small. This is because the subsample aspect ratio
ϕs is restricted by the number of bags M in that it cannot be below Mϕ, and the differences
in the range of ϕs when using different numbers of bags result in the non-monotonicity
when ϕ is small. While in the overparameterized region, when ϕ is sufficiently large, the
cross-validated risk for bagging without replacement is guaranteed to be monotonically de-
creasing in M . Furthermore, the choice of M = ϕs/ϕ guarantees that the risk is always
optimal compared to any other value of M .

4.3 Optimal subagging versus optimal splagging

The previously discussed cross-validated predictors yield asymptotically optimal risks over
subsample aspect ratio ϕs for each M . Going a step further, we can obtain the optimal
subagging or splagging by jointly optimizing over both ϕs and M . Leveraging the explicit
formulas of the limiting risks for each pair of aspect ratios (ϕ, ϕs) and each M , we are able
to compare the optimal bagged risks in the two cases.

Proposition 12 (Comparison of the optimal risk of subagging and splagging). Under As-
sumptions 3-5, let Rsub

λ,M (ϕ, ϕs) and Rspl
λ,M (ϕ, ϕs) be defined as in Theorem 6 and Theorem 8,
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respectively. Then for any λ ∈ [0,∞) and ϕ ∈ (0,∞), the following holds:

inf
M∈N,ϕs∈[ϕ,∞]

Rsub
λ,M (ϕ, ϕs) ≤ inf

M∈N,ϕs∈[ϕ,∞]
Rspl
λ,M (ϕ, ϕs). (35)

In words, optimal subagging is at least as good as optimal splagging (without replacement)
in terms of squared loss for ridge predictors.

For any dataset with fixed aspect ratio ϕ, Proposition 12 suggests that subagging al-
ways achieves the optimal risk for bagged predictor across all possible choices of M and
subsample aspect ratio ϕs. The optimal subagging and optimal splagging risks, as stated
in Proposition 12, can be written as

Rsub
opt(ϕ) = Rsub

λ,∞(ϕ, ϕsubs (ϕ)), and Rspl
opt(ϕ) = Rspl

λ,ϕ
spl
s (ϕ)/ϕ

(ϕ, ϕspls (ϕ)). (36)

Here the functions ϕ 7→ ϕsubs (ϕ) and ϕ 7→ ϕ
spl
s (ϕ) are defined via

ϕsubs (ϕ) := argmin
ϕs≥ϕ

Rsub
λ,∞(ϕ, ϕs), and ϕspls (ϕ) := argmin

ϕs≥ϕ
Rspl
λ,ϕs/ϕ

(ϕ, ϕs). (37)

The fact that the optimal risks shown in Proposition 12 are the same as shown in (36)
follows from the fact that the risks are monotonically decreasing in M for subagging and
that the risk at M = ϕs/ϕ is the best for splagging without replacement for any pair
(ϕ, ϕs). The quantities ϕsubs (·) and ϕ

spl
s (·) represent the best possible subsample aspect

ratios for subagging and splagging (without replacement) for every data aspect ratio ϕ
given. (Minimizers of lower semi-continuous functions over compact domains exist, which is
true for the functions in (37) from Theorem 11.)

The theoretical optimal asymptotic risks (36) for bagged ridgeless predictors are illus-
trated in Figure 9. The optimal risk minϕs≥ϕ Rsub

λ,1 (ϕ, ϕs) = minϕs≥ϕ Rspl
λ,1 (ϕ, ϕs) of the

bagged ridgeless predictor with M = 1 is also showcased as the dashed line, which matches
the monotone risk of the zero-step ridgeless predictor from Patil et al. (2022) with M = 1.
As demonstrated in Figure 1 and Figure 9(a), the optimal risk for the subagged ridgeless
predictor is always smaller than the splagged ridgeless predictor without replacement. Both
strategies demonstrate an improvement over the risk of the ridgeless predictor that uses the
optimal subsample aspect ratio ϕs with only one bag (M = 1).

Oracle properties of optimal subsample aspect ratios. From the preceding section,
we see that optimal subagged ridge or ridgeless regression always outperforms the splagged
one in terms of limiting risk. Owing to the monotonicity in the number of bags M , as
established in Proposition 7, the optimal risk for subagging is always achieved at M = ∞
for any given subsample aspect ratio ϕs. This leads us to the question: what is the optimal
subsample aspect ratio ϕs? We offer a partial answer to this question in Proposition 13,
specialized for ridgeless regression.

Proposition 13 (Optimal risk for bagged ridgeless predictor). Suppose the conditions in
Theorems 6 and 8 hold, and σ2, ρ2 ≥ 0 are the noise variance and signal strength from
Assumptions 2 and 3. Let SNR = ρ2/σ2. For any ϕ ∈ (0,∞), the properties of the opti-
mal asymptotic risks Rsub

0,∞(ϕ, ϕsubs (ϕ)) and Rspl
0,ϕs/ϕ

(ϕ, ϕ
spl
s (ϕ)) in terms of SNR and ϕ are

characterized as follows:
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Figure 9: Comparison between optimal subagging and optimal splagging of ridgeless predictors
(λ = 0) for varying limiting aspect ratios ϕ of p/n under model (M-AR1-LI) when σ2 = 1. The left
and right panels correspond to SNR = 0.33 (ρar1 = 0.25) and SNR = 0.6 (ρar1 = 0.5), respectively.
The point of phase transition for splagging is marked as the red dash-dot line in every subplot. (a)
Optimal asymptotic excess risk curves (35). The excess null risks are marked as gray dotted lines and
the blue dashed lines represent the optimal risks of bagged ridgeless predictor with M = 1, which
are the same as the risks from the zero-step procedure of Patil et al. (2022). (b) The corresponding
optimal subsample aspect ratio ϕs as a function of data aspect ratio ϕ. For subagging, the optimal
subsample aspect ratio is always larger than one (above the gray dotted line). The line ϕs = ϕ is
shown in green color.

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): For all ϕ ≥ 0, the global minimum σ2 of both Rsub
0,∞(ϕ, ϕsubs (ϕ))

and Rspl
0,ϕs/ϕ

(ϕ, ϕ
spl
s (ϕ)) are obtained with ϕsubs (ϕ) = ϕ

spl
s (ϕ) = ∞.

(2) SNR > 0: For all ϕ ≥ 0, the global minimum of ϕs 7→ Rsub
0,∞(ϕ, ϕs) is obtained at

ϕsubs (ϕ) ∈ (1,∞). For ϕ ≥ 1, the global minimum of ϕs 7→ Rspl
0,ϕs/ϕ

(ϕ, ϕs) is obtained at

ϕ
spl
s (ϕ) ∈ (1,∞); for ϕ ∈ (0, 1), the global minimum of ϕs 7→ Rspl

0,ϕs/ϕ
(ϕ, ϕs) is obtained

at ϕspls (ϕ) ∈ {ϕ} ∪ (1,∞).

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], the global minimum Rsub
0,∞(ϕ, ϕsubs (ϕ)) =

Rspl
0,ϕs/ϕ

(ϕ, ϕ
spl
s (ϕ)) = 0 is obtained with any ϕsubs (ϕ), ϕ

spl
s (ϕ) ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then

the global minimums Rsub
0,∞(ϕ, ϕsubs (ϕ)) and Rspl

0,ϕs/ϕ
(ϕ, ϕ

spl
s (ϕ)) are obtained at ϕsubs (ϕ), ϕ

spl
s (ϕ) ∈

[ϕ,∞).

Proposition 13 reveals that the optimal subsample aspect ratio ϕsubs (ϕ) for subagging
always lies in the range [1,∞], i.e., within the overparameterized regime. In other words,
subagging interpolators with larger aspect ratios (larger than the full data aspect ratio ϕ) can
help to reduce the prediction risk, even when ϕ < 1. For splagging, however, the minimum
risk can be obtained either using the full data or splagging interpolators, depending on the
data aspect ratio ϕ and the signal-to-noise ratio.

Interestingly, the optimal subsampling aspect ratio for splagging is either ϕ or falls
within the overparameterized regime (1,∞). This implies that either splagging does not
help, or when it helps, one has to splag interpolators. Whenever SNR is positive, the optimal
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subsample aspect ratio is finite for any ϕ. We can thus visually represent ϕsubs (ϕ) and ϕspls (ϕ)
in Figure 9(b). As Figure 9 illustrates, there is a point of non-differentiability of ϕspls (ϕ) for
optimal splagging without replacement. Prior to this point of non-differentiability, ϕspls (ϕ) =
ϕ, which is the same as the optimal bagged ridgeless withM = 1. This also coincides with the
ridgeless predictor trained on the full data set. Beyond the point of non-differentiability, the
optimal risk for splagging without replacement is found in the overparameterized regime,
i.e., ϕspls (ϕ) > 1. Contrasting with splagging, ϕsubs (ϕ) ≥ 1 for all ϕ > 0, implying that
subagging interpolators (in the overparameterized regime) is always advantageous.

These findings suggest that when the number of bags is sufficiently large, splagging
without replacement proves beneficial only when the limiting aspect ratio ϕ of the full
dataset surpasses a certain threshold. However, subagging is always beneficial in reducing
the prediction risk, even in the underparameterized regime.

5. Illustrations and insights

The results discussed so far are derived under Assumptions 1-5 that, in particular, allow for
features with arbitrary covariance structure Σ. We will shift our attention to a simpler case
of isotropic features (i.e., Σ = Ip in Assumption 1). In this case, the spectral distribution
simplifies, enabling us to compute the fixed point solutions analytically. Our discussion will
primarily revolve around the case of ridgeless predictors for the sake of illustration. While it
is possible to obtain similar results for ridge predictors, the resulting expressions would be
more involved. In Section G.3, we provide formulas for the fixed-point solutions for λ > 0.
From these, one can derive the risk as well as the individual bias and variance numerically
for ridge predictors (with arbitrary λ > 0). Generally speaking, these quantities can always
be computed numerically for nonisotropic models.

In the case of isotropic features, the bias and variance functions presented in Theorems 6
and 8 take on relatively simple forms, as demonstrated in Corollary 14. Furthermore, the
asymptotic bias and variance can be computed for all M ∈ N based on (24).

Corollary 14 (Bias-variance components for isotropic design). Assume the conditions in
Theorem 6 or Theorem 8 hold with Σ = Ip. Then we have

B0(ϕ, ϕs) = ρ2
(ϕs − 1)2

ϕ2s − ϕ
1(1,∞](ϕs),

C(ϕs) = ρ2
(ϕs − 1)2

ϕ2s
1(1,∞](ϕs),

V0(ϕ, ϕs) =


σ2

ϕ

1− ϕ
, ϕs ∈ (0, 1)

∞, ϕs = 1

σ2
ϕ

ϕ2s − ϕ
, ϕs ∈ (1,∞].

Subagging with replacement. Based on Corollary 14, we are equipped to evaluate the
closed-form asymptotic risk under model (M-ISO-LI):

yi = x⊤
i β0 + ϵi, xi ∼ N (0, Ip), β0 ∼ N (0, p−1ρ2Ip), ϵi ∼ N (0, σ2). (M-ISO-LI)

Additional experimental results under model (M-ISO-LI) can be found in Section J. It is
worth noting that while the Gaussianity of the noise ϵi in model (M-ISO-LI) simplifies
numerical evaluation, it is not a requirement for Corollary 14. It suffices to have the first
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and second moments match as above. For M ∈ N, the bias term is always increasing,
while the variance term will blow up when the subsample aspect ratio ϕs approaches one.
However, the variance forM = ∞ is different; it is decreasing in ϕs and continuous at ϕs = 1.
Consequently, one might be interested in the optimal subsample aspect ratio ϕsubs (ϕ), that
best trades off the bias and variance, and minimizes the risk for a given value of ϕ and
M = ∞.

Proposition 15 (Optimal risk for subagged ridgeless predictors with isotropic features).
Suppose the conditions in Corollary 14 hold, and σ2, ρ2 ≥ 0 are the noise variance and signal
strength from Assumptions 2 and 3. Let SNR = ρ2/σ2. For any ϕ ∈ (0,∞), the properties of
the asymptotic risk Rsub

0,∞(ϕ, ϕs) as a function of ϕs are characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): The global minimum Rsub
0,∞(ϕ, ϕsubs (ϕ)) = σ2 is obtained at

ϕsubs (ϕ) = ∞.

(2) SNR > 0: The global minimum

Rsub
0,∞(ϕ, ϕsubs (ϕ)) =

σ2

2

1 + ϕ− 1

ϕ
SNR+

√(
1− ϕ− 1

ϕ
SNR

)2

+ 4SNR

 (38)

is obtained at ϕsubs (ϕ) = A+
√
A2 − ϕ ∈ (1,∞) where A = (ϕ+ 1 + ϕ/SNR)/2.

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], then the global minimum is Rsub
0,∞(ϕ, ϕsubs (ϕ)) =

0 is attained at any ϕs ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimum Rsub
0,∞(ϕ, ϕsubs (ϕ)) =

σ2 + ρ2(ϕ− 1)/ϕ is attained at ϕsubs (ϕ) = ϕ.

As a specific application of Proposition 13, Proposition 15 provides the analytic expres-
sion of the optimal risk attainable through optimization over all choices of the number of
bags M and the subsample aspect ratio ϕs. Additionally, it elucidates the relationship be-
tween the optimal risk and the SNR, which is further visualized in Figure 10. Particularly,
the optimal subagged risk is monotonically decreasing in SNR when σ2 is fixed, which is an
intuitive behavior as one would expect a larger SNR results in a smaller prediction risk. In
contrast, such a property is not satisfied by the ridge or ridgeless predictor computed on the
full data (Hastie et al., 2022, Figure 2). It can be shown that the gap between the optimal
risk, given in Proposition 15, and the underparameterized excess risk σ2ϕ/(1−ϕ), obtained
with the full dataset, gets larger when SNR gets smaller. Most importantly, it benefits more
when the SNR gets smaller, with a higher overparameterized aspect ratio ϕsubs (ϕ).

Theorem 16 (Optimal subagged ridgeless risk versus optimal ridge risk). Under the con-
ditions in Corollary 14, we have that for all ϕ ∈ (0,∞),

min
ϕs≥ϕ

Rsub
0,∞(ϕ, ϕs) = min

λ≥0
Rsub
λ,1 (ϕ, ϕ).

In words, the optimal limiting risk of the subagged ridgeless predictors equals the optimal
ridge predictors trained on the full data.

Theorem 16 reveals a rather surprising connection between subagging and ridge regres-
sion. This result implies that subagging a ridge predictor with λ = 0 and optimizing over

31



Patil, Du, and Kuchibhotla

0.1

0.5

1.0

Ex
ce

ss
 ri

sk

Subagging Splagging

0.05 0.1 0.5 1.0 5.0
Data aspect ratio 

0.1

1

10

100

Op
tim

al
 su

bs
am

pl
e

as
pe

ct
 ra

tio
 

s

0.05 0.1 0.5 1.0 5.0
Data aspect ratio 

(a)

(b)

SNR 0.1 0.2 0.3 0.4 0.5

Figure 10: Properties of optimal bagged ridgeless predictors (λ = 0) under model (M-ISO-LI) when
ρ2 = 1, for varying signal noise ratio (SNR = ρ2/σ2). (a) Optimal asymptotic excess risk curves of
subagging (left panel) and splagging (right panel) over the number of bags M and subsample aspect
ratio ϕs. The optimal numbers of bags are M = ∞ and M = ϕs/ϕ for subagging and splagging,
respectively. The gray dotted lines represent the excess null risk. (b) The corresponding optimal
subsample aspect ratio ϕs as a function of data aspect ratio ϕ. For subagging, the optimal subsample
aspect ratio is always larger than one (above the red dashed line).

the subsample size is “same” as using the ridge predictor with λ ≥ 0 and optimizing over λ.
Consequently, this suggests that subsampling and optimizing over subsample size is a form
of regularization. A similar connection between subsampling features and ridge regression
was made by LeJeune et al. (2020, Theorem 3.6).

Compared to Theorem 3.6 of LeJeune et al. (2020), our Theorem 16 provides the following
three key improvements: (1) Subsampling scope. The former theorem focuses solely on
the subsampling of features, whereas our theorem considers the sampling of observations.
Moreover, in the approach by LeJeune et al. (2020), sampling is restricted to ensure that the
final optimal ensemble comprises only least squares estimators. Specifically, they maintain
the number of observations in the subsample greater than the number of features, ensuring
the existence of a least squares solution for the subsampled data. In contrast, our method
permits arbitrary subsample sizes, which means the optimal ensemble can encompass both
subsampled least squares and ridgeless interpolators. This distinction is crucial, as there can
be scenarios where the optimal subsample might contain more features than observations, a
phenomenon highlighted in Proposition 15. (2) Signal constraints. The previous theorem
limits itself to isotropic random signals β0. We broaden this scope to incorporate any
arbitrary deterministic signals with bounded norms. (3) Distributional assumptions.
LeJeune et al. (2020) assumes strong distributional assumptions on the features, noise, and
signal, particularly requiring all of them to follow a Gaussian distribution. In comparison,
our results do not require such strong distributional assumptions on either the features or
the noise and accommodate any deterministic signal with bounded norms.
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While Theorem 16 suggests that the two optimal limiting risks coincide under the
isotropic model, it is important to note the difference in their risk monotonicity properties
in the data aspect ratio ϕ. The optimal risk of the subagged ridgeless predictor is expected
to remain monotonically decreasing in ϕ, as shown in Theorem 11. In contrast, it is yet
to be ascertained whether the optimal ridge predictor has the same property under general
models. In the isotropic case, the fixed point parameter can be explicitly solved in terms of
the parameters (λ, ϕ, ϕs). The explicit formula enables direct analysis of the monotonicity
properties of the asymptotic risk and subsequently facilitates the derivation of the optimal
risks. However, in the non-isotropic case, such an explicit formula is not available. This lack
of an explicit formula calls for a different strategy to extend Theorem 16 to non-isotropic
features.5

Splagging without replacement. Unlike subagging, it is possible, though very cumber-
some to obtain the optimal sub-sampling ratio ϕ

spl
s (ϕ) in this case. It involves solving a

cubic equation (for a fixed M) or a quartic equation (for the optimal M). Consequently,
we resort to numerical computation for ϕ⋆s and provide a qualitative behavior for ϕs next.
We observe that as SNR increases, the point of phase transition occurs at a larger value of
ϕ. This indicates that when there are much more features than samples in the full dataset
and the SNR is relatively large, then splagging does not help to reduce the prediction risk.
However, when the SNR is small, splagging interpolators is beneficial, even when n is much
larger than p in the full data set.

Subagging versus splagging. The comparison between subagging and splagging methods
shows interesting findings in terms of prediction risks. Next we briefly summarize these find-
ings concerning the similarities and differences between the two types of bagging strategies
for ridgeless predictors. From Figure 10, we observe that for any data aspect ratio ϕ and
any SNR, subagging can help to reduce the risk with a suitable subsample aspect ratio in
the overparameterized regime, if we have enough bags. In contrast, splagging may not help
when ϕ < 1 and SNR is large, even if we optimize over all possible numbers of bags and
subsample aspect ratios jointly. For the cases when subagging or splagging is beneficial,
the maximal gain compared to the predictor computed on the full data increases as the
SNR decreases. When the full data aspect ratio ϕ is near 1, both subagging and splagging
substantially reduce the prediction risk; see Figures 3, 4, 6 and 7. Most surprisingly, even
if the original dataset is heavily underparameterized, overparameterized subagging always
helps, as shown in Figure 9(b). For example, recall in Figure 3 when n = 5000 and p = 500
(which is a favorable case in classical statistics), subagged ridgeless predictors trained on
overparameterized subsampled datasets (e.g., with n = 50 and p = 500) with M = 50 bags
have smaller prediction risk than least squares fitted on the original data.

6. Discussion

In this paper, we provide a generic reduction strategy for characterizing the prediction risk
of general bagged predictors (for two bagging strategies of subagging and splagging). As

5Subsequent to finishing work, Theorem 16 has now been extended for non-isotropic cases in Du et al.
(2023) by establishing connections between the fixed-point equations involved and utilizing their monotonic-
ity properties.
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a function of the number of bags M , we show that the asymptotic risk of the M -bagged
predictor under squared error loss can be expressed as M−1R1 + (1−M−1)R∞, where R1

and R∞ represent the asymptotic squared risks of the M -bagged predictor with M = 1 and
M = ∞, respectively. More generally, for a smooth loss function, we show that the risk of
the M -bagged predictor is sandwiched between similar convex combinations. In addition,
we prescribe a generic cross-validation method to tune the subsample size that aims at
obtaining the best subagged predictor, which also serves to monotonize the risk profile of
any given prediction procedure.

Following this general strategy, along with certain novel derivations from random matrix
theory (to analyze conditional resolvents), we obtain explicit risk characterization for bagged
ridge and ridgeless predictors. The risk expressions reveal bias and variance monotonicity
in the number of bags. Comparing different variants of bagging for ridge and ridgeless
predictors, we show that subagging (with optimal subsample size) improves upon the divide-
and-conquer or the data-splitting approach of averaging the predictors computed on different
non-overlapping splits of data (with optimal split size). This is especially notable in the
overparameterized regime, where the latter data-splitting has been recently observed to
improve upon the ridgeless predictor computed on the entire data (Mücke et al., 2022)
under sub-Gaussian features.

Surprisingly, our results show that, under a well-specified linear model, subagging on
properly chosen ridgeless interpolators always improves upon the ridgeless predictor trained
on the complete data, even when the entire data has more observations than the number
of features. Moreover, our generic and model-agnostic cross-validation procedure provably
yields the best ridgeless interpolators for subagging. Further specializing to the case of
isotropic features, we prove that the optimal subagged predictor has the asymptotic risk
that matches the unbagged ridge predictor with optimally-tuned regularization parameter.

Several natural extensions of the current work can be considered going forward. We
briefly discuss two of them below.

First, although our proposed general strategy for analyzing bagged predictors can be
helpful for other prediction procedures, we have only derived the precise bagged risk expres-
sions for the ridge and ridgeless regression. In the context of the ridge and ridgeless predic-
tors, we had to develop new random matrix theory tools related to conditional asymptotic
equivalents. It may be necessary to develop similar new tools to analyze other predictors
based on our strategy. A natural prediction procedure to analyze next for bagging is the
lasso or lassoless regression. An empirical investigation of the bagged lassoless predictor
has already been conducted by Patil et al. (2022) (see Figure 8, for example). The tra-
ditional analysis of this predictor trained on the full data is performed via approximate
message passing (AMP) techniques (Li and Wei, 2021). It would be interesting to see if our
general strategy can be combined with AMP, the convex Gaussian min-max theorem, or
the leave-one-out perturbation analysis to yield a more encompassing strategy for bagging
analysis.

Second, we have analyzed the bagged ridge and ridgeless predictors under a well-specified
linear model. It is interesting to extend the analysis to a general data-distributional setting
for two main reasons: (1) to make the results more relevant for practical data analysis, and
(2) to investigate whether bagging interpolators can still improve upon the ridgeless predictor
trained on the full data. Regarding (1) above, the techniques developed by Bartlett et al.
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(2021) may prove useful in relaxing the linear model assumptions. Regarding (2) above, we
performed a simple simulation study that suggests that even in the misspecified nonlinear
model, bagging properly selected interpolators can improve the unbagged ridgeless predictor.
See Figure 11 for more details. Making these empirical observations more precise presents
an exciting avenue for future work.
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Figure 11: Finite-sample prediction risks for subagged ridgeless predictors (λ = 0) under a nonlin-
ear model, averaged over 100 dataset repetitions, for varying bag size k = [p/ϕs] and number of bags
M with replacement, with n = [p/ϕ] and p = 500. The left and the right panels correspond to the
cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively. We generated data from a nonlinear
model where the response yi for i ∈ [n] is generated from a nonlinear function of xi with additive
noise: yi = x⊤

i β0 + 1
p (∥xi∥22 − tr(Σar1)) + ϵi and β0,X, ϵ are generated as in (M-AR1-LI) with

ρar1 = 0.25 and σ2 = 1. We observe a similar pattern as in Figure 3 that the risk of the subagged
ridgeless predictor with M = 50 and ϕs ≈ 1.5 is smaller than the risk of the ridgeless predictor fitted
on the full data. Consequently, it is likely that the key results on subagging continue to hold under
more general response models.
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Appendix A. Notation and organization

Notation

Below we provide an overview of some general notation used in the main paper and the
supplement.

We denote scalars in non-bold lower or upper case (e.g., n, λ, C), vectors in bold lower
case (e.g., x, β), and matrices in bold upper case (e.g., X). We denote sets using calligraphic
letters (e.g., D), and use blackboard letters to denote some special sets: N denotes the set
of positive integers, R denotes the set of real numbers, R≥0 denotes the set of non-negative
real numbers, R>0 denotes the set of positive real numbers, C denotes the set of complex
numbers, C+ denotes the set of complex numbers with positive imaginary part, and C−

denotes the set of complex numbers with negative imaginary part. For a natural number n,
we use [n] to denote the set {1, . . . , n}.

For a real number x, (x)+ denotes its positive part, ⌊x⌋ its floor, and ⌈x⌉ its ceiling. For a
vector β, ∥β∥2 denotes its ℓ2 norm. For a pair of vectors v and w, ⟨v,w⟩ denotes their inner
product. For an event A, 1A denotes the associated indicator random variable. For a matrix
X ∈ Rn×p, X⊤ ∈ Rp×n denotes its transpose, and X+ ∈ Rp×n denote its Moore-Penrose
inverse. For a square matrix A ∈ Rp×p, tr[A] denotes its trace, and A−1 ∈ Rp×p denotes
its inverse, provided it is invertible. For a positive semidefinite matrix Σ, Σ1/2 denotes its
principal square root. A p× p identity matrix is denoted Ip, or simply by I, when it is clear
from the context.

For a real matrix X, its operator norm (or spectral norm) with respect to ℓ2 vector norm
is denoted by ∥X∥op, and its trace norm (or nuclear norm) is denoted by ∥X∥tr (recall that
∥X∥tr = tr[(X⊤X)1/2]). For a positive semidefinite matrix A ∈ Rp×p with eigenvalue
decomposition A = V RV −1 for an orthonormal matrix V ∈ Rp×p and a diagonal matrix
R ∈ Rp×p with non-negative entries, and a function f : R≥0 → R≥0, we denote by f(A)
the p × p positive semidefinite matrix V f(R)V −1. Here, f(R) is a p × p diagonal matrix
obtained by applying the function f to each diagonal entry of R.

For symmetric matrices A and B, A ⪯ B denotes the Loewner ordering. For sequences
of matrices An and Bn, An ≃ Bn denotes a certain notion of asymptotic equivalence (see
Definitions 30 and 31). We use Op and op to denote probabilistic big-O and little-o notation,
respectively. We denote convergence in probability by “ p−→”, almost sure convergence by
“ a.s.−−→”, and convergence in distribution by “ d−→”.

Organization

Below we outline the structure of the rest of the supplement.

• In Section B, we present proofs of results related to general subagged predictors from
Section 2.

• In Sections C and D, we present proof of Theorem 6 related to subagging from Section 3.2
for ridge and ridgeless predictors, respectively. The proofs for the two cases are separated
due to length. However, the proof architecture for the two is similar.

• In Section E, we present proof of Theorem 8 related to splagging from Section 3.3 for
ridge and ridgeless predictors. Because some of this proof builds on that of Theorem 6,
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we can combine the two cases of the ridge and ridgeless predictors, unlike the split cases
for Theorem 6.

• In Section F, we present proofs of results related to the bias-variance component mono-
tonicity properties in Propositions 7 and 9 for subagging and splagging, respectively.
In this section, we also provide proofs of results related to cross-validation and profile
monotonicity and those related to oracle properties of optimized bagging from Section 4.

• In Section G, we present proofs of specialized results related to subagging and splagging
under isotopic features from Section 5.

• In Section H, we formalize several calculus rules for a certain notion of conditional
asymptotic equivalence of sequences of matrices that are used in the proofs of constituent
lemmas in Sections C to E.

• In Section I, we collect various technical helper lemmas related to concentrations and
convergences along with their proofs that are used in proofs in Sections B to E.

• In Section J, we present additional numerical illustrations for Theorems 6, 8 and 11,
and for specialized isotropic results from Section 5.

Appendix B. Proofs in Section 2 (general bagged predictors)

B.1 Proof of Proposition 2 (asymptotic data conditional risk, squared loss)

Proof The key idea in the proof is to use the conditional risk decomposition from Propo-
sition 1. Below we present the proof for sampling from Ik. The proof for sampling from Iπk
is analogous.

SRSWR. We will do the case of SRSWR from Ik first. From Proposition 1, we have

R(f̃M ;Dn) = E(x,y)[E[(f̃M − y)2 | Dn, (x, y)]]

= E(x,y) [BIk(x, y) | Dn] +
1

M
E(x,y) [VIk(x, y) | Dn]

= R(f̃∞;Dn) +
1

M
Cn, (39)

where Cn = E(x,y)

[
1

|Ik|
∑

I∈Ik

(
f̂(x;DI)− f̃∞,Ik(x)

)2 ∣∣∣∣Dn

]
.

Since for M = 1 and M = 2, we have

R(f̃1;Dn) = R(f̃∞;Dn) + Cn,

R(f̃2;Dn) = R(f̃∞;Dn) +
Cn
2
.

We can thus write R(f̃∞;Dn) and Cn in terms of R(f̃WR1,Ik ;Dn) and R(f̃WR2,Ik ;Dn) as

R(f̃∞;Dn) = 2R(f̃2;Dn)−R(f̃1;Dn),

Cn = 2R(f̃1;Dn)− 2R(f̃2;Dn).
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Substituting in (39), we obtain

R(f̃M ;Dn) = 2R(f̃2;Dn)−R(f̃1;Dn) +
1

M

(
2R(f̃1;Dn)− 2R(f̃2;Dn)

)
= −

(
1− 2

M

)
R(f̃1;Dn) +

(
2− 2

M

)
R(f̃2;Dn).

Thus, subtracting the desired target in (10) for with replacement from both sides, we get

R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]
=−

(
1− 2

M

)(
R(f̃1;Dn)− a1

)
+

(
2− 2

M

)(
R(f̃2;Dn)− a2

)
.

Taking absolute values on both sides and using triangle inequality yields∣∣∣∣R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]∣∣∣∣ ≤ ∣∣∣∣1− 2

M

∣∣∣∣ ∣∣∣R(f̃1;Dn)− a1

∣∣∣+ (2− 2

M

) ∣∣∣R(f̃2;Dn)− a2

∣∣∣ .
Taking supremum over M , we have

sup
M∈N

∣∣∣∣R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]∣∣∣∣ ≤ ∣∣∣R(f̃1;Dn)− a1

∣∣∣+ 2
∣∣∣R(f̃2;Dn)− a2

∣∣∣ .
Finally, since we have

R(f̃1;Dn)
a.s.−−→ a1, R(f̃2;Dn)

a.s.−−→ a2,

the desired claim in (10) for with replacement follows.

SRSWOR. For SRSWOR from Ik, similarly we have

R(f̃M ;Dn) = E(x,y)[E[(f̃M − y)2|Dn, (x, y)]]

= E(x,y) [BIk(x, y) | Dn] +
|Ik| −M

|Ik| − 1

1

M
E(x,y) [VIk(x, y) | Dn]

= R(f̃∞;Dn) +
|Ik| −M

|Ik| − 1

1

M
Cn

= R(f̃∞;Dn)−
Cn

|Ik| − 1
+

1

M
· |Ik|Cn
|Ik| − 1

, (40)

where Cn = E(x,y)

[
1

|Ik|
∑

I∈Ik

(
f̂(x;DI)− f̃∞,Ik(x)

)2 ∣∣∣∣Dn

]
. Since for M = 1 and M = 2,

R(f̃1;Dn) = R(f̃∞;Dn)−
Cn

|Ik| − 1
+

|Ik|Cn
|Ik| − 1

,

R(f̃2;Dn) = R(f̃∞;Dn)−
Cn

|Ik| − 1
+

1

2
· |Ik|Cn
|Ik| − 1

.

We can thus write R(f̃∞;Dn)−Cn/(|Ik| − 1) and |Ik|Cn/(|Ik| − 1) in terms of R(f̃WR1,Ik ;Dn)

and R(f̃WR2,Ik ;Dn) as

R(f̃∞;Dn)−
Cn

|Ik| − 1
= 2R(f̃2;Dn)−R(f̃1;Dn),
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|Ik|Cn
|Ik| − 1

= 2(R(f̃1;Dn)−R(f̃2;Dn)).

Substituting in (40), we obtain

R(f̃M ;Dn) = 2R(f̃2;Dn)−R(f̃1;Dn) +
1

M
· 2(R(f̃1;Dn)−R(f̃2;Dn))

= −
(
1− 2

M

)
R(f̃1;Dn) + 2

(
1− 1

M

)
R(f̃2;Dn).

Thus, subtracting the desired target in (10) for with replacement from both sides, we get

R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]
=−

(
1− 2

M

)(
R(f̃1;Dn)− a1

)
+

(
2− 2

M

)(
R(f̃2;Dn)− a2

)
.

Taking absolute values on both sides and using triangle inequality yields∣∣∣∣R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]∣∣∣∣ ≤ ∣∣∣∣1− 2

M

∣∣∣∣ ∣∣∣R(f̃1;Dn)− a1

∣∣∣+ (2− 2

M

) ∣∣∣R(f̃2;Dn)− a2

∣∣∣ .
Taking supremum over M , we have

sup
M∈N

∣∣∣∣R(f̃M ;Dn)−
[
(2a2 − a1) +

2(a1 − a2)

M

]∣∣∣∣ ≤ ∣∣∣R(f̃1;Dn)− a1

∣∣∣+ 2
∣∣∣R(f̃2;Dn)− a2

∣∣∣ .
Finally, since we have R(f̃1;Dn)

a.s.−−→ a1 and R(f̃2;Dn)
a.s.−−→ a2, the desired claim in (10) for

the case of sampling without replacement follows.

B.2 Proof of Proposition 3 (asymptotic subsample conditional risk, squared
loss)

Before we present the proof for Proposition 3, we first show the upper bound of the squared
subsample conditional risk for general M .

Lemma 17 (Bounding the squared subsample conditional risk). The subsample conditional
prediction risk defined in (5) for the bagged predictor f̂M,Ik can be bounded as:∣∣∣∣R(f̃M,Ik ;Dn, {Iℓ}Mℓ=1)−

{
(2b2 − b1) +

2(b1 − b2)

M

}∣∣∣∣
≤

∣∣∣∣∣ 1M
M∑
ℓ=1

R(f̃1,Ik ;Dn, {Iℓ})− b1

∣∣∣∣∣+ 2

∣∣∣∣∣∣ 1

M(M − 1)

∑
i,j∈[M ],i ̸=j

R(f̃2,Ik ;Dn, {Ii, Ij})− b2

∣∣∣∣∣∣ .
(41)

Proof We start by expanding the squared risk as:

R(f̃M,Ik ; Dn, {Iℓ}Mℓ=1)
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=

∫ (
y − 1

M

M∑
ℓ=1

f̂(x;DIℓ)

)2

dP (x, y)

=

∫ (
1

M

M∑
ℓ=1

(
y − f̂(x;DIℓ)

))2

dP (x, y)

=
1

M2

M∑
ℓ=1

∫ (
y − f̂(x;DIℓ)

)2
dP (x, y) +

1

M2

M∑
i=1

M∑
j=1
j ̸=i

∫ (
y − f̂(x;DIi)

)(
y − f̂(x;DIj )

)
dP (x, y)

=
1

M2

M∑
ℓ=1

R(f̃1,Ik ;Dn, Iℓ) +
1

M2

M∑
i=1

M∑
j=1
j ̸=i

∫
(y − f̂(x;DIi))(y − f̂(x;DIj )) dP (x, y)

(i)
=

1

M2

M∑
ℓ=1

R(f̃1,Ik ;Dn, Iℓ)

+
1

M2

M∑
i=1

M∑
j=1
j ̸=i

∫
1

2

{
4
(
y − 1

2

(
f̂(x;DIi) + f̂(x;DIj )

))2
−
(
y − f̂(x;DIi)

)2 − (y − f̂(x;DIj )
)2}

dP (x, y)

=
1

M2

M∑
ℓ=1

R(f̃1,Ik ;Dn, Iℓ)

+
1

M2

M∑
i=1

M∑
j=1
j ̸=i

1

2

{
4R(f̂2,Ik ;Dn; Ii, Ij)−R(f̃1,Ik ;Dn; Ii)−R(f̃1,Ik ;Dn; Ij)

}

=
1

M2

M∑
ℓ=1

R(f̃1,Ik ;Dn, Iℓ)−
1

2M2

M∑
i=1

M∑
j=1
j ̸=i

R(f̃1,Ik ; Ii)−
1

2M2

M∑
i=1

M∑
j=1
j ̸=i

R(f̃1,Ik ; Ij) +
1

M2

M∑
i=1

M∑
j=1
j ̸=i

2R(f̂2,Ik ;Dn; Ii, Ij)

=
1

M2

M∑
ℓ=1

R(f̃1,Ik ;Dn; Iℓ)−
1

2M2
· 2 · (M − 1)

M∑
ℓ=1

R(f̃1,Ik ; Iℓ) +
2

M2

∑
i,j∈[M ]
i ̸=j

R(f̂2,Ik ;Dn; Ii, Ij)

=

(
1

M2
− (M − 1)

M2

) M∑
ℓ=1

R(f̃1,Ik ;Dn; Iℓ) +
2

M2

∑
i,j∈[M ]
i ̸=j

R(f̂2,Ik ;Dn; Ii, Ij)

= −
(

1

M
− 2

M2

) M∑
ℓ=1

R(f̃1,Ik ; Dn, {Iℓ}) +
2

M2

∑
i,j∈[M ]
i ̸=j

R(f̃2,Ik ; Dn, {Ii, Ij}).

In the expansion above, for equality (i), we used the fact that ab = {4(a/2+b/2)2−a2−b2}/2.
Now, subtracting the desired limit on both sides yields∣∣∣∣R(f̃M,Ik ; Dn, {Iℓ}Mℓ=1)−

{
(2b2 − b1) +

2(b1 − b2)

M

}∣∣∣∣
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=

∣∣∣∣∣∣∣∣−
(

1

M
− 2

M2

) M∑
ℓ=1

(R(f̃1,Ik ; Dn, {Iℓ})− b1) +
2

M2

∑
i,j∈[M ]
i ̸=j

(R(f̃2,Ik ; Dn, {Ii, Ij})− b2)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣1− 2

M

∣∣∣∣ ·
∣∣∣∣∣ 1M

M∑
ℓ=1

R(f̃1,Ik ; Dn, {Iℓ})− b1

∣∣∣∣∣+ 2(M − 1)

M

∣∣∣∣∣∣∣∣
1

M(M − 1)

∑
i,j∈[M ]
i ̸=j

R(f̃2,Ik ; Dn, {Ii, Ij})− b2

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣ 1M
M∑
ℓ=1

R(f̃1,Ik ; Dn, {Iℓ})− b1

∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣
1

M(M − 1)

∑
i,j∈[M ]
i ̸=j

R(f̃2,Ik ; Dn, {Ii, Ij})− b2

∣∣∣∣∣∣∣∣ .
This completes the proof of the upper bound.

Next, we present the proof of Proposition 3.
Proof Lemma 4 implies the asymptotics for the data conditional risk. Now, consider
the asymptotics for the subsample conditional risk of the bagged predictors. From (41) of
Lemma 17, it holds that∣∣∣∣R(f̃M,Ik ;Dn, {Iℓ}Mℓ=1)−

{
(2b2 − b1) +

2(b1 − b2)

M

}∣∣∣∣
≤

∣∣∣∣∣ 1M
M∑
ℓ=1

R(f̃1,Ik ;Dn, {Iℓ})− b1

∣∣∣∣∣+ 2

∣∣∣∣∣∣ 1

M(M − 1)

∑
i,j∈[M ],i ̸=j

R(f̃2,Ik ;Dn, {Ii, Ij})− b2

∣∣∣∣∣∣ .
(42)

This implies that

sup
M∈N

∣∣∣∣R(f̃M,Ik ;Dn, {Iℓ}Mℓ=1)−
{
(2b2 − b1) +

2(b1 − b2)

M

}∣∣∣∣
≤ sup

I∈Ik
|R(f̃1,Ik ;Dn, {I})− b1|+ 2 sup

M≥2

∣∣∣∣∣∣ 1

M(M − 1)

∑
i,j∈[M ],i ̸=j

R(f̃2,Ik ;Dn, {Ii, Ij})− b2

∣∣∣∣∣∣ .
The first term on the right-hand side converges almost surely to zero by Lemma 50 (2),
since the conditional risk for M = 1 converges for any sequence of indices. To prove that
the second term converges to zero, we start by noting that

UM =
1

M(M − 1)

∑
i,j∈[M ],i ̸=j

{
R(f̃2,Ik ;Dn, {Ii, Ij})− b2

}
,

is a U -statistics based on either an SRSWR or an SRSWOR sample I1, . . . , IM conditional on
Dn. Theorem 2 in Section 3.4.2 of Lee (1990) implies that {UM}M≥2 is a reverse martingale
conditional on Dn with respect to some filtration when we have an SRSWR sample (which
is same as an i.i.d. sample). Lemma 2.1 of Sen (1970) proves the same result when we
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have an SRSWOR sample. This, combined with Theorem 3 (maximal inequality for reverse
martingales) in Section 3.4.1 of Lee (1990) (for r = 1‖) yields

P

(
sup
M≥2

|UM | ≥ δ
∣∣ Dn

)
≤ 1

δ
E
[
|U2|

∣∣ Dn

]
=

1

δ
E
[
|R(f̃2,Ik ;Dn, {I1, I2})− b2|

∣∣ Dn

]
.

The right-hand side, we know, converges to zero almost surely. To see this, we first
write as before the right-hand side as E[|R(f̃2,Ik ;Dn, {I1, I2}) − b2| | Dn = Dn(ω)] =

E[|R(f̃2,Ik ;Dn(ω), {I1, I2})− b2|]. We know that for all ω ∈ A, R(f̃2,Ik ;Dn(ω), {I1, I2})
a.s.−−→

b2 as n→ ∞ (from the given assumption). Also, we know (45) and that the right-hand side
of (45) converges in L1 to its probability limit. Hence, Vitali’s theorem (Bogachev, 2007,
Theorem 4.5.4) implies that E[|R(f̃2,Ik ;Dn, {I1, I2}) − b2| | Dn = Dn(ω)] converges to zero
for all ω ∈ A as n→ ∞. Therefore, as n→ ∞, for all ω ∈ A,

P

(
sup
M≥2

|UM | ≥ δ
∣∣ Dn = Dn(ω)

)
→ 0.

Because probabilities are bounded by one, dominated convergence theorem implies that

P

(
sup
M≥2

|UM | ≥ δ

)
→ 0, as n→ ∞.

Therefore,

sup
M∈N

∣∣∣∣R(f̃M,Ik ;Dn, {Iℓ}Mℓ=1)−
{
(2b2 − b1) +

2(b1 − b2)

M

}∣∣∣∣ p−→ 0.

B.3 Proof of Lemma 4 (from subsample conditional to data conditional risk,
M = 1, 2)

Proof Let us first prove the result when sampling with/without replacement from Ik. The
proof for Iπk would be analogous. Note that R(f̃1;Dn) = E[R(f̃1,Ik ;Dn, {I1}) | Dn] where the
expectation is taken over a random draw I1 from Ik. We are given that R(f̃1,Ik ;Dn, {I})−
b1

a.s.−−→ 0 for every I ∈ Ik. Although not explicitly highlighted, for clarity it is worth
reminding that I is a sequence implicitly indexed by n. Under this condition, let us note
that ∣∣∣E[R(f̃1,Ik ;Dn, {I1}) | Dn]− b1

∣∣∣ =
∣∣∣∣∣∣ 1

|Ik|
∑
I∈Ik

R(f̃1,Ik ;Dn, {I})− b1

∣∣∣∣∣∣
≤ 1

|Ik|
∑
I∈Ik

|R(f̃1,Ik ;Dn, {I})− b1|

‖Theorem 3 of Section 3.4.1 is only stated with r > 1, but from the proof, it is clear that r = 1 is a valid
choice.
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≤ max
I∈Ik

|R(f̃1,Ik ;Dn, {I})− b1|
a.s.−−→ 0,

by Lemma 50 (1), since again the conditional risk for M = 1 converges for any sequences
of indices. To be explicit, the underlying triangular array invoked in Lemma 50 (1) is as
described follows: For each n, recall Ik = {I(1), . . . , I(Nn)} where Nn = |Ik| =

(
n
k

)
. Note

that the random quantity Rn,ℓ := R(f̃1,Ik ;Dn, I
(ℓ)) is indexed by n and ℓ ∈ [Nn]. For I

drawn from Ik, let pn be the index such that I = I(pn). The convergence then follows from
applying Lemma 50 (1) to the triangular array Rn,pn . Hence, we have proved that

R(f̃1,Ik ;Dn)
a.s.−−→ b1, as n→ ∞. (43)

Now, observe that

R(f̃2,Ik ;Dn, {Iℓ}2ℓ=1) ≤
1

2
R(f̃1,Ik ;Dn, {I1}) +

1

2
R(f̃1,Ik ;Dn, {I2}). (44)

We will now apply a strengthened version of dominated convergence theorem, called Pratt’s
lemma (see, e.g., Theorem 5.5 of Gut (2005) or Chapter 5 Exercise 30 of Resnick (2019))
to prove almost sure convergence of E[R(f̃2,Ik ;Dn, {Iℓ}2ℓ=1) | Dn]. Usually, Pratt’s lemma is
applied unconditionally, and here we apply it conditional on Dn. For an easier understanding
of the proof, let us write Dn(ω) instead of Dn to make it clear that we are conditioning on
Dn. Recall that Dn is independent of the subsamples {Iℓ}Mℓ=1 for any M ≥ 1. In this
notation, inequality (44) becomes

0 ≤ R(f̃2,Ik ;Dn(ω), {Iℓ}2ℓ=1) ≤
1

2
R(f̃1,Ik ;Dn(ω), {I1}) +

1

2
R(f̃1,Ik ;Dn(ω), {I2}). (45)

Because R(f̃1,Ik ;Dn, {I})
a.s.−−→ b1 for every I ∈ Ik, there exists a set A ⊆ Ω such that

P(A) = 1 and for all ω ∈ A, R(f̃1,Ik ;Dn(ω), {I})
a.s.−−→ b1 for every I ∈ Ik. Applying Pratt’s

lemma for every ω ∈ A, as n → ∞ and using the fact (43) as well as the assumption
R(f̃2,Ik ;Dn(ω), {Iℓ}2ℓ=1)

a.s.−−→ b2, we get that

E[R(f̃2,Ik ;Dn(ω), {Iℓ}2ℓ=1)] → b2, for all ω ∈ A.

Note that R(f̃2,I2 ;Dn(ω)) = E[R(f̃2,Ik ;Dn, {Iℓ}2ℓ=1) | Dn = Dn(ω)]. Therefore, we conclude

R(f̃2,I2 ;Dn)
a.s.−−→ b2, as n→ ∞. (46)

Therefore, (9) applies to yield asymptotics for the data conditional risk uniformly over
M ∈ N.

B.4 Proof of Theorem 5 (from subsample conditional to data conditional risk,
general M)

Proof The proof follows by combining Propositions 2 and 3, and Lemma 4.
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B.5 Extension to general loss functions

Proposition 18 (Convex, strongly-convex, and smooth loss functions). For any loss func-
tion L : R × R → R, every (x, y) ∈ Rp × R, and for f̃M ∈ {f̃WRM,Ik , f̃

WOR
M,Ik , f̃

WR
M,Iπ

k
, f̃WORM,Iπ

k
},

define

R(f̃M ;Dn) =

∫
E[L(y, f̃M (x; {DIℓ}

M
ℓ=1)) | Dn] dP (x, y).

If L : R × R → R is convex in the second argument∗∗, then R(f̃M ,Dn) is non-increasing
in M ≥ 1, i.e., R(f̃M+1;Dn) ≤ R(f̃M ;Dn). Alternatively, if there exists m,m ∈ R such
that L(·, ·) is m-strongly convex and m-smooth in the second argument††, then for f̃M ∈
{f̃WRM,Ik , f̃

WOR
M,Ik},

mK|Ik|,M

2M

∫
VIk(x, y) dP (x, y) ≤ R(f̃M ;Dn)−R(f̃∞;Dn) ≤

mK|Ik|,M

2M

∫
VIk(x, y) dP (x, y)

(47)

with KN,M defined in (8). The inequalities in (47) continue to hold for f̃M ∈ {f̃WRM,Iπ
k
, f̃WORM,Iπ

k
},

with K|Ik|,M and VIk replaced with K|Iπ
k |,M and VIπ

k
, respectively.

Proof We split the proof into two parts, depending on the assumption imposed on the loss
function L.

Part (1). For any loss function L : R × R → R convex in the second argument, one can
trivially obtain

R(f̃M,Ik ;Dn) = E[L(y, f̃M,Ik(x)) | Dn]

= E[E[L(y, f̃M,Ik(x)) | {Iℓ}
M
ℓ=1] | Dn]

≥ E[L(y,E[f̃M,Ik(x) | {Iℓ}
M
ℓ=1]) | Dn].

(48)

Here the last inequality follows from Jensen’s inequality. Because E[f̃M,Ik(x) | {Iℓ}Mℓ=1] =

f̃∞,Ik(x), we get for any M ≥ 1,

R(f̃M,Ik ;Dn) ≥ R(f̃∞,Ik ;Dn).

On the other hand, we have by Jensen’s inequality

R(f̃M,Ik ;Dn) = E

[
L

(
y,

1

M

M∑
ℓ=1

f̃(x;DIℓ)

) ∣∣∣ Dn

]
≤ E

[
1

M

M∑
ℓ=1

L(y, f̃(x;DIℓ))
∣∣∣ Dn

]
= R(f̃1,Ik ;Dn).

Summarizing, we get that for any M ≥ 1,

R(f̃1,Ik ;Dn) ≥ R(f̃M,Ik ;Dn) ≥ R(f̃∞,Ik ;Dn).

∗∗Recall that a function f : R → R is convex if f(tx1+(1− t)x2) ≤ tf(x1)+(1− t)f(x2) for all x1, x2 ∈ R
and t ∈ [0, 1].

††A function g : R → R is said to be λ1-strongly convex if x 7→ f(x) − λ1/2x
2 is convex. It is called a

λ2-smooth function if the derivative of f is λ2-Lipschitz (i.e., |f ′(x1)− f ′(x2)| ≤ λ2|x1 − x2| for all x1, x2).
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One can further obtain the monotonicity property by noting that for any M ≥ 1,

f̃M+1,Ik(x, {DIℓ}
M+1
ℓ=1 ) =

1

M + 1

M+1∑
ℓ=1

f̃(x;DIℓ) =
1

(M + 1)!

∑
π′

(
1

M

M∑
ℓ=1

f̃(x;DIπ′(ℓ))

)
,

where π′ represents a permutation of {1, 2, . . . ,M + 1}. Therefore, for any loss function
L : R× R → R that is convex in the second argument, we get

L(y, f̃M+1,Ik(x; {DIℓ}
M+1
ℓ=1 )) ≤ 1

(M + 1)!

∑
π′

L
(
y, f̃(x; {DIπ′(ℓ)}

M
ℓ=1)

)
.

Because any (non-random) subset of a simple random sample with/without replacement is
itself a simple random sample with/without replacement, taking conditional expectation on
both sides conditional on Dn yields

R(f̃M+1,Ik ;Dn) ≤ R(f̃M,Ik ;Dn).

This, in particular, implies that R(f̃∞,Ik ;Dn) ≤ R(f̃M,Ik ;Dn) ≤ R(f̃1,Ik ;Dn) for anyM ≥ 1.
This finishes the proof of the first part of the statement.

Part (2). If we assume that the loss function is strongly convex and differentiable in the
second argument, then we can improve the lower bound of Part 1 in terms of f̃∞. Formally,
if L : R×R → R is m-strongly convex, i.e., L(a, b)−m/2b2 is convex in b (for every a), then

L(y, f̃M,Ik(x)) ≥ L(y, f̃∞,Ik(x))+
∂L(y, f̃∞,Ik(x))

∂b
(f̃M,Ik(x)−f̃∞,Ik(x))+

m

2
(f̃M,Ik(x)−f̃∞,Ik(x))

2.

Applying Proposition 1 and taking the expectation (x, y) conditional on Dn, we obtain

R(f̃M,Ik ;Dn) ≥ R(f̃∞,Ik ;Dn) +
m

2

1

M

∫
1

|Ik|
∑
I∈Ik

(f̂(x;DI)− f̃∞,Ik(x))
2 dP (x, y). (49)

On the other hand, if we assume that the loss function L : R × R → R is m smooth in
the second argument, then

L(a, b) ≤ L(a, b′) +
∂L(a, b′)

∂b
(b− b′) +

m

2
(b− b′)2.

It follows that

R(f̃M,Ik ;Dn) ≤ R(f̃∞,Ik ;Dn) +
m

2

K|Ik|,M

M

∫ ∑
I∈Ik

(f̂(x;DI)− f̃∞,Ik(x))
2 dP (x, y). (50)

Combining the lower bound from (49) and the upper bound from (50) finishes the proof of
the second part of the statement.
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Appendix C. Proof of Theorem 6 (subagging ridge with replacement)

For f̃WRM,Ik defined in Theorem 6, we present the proof for ridge and ridgeless predictors in
Theorems 19 and 23. For f̃WORM,Ik defined in Theorem 6, the conclusion still holds since the
limits of the proportions of intersection between two SRSWR and SRSWOR draws from Ik
are the same from Lemma 48. For proving the asymptotic conditional risks, we will treat
Ik as fixed and use f̃WRλ,M to denote the ingredient predictor associated with regularization
parameter λ.

C.1 Proof assembly

Before we present the proof, recall the nonnegative constants defined in (15) and (16):
v(−λ; θ) ≥ 0 is the unique solution to the fixed-point equation

v(−λ; θ)−1 = λ+ θ

∫
r(1 + v(−λ; θ)r)−1 dH(r), (51)

and the nonnegative constants ṽ(−λ;ϑ, θ), and c̃(−λ; θ) are defined via the following equa-
tions

ṽ(−λ, ϑ, θ) =
ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

, c̃(−λ; θ) =
∫
r(1 + v(−λ; θ))r)−2 dG(r).

(52)

It helps to first slightly rewrite the statement of Theorem 6 for λ > 0 as follows. Though
it suffices to analyze the case M = 2 according to Theorem 5, below we will do the risk
decomposition for general M .

Theorem 19 (Risk characterization of subagged ridge predictor). Let f̃WRλ,M be the ingredient
predictor as defined in (14) for λ > 0. Suppose that Assumptions 1-5 hold, then for M =
{1, 2, 3, . . .}, as k, n, p → ∞, p/n → ϕ ∈ [0,∞) and p/k → ϕs ∈ [ϕ,∞], there exists a
deterministic function Rsub

λ,M (ϕ, ϕs) such that for I1, . . . , IM
SRSWR∼ Ik,

sup
M∈N

|R(f̃WRλ,M ;Dn, {Iℓ}Mℓ=1)− Rsub
λ,M (ϕ, ϕs)|

p−→ 0,

and
sup
M∈N

|R(f̃WRλ,M ;Dn)− Rsub
λ,M (ϕ, ϕs)|

a.s.−−→ 0.

Furthermore, Rsub
λ,M (ϕ, ϕs) decomposes as

Rsub
λ,M (ϕ, ϕs) := σ2 + Bsub

λ,M (ϕ, ϕs) + V sub
λ,M (ϕ, ϕs),

where Bsub
λ,M (ϕ, ϕs) =M−1Bλ(ϕ, ϕs)+(1−M−1)Bλ(ϕ, ϕs), and V sub

λ,M (ϕ, ϕs) =M−1Vλ(ϕs, ϕs)+

(1−M−1)Vλ(ϕ, ϕs) with

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ), Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ), θ ∈ (0,∞], ϑ ≤ θ,

where ṽ(−λ;ϑ, θ) and c̃(−λ; θ) are as defined in (52).
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p

DI1

p

DI2

i0

k − i0

k − i0

L1 L2

Figure 12: Illustration of subsampled datasets DI1 and DI2 from Dn. The design matrix of each
of them can be represented as LjX (j = 1, 2), where X ∈ Rn×p is the full design matrix.

Proof In what follows, we will prove the results for n, k, p being a sequence of integers
{nm}∞m=1, {km}∞m=1, {pm}∞m=1. For simplicity, we drop the subscript when it is clear from
the context.

For any m ∈ [M ], let Im be a sample from Ik, and Lm ∈ Rn×n be a diagonal matrix
with (Lm)ll = 1 if l ∈ Im and 0 otherwise. An illustration of these notations for M = 2 is
shown in Figure 12. The proof will reduce to analyze the individual terms concerning one
dataset DIm , or the cross terms concerning DIm and DIl for m ̸= l.

The ingredient estimator takes the form:

β̃λ,M ({DIℓ}
M
ℓ=1) =

1

M

M∑
m=1

β̂λ(DIm)

=
1

M

M∑
m=1

(X⊤LmX/k + λIp)
−1(X⊤Lmy/k)

=
1

M

M∑
m=1

[(
X⊤LmX

k
+ λIp

)−1
X⊤Lm

k
β0 +

(
X⊤LmX

k
+ λIp

)−1
X⊤Lm

k
ϵ

]
.

Denote β̃λ,M ({DIℓ}Mℓ=1) by β̃λ,M for simplicity. Let Mm = (X⊤LmX/k + λIp)
−1 for m ∈

[M ], we have

β̃λ,M =
1

M

M∑
m=1

(Ip − λMm)β0 +
1

M

M∑
m=1

Mm(X
⊤Lm/k)ϵ,

which yields

β0 − β̃λ,M =
1

M

M∑
m=1

λMmβ0 −
1

M

M∑
m=1

Mm(X
⊤Lm/k)ϵ.

Thus, the conditional risk is given by

R(f̃M,λ;Dn, {Iℓ}Mℓ=1) = E(x0,y0)[(y0 − x⊤
0 β̃λ,M )2]

52



Bagging in overparameterized learning

= σ2 + (β0 − β̃λ,M )⊤Σ(β0 − β̃λ,M )

= σ2 + TC + TB + TV ,

where the constant term TC , bias term TB, and the variance term TV are given by

TC = − 2λ

M2
· ϵ⊤

(
M∑
m=1

Mm
X⊤Lm

k

)⊤

Σ

(
M∑
m=1

Mm

)
β0, (53)

TB =
λ2

M2
· β⊤

0

(
M∑
m=1

Mm

)
Σ

(
M∑
m=1

Mm

)
β0, (54)

TV =
1

M2
· ϵ⊤

(
M∑
m=1

Mm
X⊤Lm

k

)⊤

Σ

(
M∑
m=1

Mm
X⊤Lm

k

)
ϵ. (55)

Next we analyze the three terms separately for M ∈ {1, 2}. From Patil et al. (2022a,
Lemmas S.2.2 and S.2.3), we have that TC

a.s.−−→ 0, and

TV =
1

M2

M∑
m=1

ϵ⊤Mm
X⊤Lm

k
ΣMm

X⊤Lm
k

ϵ+
1

M2

M∑
m=1

M∑
l=1

ϵ⊤Mm
X⊤Lm

k
ΣMl

X⊤Ll
k

ϵ

a.s.−−→ 1

M2

M∑
m=1

σ2

k
tr(MmΣ̂mMmΣ) +

1

M2

∑
m̸=l

σ2

k2
tr(MlX

⊤LlLmXMmΣ) := T ′
V .

Thus, it remains to obtain the deterministic equivalent for the bias term TB and the trace
term T ′

V . From Lemma 20 and Lemma 21, we have that for all I1 ∈ Ik when M = 1 and
for all Im, Il

SRSWR∼ Ik when M = 2, it holds that

TB =
λ2

M2

M∑
m=1

β⊤
0 MmΣMmβ0 +

λ2

M2

M∑
m=1

M∑
l=1

β⊤
0 MmΣMlβ0

a.s.−−→ ρ2

M
(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs) +

ρ2(M − 1)

M
(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs)

T ′
V

a.s.−−→ σ2

M
ṽ(−λ;ϕs, ϕs) +

σ2(M − 1)

M
ṽ(−λ;ϕ, ϕs),

as n, k, p→ ∞, p/n→ ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where the nonnegative constants
ṽ(−λ;ϕ, ϕs) and c̃(−λ;ϕs) are as defined in (52). Therefore, we have shown that for all
I ∈ Ik,

R(f̃λ,1;Dn, {I})
a.s.−−→ Rsub

λ,1 (ϕ, ϕs),

and for all I1, I2
SRSWR∼ Ik,

R(f̃λ,2;Dn, {Iℓ}2ℓ=1)
a.s.−−→ Rsub

λ,2 (ϕ, ϕs),

where

Rsub
λ,M (ϕ, ϕs) = σ2 +

1

M
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

M − 1

M
(Bλ(ϕ, ϕs) + Vλ(ϕ, ϕs)),
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and the components are:

Bλ(ϕ, ϕs) = ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs), Vλ(ϕ, ϕs) = σ2ṽ(−λ;ϕ, ϕs).

The proof for the boundary case when ϕs = ∞ follows from Proposition 22. Then, we have
that the function Rsub

λ,M (ϕ, ϕs) is continuous on [ϕ,∞].
Finally, the risk expression for general M and the uniformity claim over M ∈ N follow

from Theorem 5.

C.2 Component deterministic approximations

C.2.1 Deterministic approximation of the bias functional

Lemma 20 (Deterministic approximation of the bias functional). Under Assumptions 1-5,
for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix with
(Lm)ll = 1 if l ∈ Im and 0 otherwise, and Mm = (X⊤LmX/k + λIp)

−1. Then, it holds
that

1. for all m ∈ [M ] and Im ∈ Ik,

λ2β⊤
0 MmΣMmβ0

a.s.−−→ ρ2(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

λ2β⊤
0 MmΣMlβ0

a.s.−−→ ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where ϕ0 = ϕ2s/ϕ, TB is as
defined in (54), and the nonnegative constants ṽ(−λ;ϕ, ϕs) and c̃(−λ;ϕs) are as defined in
(52).

Proof From Lemma 38 (1) we have that for m ∈ [M ],

λ2MmΣMm ≃ (ṽb(−λ;ϕs) + 1) · (v(−λ;ϕs)Σ+ Ip)
−1Σ(v(−λ;ϕs)Σ+ Ip)

−1. (56)

By the definition of deterministic equivalent, we have

λ2β⊤
0 MmΣMmβ0

a.s.−−→ lim
p→∞

(1 + ṽb(−λ;ϕs))
p∑
i=1

ri
(1 + riv(−λ;ϕs))2

(β⊤
0 wi)

2

= lim
p→∞

∥β0∥22(1 + ṽb(−λ;ϕs))
∫

r

(1 + v(−λ;ϕs)r)2
dGp(r)

= ρ2(1 + ṽb(−λ;ϕs))
∫

r

(1 + v(−λ;ϕs)r)2
dG(r), (57)

where the last equality holds since Gp and G have compact supports and Assumptions 3
and 5.
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For the cross term, it suffices to derive the deterministic equivalent of β⊤
0 M1ΣM2β0/2.

We begin with analyze the deterministic equivalent of M1ΣM2. Let i0 = tr(L1L2) be the
number of shared samples between DI1 and DI2 , we use the decomposition

M−1
j =

i0
k
(Σ̂0 + λIp) +

k − i0
k

(Σ̂ind
j + λIp), j = 1, 2,

where Σ̂0 = X⊤L1L2X/i0 and Σ̂ind
j = X⊤(Lj − L1L2)X/(k − i0) are the common and

individual covariance estimators of the two datasets. Let N0 = (Σ̂0 + λIp)
−1 and Nj =

(Σ̂ind
j + λIp)

−1 for j = 1, 2. Then

Mj =

(
i0
k
N−1

0 +
k − i0
k

N−1
j

)−1

, j = 1, 2, (58)

where the equalities hold because N0 is invertible when λ > 0. Conditioning on i0, we will
show a sequence of deterministic equivalents

λ2M1ΣM2
(a)
≃ λMdet

N0,i0ΣM2
(b)
≃ Mdet

N0,i0ΣMdet
N0,i0

(c)
≃ (λ2M1ΣM2)

det
i0 ,

where in each step, we consider randomness from N1, N2, N0, respectively, since they are
independent of each other conditioning on i0. The subscript of the deterministic equivalent
indicates the dependence on the corresponding random variables, and we will specify each
deterministic equivalent in the following proof.

When i0 = k, we have M1 = M2 and the above asymptotic equation reduces to (56).
We next prove the case when i0 < k.

Part (a). Since N1 is independent of N0 conditioning on i0, from Definition 34 and
Lemma 39 (1) we have

λM1 ≃ Mdet
N0,i0 :=

k

k − i0
(v1Σ+ Ip +C1)

−1
∣∣∣ i0,

where v1 = v(−λ; γ1,ΣC1), ΣC1 = (Ip +C1)
− 1

2Σ(Ip +C1)
− 1

2 , C1 = i0(λ(k − i0))
−1N−1

0 ,
and γ1 = p/(k − i0). Here the subscripts of v1 and C1 are related to the aspect ratio γ1.
Because of the sub-multiplicativity of operator norm, we have

∥ΣM2∥op ≤ ∥Σ∥op ∥M2∥op ≤ rmax

λ
.

By Proposition 35 (2), we have λ2M1ΣM2 ≃ λMdet
N0,i0

ΣM2 | i0.

Part (b). Analoguously, we have

λMdet
N0,i0ΣM2 ≃ Mdet

N0,i0ΣMdet
N0,i0

≃
(

k

k − i0

)2

(v1Σ+ Ip +C1)
−1Σ (v1Σ+ Ip +C1)

−1 | i0,

as
∥∥∥Mdet

N0,i0

∥∥∥
op

≤ 1.

55



Patil, Du, and Kuchibhotla

Part (c). As we have symmetrized the expression, we have

λ2M1ΣM2 ≃ Mdet
N0,i0ΣMdet

N0,i0 =
k2

i20
λ2(N−1

0 + λC0)
−1Σ(N−1

0 + λC0)
−1 | i0,

where C0 = (k − i0)/i0 · (v1Σ+ Ip). Define ΣC0 = (I +C0)
− 1

2Σ(I +C0)
− 1

2 . Conditioning
on i0, by Lemma 39 (1), we have

tr[ΣC1(v1ΣC1 + Ip)
−1] = tr[Σ(v1Σ+ Ip +C1)

−1]

=
λ(k − i0)

i0
tr

[
Σ

(
N−1

0 +
λ(k − i0)

i0
(v1Σ+ Ip)

)−1
]

a.s.
=

k − i0
i0

tr

[
Σ

(
v0Σ+ Ip +

k − i0
i0

(v1Σ+ Ip)

)−1
]

= tr

[
Σ

((
i0

k − i0
v0 + v1

)
Σ+

k

k − i0
Ip

)−1
]
,

where v0 = v(−λ; γ0,ΣC0)and γ0 = p/i0. Note that the fixed-point solution v0 depends on
v1. The fixed-point equations reduce to

1

v0
= λ+ γ0 tr[ΣC0(v0ΣC0 + Ip)

−1]/p = λ+
p

k
tr

[
Σ

((
i0
k
v0 +

k − i0
k

v1

)
Σ+ Ip

)−1
]
/p

1

v1
= λ+ γ1 tr[ΣC1(v1ΣC1 + Ip)

−1]/p = λ+
p

k
tr

[
Σ

((
i0
k
v0 +

k − i0
k

v1

)
Σ+ Ip

)−1
]
/p

almost surely. Note that the solution (v0, v1) to the above equations is a pair of positive
numbers and does not depend on samples. If (v0, v1) is a solution to the above system, then
(v1, v0) is also a solution. Thus, any solution to the above equations must be unique. On
the other hand, since v0 = v1 = v(−λ; p/k) satisfies the above equations, it is the unique
solution. By Lemma 45, we can replace v(−λ; γ1,ΣC1) by the solution v0 = v1 = v(−λ; p/k)
of the above system, which does not depend on samples. Thus,

λ2M1ΣM2 ≃
k2

i20
λ2(N−1

0 + λC∗)−1Σ(N−1
0 + λC∗)−1 | i0, (59)

where C∗ = (k − i0)/i0 · (v(−λ; p/k)Σ+ Ip). By Lemma 39 (2), we have

Mdet
N0,i0ΣMdet

N0,i0 ≃ (λ2M1ΣM2)
det
i0 :=

k2

i20
(ṽb(−λ; γ0,C∗) + 1)(v(−λ; γ0,C∗)Σ+ Ip +C∗)−2Σ | i0,

(60)

where γ0 = p/i0, and v(−λ; γ0,C∗) and ṽb(−λ; γ0,C∗) are defined through the following
equations:

1

v(−λ; γ0,C∗)
= λ+ γ0 tr[Σ(v(−λ; γ0,C∗)Σ+ Ip +C∗)−1]/p
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1

ṽb(−λ; γ0,C∗)
=

γ0 tr[Σ
2(v(−λ; γ0,C∗)Σ+ Ip +C∗)−2]/p

v(−λ; γ0,C∗)−2 − γ0 tr[Σ2(v(−λ; γ0,C∗)Σ+ Ip +C∗)−2]/p
.

From Parts (a) to (c), we have shown that λ2M1ΣM2 ≃ (λ2M1ΣM2)
det
i0

| i0 for i0 <
k. Note that the above equivalence also holds for i0 = k. That is, this holds for all
i0 ∈ {0, 1, · · · , k}. By Proposition 35 (1), we can obtain the unconditioned asymptotic
equivalence Mdet

N0,i0
ΣMdet

N0,i0
≃ (λ2M1ΣM2)

det
i0

.
Note that from Lemma 42, ṽb(−λ; γ) and v(−λ; γ) are continuous on γ, and from

Lemma 48, i0/k
a.s.−−→ ϕ/ϕs, where ϕs ∈ (0,∞) is the limiting ratio such that p/k → ϕs

as k, p→ ∞. We have

(λ2M1ΣM2)
det
i0 ≃ϕ

2
s

ϕ2
(ṽb(−λ;ϕ0,ΣC′) + 1)(v(−λ;ϕ0,ΣC′)Σ+ Ip +C ′)−2Σ,

where C ′ = (ϕs − ϕ)/ϕ · (v(−λ;ϕs)Σ+ Ip) and ϕ0 = ϕ2s/ϕ. Note that

1

v(−λ;ϕ0,ΣC′)
= λ+ ϕ0

∫
r

1 + rv(−λ;ϕ0,ΣC′)
dH(r;ΣC′)

= λ+ ϕs lim
p→∞

tr

[
Σ

(
ϕ

ϕs
(v(−λ;ϕ0,ΣC′)Σ+ Ip) +

(
1− ϕ

ϕs

)
(v(−λ;ϕs)Σ+ Ip)

)−1
]
/p

1

v(−λ;ϕs)
= λ+ ϕs lim

p→∞
tr
[
Σ(v(−λ;ϕs)Σ+ Ip)

−1
]
/p.

We have

v(−λ;ϕ0,ΣC′) = v(−λ;ϕs) (61)

is a solution to the first fixed-point equation. From Lemma 41 (2), this solution is also
unique. Then, we have

1 + ṽb(−λ;ϕ0,ΣC′) = lim
p→∞

v(−λ;ϕ0,C ′)−2

v(−λ;ϕ0,C ′)−2 − ϕ0 tr[Σ2(v(−λ;ϕ0,C ′)Σ+ Ip +C ′)−2]/p

= lim
p→∞

v(−λ;ϕs)−2

v(−λ;ϕs)−2 − ϕ tr[Σ2(v(−λ;ϕs)Σ+ Ip)−2]/p

=
v(−λ;ϕs)−2

v(−λ;ϕs)−2 − ϕ
∫

r2

(1+v(−λ;ϕs)r)2 dH(r)
:= 1 + ṽ(−λ;ϕ, ϕs).

From Lemma 41 (4), we have that 1 + ṽ(−λ;ϕ, ϕs) > 0. To conclude, we have shown that

λ2M1ΣM2 ≃ (1 + ṽ(−λ;ϕ, ϕs)) (v(−λ;ϕs)Σ+ Ip)
−2Σ. (62)

By the definition of deterministic equivalent, we have

λ2β⊤
0 M1ΣM2β0

a.s.−−→ lim
p→∞

p∑
i=1

(1 + ṽ(−λ;ϕ, ϕs))ri
(1 + v(−λ;ϕs)ri)2

(β⊤
0 wi)

2

= lim
p→∞

∥β0∥22
∫

(1 + ṽ(−λ;ϕ, ϕs))r
(1 + v(−λ;ϕs)r)2

dGp(r)
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= ρ2
∫

(1 + ṽ(−λ;ϕ, ϕs))r
(1 + v(−λ;ϕs)r)2

dG(r), (63)

where in the last line we used the fact that Gp and G have compact supports and Assump-
tions 3 and 5. The conclusion follows by combining (57) and (63).

C.2.2 Deterministic approximation of the variance functional

Lemma 21 (Deterministic approximation of the variance functional). Under Assumptions
1-5, for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k, Lm ∈ Rn×n be a diagonal matrix
with (Lm)ll = 1 if l ∈ Im and 0 otherwise, and Mm = (X⊤LmX/k + λIp)

−1. Then, it
holds that

1. for all m ∈ [M ] and Im ∈ Ik,
1

k
tr(MmΣ̂mMmΣ)

a.s.−−→ ṽ(−λ;ϕs, ϕs),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1

k2
tr(MlX

⊤LlLmXMmΣ)
a.s.−−→ ṽ(−λ;ϕ, ϕs),

as n, k, p→ ∞, p/n→ ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where the nonnegative constant
ṽ(λ;ϕ, ϕs) is as defined in (52).

Proof From Lemma 38 (2), we have that for j ∈ [M ],

MjΣ̂jMjΣ ≃ ṽv(−λ;ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ2. (64)

By the trace rule Lemma 33 (4) , we have

1

k
tr(MjΣ̂jMjΣ)

a.s.−−→ lim
p→∞

p

k
· 1
p
tr(ṽv(−λ;ϕs)(v(−λ;ϕs)Σ+ Ip)

−2Σ2)

= ϕsṽv(−λ;ϕs) lim
p→∞

1

p

p∑
i=1

r2i
(v(−λ;ϕs)ri + 1)2

= ϕsṽv(−λ;ϕs) lim
p→∞

∫
r2

(v(−λ;ϕs)r + 1)2
dHp(r)

= ϕsṽv(−λ;ϕs)
∫

r2

(v(−λ;ϕs)r + 1)2
dH(r), j = 1, 2, (65)

where in the last line we used the fact thatHp andH have compact supports and Assumption
5.

For the cross term, it suffices to derive the deterministic equivalent of M1Σ̂0M2Σ where
Σ̂0 = X⊤L1L2X/i0 and i0 = tr(L1L2). We again show a sequence of deterministic equiv-
alents as in the proof for Lemma 20:

M1Σ̂0M2Σ
(a)
≃ Mdet

N0,i0Σ̂0M2Σ
(b)
≃ Mdet

N0,i0Σ̂0M
det
N0,i0Σ

(c)
≃ (M1Σ̂0M2Σ)deti0 | i0.

When i0 = k, this reduces to (64). We next show the case when i0 < k.
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Part (a). We use Lemma 39 (1) to obtain

M1 ≃ Mdet
N0,i0 :=

k

λ(k − i0)
(v(−λ; γ1,ΣC1)Σ+ Ip +C1)

−1 | i0 (66)

where ΣC1 = (Ip +C1)
− 1

2Σ(Ip +C1)
− 1

2 , C1 = i0(λ(k − i0))
−1N−1

0 , and γ1 = p/(k − i0).
Let γ0 = p/i0. Note that conditioning on i0, lim sup

∥∥∥Σ̂0

∥∥∥
op

≤ rmax(1 +
√
ϕ0)

2 almost

surely as i0, p → ∞ and γ0 → ϕ0 ∈ (0,∞) from Bai and Silverstein (2010). Then Σ̂0M2Σ
has bounded operator norm and we have M1Σ̂0M2Σ ≃ Mdet

N0,i0
Σ̂0M2Σ | i0 by Proposi-

tion 35 (2).

Part (b). Similarly, we have M2 ≃ Mdet
N0,i0

| i0 and M1Σ̂0M2Σ ≃ Mdet
N0,i0

Σ̂0M
det
N0,i0

Σ | i0.

Part (c). Note that

Mdet
N0,i0Σ̂0M

det
N0,i0Σ =

k2

λ2(k − i0)2
(v(−λ; γ1,ΣC1)Σ+ Ip +C1)

−1 Σ̂0 (v(−λ; γ1,ΣC1)Σ+ Ip +C1)
−1Σ

=
k2

i20

(
N−1

0 + λC0

)−1
Σ̂0

(
N−1

0 + λC0

)−1
Σ,

where C0 = (k − i0)/i0 · (v(−λ; γ1,ΣC1)Σ + Ip). Define ΣC0 = (I +C0)
− 1

2Σ(I +C0)
− 1

2 .
Conditioning on i0, by Lemma 39 (1) we have

tr[ΣC1(v1ΣC1 + Ip)
−1] = tr[Σ(v1Σ+ Ip +C1)

−1]

=
λ(k − i0)

i0
tr

[
Σ

(
N−1

0 +
λ(k − i0)

i0
(v1Σ+ Ip)

)−1
]

a.s.
=

k − i0
i0

tr

[
Σ

(
v0Σ+ Ip +

k − i0
i0

(v1Σ+ Ip)

)−1
]

= tr

[
Σ

((
i0

k − i0
v0 + v1

)
Σ+

k

k − i0
Ip

)−1
]

where v0 = v(−λ; γ0,ΣC0) and γ0 = p/i0. Note that the fixed-point solution v0 depends on
v1. The fixed-point equations reduce to

1

v0
= λ+ γ0 tr[ΣC0(v0ΣC0 + Ip)

−1]/p = λ+
p

k
tr

[
Σ

((
i0
k
v0 +

k − i0
k

v1

)
Σ+ Ip

)−1
]
/p

1

v1
= λ+ γ1 tr[ΣC1(v1ΣC1 + Ip)

−1]/p = λ+
p

k
tr

[
Σ

((
i0
k
v0 +

k − i0
k

v1

)
Σ+ Ip

)−1
]
/p

almost surely. By the same argument as in the proof for Lemma 20, we have that the
solution v0 = v1 = v(−λ; p/k) of the above system does not depend on samples and equals
to v(−λ; γ1,ΣC1) or v(−λ; γ0,ΣC0) almost surely. Thus, by Lemma 45,

Mdet
N0,i0Σ̂0M

det
N0,i0Σ ≃ k2

i20
(N−1

0 + λC∗)−1Σ̂0(N
−1
0 + λC∗)−1 | i0,
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where C∗ = (k − i0)/i0 · (v(−λ; p/k)Σ+ Ip). From Lemma 39 (3), we have

Mdet
N0,i0Σ̂0M

det
N0,i0Σ ≃ (M1Σ̂0M2Σ)deti0 :=

k2

i20
ṽv(−λ; γ0,ΣC∗)(v(−λ; γ0,ΣC∗)Σ+ Ip +C∗)−2Σ2 | i0,

where γ0 = p/i0.
From Parts (a) to (c), we have shown that M1Σ̂0M2Σ ≃ (M1Σ̂0M2Σ)deti0

| i0 for
i0 < k. Note that this also holds for i0 = k. Then by Proposition 35, M1Σ̂0M2Σ ≃
(M1Σ̂0M2Σ)deti0

.
Note that from Lemma 42, ṽb(−λ; γ) and v(−λ; γ) are continuous on γ, and from

Lemma 48, i0/k
a.s.−−→ ϕ/ϕs where ϕs ∈ (0,∞) is the limiting ratio such that p/k → ϕs

as k, p→ ∞. We have

M1Σ̂0M2Σ ≃ ϕ2s
ϕ2
ṽv(−λ;ϕ0,ΣC′)(v(−λ;ϕ0,ΣC′)Σ+ Ip +C ′)−2Σ2,

where ϕ0 = ϕ2s/ϕ, ΣC′ = (Ip+C ′)−
1
2Σ(Ip+C ′)−

1
2 , and C ′ = (ϕs−ϕ)/ϕ ·(v(−λ;ϕs)Σ+Ip).

From (61), we have that v(−λ;ϕ0;ΣC′) = v(−λ;ϕs), and

ϕṽv(−λ;ϕ0,ΣC′) = lim
p→∞

ϕ

v(−λ;ϕ0,C ′)−2 − ϕ0 tr[Σ2(v(−λ;ϕ0,C ′)Σ+ Ip +C ′)−2]/p

= lim
p→∞

ϕ

v(−λ;ϕs)−2 − ϕ tr[Σ2(v(−λ;ϕs)Σ+ Ip)−2]/p

=
ϕ

v(−λ;ϕs)−2 − ϕ
∫

r2

(1+v(−λ;ϕs)r)2 dH(r)
:= vv(−λ;ϕ, ϕs).

From Lemma 41 (4), we have that vv(−λ;ϕ, ϕs) > 0. Then we have

M1Σ̂0M2Σ ≃ ϕ−1vv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)
−2Σ2, (67)

and thus, we have

i0
k2

tr(M1Σ̂0M2Σ))
a.s.−−→ lim

p→∞

i0p

k2
1

ϕ
· 1
p
tr(vv(−λ;ϕ, ϕs)(v(−λ;ϕs)Σ+ Ip)

−2Σ2)

= lim
p→∞

1

p

p∑
i=1

vv(−λ;ϕ, ϕs)r2i
(1 + v(−λ;ϕs)ri)2

= lim
p→∞

∫
vv(−λ;ϕ, ϕs)r2

(1 + v(−λ;ϕs)r)2
dHp(r)

=

∫
vv(−λ;ϕ, ϕs)r2

(1 + v(−λ;ϕs)r)2
dH(r) := ṽ(−λ;ϕ, ϕs), (68)

where in the last line we used the fact that Hp and H have compact supports and Assump-
tion 5.
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C.3 Boundary case: diverging subsample aspect ratio

Proposition 22 (Risk approximation when ϕs → +∞). Under Assumptions 1-5, it holds
for all M ∈ N

R(f̃WRλ,M ;Dn, {Iℓ}Mℓ=1)
a.s.−−→ Rsub

λ,M (ϕ,∞),

as k, n, p→ ∞, p/n→ ϕ ∈ (0,∞) and p/k → ∞, where

Rsub
λ,M (ϕ,∞) := lim

ϕs→+∞
Rsub
λ,M (ϕ, ϕs) = σ2 + ρ2

∫
r dG(r) (69)

and Rsub
λ,M (ϕ, ϕs) is defined in Theorem 19.

Proof Note that

R(f̃WRλ,M ;Dn, {Iℓ}Mℓ=1) = E(x0,y0)[(y0 − x⊤
0 β̃λ,M ({DIℓ}

M
ℓ=1))

2]

= E(x0,y0)[(ϵ0 + x⊤
0 (β0 − β̃λ,M ({DIℓ}

M
ℓ=1)))

2]

= σ2 + E(x0,y0)[(β0 − β̃λ,M ({DIℓ}
M
ℓ=1))

⊤x0x
⊤
0 (β0 − β̃λ,M ({DIℓ}

M
ℓ=1))]

= σ2 + (β0 − β̃λ,M ({DIℓ}
M
ℓ=1))

⊤Σ(β0 − β̃λ,M ({DIℓ}
M
ℓ=1)).

Then, by the Cauchy-Schwarz inequality, we have

R(f̃WRλ,M ;Dn, {Iℓ}Mℓ=1)− (β⊤
0 Σβ0 + σ2) = ∥Σ

1
2 β̃λ,M ({DIℓ}

M
ℓ=1)∥22 − 2β̃λ,M ({DIℓ}

M
ℓ=1)

⊤Σβ0

≤ 1

rmin
∥β̃λ,M ({DIℓ}

M
ℓ=1)∥22 + 2∥β̃λ,M ({DIℓ}

M
ℓ=1)∥2∥Σ∥2

≤ 1

rmin
∥β̃λ,M ({DIℓ}

M
ℓ=1)∥22 + 2rmaxρ∥β̃λ,M ({DIℓ}

M
ℓ=1)∥2,

almost surely as k, n, p→ and p/k → ∞. Thus, we have the following holds almost surely:

∥β̃λ,M ({DIℓ}
M
ℓ=1)({DIℓ}

M
ℓ=1)∥2 ≤

1

M

M∑
m=1

∥(X⊤LmX/k + λIp)
−1(X⊤Lmy/k)∥2

≤ 1

M

M∑
m=1

∥(X⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥ · ∥Lmy/

√
k∥2

≤ C
√
ρ2 + σ2 · 1

M

M∑
m=1

∥(X⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥,

where the last inequality holds eventually almost surely since Assumptions 1-3 imply that
the entries of y have bounded 4-th moment, and thus from the strong law of large numbers,
∥Lmy/

√
k∥2 is eventually almost surely bounded above by C

√
E[y21] = C

√
ρ2 + σ2 for some

constant C. Observe that operator norm of the matrix (X⊤LmX/k + λIp)
−1XLm/

√
k is

upper bounded maxi si/(s
2
i + λ) ≤ 1/smin where si’s are the singular values of X and smin

is the smallest nonzero singular value. As k, p→ ∞ such that p/k → ∞, smin → ∞ almost
surely (e.g., from results in Bloemendal et al. (2016)) and therefore, ∥β̃λ,M ({DIℓ}Mℓ=1)∥2 → 0
almost surely. Thus, we have shown that

R(f̃WRλ,M ;Dn, {Iℓ}Mℓ=1)
a.s.−−→ σ2 + β⊤

0 Σβ0.

61



Patil, Du, and Kuchibhotla

or equivalently

R(f̃WRλ,M ;Dn, {Iℓ}Mℓ=1)
a.s.−−→ σ2 + ρ2

∫
r dG(r).

From Lemma 42, we have

lim
ϕs→+∞

v(−λ;ϕs) = lim
ϕs→+∞

ṽb(−λ;ϕs) = lim
ϕs→+∞

ṽv(−λ;ϕs).

Thus,
lim

ϕs→+∞
Vλ(ϕ, ϕs) = lim

ϕs→+∞
Vλ(ϕ, ϕs) = 0

and

lim
ϕs→+∞

Bλ(ϕ, ϕs) = lim
ϕs→+∞

Bλ(ϕ, ϕs) = ρ2
∫
r dG(r).

Therefore, we have Rsub
λ,M (ϕ,∞) := limϕs→+∞ Rsub

λ,M (ϕ, ϕs) = σ2 + ρ2
∫
r dG(r). Thus,

Rsub
λ,M (ϕ,∞) is well defined and Rsub

λ,M (ϕ, ϕs) is right continuous at ϕs = +∞.

Appendix D. Proof of Theorem 6 (subagging ridgeless with replacement)

As done in Section C, for proving the asymptotic conditional risks, we will treat Ik or Iσk as
fixed. We will use f̃WR0,M to denote the ingredient predictor associated with the ridge penalty
λ = 0.

D.1 Proof assembly

We first explicitly write out the statement of Theorem 6 for the ridgeless case of λ = 0. As
in Section C, we obtain the risk decomposition for general M though it suffices to analyze
the case M = 2 according to Theorem 5.

For ridgeless predictors (λ = 0) and θ > 1, the scalar v(0; θ) is the unique fixed-point
solution to the following equation:

v(0; θ)−1 = θ

∫
r(1 + v(0; θ)r)−1 dH(r). (70)

and the nonnegative constants ṽ(0;ϑ, θ) and c̃(0; θ) are defined via the following equations:

ṽ(0;ϑ, θ) =
ϑ
∫
r2(1 + v(0; θ)r)−2 dH(r)

v(0; θ)−2 − ϑ
∫
r2(1 + v(0; θ)r)−2 dH(r)

, c̃(0; θ) =

∫
r(1 + v(0; θ)r)−2 dG(r).

(71)

When θ ≤ 1, the quantities defined in (70) and (71) are interpreted as limλ→0+ v(−λ; θ) = ∞,
limλ→0+ c̃(−λ; θ) = 0 and limλ→0+ ṽ(−λ;ϑ, θ) = ϑ(1− ϑ)−1.

Theorem 23 (Risk characterization of subagged ridgeless predictor). Let f̃WR0,M be the ingre-
dient predictor as defined in (14). Suppose Assumptions 1-5 hold for the dataset Dn. Then,
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as k, n, p→ ∞ such that p/n→ ϕ ∈ (0,∞) and p/k → ϕs ∈ [ϕ,∞] and ϕs ̸= 1, there exists
a deterministic function Rsub

0,M (ϕ, ϕs), M ∈ N, such that for I1, . . . , IM
SRSWR∼ Ik,

sup
M∈N

|R(f̃WR0,M ; {DIℓ}
M
ℓ=1)− Rsub

0,M (ϕ, ϕs)|
p−→ 0,

and
sup
M∈N

|R(f̃0,M ;Dn)− Rsub
0,M (ϕ, ϕs)|

a.s.−−→ 0.

Furthermore, the function Rsub
0,M (ϕ, ϕs) decomposes as Rsub

0,M (ϕ, ϕs) = σ2 + Bsub
0,M (ϕ, ϕs) +

V sub
0,M (ϕ, ϕs), where the terms are given by Bsub

0,M (ϕ, ϕs) =M−1B0(ϕs, ϕs)+(1−M−1)B0(ϕ, ϕs),

and V sub
0,M (ϕ, ϕs) =M−1V0(ϕs, ϕs)+(1−M−1)V0(ϕ, ϕs), and the functions B0(·, ·) and V0(·, ·)

are defined as

B0(ϑ, θ) =

{
0 θ ∈ (0, 1), ϑ ≤ θ

ρ2(1 + ṽ(0;ϑ, θ)c̃(0; θ) θ ∈ (1,∞], ϑ ≤ θ
, V0(ϑ, θ) =

σ2
ϑ

1− ϑ
θ ∈ (0, 1), ϑ ≤ θ

σ2ṽ(0;ϑ, θ) θ ∈ (1,∞], ϑ ≤ θ

,

where the nonnegative constants ṽ(0;ϑ, θ) and c̃(0; θ) are as defined in (71).

Proof We use the same notations as in the proof for Theorem 19 and let Σ̂m = X⊤LmX/k
for all m ∈ [M ]. Note that

β0 − β̃({DIℓ}
M
ℓ=1) =

1

M

M∑
m=1

(Ip − Σ̂+
mΣ̂m)β0 −

1

M

M∑
m=1

Σ̂+
m

X⊤Lmϵ

k
.

We have

R(f̃WR0,M ;Dn, {Iℓ}Mℓ=1) = σ2 + (β0 − β̃({DIℓ}
M
ℓ=1))

⊤Σ(β0 − β̃({DIℓ}
M
ℓ=1))

= σ2 + TB + TV + TC ,

where

TC = − 2

M2
ϵ⊤

(
M∑
m=1

Σ̂+
m

X⊤Lm
k

)⊤

Σ

(
M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
β0, (72)

TB =
1

M2
β⊤
0

(
M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
Σ

(
M∑
m=1

(Ip − Σ̂+
mΣ̂m)

)
β0, (73)

TV =
1

M2
ϵ⊤

(
M∑
m=1

Σ̂+
m

X⊤Lm
k

)⊤

Σ

(
M∑
m=1

Σ̂+
m

X⊤Lm
k

)
ϵ. (74)

Next we analyze the three term separately for M ∈ {1, 2}. From Patil et al. (2022a,
Lemma S.3.2), we have that TC

a.s.−−→ 0. Further, from Lemma 24, Lemma 25, and Lemma 26,
for all I1 ∈ Ik when M = 1 and for all Im, Il

SRSWR∼ Ik when M = 2, it holds that

R(f̃M,λ; {DIℓ}
M
ℓ=1)

a.s.−−→ Rsub
0,M (ϕ, ϕs)
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as n, k, p→ ∞, p/n→ ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) \ {1}, where

Rsub
0,M (ϕ, ϕs) = σ2 +

1

M
(B0(ϕs, ϕs) + V0(ϕs, ϕs)) +

M − 1

M
(B0(ϕ, ϕs) + V0(ϕ, ϕs)).

Here, the components are:

B0(ϕ, ϕs) =

{
0, ϕs ∈ (0, 1)

ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs), ϕs ∈ (1,∞)
, V0(ϕ, ϕs) =

{
σ2 ϕ

1−ϕ , ϕs ∈ (0, 1)

σ2ṽ(0;ϕ, ϕs), ϕs ∈ (1,∞)
,

and the nonnegative constants ṽ(0;ϕ, ϕs) and c̃(0;ϕs) are as defined in (71). The proof
for the boundary case when ϕs = ∞ follows from Proposition 27. Then, we have that the
function Rsub

0,M (ϕ, ϕs) is continuous on [ϕ,∞] \ {1} and lower-semi continuous on [ϕ,∞].
Finally, the risk expression for general M and the uniformity claim over M ∈ N follow

from Theorem 5.

D.2 Component deterministic approximations

D.2.1 Deterministic approximation of the bias functional

Lemma 24 (Deterministic approximation of the bias functional). Under Assumptions 1-5,
for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be a diagonal matrix
with (Lm)ll = 1 if l ∈ Im and 0 otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

β⊤
0 (Ip − Σ̂+

mΣ̂m)Σ(Ip − Σ̂+
mΣ̂m)β0

a.s.−−→

{
0 ϕs ∈ (0, 1)

ρ2(1 + ṽ(0;ϕs, ϕs))c̃(0;ϕs) ϕs ∈ (1,∞),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

β⊤
0 (Ip − Σ̂+

mΣ̂m)Σ(Ip − Σ̂+
l Σ̂l)β0

a.s.−−→

{
0 ϕs ∈ (0, 1)

ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs) ϕs ∈ (1,∞),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) \ {1}, where the nonnegative
constants ṽ(0;ϕ, ϕs) and c̃(0;ϕs) are as defined in (71).

Proof For the first term, we have that for m ∈ [M ],

β⊤
0 (Ip − Σ̂+

mΣ̂m)Σ(Ip − Σ̂+
mΣ̂m)β0

a.s.−−→

{
0 if ϕs ∈ (0, 1)

ρ2(1 + ṽb(0;ϕs))
∫

r
(1+v(0;ϕs)r)2

dG(r) if ϕs ∈ (1,∞).

(75)

Next we analyze the second term, by considering the following two cases separately for
(m, l) = (1, 2).
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(1) ϕs ∈ (0, 1). Since the singular values of Σ̂j ’s are almost surely lower bounded away from
0, we have Σ̂+

j Σ̂j = Ip almost surely. Then β⊤
0 (Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2)β0

a.s.−−→ 0 when
k, p→ ∞ and p/k → ϕs ∈ (0, 1).
(2) ϕs ∈ (1,∞). We begin with analyzing the deterministic equivalent of (Ip−Σ̂+

1 Σ̂1)Σ(Ip−
Σ̂+

2 Σ̂2). Recall that i0 is the number of shared samples between DI1 and DI2 , and Σ̂0 =

X⊤L1L2X
⊤/i0 and Σ̂ind

j = X⊤(Lj − L1L2)X
⊤/(k − i0) are the common and individual

covariance estimators of the two datasets. Also note that from (62), we have λ2M1ΣM2 ≃
(λ2M1ΣM2)

det, where

(λ2M1ΣM2)
det = (1 + ṽ(−λ;ϕs, ϕ)) (v(−λ;ϕs)Σ+ Ip)

−2Σ > 0, (76)

and ṽ(−λ;ϕs, ϕ) is as defined in (71). Let λ ∈ Λ = [0, λmax] where λmax < ∞. For any
matrix T ∈ Rp×p with trace norm uniformly bounded by M ,

| tr[λ2M1ΣM2T ]| ≤ λ2 ∥M1∥op ∥M2∥op ∥Σ∥op | tr[(T
⊤T )

1
2 ]| ≤Mrmax ∥Σ∥op

where the second inequality holds because ∥M1∥op ≤ λ−1 and ∥Σ∥op ≤ rmax. Since ϕ0 ≥
ϕs > 1, it follows from Patil et al. (2022b, Lemma S.6.14) that, there exists M ′ > 0 such
that the magnitudes of v(−λ;ϕs) and vb(λ, ϕs, ϕ)− 1, and their derivatives with respect to
λ are continuous and bounded by M ′ for all λ ∈ Λ. Thus, we get∣∣∣tr [(λ2M1ΣM2)

detT
]∣∣∣ ≤ (1 +M ′) ∥v(−λ;ϕs)Σ+ Ip∥−2

op ∥Σ∥op | tr[(T
⊤T )

1
2 ]|

≤ (1 +M ′)Mrmax.

Similarly, in the same interval the derivatives of tr
[
λ2M1ΣM2T

]
and tr

[
(λ2M1ΣM2)

detT
]

with respect to λ also have bounded magnitudes for λ ∈ Λ. Therefore, the family of functions

tr[λ2M1ΣM2T ]− tr
[
(λ2M1ΣM2)

detT
]

forms an equicontinuous family in λ over λ ∈ Λ. Thus, the convergence in Part 1 of
Lemma 38 is uniform in λ. We can now use the Moore-Osgood theorem and the continuity
property from Lemma 44 to interchange the limits to obtain

lim
p→∞

tr
[
(Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2)T

]
− tr

[
((Ip − Σ̂+

1 Σ̂1)Σ(Ip − Σ̂+
2 Σ̂2))

detT
]

= lim
p→∞

lim
λ→0+

tr
[
λ2M1ΣM2T

]
− tr

[
(λ2M1ΣM2)

detT
]

= lim
λ→0+

lim
p→∞

tr
[
λ2M1ΣM2T

]
− tr

[
(λ2M1ΣM2)

detT
]

= 0,

where

((Ip − Σ̂+
1 Σ̂1)Σ(Ip − Σ̂+

2 Σ̂2))
det = (1 + ṽ(0;ϕ, ϕs))(v(0;ϕs)Σ+ Ip)

−2Σ.

As p → ∞, replacing the empirical distribution Gp(r) by limiting distribution G(r) yields
the desired results.

65



Patil, Du, and Kuchibhotla

D.2.2 Deterministic approximation of the variance functional

Lemma 25 (Deterministic approximation of the variance functional when ϕs < 1). Under
Assumptions 1-5, for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be
a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0 otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

1

k
tr(Σ̂+

mΣ)
a.s.−−→ ϕs

1− ϕs
,

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1

k
tr(Σ̂+

l X
⊤LlLmΣ̂

+
mΣ)

a.s.−−→ ϕ

1− ϕ

as n, k, p→ ∞, p/n→ ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) ∩ (0, 1).

Proof For the first term, from Patil et al. (2022b, Proposition S.3.2) we have that for
m ∈ [M ],

1

k
tr(Σ̂+

mΣ)
a.s.−−→


ϕs

1− ϕs
if ϕs ∈ (0, 1)

ϕsvv(0;ϕ, ϕs)

∫
r2

(1 + v(0;ϕs)r)2
dH(r) if ϕs ∈ (1,∞)

. (77)

Next we analyze the second term for ϕs ∈ (0, 1). It suffices to analyze the case when
(m, l) = (1, 2). From Bai and Silverstein (2010), we have

rmin(1−
√
ϕs)

2 ≤ lim inf
∥∥∥Σ̂j

∥∥∥
op

≤ lim sup
∥∥∥Σ̂j

∥∥∥
op

≤ rmax(1 +
√
ϕs)

2, j = 1, 2.

Then Σ̂j ’s are invertible almost surely. From Lemma 40, we have that for j = 1, 2,

Σ̂−1
j =

(
i0
k
Σ̂0 +

k − i0
k

Σ̂ind
1

)−1

≃
(
i0
k
Σ̂0 + (1− ϕs)

k − i0
k

Σ

)−1

,

where Σ̂0 = X⊤L1L2X/i0 and Σ̂ind
j = X⊤LjX/(k − i0) for j = 1, 2, defined analogously

as in the proof for Theorem 19. Thus, conditional on Σ̂0 and i0, we have

Σ̂−1
1 Σ̂0Σ̂

−1
2 Σ ≃

(
i0
k
Σ̂0 + (1− ϕs)

k − i0
k

Σ

)−1

Σ̂0

(
i0
k
Σ̂0 + (1− ϕs)

k − i0
k

Σ

)−1

=
i20
k2

(
Σ̂0 + (1− ϕs)

k − i0
i0

Σ

)−1

Σ̂0

(
Σ̂0 + (1− ϕs)

k − i0
i0

Σ

)−1

Σ

by applying the conditional product rule from Proposition 35. When i0 < k, let Σ̂′ =
cΣ− 1

2 Σ̂0Σ
− 1

2 and c = (1− ϕs)(k − i0)/i0, we further have

Σ̂−1
1 Σ̂0Σ̂

−1
2 Σ ≃ i20

k2c2
Σ− 1

2 (Σ̂′ + Ip)
−1Σ̂′(Σ̂′ + Ip)

−1Σ− 1
2Σ
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≃ i20
k2
ṽv(−1; γ0, c

−1Ip)(v(−1; γ0, c
−1Ip) + c)−2Ip,

where γ0 = p/i0, the second equality is from Lemma 38 (2) and the fixed point solutions are
defined by

1

v(−1; γ0, c−1Ip)
= 1 +

γ0
c+ v(−1; γ0, c−1Ip)

1

ṽv(−1; γ0, c−1Ip)
=

1

v(−1; γ0, c−1Ip)2
− γ0

(c+ v(−1; γ0, c−1Ip))2
.

When i0 = k, the above equivalent is also valid, which reduces to the case for Σ̂+
j Σ̂jΣ̂

+
j as

in (77). Note that from Lemma 42, ṽv(−λ; γ) and v(−λ; γ) are continuous on γ, and from
Lemma 48, i0/k

a.s.−−→ ϕ/ϕs where ϕs ∈ (0,∞) is the limiting ratio such that p/k → ϕs as
k, p→ ∞. We have

Σ̂−1
1 Σ̂0Σ̂

−1
2 Σ ≃ ϕ2s

ϕ20
ṽv(−1;ϕ0, c

−1
0 Ip)(v(−1;ϕ0, c

−1
0 Ip) + c0)

−2Ip,

where c0 = limp→∞ c = (1− ϕs)(ϕs − ϕ)/ϕ and the fixed solutions reduce to

v(−1; γ0, c
−1
0 Ip) = 1− ϕs, ṽv(−1; γ0, c

−1
0 Ip) =

(1− ϕs)
2

1− ϕ
.

Then, we have

i0
k2

tr[Σ̂+
1 Σ̂0Σ̂

+
2 Σ]

a.s.−−→ lim
p→∞

i0p

k2
· 1
p
tr

[
ϕ2s
ϕ2

(1− ϕs)
2

1− ϕ

(
1− ϕs +

(1− ϕs)(ϕs − ϕ)

ϕ

)−2

Ip

]
=

ϕ

1− ϕ
.

(78)

Combining (77) and (78), the conclusion follows.

Lemma 26 (Deterministic approximation of the variance functional when ϕs > 1). Under
Assumptions 1-5, for all m ∈ [M ] and Im ∈ Ik, let Σ̂m = X⊤LmX/k and Lm ∈ Rn×n be
a diagonal matrix with (Lm)ll = 1 if l ∈ Im and 0 otherwise. Then, it holds that

1. for all m ∈ [M ] and Im ∈ Ik,

1

k
tr(Σ̂+

j Σ)
a.s.−−→ 1

2
ṽ(0;ϕs, ϕs),

2. for all m, l ∈ [M ], m ̸= l and Im, Il
SRSWR∼ Ik,

1

k2
ϵ⊤L1XΣ̂+

mΣΣ̂+
l X

⊤L2ϵ
a.s.−−→ 1

2
ṽ(0;ϕ, ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) ∩ (1,∞), where the nonnegative
constants v(0;ϕs) and ṽ(0;ϕ, ϕs) are as defined in (70) and (71).
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Proof From (77) we have

1

k
tr(Σ̂+

mΣ)
a.s.−−→ ṽ(0;ϕ, ϕs). (79)

For the second term, it suffices to consider the case when (m, l) = (1, 2). Let P0 =
ϵ⊤L1XΣ̂+

1 ΣΣ̂+
2 X

⊤L2ϵ/k
2 and Pλ = ϵ⊤L1XM1Σ M2X

⊤L2ϵ/k
2 where Mj = (Σ̂j +

λIp)
−1. Note that limλ→0+ Pλ = P0. Note that limλ→0+ Pλ = P0. From Patil et al. (2022a,

Lemma S.2.3) and Lemma 21, we have that for any fixed λ > 0,

Pλ
a.s.−−→ Qλ := ṽ(−λ;ϕ, ϕs),

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞) \ {1}, where ṽ(λ, ϕs, ϕ) is as
defined in (52). Because of the continuity of ṽv(−λ;ϕ) and v(−λ;ϕ) in λ from Lemma 44,
we have that

lim
λ→0+

Qλ = Q0 := ṽ(0;ϕ, ϕs).

As n, p→ ∞, we have that almost surely

|Pλ| = ϕ| tr(M2Σ̂0M1Σ)/p| ≤ ϕ∥M1Σ̂0M2∥op∥Σ∥op ≤ ϕ2srmax

ϕ
,

where the last inequality is because
∥∥∥Σ̂0

∥∥∥
op

≤ rmax, and

∥∥∥M1Σ̂0M2

∥∥∥
op

≤ k2

i20
·max

i

li(
li +

k−i0
i0
λ
)2 ≤ k2

i20
, (80)

where li’s are the eigenvalues of Σ̂0. Similarly, we have |P0| is almost surely bounded. Thus,
|Pλ| is almost surely bounded over λ ∈ Λ[0, λmax] for some constant λmax > 0. Next we
consider the derivative

∂Pλ
∂λ

= ϵ⊤L1X
∂M1

∂λ
ΣM2X

⊤L2ϵ/k
2 + ϵ⊤L1XM1Σ

∂M2

∂λ
X⊤L2ϵ/k

2

= −ϵ⊤L1XM2
1ΣM2X

⊤L2ϵ/k
2 − ϵ⊤L1XM1ΣM2

2X
⊤L2ϵ/k

2

Note that for λ ∈ Λ, we can bound∥∥∥M2
1 Σ̂0M2

∥∥∥
op

≤ k2

i20
·max

i

li(
li +

k−i0
i0
λ
)3 ≤ k2

i20
,

where li’s are the eigenvalues of Σ̂0. Similarly, we have that
∥∥∥M1Σ̂0M

2
2

∥∥∥
op

is almost surely

bounded for λ ∈ Λ. By similar argument as in Patil et al. (2022a, Lemma S.3.3), the following
holds almost surely as n, p→ ∞,∣∣∣∣∂Pλ∂λ

∣∣∣∣ = ϕ| tr(M2
1 Σ̂0M2Σ) + tr(M1Σ̂0M

2
2Σ)| ≤ ϕ2srmax

ϕ
.
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That is, |∂Pλ/∂λ| is almost surely bounded over λ ∈ Λ[0, λmax].
Since ϕ0 ≥ ϕs > 1, it follows from Patil et al. (2022b, Lemma S.6.14) that, there exists

M ′ > 0 such that the magnitudes of v(−λ;ϕs) and vv(λ, ϕs, ϕ)/ϕ, and their derivatives with
respect to λ are continuous and bounded by M ′ for all λ ∈ Λ. Thus, |Qλ| ≤ ϕ0M

′r2max over
λ ∈ Λ. Similarly, we have |∂Qλ/∂λ|λ=0+ | are uniformly bounded over λ ∈ Λ. We can now
use the Moore-Osgood theorem and the continuity property from Lemma 44 to interchange
the limits to obtain

lim
p→∞

P0 −Q0 = lim
p→∞

lim
λ→0+

Pλ −Qλ = lim
λ→0+

lim
p→∞

Pλ −Qλ = 0,

and the conclusion follows.

D.3 Boundary case: diverging subsample aspect ratio

Proposition 27 (Risk approximation when ϕs → ∞). Under Assumptions 1-5, it holds for
all M ∈ N

R(f̃WR0,M ;Dn, {Iℓ}Mℓ=1)
a.s.−−→ Rsub

0,M (ϕ,∞),

as k, n, p→ ∞, p/n→ ϕ ∈ (0,∞) and p/k → ∞, where

Rsub
0,M (ϕ,∞) := lim

ϕs→∞
Rsub

0,M (ϕ, ϕs) = σ2 + ρ2
∫
r dG(r), (81)

and Rsub
0,M (ϕ, ϕs) is as defined in Theorem 23.

Proof Note that

R(f̃WR0,M ;Dn, {Iℓ}Mℓ=1) = E(x0,y0)[(y0 − x⊤
0 β̃0,M ({DIℓ}

M
ℓ=1))

2]

= E(x0,y0)[(ϵ0 + x⊤
0 (β0 − β̃0,M ({DIℓ}

M
ℓ=1)))

2]

= σ2 + E(x0,y0)[(β0 − β̃0,M ({DIℓ}
M
ℓ=1))

⊤x0x
⊤
0 (β0 − β̃0,M ({DIℓ}

M
ℓ=1))]

= σ2 + (β0 − β̃0,M ({DIℓ}
M
ℓ=1))

⊤Σ(β0 − β̃0,M ({DIℓ}
M
ℓ=1)).

Then, by the Cauchy-Schwarz inequality, we have

R(f̃WR0,M ;Dn, {Iℓ}Mℓ=1)− (β⊤
0 Σβ0 + σ2) = ∥Σ

1
2 β̃0,M ({DIℓ}

M
ℓ=1)∥22 − 2β̃0,M ({DIℓ}

M
ℓ=1)

⊤Σβ0

≤ 1

rmin
∥β̃0,M ({DIℓ}

M
ℓ=1)∥22 + 2∥β̃0,M ({DIℓ}

M
ℓ=1)∥2∥Σ∥2

≤ 1

rmin
∥β̃0,M ({DIℓ}

M
ℓ=1)∥22 + 2rmaxρ∥β̃0,M ({DIℓ}

M
ℓ=1)∥2

almost surely as k, n, p→ and p/k → ∞. Thus, we have the following holds almost surely:

∥β̃0
M (Dn)∥2 ≤

1

M

M∑
m=1

∥(X⊤LmX/k)+(X⊤Lmy/k)∥2

≤ 1

M

M∑
m=1

∥(X⊤LmX/k)+X⊤Lm/
√
k∥ · ∥Lmy/

√
k∥2
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≤ C
√
ρ2 + σ2 · 1

M

M∑
m=1

∥(X⊤LmX/k)+X⊤Lm/
√
k∥

where the last inequality holds eventually almost surely since Assumptions 1-3 imply that
the entries of y have bounded 4-th moment, and thus from the strong law of large numbers,
∥Lmy/

√
k∥2 is eventually almost surely bounded above by C

√
E[y21] = C

√
ρ2 + σ2 for some

constant C. Observe that operator norm of the matrix (X⊤LmX/k)+XLm/
√
k is upper

bounded 1/smin, where smin is the smallest nonzero singular value of X. As k, p→ ∞ such
that p/k → ∞, smin → ∞ almost surely (e.g., from results in Bloemendal et al. (2016)), and
therefore, ∥β̃0,M ({DIℓ}Mℓ=1)∥2 → 0 almost surely. Thus, we have shown that

R(f̃WR0,M ;Dn, {Iℓ}Mℓ=1)
a.s.−−→ σ2 + β⊤

0 Σβ0,

or equivalently,

R(f̃WR0,M ;Dn, {Iℓ}Mℓ=1)
a.s.−−→ σ2 + ρ2

∫
r dG(r).

From Lemma 43 we have

lim
ϕs→∞

v(0;ϕs) = lim
ϕs→∞

ṽb(0;ϕs) = lim
ϕs→∞

ṽv(0;ϕs).

Thus,
lim
ϕs→∞

V0(ϕs, ϕs) = lim
ϕs→∞

V0(ϕ, ϕs) = 0,

and
lim
ϕs→∞

B0(ϕs, ϕs) = lim
ϕs→∞

B0(ϕ, ϕs) = ρ2
∫
r dG(r).

Therefore, we have RWR
0,M (ϕ,∞) := limϕs→∞ Rsub

0,M (ϕ, ϕs) = σ2+ρ2
∫
r dG(r). Thus, RWR

0,M (ϕ,∞)

is well defined and RWR
0,M (ϕ, ϕs) is right continuous at ϕs = ∞.

Appendix E. Proof of Theorem 8 (splagging without replacement, ridge
and ridgeless predictors)

Proof For M ∈ {1, 2, . . . , ⌊lim inf n/k⌋}, following the proof in Theorem 19, the conditional
risk is given by

R(f̃WORλ,M ; {DIℓ}
M
ℓ=1) = σ2 + TC + TB + TV ,

where TC , TB, and TV are defined as

TC = − λ

M
· ϵ⊤

(
M∑
m=1

Mm
X⊤Lm

k

)⊤

Σ

(
M∑
m=1

Mm

)
β0, (82)

TB =
λ2

M2
· β⊤

0

(
M∑
i=1

MIi

)
Σ

(
M∑
i=1

MIi

)
β0 (83)
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=
λ2

M

M∑
i=1

β⊤
0 MIiΣMIiβ0 +

λ2(M − 1)

M

M∑
i,j=1

β⊤
0 MIiΣMIjβ0,

TV =
1

M2
· ϵ⊤

(
M∑
i=1

MIi

X⊤Li
k

)⊤

Σ

(
M∑
i=1

MIi

X⊤Li
k

)
ϵ

=
1

M

M∑
i=1

(
MIi

X⊤Li
k

)⊤

Σ

(
MIi

X⊤Li
k

)
+
M − 1

M

M∑
i,j=1

(
MIi

X⊤Li
k

)⊤

Σ

(
MIj

X⊤Lj
k

)
,

(84)

where MIℓ = (X⊤LℓX/k + λIp)
−1 and Lℓ is a diagonal matrix with diagonal entry being

1 if the ℓth sample Xℓ is in the sub-sampled dataset DIℓ and 0 otherwise. Note that for
splagging, Ii ∩ Ij = ∅ for all i ̸= j.

We analyze each term separately for M ∈ {1, 2}. From Patil et al. (2022a, Lemma S.2.2),
we have that TC

a.s.−−→ 0. From Patil et al. (2022a, Lemma S.2.3), we have that

TV − 1

M

M∑
j=1

σ2

k
tr(MIjΣ̂jMIjΣ)

a.s.−−→ 0, (85)

since the datasets have no overlaps and the cross term vanishes because LlLm = 0n×n for
l ̸= m. Then, from (57) and (65), we have that for ℓ ∈ [M ],

λ2β⊤
0 MIℓΣMIℓβ0

a.s.−−→ ρ2ṽ(−λ;ϕs, ϕs)c̃(−λ;ϕs), (86)
σ2

k
tr(MIℓΣ̂ℓMIℓΣ)

a.s.−−→ σ2

2
ṽ(−λ;ϕs, ϕs), (87)

as n, k, p → ∞, p/n → ϕ ∈ (0,∞), and p/k → ϕs = 2ϕ, where the positive constants
ṽ(λ;ϕs, ϕ), and c̃(−λ;ϕs) are as defined in (52). For the cross term (i ̸= j), setting i0 = 0
in (59) yields that

MIiΣMIj ≃ (v(−λ;ϕs)Σ+ Ip)
−1Σ(v(−λ;ϕs)Σ+ Ip)

−1.

Thus,

λ2β⊤
0 MIiΣMIjβ0

a.s.−−→ ρ2
∫

r

(1 + v(−λ;ϕs)r)2
dG(r) = ρ2c̃(0;ϕs). (88)

Combining (82)-(88), we have shown that R(f̃WORλ,M ; {DIℓ}Mℓ=1)
a.s.−−→ Rspl

λ,M (ϕ, ϕs), where

Rspl
λ,M (ϕ, ϕs) = σ2 + Bspl

λ,M (ϕ, ϕs) + V spl
λ,M (ϕ, ϕs),

and the components are:

Bspl
λ,M (ϕ, ϕs) =

1

M
Bλ(ϕs, ϕs) +

(
1− 1

M

)
Cλ(ϕs), V spl

λ,M (ϕ, ϕs)
1

M
Vλ(ϕs, ϕs),

with Bλ(ϕ, ϕs) = ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs), Cλ(ϕs) = ρ2c̃(−λ;ϕs), and Vλ(ϕ, ϕs) =
σ2ṽ(−λ;ϕ, ϕs).
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From Proposition 22 and Proposition 27, we have that for all λ ∈ [0,∞) and M ∈ {1, 2},

lim
ϕs→+∞

R(f̃WORλ,M ; {D(m)
k }Mm=1) = σ2 + ρ2

∫
r dG(r),

limϕs→+∞Bλ(ϕs, ϕs) = ρ2
∫
r dG(r) and limϕs→+∞ v(−λ;ϕs) = limϕs→+∞ Vλ(ϕs, ϕs) = 0.

Then
lim

ϕs→+∞
c̃(−λ;ϕs) = lim

ϕs→+∞

∫
r(1 + v(−λ;ϕs)r)−2 dG(r) =

∫
r dG(r).

Thus, the approximation holds when ϕs = ∞: limϕs→+∞R(f̃WORλ,M ; {DIℓ}Mℓ=1) = limϕs→+∞ Rspl
λ,M (ϕ, ϕs).

Finally, the risk expression for general M and the uniform statement for all M ≤ ⌊n/k⌋
follow from Theorem 5.

Appendix F. Proofs related to bagged risk properties

F.1 Proof of Proposition 7 (bias-variance monotonicities in the number of
bags, subagging with replacement)

Proof Recall that from the proof for Theorem 19, we have

Bsub
λ,1 (ϕ, ϕs) = ρ2(1 + ṽ(−λ, ϕs, ϕs))c̃(−λ;ϕs) V sub

λ,1 (ϕ, ϕs) = σ2ṽ(−λ;ϕs, ϕs)
Bsub
λ,∞(ϕ, ϕs) = ρ2(1 + ṽ(−λ, ϕ, ϕs))c̃(−λ;ϕs) Bsub

λ,∞(ϕ, ϕs) = σ2ṽ(−λ;ϕ, ϕs)

where the nonnegative constants ṽ(−λ, ϕ, ϕs) and c̃(−λ;ϕs) are defined in (51). Since
H has positive support, ṽ(−λ;ϕ, ϕs) is strictly increasing in ϕ, and thus, Bsub

λ,∞(ϕ, ϕs) =

Bsub
λ,1 (ϕ, ϕs) when ϕs = ϕ, and Bsub

λ,1 (ϕ, ϕs) > Bsub
λ,∞(ϕ, ϕs) when ϕs > ϕ. Similarly,

V sub
λ,∞(ϕ, ϕs) = V sub

λ,1 (ϕ, ϕs) when ϕs = ϕ and V sub
λ,1 (ϕ, ϕs) < V sub

λ,∞(ϕ, ϕs) when ϕs > ϕ.
Recall that the definitions of Bsub

λ,M (ϕ, ϕs) = 1/M · Bλ(ϕs, ϕs) + (1 − 1/M)Bλ(ϕ, ϕs) and
V sub
λ,M (ϕ, ϕs) = 1/M · Vλ(ϕs, ϕs) + (1− 1/M)Vλ(ϕ, ϕs) are a convex combination of Bλ(ϕ, ϕs)

and Bλ(ϕs, ϕs), and Vλ(ϕ, ϕs) and Vλ(ϕs, ϕs), respectively. The proof for ridgeless predictor
follows by setting λ = 0 except B0(ϕ, ϕs) = B0(ϕ, ϕs) = 0 for ϕs < 1.

F.2 Proof of Proposition 9 (bias-variance monotonicities in the number of
bags, splagging without replacement)

Proof For the variance term, V spl
λ,M (ϕ, ϕs) =M−1Vλ(ϕs, ϕs) as a linear function of M−1 is

strictly decreasing in M if ϕs <∞ and is zero if ϕs = ∞ or σ2 = 0.
For the bias term, when ϕs > 1, since c̃(−λ;ϕs) > 0, we have that Bλ(ϕs, ϕs) ≥ Cλ(ϕs)

with equality holds if and only if ṽ(−λ;ϕ, ϕs) = 0 or c̃(−λ;ϕs) = 0, if and only if ϕs = ∞.
Then we have

Bspl
λ,M (ϕ, ϕs) =

1

M
Bλ(ϕs, ϕs) +

(
1− 1

M

)
Cλ(ϕs)

=
1

M
(Bλ(ϕs, ϕs)− Cλ(ϕs)) + Cλ(ϕs)
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≥ 1

M + 1
(Bλ(ϕs, ϕs)− Cλ(ϕs)) + Cλ(ϕs)

=
1

M + 1
Bλ(ϕs, ϕs) +

(
1− 1

M + 1

)
Cλ(ϕs)

= Bspl
λ,M+1(ϕ, ϕs).

with equality holds if ϕs = ∞ or ρ2 = 0. When ϕs < 1, Bλ(ϕs, ϕs) ≥ Cλ(ϕs) with equality
holds if and only if c̃(−λ;ϕs) = 0, if and only if λ = 0. The monotonicity of V spl

λ,M (ϕ, ϕs) in
M follows analogously.

AsM ≤ ϕs/ϕ, we further have V spl
λ,M (ϕ, ϕs) ≥ V spl

λ,ϕs/ϕ
(ϕ, ϕs) and V spl

λ,M (ϕ, ϕs) ≥ V spl
λ,ϕs/ϕ

(ϕ, ϕs)

for all M = 1, . . . , ⌊lim inf n/k⌋.

F.3 Proof of Theorem 10 (risk monotonization of general bagged predictors by
cross-validation)

Proof We present the proof for bagging with replacement, and the proof for bagging
without replacement follows by restricting the support of ϕs 7→ RM (ϕ, ϕs) to [Mϕ,∞].
From Theorem 5, we have that for any M ∈ N and {Iℓ}Mℓ=1 simple random samples from Ik
or Iπk , it holds that

R(f̃M ;Dn, {Iℓ}Mℓ=1)
p−→ RM (ϕ, ϕs)

as k, n, p→, p/n→ ϕ ∈ (0,∞), and p/k → ϕs ∈ [ϕ,∞), where

RM (ϕ, ϕs) := (2R(ϕ, ϕs)− R(ϕs, ϕs)) +
2

M
(R(ϕs, ϕs)− R(ϕ, ϕs)).

From Patil et al. (2022b, Lemma 3.8 and Theorem 3.4), we have that(
R(f̂ cvM,I

k̂
;Dn)− RM (ϕ, ϕs)

)
+

p−→ 0.

In Patil et al. (2022b), we have assumed that the risk is bounded away from 0 in order to
conclude that the relative error converges to 0. But in Theorem 10, we conclude only the
positive part of the absolute error converges to 0, for which we do not require the risk to be
bounded away from 0.

Since RM (ϕ, ϕs) is increasing in ϕ for any fixed ϕs. For 0 < ϕ1 ≤ ϕ2 <∞,

min
ϕs≥ϕ1

RM (ϕ1, ϕs) ≤ min
ϕs≥ϕ2

RM (ϕ1, ϕs) ≤ min
ϕs≥ϕ2

RM (ϕ2, ϕs)

where the first inequality follows because {ϕs : ϕs ≥ ϕ1} ⊇ {ϕs : ϕs ≥ ϕ2}, and the second in-
equality follows because RM (ϕ, ϕs) is increasing in ϕ for a fixed ϕs. Thus, minϕs≥ϕ RM (ϕ, ϕs)
is a monotonically increasing function in ϕ.
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F.4 Proof of Theorem 11 (risk monotonization of ridge bagged predictors by
cross-validation)

Proof It suffices to verify the two conditions (i) and (ii) in Theorem 10. From Theo-
rem 6 and Theorem 8, condition (i) holds naturally with RM (ϕ, ϕs) being the limiting risk
Rsub
λ,M (ϕ, ϕs) (or Rspl

λ,M (ϕ, ϕs)) for fixed λ ≥ 0. For condition (ii), note that when λ > 0,
RM (ϕ, ϕs) is continuous over [ϕ,∞]. When λ = 0, RM (ϕ, ϕs) is continuous over [ϕ,∞]\{1}
and can takes value infinity when ϕs tends to 1 from both sides. Thus, RM (ϕ, ϕs) is lower
semi-continuous over [ϕ,∞] and continuous on the set argminψ:ψ≥ϕ RM (ϕ, ψ) ⊆ [ϕ,∞]\{1}.

Following the discussion after Theorem 10, the uniform risk closeness condition for k ∈
Kn holds. Then by Theorem 10, we have that(

R(f̂ cvM ;Dn, {Ik̂,ℓ}
M
ℓ=1)− min

ϕs≥ϕ
Rsub
λ,M (ϕ, ϕs)

)
+

p−→ 0.

Recall that for any fixed θ, the function

ṽ(−λ;ϑ, θ) =
ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ;ϕs)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

≥ 0

is increasing in ϑ. Then Rsub
λ,M (ϕ, ϕs) as a function of ṽ(−λ;ϑ, θ) through (19) and (22) is

also increasing in ϕ for any fixed ϕs. For 0 < ϕ1 ≤ ϕ2 <∞,

min
ϕs≥ϕ1

Rsub
λ,M (ϕ1, ϕs) ≤ min

ϕs≥ϕ2
Rsub
λ,M (ϕ1, ϕs) ≤ min

ϕs≥ϕ2
Rsub
λ,M (ϕ2, ϕs)

where the first inequality follows because {ϕs : ϕs ≥ ϕ1} ⊇ {ϕs : ϕs ≥ ϕ2}, and the
second inequality follows because Rsub

λ,M (ϕ, ϕs) is increasing in ϕ for a fixed ϕs. Thus,
minϕs≥ϕ Rsub

λ,M (ϕ, ϕs) is a monotonically increasing function in ϕ.

F.5 Proof of Proposition 12 (optimal subagging versus optimal splagging)

Proof Recall that

Rsub
λ,M (ϕ, ϕs) =

1

M
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

(
1− 1

M

)
(Bλ(ϕ, ϕs) + Vλ(ϕ, ϕs)), M ∈ N

Rspl
λ,M (ϕ, ϕs) =

1

M
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

(
1− 1

M

)
Cλ(ϕs), M = 1, . . . , ⌊n

k
⌋.

From Proposition 7, we have that

Rsub
λ,M (ϕ, ϕs) ≥ Rsub

λ,∞(ϕ, ϕs)

= Bλ(ϕ, ϕs) + Vλ(ϕ, ϕs)

= ρ2(1 + ṽ(−λ;ϕ, ϕs))c̃(−λ;ϕs) + σ2ṽ(−λ;ϕ, ϕs)
= ρ2c̃(−λ;ϕs) + ṽ(−λ;ϕ, ϕs))(ρ2c̃(−λ;ϕs) + σ2). (89)
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where c̃(−λ;ϕs) =
∫
r/(1 + v(−λ;ϕs)r)2 dG(r). From Proposition 9, we have that for M ∈

N,

Rspl
λ,M (ϕ, ϕs) ≥ Rspl

λ,ϕs/ϕ
(ϕ, ϕs) =

ϕ

ϕs
(Bλ(ϕs, ϕs) + Vλ(ϕs, ϕs)) +

(
1− ϕ

ϕs

)
Cλ(ϕs). (90)

On the other hand,

Rspl
λ,ϕs/ϕ

(ϕ, ϕs) =
ϕ

ϕs
ρ2(1 + ṽ(−λ;ϕs, ϕs))c̃(−λ;ϕs) +

ϕ

ϕs
σ2ṽ(−λ;ϕs, ϕs)) +

(
1− ϕ

ϕs

)
ρ2c̃(−λ;ϕs)

= ρ2c̃(−λ;ϕs) +
ϕ

ϕs
ṽ(−λ;ϕs, ϕs))(ρ2c̃(−λ;ϕs) + σ2). (91)

Since v(−λ;ϕs) is strictly decreasing in ϕs from Lemma 42 and G has nonnegative support
from Assumption 5, we have that c̃(−λ;ϕs) is nonnegative and increasing in ϕs. Also note
that

ϕ

ϕs
ṽ(−λ;ϕs, ϕs)) =

ϕ
∫

r2

(1+v(−λ;ϕs)r)2 dH(r)

v(−λ;ϕs)−2 − ϕs
∫

r2

(1+v(−λ;ϕs)r)2 dH(r)

≥
ϕ
∫

r2

(1+v(−λ;ϕs)r)2 dH(r)

v(−λ;ϕs)−2 − ϕ
∫

r2

(1+v(−λ;ϕs)r)2 dH(r)

= ṽ(−λ;ϕ, ϕs). (92)

Suppose that ϕ∗ ∈ argmininfϕs∈[ϕ,∞]
Rspl
λ,M (ϕ, ϕs), we have

inf
M∈N,ϕs∈[ϕ,∞]

Rsub
λ,M (ϕ, ϕs) = inf

ϕs∈[ϕ,∞]
Rsub
λ,∞(ϕ, ϕs)

≤ Rsub
λ,∞(ϕ, ϕ∗)

= ρ2c̃(−λ;ϕ∗s) + ṽ(−λ;ϕ∗s, ϕ))(ρ2c̃(−λ;ϕ∗s) + σ2)

≤ ρ2c̃(−λ;ϕs) +
ϕ

ϕs
ṽ(−λ;ϕs, ϕs))(ρ2c̃(−λ;ϕs) + σ2)

= Rspl
λ,M (ϕs, ϕ

∗
s)

= inf
ϕs∈[ϕ,∞]

Rspl
λ,ϕs/ϕ

(ϕ, ϕs)

≤ inf
M∈N,ϕs∈[ϕ,∞]

Rspl
λ,M (ϕ, ϕs)

where in the second inequality we use (92) and the last inequality is from (90).

F.6 Proof of Proposition 13 (optimal bag size for ridgeless predictors)

Proof The proof of Proposition 13 follows by combining results from Lemma 28 and
Lemma 29 for subagged and splagged ridgeless predictors, respectively.

75



Patil, Du, and Kuchibhotla

Lemma 28 (Optimal risk for subagged ridgeless predictor). Suppose the conditions in The-
orem 6 hold, and σ2, ρ2 ≥ 0 are the noise variance and signal strength from Assumptions 2
and 3. Let SNR = ρ2/σ2. For any ϕ ∈ (0,∞), the properties of the optimal asymptotic risk
Rsub

0,∞(ϕ, ϕsubs (ϕ)) in terms of SNR and ϕ are characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): For all ϕ ≥ 0, the global minimum Rsub
0,∞(ϕ, ϕsubs (ϕ)) = σ2 is

obtained with ϕsubs (ϕ) = ∞.

(2) SNR > 0: For all ϕ ≥ 0, the global minimum of ϕs 7→ Rsub
0,∞(ϕ, ϕs) is obtained at

ϕsubs (ϕ) ∈ (1,∞).

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], the global minimum Rsub
0,∞(ϕ, ϕsubs (ϕ)) =

0 is obtained with any ϕsubs (ϕ) ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimum
Rsub

0,∞(ϕ, ϕsubs (ϕ)) is obtained at ϕsubs (ϕ) ∈ [ϕ,∞).

Proof From Theorem 6, the limiting risk for bagged ridgeless with M = ∞ is given by

Rsub
0,∞(ϕ, ϕs) = ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs) + σ2(1 + ṽ(0;ϕ, ϕs)).

Defined in (70)-(71), ṽ(0;ϕ, ϕs) ≥ 0 and c̃(0;ϕs) ≥ 0 are continuous functions of v(0;ϕs),
which is strictly decreasing over ϕs ∈ (1,∞) and satisfies limϕs→∞ v(0;ϕs) = 0 from
Lemma 43. Then we have ṽ(0;ϕ, ϕs) is decreasing in ϕs over (1,∞), c̃(0;ϕs) is increas-
ing in ϕs over (1,∞), and

lim
ϕs→∞

ṽ(0;ϕ, ϕs) = 0, lim
ϕs→∞

c̃(0;ϕs) =

∫
r dG(r).

Also, ṽ(0;ϕ, ϕs) = ϕ/(1 − ϕ) and c̃(0;ϕs) = 0 remain constant for ϕs ∈ (0, 1] from (24).
Then to determine the global minimum, it suffices to consider the case when ϕs ∈ [1,∞).
Next, we consider various cases depending on the value of SNR.

• First, consider the case SNR > 0. We consider further sub-cases depending the value of
the pair (ϕ, ϕs).

1. When ϕ ∈ (0, 1) and ϕs ∈ (1,∞],

∂Rsub
0,∞(ϕ, ϕs)

∂ϕs
=
∂Rsub

0,∞(ϕ, ϕs)

∂v(0;ϕs)

∂v(0;ϕs)

∂ϕs

= ρ2
ϕ
∫ v(0;ϕs)r2

(1+v(0;ϕs)r)3
dH(r)(

1− ϕ
∫ ( v(0;ϕs)r

(1+v(0;ϕs)r)

)2
dH(r)

)2

∫
r

(1 + v(0;ϕs)r)2
dG(r) · ∂v(0;ϕs)

∂ϕs

− 2ρ2
1

v(0;ϕs)2

1
v(0;ϕs)2

− ϕ
∫

r2

(1+v(0;ϕs)r)2
dH(r)

∫
r2

(1 + v(0;ϕs)r)3
dG(r) · ∂v(0;ϕs)

∂ϕs

+ σ2
ϕ
∫ v(0;ϕs)r2

(1+v(0;ϕs)r)3
dH(r)(

1− ϕ
∫ ( v(0;ϕs)r

(1+v(0;ϕs)r)

)2
dH(r)

)2 · ∂v(0;ϕs)
∂ϕs

.
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Note that from Lemma 42, v(0;ϕs) is differentiable in ϕs ∈ (0,∞] with

∂v(0;ϕs)

∂ϕs
= −

∫
r

1+v(0;ϕs)r
dH(r)

1
v(0;ϕs)2

− ϕs
∫

r2

(1+v(0;ϕs)r)2
dH(r)

being negative over ϕs ∈ (1,∞) and continuous in ϕs ∈ (1,∞], and

lim
ϕs→1+

∂v(0;ϕs)

∂ϕs
= −∞, lim

ϕs→∞

∂v(0;ϕs)

∂ϕs
= − lim

ϕs→∞
ṽv(0;ϕs)

∫
r

1 + v(0;ϕs)r
dH(r) = 0

by Lemma 43 with ṽv defined in (111). We have that ∂Rsub
0,∞(ϕ, ϕs)/∂ϕs is continuous

over ϕs ∈ (1,∞]. Since limϕs→∞ v(0;ϕs) = 0 from Lemma 43, we have that

lim
ϕs→∞

ϕ
∫ v(0;ϕs)r2

(1+v(0;ϕs)r)3
dH(r)(

1− ϕ
∫ ( v(0;ϕs)r

(1+v(0;ϕs)r)

)2
dH(r)

)2 = 0 (93)

lim
ϕs→∞

1
v(0;ϕs)2

1
v(0;ϕs)2

− ϕ
∫

r2

(1+v(0;ϕs)r)2
dH(r)

∫
r2

(1 + v(0;ϕs)r)3
dG(r) =

1

1− ϕ

∫
r2 dG(r) > 0.

(94)

Since ∂v(0;ϕs)/∂ϕs is negative over (1,∞) and limϕs→∞0 ∂v(0;ϕs)/∂ϕs = 0, we have

∂Rsub
0,∞(ϕ, ϕs)

∂ϕs

∣∣
ϕs=∞ = −2ρ2

∫
r2 dG(r) · lim

ϕs→∞

∂v(0;ϕs)

∂ϕs
= 0. (95)

Combining (93)-(95), we have that when ϕs is large, ∂Rsub
0,∞(ϕ, ϕs)/∂ϕs approaching

zero from above as ϕs tends to ∞. On the other hand, since for k = 1, 2,

lim
ϕs→1+

∫
rk

(1 + v(0;ϕs)r)k+1
dG(r) · ∂v(0;ϕs)

∂ϕs

= lim
ϕs→1+

∫
v(0;ϕs)r

k

(1 + v(0;ϕs)r)k+1
dG(r) · lim

ϕs→1+

1

v(0;ϕs)

∂v(0;ϕs)

∂ϕs
= 0,

we have

∂Rsub
0,∞(ϕ, ϕs)

∂ϕs

∣∣
ϕs=1+

= σ2
ϕ

1− ϕ
· lim
ϕs→1+

∂v(0;ϕs)

∂ϕs
< 0.

Thus, there exists ϕ∗ ∈ (1,∞) such that

Rsub
0,∞(ϕ, ϕ∗) < Rsub

0,∞(ϕ, 1) = Rsub
0,∞(ϕ, ϕ).

2. When ϕ = 1, Rsub
0,∞(1, 1) = ∞ while Rsub

0,∞(ϕ, ϕs) < ∞ for all ϕs ∈ (1,∞]. Since
Rsub

0,∞(ϕ, ϕs) is continuous and finite in (1,∞], by continuity and (93)-(95) we have
ϕ∗ ∈ (1,∞).

3. When ϕ ∈ (1,∞), the optimal ϕ∗ ≥ ϕ > 1 must be obtained in [ϕ,∞) because of
(93)-(95).
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• Next, consider the case when SNR = 0, i.e., ρ2 = 0 and σ2 ̸= 0, since Rsub
0,∞(ϕ, ϕs) =

σ2 + σ2ṽ(0;ϕ, ϕs) > 0 is increasing in v(0;ϕs) and v(0;ϕs) ≥ 0 is decreasing in ϕs, we
have that Rsub

0,∞(ϕ, ϕs) is decreasing in ϕs. Thus, the global minimum Rsub
0,∞(∞, ϕs) = σ2

is obtained at ϕ∗s = ∞.
• Finally, consider the case when SNR = ∞, i.e. ρ2 ̸= 0 and σ2 = 0, Rsub

0,∞(ϕ, ϕs) =

ρ2(1 + ṽ(0;ϕ, ϕs))c̃(0;ϕs). As the bias term is zero when ϕs ∈ (0, 1] and positive when
ϕs ∈ (1,∞], we have that Rsub

0,∞(ϕ, ϕs) ≥ Rsub
0,∞(ϕ, ϕ∗) = 0 for all ϕ∗s ∈ [ϕ, 1] when ϕ ∈ (0, 1].

If ϕ ∈ (1,∞), since the risk is continuous over [ϕ,∞], the global minimum exists. Since the
derivative ∂Rsub

0,∞(ϕ, ϕs)/∂ϕs is continuous over ϕs ∈ (1,∞] and (93)-(95), the minimizer
satisfies ϕ∗ ∈ [ϕ,∞).

Lemma 29 (Optimal splagged ridgeless). Suppose the conditions in Theorem 8 hold, and
σ2, ρ2 ≥ 0 are the noise variance and signal strength from Assumptions 2 and 3. Let SNR =
ρ2/σ2. For any ϕ ∈ (0,∞), the properties of the optimal asymptotic risk Rspl

0,∞(ϕ, ϕ
spl
s (ϕ))

in terms of SNR and ϕ are characterized as follows:

(1) SNR = 0 (ρ2 = 0, σ2 ̸= 0): For all ϕ ≥ 0, the global minimum Rspl
0,∞(ϕ, ϕ

spl
s (ϕ)) = σ2 is

obtained with ϕspls (ϕ) = ∞.
(2) SNR > 0: For ϕ ≥ 1, there exists global minimum of ϕs 7→ Rspl

0,∞(ϕ, ϕs) in (1,∞). For
ϕ ∈ (0, 1), the global minimum is in {ϕ} ∪ (1,∞).

(3) SNR = ∞ (ρ2 ̸= 0, σ2 = 0): If ϕ ∈ (0, 1], the global minimum Rspl
0,∞(ϕ, ϕ

spl
s (ϕ)) =

0 is obtained with any ϕ
spl
s (ϕ) ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then the global minimum

Rspl
0,∞(ϕ, ϕ

spl
s (ϕ)) is obtained at ϕspls (ϕ) ∈ [ϕ,∞).

Proof From Theorem 8, the limiting risk for bagged ridgeless with M = ϕs/ϕ is given by

Rspl
0,ϕs/ϕ

(ϕ, ϕs) = σ2 +
ϕ

ϕs

[
ρ2(1 + ṽ(0;ϕs, ϕs))c̃(0;ϕs) + σ2ṽ(0;ϕs, ϕs)

]
+

(
1− ϕ

ϕs

)
ρ2c̃(0;ϕs)

= σ2 + ρ2c̃(0;ϕs) + ϕ
ṽ(0;ϕs, ϕs)

ϕs
(ρ2c̃(0;ϕs) + σ2).

Defined in (70)-(71), ṽ(0;ϕs, ϕs) ≥ 0 and c̃(0;ϕs) ≥ 0 are continuous functions of v(0;ϕs),
which is strictly decreasing over ϕs ∈ (1,∞) and satisfies limϕs→∞ v(0;ϕs) = 0 from
Lemma 43. Then c̃(0;ϕs) is increasing in ϕs over (1,∞) and limϕs→∞ c̃(0;ϕs) =

∫
r dG(r).

• We first consider the case SNR > 0. We consider further sub-cases depending the value of
the pair (ϕ, ϕs).

1. When ϕ ∈ (0, 1) and ϕs ∈ (1,∞],
Define functions h1 and h2 as follows:

h1(ϕs) = SNR · c̃(0;ϕs), h2(ϕs) =
ṽ(0;ϕs, ϕs)

ϕs
= ṽv(0;ϕs)

∫ (
r

1 + v(0;ϕs)r

)2

dH(r),

(96)
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where ṽv is defined in (111). Then Rspl
0,ϕs/ϕ

(ϕ, ϕs) = σ2 + σ2(h1(ϕs) + ϕh2(ϕs)(1 +

h1(ϕs))), with h1 increasing in ϕs and

lim
ϕs→1+

h1(ϕs) = 0, lim
ϕs→∞

h1(ϕs) = SNR

∫
r dG(r), lim

ϕs→1+
h2(ϕs) = +∞, lim

ϕs→∞
h2(ϕs) = 0.

Next, we study the property of h2. Simple calculation yields that

∂h2(ϕs)

∂ϕs

= ṽv(0;ϕs)
2

[
2

v(0;ϕs)3

∫
r2

(1 + v(0;ϕs)r)3
dH(r) · ∂v(0;ϕs)

∂ϕs
+

(∫
r2

(1 + v(0;ϕs)r)2
dH(r)

)2
]

= ṽv(0;ϕs)
2

[(∫
r2

(1 + v(0;ϕs)r)2
dH(r)

)2

−

2ṽv(0;ϕs)

v(0;ϕs)3

∫
r2

(1 + v(0;ϕs)r)3
dH(r)

∫
r

1 + v(0;ϕs)r
dH(r)

]
.

From Lemma 43 (4), we have that limϕs→∞ ṽv(0;ϕs)/v(0;ϕs)
2 limϕs→∞[1+ ṽb(0;ϕs)] =

1 where ṽb(0;ϕs) is defined in Lemma 43. Analogously, limϕs→1+ ṽv(0;ϕs)/v(0;ϕs)
2 =

+∞. Then as in the proof of Proposition 13, one can verify that

∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)

∂ϕs
= −σ2ṽv(0;ϕs)

[
SNR(1 + ϕh2(ϕs))

∫
r2

(1 + v(0;ϕs)r)3
dG(r) ·

∫
r

1 + v(0;ϕs)r
dH(r)

+ ϕ(1 + h1(ϕs))
2ṽv(0;ϕs)

2

v(0;ϕs)3

∫
r2

(1 + v(0;ϕs))3
dH(r) ·

∫
r

1 + v(0;ϕs)r
dH(r)

−ṽv(0;ϕs)ϕ(1 + h1(ϕs))

(∫
r2

(1 + v(0;ϕs)r)2
dH(r)

)2
]

satisfies limϕs→1+ ∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)/∂ϕs = −∞ and limϕs→∞ ∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)/∂ϕs = 0
by utilizing properties in Lemma 43. Furthermore, as

lim
ϕs→∞

ṽv(0;ϕs)
−1
∂Rspl

0,ϕs/ϕ
(ϕ, ϕs)

∂ϕs
= −ρ2

∫
r2 dG(r) ·

∫
r dH(r) < 0, (97)

we have that when ϕs is large, ∂Rspl
0,ϕs/ϕ

(ϕ, ϕs)/∂ϕs approaching zero from above as ϕs
tends to ∞. Thus, the minimum of Rspl

0,ϕs/ϕ
(ϕ, ϕs) over [1,∞] is obtained in the open

interval (1,∞).
2. When ϕ < 1 and ϕs ∈ [ϕ, 1), since the term c̃(0;ϕs) is zero, Rspl

0,ϕs/ϕ
(ϕ, ϕs) = σ2 +

σ2ϕ(1− ϕs)
−1 is increasing in ϕs. So the minimum over [ϕ, 1] is obtained at ϕs = ϕ.

3. When ϕ = 1, Rspl
0,ϕs/ϕ

(1, 1) = ∞ while Rspl
0,ϕs/ϕ

(ϕ, ϕs) < ∞ for all ϕs ∈ (1,∞]. Since

Rspl
0,ϕs/ϕ

(ϕ, ϕs) is continuous and finite in (1,∞], by continuity and (97) we have ϕ∗s ∈
(1,∞).
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4. When ϕ ∈ (1,∞), the optimal ϕ∗s ≥ ϕ > 1 must be obtained in [ϕ,∞) because of (97).

• Next consider the case when SNR = 0, i.e., ρ2 = 0 and σ2 ̸= 0. Then h1 ≡ 0 and
Rspl

0,∞(ϕs/ϕ, ϕs) = σ2 + σ2ϕṽ(0;ϕs, ϕs)/ϕs. When ϕs ∈ (0, 1), ṽ(0;ϕs, ϕs)/ϕs = (1− ϕs)
−1

is increasing in ϕs; when ϕs > 1, ṽ(0;ϕs, ϕs)/ϕs ≥ 0 = limϕs→∞ ṽ(0;ϕs, ϕs)/ϕs = 0.
Therefore, the global minimum Rsub

0,∞(∞, ϕs) = σ2 is obtained at ϕ∗s = ∞.

• Finally, consider the case when SNR = ∞, i.e. ρ2 ̸= 0 and σ2 = 0, Rspl
0,∞(ϕs/ϕ, ϕs) =

ρ2c̃(0;ϕs) + ρ2ϕϕ−1
s ṽ(0;ϕ, ϕs)c̃(0;ϕs). As the term c̃(0;ϕs) is zero when ϕs ∈ (0, 1] and

positive when ϕs ∈ (1,∞], we have that Rsub
0,∞(ϕ, ϕs) ≥ Rsub

0,∞(ϕ, ϕ∗s) = 0 for all ϕ∗s ∈ [ϕ, 1]
when ϕ ∈ (0, 1]. If ϕ ∈ (1,∞), since the risk is continuous over [ϕ,∞], the global minimum
exists. Since the derivative ∂Rsub

0,∞(ϕ, ϕs)/∂ϕs is continuous over ϕs ∈ (1,∞] and (97), the
minimizer satisfies ϕ∗s ∈ [ϕ,∞).

Appendix G. Proofs in Section 5 (isotropic features)

G.1 Proof of Corollary 14 (bagged risk for ridgeless regression)

Proof Since Σ = Ip, we have that dG = dH = δ1. Then, v(0;ϕs), ṽ(0;ϕ, ϕs) and c̃(0;ϕs)
defined in (70) and (71) for ϕs > 1 reduce to

v(0;ϕs) =
1

ϕs − 1
, ṽ(0;ϕ, ϕs) =

ϕ

ϕ2s − ϕ
, c̃(0;ϕs) =

(ϕs − 1)2

ϕ2s
.

Thus, we have

B0(ϕ, ϕs) =


0, ϕs ∈ (0, 1)

ρ2
ϕs − 1

ϕs
, ϕs ∈ (1,∞)

, V0(ϕ, ϕs) =


σ2

ϕs
1− ϕs

, ϕs ∈ (0, 1)

σ2
1

ϕs − 1
, ϕs ∈ (1,∞)

,

and

C0(ϕs) =


0, ϕs ∈ (0, 1)

ρ2
(ϕs − 1)2

ϕ2s
, ϕs ∈ (1,∞)

.

From Corollary 14, we are able to derive the asymptotic bias and variance for M = 1
and M = ∞ for ridgeless regression with replacement:

Bsub
0,1 (ϕ, ϕs) =


0, ϕs ∈ (0, 1)

ρ2
ϕs − 1

ϕs
, ϕs ∈ (1,∞)

V sub
0,1 (ϕ, ϕs) =


σ2

ϕs
1− ϕs

, ϕs ∈ (0, 1)

σ2
1

ϕs − 1
, ϕs ∈ (1,∞)
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Bsub
0,∞(ϕ, ϕs) =


0, ϕs ∈ (0, 1)

ρ2
(ϕs − 1)2

ϕ2s − ϕ
, ϕs ∈ (1,∞)

V sub
0,∞(ϕ, ϕs) =


σ2

ϕ

1− ϕ
, ϕs ∈ (0, 1)

σ2
ϕ

ϕ2s − ϕ
, ϕs ∈ (1,∞)

.

Then the asymptotic bias and variance for general M would be convex combinations of the
above quantities.

On the other hand, the asymptotic bias and variance for splagging without replacement
are given by

Bspl
λ,M (ϕ, ϕs) =M−1Bλ(ϕs, ϕs) + (1−M−1)Cλ(ϕs), V spl

λ,M (ϕ, ϕs) =M−1Vλ(ϕs, ϕs).

G.2 Proof of Proposition 15 (optimal subagged ridgeless regression with
replacement)

Proof For ϕ ∈ (0, 1) and ϕs ∈ (1,∞], we have that

Rsub
0,∞(ϕ, ϕs) = σ2 + ρ2

(ϕs − 1)2

ϕ2s − ϕ
+ σ2

ϕ

ϕ2s − ϕ
.

Taking the derivative of the right hand side with respect to ϕs

∂Rsub
0,∞(ϕ, ϕs)

∂ϕs
= 2σ2

SNR(ϕs − 1)(ϕs − ϕ)− ϕϕs
(ϕ2s − ϕ)2

and setting it to zero yields that

ϕs = A±
√
A2 − ϕ. (98)

where A = (ϕ+ 1 + ϕ/SNR)/2. Since A−
√
A2 − ϕ <

√
ϕ ≤ 1, we have ϕ∗s = A+

√
A2 − ϕ

is a minimizer and

Rsub
0,∞(ϕ, ϕ∗) = σ2 + σ2

ϕ+A−
√
A2 − ϕ+ SNR(1− ϕ)/ϕ(A− ϕ−

√
A2 − ϕ)

2
√
A2 − ϕ

=
σ2

2

[
1 +

ϕ− 1

ϕ
SNR+

2SNR

ϕ

√
A2 − ϕ

]

=
σ2

2

1 + ϕ− 1

ϕ
SNR+

√(
1− ϕ− 1

ϕ
SNR

)2

+ 4SNR

 , (99)

which gives the simplified formula. Note that

Rsub
0,∞(ϕ, ϕ∗) = σ2 + σ2

(
ϕ

2
√
A2 − ϕ

+
A−

√
A2 − ϕ

2
√
A2 − ϕ

+
1− ϕ

ϕ
SNR

A− ϕ−
√
A2 − ϕ

2
√
A2 − ϕ

)
= σ2 + σ2h(SNR)− σ2δ(SNR) (100)

where for all r ≥ 0, the functions h and δ are defined as h(r) = h1(r) + h2(r) + h3(r) and
δ(r) = (1− ϕ)rh1(r)/ϕ, with A(r) = (ϕ+ 1 + ϕ/r)/2 and

h1(r) =
ϕ

2
√
A(r)2 − ϕ

,
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h2(r) =
A(r)−

√
A(r)2 − ϕ

2
√
A(r)2 − ϕ

=
1

2
√
1− ϕ/A(r)2

− 1

2
,

h3(r) =
1− ϕ

ϕ
rh2(r).

Since h1, h2, and h3 are nonngative over (0,∞), h and δ are also nonnegative. Also noted
that

δ(0) =
1− ϕ

ϕ
lim
r→0+

rh1(r) = 0, δ(∞) =
1− ϕ

ϕ
lim

r→+∞
rh1(r) = +∞,

we obtain the upper bound for Rsub
0,∞(ϕ, ϕ∗) as follows:

Rsub
0,∞(ϕ, ϕ∗) ≤ σ2 + σ2h(SNR), (101)

with equality obtained if and only if SNR = 0.
Next we analyze the function h(r). Note that A(r) > 0 is decreasing in r, we have

that the functions h1 and h2 are nonnegative and monotone increasing in SNR. Hence h3
as the product of nonnegative and monotone increasing functions, is also nonnegative and
monotone increasing in SNR. Thus, h is monotone increasing in SNR and

h(SNR) ≤ lim
r→∞

h(r)

= lim
r→∞

h1(r) + lim
r→∞

h2(r) + lim
r→∞

rh2(r)

=
ϕ

1− ϕ
+

ϕ

1− ϕ
+

1

ϕ
lim
r→∞

A(r)−
√
A(r)2 − ϕ
1
r

=
ϕ

1− ϕ
+

ϕ

1− ϕ
+

1

ϕ
lim
r→∞

− ϕ
2r2

+
A(r)ϕ

r2

2
√
A(r)2−ϕ

− 1
r2

=
ϕ

1− ϕ
,

where the third equality is due to the L’Hospital’s rule. Note that the risk for ϕs ∈ [ϕ, 1)
is given by σ2 + σ2ϕ/(1− ϕ), we have that ϕ∗s obtained the global minimum of Rsub

0,∞(ϕ, ϕs)
over ϕs ∈ [ϕ,∞].

For ϕ ∈ [1,∞) and ϕs ∈ [ϕ,∞), from (98) and A−
√
A2 − ϕ ≤

√
ϕ ≤ ϕ, we have again

ϕ∗s = A+
√
A2 − ϕ is a minimizer.

When SNR = 0, since the bias term is zero and variance term is increasing over ϕs < 1
and increasing over ϕs > 1, we have that when ϕs > 1 (whenever ϕ ≤ ϕs),

Rsub
0,∞(ϕ, ϕs) = σ2 + V0(ϕ, ϕs) ≥ σ2 + V0(ϕ,∞) = σ2.

When ϕ < 1, we have Rsub
0,∞(ϕ, ϕs) ≥ Rsub

0,∞(ϕ, ϕ) = σ2/(1−ϕ) > σ2. Therefore, Rsub
0,∞(ϕ, ϕs) ≥

Rsub
0,∞(ϕ,∞) = σ2 for all ϕ ∈ (1,∞].

When SNR = ∞, the variance term V0(ϕ, ϕs) = 0 for all ϕs ∈ [ϕ,∞]. If ϕ ∈ (0, 1], then
B0(ϕ, ϕs) = 0 for all ϕs ∈ [ϕ, 1]. If ϕ ∈ (1,∞), then B0(ϕ, ϕs) is increasing over ϕs ∈ [ϕ,∞].
Hence, the conclusions follow.
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G.3 Proof of Theorem 16 (comparison between subagged and optimal ridge
regression)

Proof As n, p → ∞ and p/n → ϕ, the optimal regularization parameter is given by
λ∗ = ϕσ2/ρ2 under the isotopic model (Dobriban and Wager, 2018). The limiting risk of
the optimal ridge regression is given by

RWR
λ∗,1(ϕ, ϕ) =

σ2

2

1 + ϕ− 1

ϕ
SNR+

√(
1− ϕ− 1

ϕ
SNR

)2

+ 4SNR


which is the same the formula given in Proposition 15. The conclusion thus follows.

Fixed-point equation details for ridge regression

For isotopic features Σ = Ip, dG = dH = δ1. When n, p → and p/n → ϕ ∈ (0,∞),
(109)-(111) reduce to

v(−λ;ϕ)−1 = λ+ ϕ(1 + v(−λ;ϕ))−1

ṽb(−λ;ϕ) =
ϕ(1 + v(−λ;ϕ))−2

v(−λ;ϕ)−2 − ϕ(1 + v(−λ;ϕ))−2

ṽv(−λ;ϕ)−1 = v(−λ;ϕ)−2 − ϕ(1 + v(−λ;ϕ))−2.

Solving the first equation for v(−λ;ϕ) ≥ 0 gives

v(−λ;ϕ) = 1

2λ
(−(ϕ+ λ− 1) +

√
(ϕ+ λ− 1)2 + 4λ). (102)

Then the asymptotic bias and variance defined in Theorem 19 can be evaluated accordingly.

Appendix H. Auxiliary asymptotic equivalency results

H.1 Preliminaries

We use the notion of asymptotic equivalence of sequences of random matrices in various
proofs. In this section, we provide a basic review of the related definitions and corresponding
calculus rules.

Definition 30 (Asymptotic equivalence: deterministic version). Consider sequences {Ap}p≥1

and {Bp}p≥1 of (random or deterministic) matrices of growing dimensions. We say that Ap

and Bp are equivalent and write Ap ≃D Bp if limp→∞ | tr[Cp(Ap −Bp)]| = 0 almost surely
for any sequence of matrices Cp with bounded trace norm such that lim supp→∞ ∥Cp∥tr <∞.

We emphasize that recent work (Dobriban and Sheng, 2021; Patil et al., 2022b) used
the deterministic version of the asymptotic equivalence, implicitly assuming that Cp in the
definition is deterministic. However, in this paper we need to investigate the asymptotic
equivalence relationship conditional on some other sequences. In that direction, we first
extend Definition 30 to allow for random Cp, as in Definition 31.
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Definition 31 (Asymptotic equivalence: random version). Consider sequences {Ap}p≥1

and {Bp}p≥1 of (random or deterministic) matrices of growing dimensions. We say that
Ap and Bp are equivalent and write Ap ≃R Bp if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost
surely for any sequence of random matrices Cp independent of Ap and Bp, with bounded
trace norm such that lim supp→∞ ∥Cp∥tr <∞ almost surely.

Even though Definition 30 seems to be more restrictive than Definition 31, they are
indeed equivalent as shown in Proposition 32. The latter definition allows for more general
definition for “conditional” asymptotic equivalents.

Proposition 32 (Equivalence of ≃D and ≃R). The asymptotic equivalent relations ≃D in
Definition 30 and ≃R in Definition 31 are equivalent.

Proof Let {Ap} and {B}p be two sequences of random matrices. Suppose that Ap ≃D Bp.
We next show that Ap ≃R Bp holds. For any sequence of random matrices Cp that is inde-
pendent of Ap and Bp for all p ∈ N, and has bounded trace norm such that lim sup ∥Cp∥tr <
∞ as p → ∞ almost surely. Let A denote the event that limp→∞ | tr[Cp(Ap − Bp)]| = 0.
Then

P (A) = E[1A]
(a)
= E[E[1A | {Cp}p≥1]]

(b)
= E[1] = 1.

Above, equality (a) follows from the law of total expectation. Inequality (b) holds almost
surely because Ap ≃D Bp and Cp is independent of Ap and Bp. This can be seen as follows.
Note that 1A({Cp}, ({Ap}, {Bp})) is a function of random variables {Cp} and ({Ap}, {Bp}).
Let

E[1A({cp}, ({Ap}, {Bp}))] = h({cp}),

where the expectation is taken over the randomness in ({Ap}, {Bp}). Since {Cp} and
({Ap}, {Bp}) are independent and E[|1A |] ≤ 1 < ∞, we have that (see, e.g., Shiryaev
(2016, Chapter 2, Section 7, Equation (16)), or Durrett (2010, Example 5.1.5))

E[1A | {Cp}] = h({Cp}),

and from Definition 30, we have h({Cp}) = 1 almost surely. Thus, we can conclude that
Ap ≃R Bp.

On the other hand, by definition, Ap ≃R Bp directly implies Ap ≃D Bp, which com-
pletes the proof.

The properties for the two types of deterministic equivalents are summarized in Lemma 33.
Though most of the calculus rules are the direct consequences from Dobriban and Wager
(2018); Dobriban and Sheng (2021), the product rule involving random matrices Cp does
not immediately follow from previous work.

Lemma 33 (Calculus of deterministic equivalents). Let Ap, Bp, Cp and Dp be sequences
of random matrices. The calculus of deterministic equivalents (≃D and ≃R) satisfies the
following properties:

(1) Equivalence: The relation ≃ is an equivalence relation.
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(2) Sum: If Ap ≃ Bp and Cp ≃ Dp, then Ap +Cp ≃ Bp +Dp.

(3) Product: If Ap has uniformly bounded operator norms such that lim supp→∞ ∥Ap∥op <
∞, Ap is independent of Bp and Cp for p ≥ 1, and Bp ≃ Cp, then ApBp ≃ ApCp.

(4) Trace: If Ap ≃ Bp, then tr[Ap]/p− tr[Bp]/p→ 0 almost surely.

(5) Differentiation: Suppose f(z,Ap) ≃ g(z,Bp) where the entries of f and g are analytic
functions in z ∈ S and S is an open connected subset of C. Suppose that for any se-
quence Cp of deterministic matrices with bounded trace norm we have | tr[Cp(f(z,Ap)−
g(z,Bp))]| ≤ M for every p and z ∈ S. Then we have f ′(z,Ap) ≃ g′(z,Bp) for every
z ∈ S, where the derivatives are taken entrywise with respect to z.

Proof The conclusions for ≃D directly follow from Dobriban and Wager (2018); Dobriban
and Sheng (2021). Then, the proof of property (1), (2), (4), and (5) for ≃R follows from
Proposition 32. It remains to show that the product rule holds for ≃R. Since Bp ≃R Cp, we
have Bp ≃D Cp. Then for any sequence of random matrices {Dp}p≥1 that have bounded
trace norm and are independent of Bp and Cp, we have

P
(

lim
p→∞

| tr[Dp(Bp −Cp)]| = 0

)
= 1.

Because | tr[Dp(ApBp−ApCp)]| ≤ ∥Ap∥op| tr[Dp(Bp−Cp)]| and lim supp→∞ ∥Ap∥op <∞,
we have that limp→∞ | tr[Dp(Bp − Cp)]| = 0 implies limp→∞ | tr[Dp(ApBp − ApCp)]| = 0
conditioning on {Ap}p≥1. Thus,

P
(

lim
p→∞

| tr[Dp(ApBp −ApCp)]| = 0

∣∣∣∣ {Ap}p≥1

)
= 1.

and by law of total expectation

P
(

lim
p→∞

| tr[DpAp(Bp −Cp)]| = 0

)
= 1,

which holds for any sequence of random matrices {DpAp}p≥1 that have bounded trace norm
and are independent of Bp and Cp. By definition, we have ApBp ≃ ApCp.

Since the asymptotic equivalent relation ≃D is equivalent to ≃R, we will just ignore
the subscript and use the notation “≃” for simplicity. The subscript will be specified when
needed.

H.2 Conditioning and calculus

In this section, we extend the notion of asymptotic equivalence of two sequences of random
matrices from Definitions 30 and 31 to incorporate conditioning on another sequence of
random matrices.

Definition 34 (Conditional asymptotic equivalence). Consider sequences {Ap}p≥1, {Bp}p≥1

and {Dp}p≥1 of (random or deterministic) matrices of growing dimensions. We say that Ap
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and Bp are equivalent given Dp and write Ap ≃ Bp | Dp if limp→∞ | tr[Cp(Ap −Bp)]| = 0
almost surely conditional on {Dp}p≥1, i.e.,

P
(

lim
p→∞

| tr[Cp(Ap −Bp)]| = 0

∣∣∣∣ {Dp}p≥1

)
= 1,

for any sequence of random matrices Cp independent of Ap and Bp conditional on Dp, with
bounded trace norm such that lim sup ∥Cp∥tr <∞ as p→ ∞.

Below we formalize additional calculus rules that hold for conditional asymptotic equiv-
alence Definition 34.

Proposition 35 (Calculus of conditional asymptotic equivalents). Let Ap, Bp, Cp, and Ep

be sequences of random matrices.

(1) Unconditioning: If Ap ≃ Bp | Ep, then Ap ≃ Bp.
(2) Product: If Ap has bounded operator norms such that lim supp→∞ ∥Ap∥op < ∞, Ap is

conditional independent of Bp and Cp given Ep for p ≥ 1, and Bp ≃ Cp | Ep, then
ApBp ≃ ApCp | Ep.

Proof Proofs for the two parts appear below.

Part (1). For any sequence of deterministic matrices Cp with bounded trace norm, we have

P
(

lim
p→∞

| tr[Cp(Ap −Bp)]| = 0

∣∣∣∣ {Dp}p≥1

)
= 1

because Ap ≃ Bp | Ep. By the law of total expectation, we have

P
(

lim
p→∞

| tr[Cp(Ap −Bp)]| = 0

)
= 1.

Thus, Ap ≃D Bp. By Proposition 32, we further have Ap ≃R Bp.

Part (2). For any sequence of random matrices Dp, let E1 and E2 respectively denote the
following events: limp→∞ | tr[Dp(Bp −Cp)]| = 0 and limp→∞ | tr[Dp(ApBp −ApCp)]| = 0.
Because Bp ≃ Cp | Ep, by definition we have

P (E1 | {Ep}p≥1) = 1

Because | tr[Dp(ApBp−ApCp)]| ≤ ∥Ap∥op| tr[Dp(Bp−Cp)]| and lim supp→∞ ∥Ap∥op <∞,
we have E1 implies E2 conditioning on {Ep}p≥1. Thus we have

P (E2 | {Ep}p≥1) = 1

holds for any {Dp}p≥1. This implies that ApBp ≃ ApCp | Ep.

Other rules in Lemma 33 also hold for conditional asymptotic equivalents. A direct implica-
tion of this is that the deterministic equivalents for resolvents we will derive in Section H.3
based on these rules can be naturally generalized to allow for conditional asymptotic equiv-
alents given a common sequence of random matrices that are independent of the source
sequence.
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H.3 Standard ridge resolvents and extensions

In this section, we collect various asymptotic equivalents that are used in the proofs of
Lemmas 20 and 21, and Lemmas 24 to 26, which serve to prove Theorem 6. These equivalents
are also subsequently used in the proof of Theorem 8.

H.3.1 Standard ridge resolvents

The following lemma provides a deterministic equivalent for the standard ridge resolvent
and implies Corollary 37. It is adapted from Theorem 1 of Rubio and Mestre (2011). See
also Theorem 3 of Dobriban and Sheng (2021).

Lemma 36 (Deterministic equivalent for standard ridge resolvent). Suppose xi ∈ Rp, 1 ≤
i ≤ n, are i.i.d. random vectors such that each xi = ziΣ

1/2, where zi is a random vector
consisting of i.i.d. entries zij, 1 ≤ j ≤ p, satisfying E[zij ] = 0, E[z2ij ] = 1, and E[|zij |8+α] ≤
Mα for some constants α > 0 and Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite
matrix satisfying 0 ⪯ Σ ⪯ rmaxIp for some constant rmax < ∞ (independent of p). Let
X ∈ Rn×p the concatenated matrix with x⊤

i , 1 ≤ i ≤ n, as rows, and let Σ̂ ∈ Rp×p denote
the random matrix X⊤X/n. Let γ := p/n. Then, for z ∈ C+, as n, p → ∞ such that
0 < lim inf γ ≤ lim sup γ <∞, we have

(Σ̂− zIp)
−1 ≃ (c(e(z; γ))Σ− zIp)

−1, (103)

where the scalar c(e(z; γ)) is defined in terms of another scalar e(z; γ) by the equation

c(e(z; γ)) =
1

1 + γe(z; γ)
, (104)

and e(z; γ) is the unique solution in C+ to the fixed-point equation

e(z; γ) = tr[Σ(c(e(z; γ))Σ− zIp)
−1]/p. (105)

Note that both the scalars c(e(z; γ)) and e(z; γ) also implicitly depend on Σ. For notation
brevity, we do not always explicitly indicate this dependence. However, we will be explicit in
such dependence for certain extensions to follow. See the remark after Lemma 38 for more
details. Additionally, observe that one can eliminate e(z; γ) in the statement of Lemma 36
by combining (104) and (105) so that for z ∈ C+, one has

(Σ̂− zIp)
−1 ≃ (c(z; γ)Σ− zIp)

−1,

where c(z) is the unique solution in C− to the fixed-point equation

1

c(z; γ)
= 1 + γ tr[Σ(c(z; γ)Σ− zIp)

−1]/p.

The following corollary is a simple consequence of Lemma 36, which supplies a deter-
ministic equivalent for the (regularization) scaled ridge resolvent. We will work with a real
regularization parameter λ from here on.
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Corollary 37 (Deterministic equivalent for scaled ridge resolvent). Assume the setting of
Lemma 36. For λ > 0, we have

λ(Σ̂+ λIp)
−1 ≃ (v(−λ; γ)Σ+ Ip)

−1,

where v(−λ; γ) > 0 is the unique solution to the fixed-point equation

1

v(−λ; γ)
= λ+ γ

∫
r

1 + v(−λ; γ)r
dHn(r). (106)

Here Hn is the empirical distribution (supported on R≥0) of the eigenvalues of Σ.

As a side note, the parameter v(−λ; γ) in Corollary 37 is also the companion Stieltjes
transform of the spectral distribution of the sample covariance matrix Σ̂, which is also the
Stieltjes transform of the spectral distribution of the gram matrix XX⊤/n.

The following lemma uses Corollary 37 along with calculus of deterministic equivalents
(from Lemma 33), and provides deterministic equivalents for resolvents needed to obtain
limiting bias and variance of standard ridge regression. It is adapted from Lemma S.6.10
of Patil et al. (2022b). These equivalents are standard and well-established in the prior
literature. For example, the variance resolvent in Lemma 38 can be obtained from results
in Dobriban and Sheng (2021), while the bias resolvent in Lemma 38 can be obtained from
results in Hastie et al. (2022).

Lemma 38 (Deterministic equivalents for bias and variance resolvents of ridge regression).
Suppose xi ∈ Rp, 1 ≤ i ≤ n, are i.i.d. random vectors with each xi = ziΣ

1/2, where zi ∈ Rp
is a random vector that contains i.i.d. random variables zij, 1 ≤ j ≤ p, each with E[zij ] = 0,
E[z2ij ] = 1, and E[|zij |8+α] ≤ Mα for some constants α > 0 and Mα < ∞, and Σ ∈ Rp×p is
a positive semidefinite matrix with rminIp ⪯ Σ ⪯ rmaxIp for some constants rmin > 0 and
rmax < ∞ (independent of p). Let X ∈ Rn×p be the concatenated random matrix with xi,
1 ≤ i ≤ n, as its rows, and define Σ̂ := X⊤X/n ∈ Rp×p. Let γ := p/n. Then, for λ > 0,
as n, p→ ∞ with 0 < lim inf γ ≤ lim sup γ <∞, the following statements hold:

(1) Bias of ridge regression:

λ2(Σ̂+λIp)
−1Σ(Σ̂+λIp)

−1 ≃ (v(−λ; γ)Σ+Ip)
−1(ṽb(−λ; γ)Σ+Σ)(v(−λ; γ)Σ+Ip)

−1.
(107)

(2) Variance of ridge regression:

(Σ̂+ λIp)
−2Σ̂Σ ≃ ṽv(−λ; γ)(v(−λ; γ)Σ+ Ip)

−2ΣΣ. (108)

Here v(−λ; γ,Σ) > 0 is the unique solution to the fixed-point equation

1

v(−λ; γ,Σ)
= λ+

∫
γr

1 + v(−λ; γ,Σ)r
dHn(r;Σ), (109)

and ṽb(−λ; γ,Σ) and ṽv(−λ; γ,Σ) are defined through v(−λ; γ,Σ) by the following equations:

ṽb(−λ; γ,Σ) =

∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ)

v(−λ; γ,Σ)−2 −
∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ)

, (110)
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ṽv(−λ; γ,Σ)−1 = v(−λ; γ,Σ)−2 −
∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ), (111)

where Hn(·;Σ) is the empirical distribution (supported on [rmin, rmax]) of the eigenvalues of
Σ.

A couple of remarks on Lemma 38 follow.

• The dependency of various scalar parameters appearing in Lemma 38 on the matrix
Σ is explicitly highlighted the statement. This is because when we extend the current
results later in Lemma 39, these parameters depend on the distributions of eigenvalues
of matrices other than Σ. In places where it is clear from context, we will write Hn(r),
v(−λ; γ), ṽb(−λ; γ), and ṽv(−λ; γ) to denote Hn(r;Σ), v(−λ; γ,Σ), ṽb(−λ; γ,Σ), and
ṽv(−λ; γ,Σ), respectively, for notational simplicity.

• Lemmas 36 and 38 assume existence of moments of order 8 + α for some α > 0 on the
entries of zi, 1 ≤ i ≤ km, mentioned in assumption 2. As done in the proof of Theorem
6 of Hastie et al. (2022) (in Appendix A.4 therein), this can be relaxed to only requiring
existence of moments of order 4+α by a truncation argument. We omit the details and
refer the readers to Hastie et al. (2022).

H.3.2 Extended ridge resolvents

The lemma below extends the deterministic equivalents of the ridge resolvents in Lemma 38
to provide deterministic equivalents for Tikhonov resolvents, where the regularization matrix
λIp is replaced with λ(Ip +C) and C ∈ Rp×p is an arbitrary positive semidefinite random
matrix. While the derivation of extended resolvents in Lemma 39 naturally follows from
Lemma 38, we have specifically isolated these extensions. This abstraction facilitates their
repeated application in our conditioning arguments, especially in the proofs of Theorems 6
and 8.

Lemma 39 (Tikhonov resolvents). Suppose the conditions in Lemma 38 holds. Let C ∈
Rp×p be any symmetric and positive semidefinite random matrix with uniformly bounded
operator norm in p that is independent of X for all n, p ∈ N, and let N = (Σ̂ + λIp)

−1.
Then the following statements hold:

(1) Tikhonov resolvent:

λ(N−1 + λC)−1 ≃ Σ̃−1
C . (112)

(2) Bias of Tikhonov regression:

λ2(N−1 + λC)−1Σ(N−1 + λC)−1 ≃ Σ̃−1
C (ṽb(−λ; γ,ΣC)Σ+Σ)Σ̃−1

C . (113)

(3) Variance of Tikhonov regression:

(N−1 + λC)−1Σ̂(N−1 + λC)−1Σ ≃ ṽv(−λ; γ,ΣC)Σ̃−1
C ΣΣ̃−1

C Σ, (114)
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where ΣC = (Ip+C)−
1
2Σ(Ip+C)−

1
2 , Σ̃C = v(−λ; γ,ΣC)Σ+Ip+C. Here, v(−λ; γ,ΣC),

ṽb(−λ; γ,ΣC), and ṽv(−λ; γ,ΣC) defined by (109)-(111) simplify to

1

v(−λ; γ,ΣC)
= λ+ γ tr[(v(−λ; γ,ΣC)Σ+ Ip +C)−1Σ]/p, (115)

1

ṽv(−λ; γ,ΣC)
=

1

v(−λ; γ,ΣC)2
− γ tr[(v(−λ; γ,ΣC)Σ+ Ip +C)−2Σ2]/p, (116)

ṽb(−λ; γ,ΣC) = γ tr[(v(−λ; γ,ΣC)Σ+ Ip +C)−2Σ2]/p · ṽv(−λ; γ,ΣC). (117)

If γ → ϕ ∈ (0,∞), then γ in (1)-(3) can be replaced by ϕ, with the empirical distribution
Hn of eigenvalues replaced by the limiting distribution H.

Proof Proofs for the different parts are separated below.

Part (1). Note that

λ(N−1 + λC)−1 = λ(Σ̂+ λ(Ip +C))−1 = (Ip +C)−
1
2λ(Σ̂C + λIp)

−1(Ip +C)−
1
2 , (118)

where Σ̂C = Σ
1
2
C(Z⊤Z/n)Σ

1
2
C , and ΣC = (Ip +C)−

1
2Σ(Ip +C)−

1
2 . Using Lemma 36, we

have

λ(Σ̂C + λIp)
−1 ≃ (v(−λ; γ,ΣC)ΣC + Ip)

−1, (119)

where v(−λ; γ,ΣC) is the unique solution to the fixed point equation (106) such that

1

v(−λ; γ,ΣC)
= λ+γ tr[ΣC(v(−λ; γ,ΣC)ΣC+Ip)

−1]/p = λ+γ tr[Σ(v(−λ; γ,ΣC)Σ+Ip+C)−1]/p.

Note that
∥∥(Ip +C)−1

∥∥
op

≤ 1. We can apply the product rule from Lemma 33 (3) and get

λ(N−1 + λC)−1 ≃ (Ip +C)−
1
2 (v(−λ; γ,ΣC)ΣC + Ip)

−1(Ip +C)−
1
2 = (v(−λ; γ,ΣC)Σ+ Ip +C)−1,

by combining (118)-(119).

Part (2). From Lemma 38 (1), we have

λ2(N−1 + λC)−1Σ(N−1 + λC)−1

= λ2(Ip +C)−
1
2 · [(Σ̂C + λIp)

−1(Ip +C)−
1
2 ·Σ · (Ip +C)−

1
2 (Σ̂C + λIp)

−1] · (Ip +C)−
1
2

≃ (Ip +C)−
1
2 · [(v(−λ; γ,ΣC)ΣC + Ip)

−1

· (ṽb(−λ; γ,ΣC)ΣC + (Ip +C)−
1
2Σ(Ip +C)−

1
2 ) · (v(−λ; γ,ΣC)ΣC + Ip)

−1] · (Ip +C)−
1
2

= (v(−λ; γ,ΣC)Σ+ Ip +C)−1(ṽb(−λ; γ,ΣC)Σ+Σ)(v(−λ; γ,ΣC)Σ+ Ip +C)−1.

Part (3). Similar to Part (2), from Lemma 38 (2), we have

(N−1 + λC)−1Σ̂(N−1 + λC)−1Σ

= (Ip +C)−
1
2 · (Σ̂C + λIp)

−1Σ̂C(Σ̂C + λIp)
−1 · (Ip +C)−

1
2Σ
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≃ (Ip +C)−
1
2 · ṽv(−λ; γ,ΣC)(v(−λ; γ,ΣC)ΣC + Ip)

−1ΣC(v(−λ; γ,ΣC)ΣC + Ip)
−1 · (Ip +C)−

1
2Σ

= ṽv(−λ; γ,ΣC)(v(−λ; γ,ΣC)Σ+ Ip +C)−1Σ(v(−λ; γ,ΣC)Σ+ Ip +C)−1Σ.

Note that the distribution of ΣC ’s eigenvalue has positive support. By the continuity of
v(−λ; ·,ΣC), ṽb(−λ; ·,ΣC), and ṽv(−λ; ·,ΣC) from Lemma 42 (2), (4) and (3), γ can by
replaced by its limit ϕ as n, p→ ∞.

The following lemma concerns the deterministic equivalents of the precision matrix as
the weighted average of two sample covariance matrices of subsamples, when the full sample
covariance matrix is invertible almost surely. It is useful when we aim to condition on one
of the subsampled covariance matrix, which is used in the proof of Lemma 25.

Lemma 40 (Deterministic equivalent of subsamples in the underparameterized regime).
Suppose the conditions in Lemma 38 holds. Let Σ̂0 be the sample covariance matrix computed
using i observations of X, and Σ̂1 be the sample covariance matrix computed using the
remaining n− i samples. Let π0 = i/n and π1 = (n− i)/n. Suppose that p/n → ϕ ∈ (0, 1)
as n, p→ ∞. Then, we have

(π0Σ̂0 + π1Σ̂1)
−1 ≃ (π0Σ̂0 + (1− ϕ)π1Σ)−1.

Proof We first note that when ϕ ∈ (0, 1), the eigenvalues of Σ̂ = π0Σ̂0+π1Σ̂1 are bounded
away from zero almost surely (Bai and Silverstein, 2010) and hence the inverse is well defined
almost surely as n, p→ ∞.

The idea for the proof is to consider the perturbed resolvent (π0Σ̂0 + µIp+ π1Σ̂1)
−1 for

µ > 0. Note that since the matrix (π0Σ̂0 + π1Σ̂1) is almost surely invertible. Then,

lim
µ→0+

(π0Σ̂0 + µIp + π1Σ̂1)
−1 = (π0Σ̂0 + π1Σ̂1)

−1.

Conditioned on (π0Σ̂0 + µIp), we have

(π0Σ̂0 + µIp + π1Σ̂1)
−1 = a(A+ Σ̂1)

−1

= aA− 1
2 (Ip +A− 1

2 Σ̂1A
− 1

2 )A− 1
2

= aA− 1
2 (Ip + Σ̂1,A)−1A− 1

2

≃ aA− 1
2 (Ip + cΣA)A− 1

2

= a(A+ cΣ)−1

= (π0Σ̂0 + µIp + cπ1Σ)−1,

where the intermediate constants are a = π−1
1 , A = aπ0Σ̂0 + aµIp, Σ̂1,A = A− 1

2 Σ̂A− 1
2 ,

ΣA = A− 1
2ΣA− 1

2 , and c satisfy the fixed-point equation

1

c
= 1 +

p

n− i
tr[ΣA(cΣA + Ip)

−1]/p

= 1 +
p

k

k

n− i
tr[A−1/2ΣA−1/2(cA−1/2ΣA−1/2 + Ip)

−1]/p
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= 1 + ϕa tr[Σ(cΣ+A)−1]/p

= 1 + ϕ tr[Σ(cπ1Σ+ π0Σ̂0 + µIp)
−1]/p

= 1 + ϕ tr[Σ(π0Σ̂0 + µIp + π1Σ̂1)
−1]/p,

where in final equality, we used the trace property of the asymptotic equivalence

(π0Σ̂0 + µIp + cπ1Σ)−1 ≃ (π0Σ̂0 + µIp + π1Σ̂1)
−1.

Now note that

(π0Σ̂0 + µIp + π1Σ̂1)
−1 = (Σ̂+ µIp)

−1 ≃ (c′Σ+ µIp)
−1

where c′ solves the fixed-point equation

1

c′
= 1 + ϕ tr[Σ(c′Σ+ µIp)

−1]/p.

Thus, the fixed-point in c can be written as

1

c
= 1 + ϕ tr[Σ(c′Σ+ µIp)

−1]/p.

We note that c = c′ satisfy the fixed-point equation for c (from the fixed-point equation for
c′). Since c is a unique solution, this must be the solution. Letting µ→ 0+, we observe that
c′ = 1− ϕ is the solution for the fixed-point equation in c′. Thus, we also have c = 1− ϕ.

H.4 Analytic properties of associated fixed-point equations

In this section, we compile results regarding analytical properties of the fixed-point solution
v(−λ;ϕ) as defined in (106).

The subsequent lemma affirms the existence and uniqueness of the solution v(−λ;ϕ). It
establishes a connection between the properties of the derivatives described in Lemma 41
and the properties of ṽv(−λ;ϕ) as defined in (111). Note the latter equals −f ′(x), where
the function f is as defined in (120)

Lemma 41 (Properties of the solution of the fixed-point equation). Let λ, ϕ, a > 0 and
b < ∞ be real numbers. Let P be a probability measure supported on [a, b]. Define the
function as follows:

f(x) =
1

x
− ϕ

∫
r

1 + rx
dP (r)− λ. (120)

Then the following properties hold:

(1) For λ = 0 and ϕ ∈ (1,∞), there is a unique x0 ∈ (0,∞) such that f(x0) = 0. The
function f is positive and strictly decreasing over (0, x0) and negative over (x0,∞), with
limx→0+ f(x) = ∞ and limx→∞ f(x) = 0.
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(2) For λ > 0 and ϕ ∈ (0,∞), there is a unique xλ0 ∈ (0,∞) such that f(xλ0) = 0. The
function f is positive and strictly decreasing over (0, xλ0) and negative over (xλ0 ,∞), with
limx→0+ f(x) = ∞ and limx→∞ f(x) = −λ.

(3) For λ = 0 and ϕ ∈ (1,∞), f is differentiable on (0,∞) and its derivative f ′ is strictly
increasing over (0, x0), with limx→0+ f

′(x) = −∞ and f ′(x0) < 0.
(4) For λ > 0 and ϕ ∈ (0,∞), f is differentiable on (0,∞) and its derivative f ′ is strictly

increasing over (0,∞), with limx→0+ f
′(x) = −∞ and f ′(xλ0) < 0.

Proof We consider different parts separately below.

Part (1). Observe that

f(x) =
1

x
− ϕ

∫
r

xr + 1
dP (r) = g1(x)h1(x),

where
g1(x) =

1

x
, h1(x) = 1− ϕ

∫
xr

xr + 1
dP (r).

Note that g1 is positive and strictly decreasing over (0,∞) with limx→0+ g1(x) = ∞ and
limx→∞ g1(x) = 0, while h1 is strictly decreasing over (0,∞) with h1(0) = 1 and limx→∞ h1(x) =
1 − ϕ < 0. Thus, there is a unique 0 < x0 < ∞ such that h1(x0) = 0, and consequently
f(x0) = 0. Because h1 is positive over (0, x0), and negative over (x0,∞), f is positive
strictly decreasing over (0, x0) and negative over (x0,∞), with limx→0+ f(x) = ∞ and
limx→∞ f(x) = 0.

Part (2). Note that f(x) = g1(x)h1(x) − λ. Since from (1) limx→0 g1(x)h1(x) = ∞ and
limx→0 g1(x)h1(x) = 0, we have that limx→0+ f(x) = +∞ and limx→∞ f(x) = −λ < 0.

For ϕ > 1, since g1(x)h1(x) is positive and strictly decreasing over (0, x0) and negative
over (x0,∞), and limx→0+ g1(x)h1(x) = ∞, we have that there exists xλ0 ∈ (0, x0) such that
f(xλ0) = 0. The properties of f over (0, xλ0) and (xλ0 ,∞) follow analogously as in (1).

For ϕ ∈ (0, 1], since g1h1 is continuous, positive and strictly decreasing over (0,∞), by
intermediate value theorem, there exists xλ0 ∈ (0,∞) such that f(xλ0) = 0, f is positive
and strictly decreasing for x < xλ0 and negative for x > xλ0 , with limx→0+ f(x) = ∞ and
limx→∞ f(x) = −λ.

Part (3). Since f is monotone and continuous, it is differentiable. The derivative f ′ at x
is given by

f ′(x) = − 1

x2
+ ϕ

∫
r2

(xr + 1)2
dP (r) = −g2(x)h2(x),

where

g2(x) =
1

x2
, h2(x) =

(
1− ϕ

∫ (
xr

xr + 1

)2

dP (r).

)
Note that the function g2 is positive and strictly decreasing over (0,∞) with limx→0+ g2(x) =
∞ and limx→∞ g2(x) = 0. On the other hand, the function h2 is strictly decreasing over
(0,∞) with h2(0) = 1 and h2(x0) > 0. This follows because for x ∈ (0, x0],

ϕ

∫ (
xr

xr + 1

)2

dP (r) ≤ x0b

x0b+ 1
ϕ

∫ (
xr

xr + 1

)
dP (r) <

∫
ϕxr

xr + 1
dP (r) ≤

∫
ϕx0r

x0r + 1
dP (r) = 1,
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where the first inequality in the chain above follows as the support of P is [a, b], and the
last inequality follows since f(x0) = 0 and x0 > 0, which implies that

1

x0
= ϕ

∫
r

x0r + 1
dP (r), or equivalently that 1 = ϕ

∫
x0r

x0r + 1
dP (r).

Thus, −f ′, a product of two positive strictly decreasing functions, is strictly decreasing, and
in turn, f ′ is strictly increasing. Moreover, limx→0+ f

′(x) = −∞ and f ′(x0) < 0.

Part (4). The conclusion follows by noting that h2(xλ0) > h2(x0) > 0 from (3).

Lemma 42 provides the continuity and limiting behavior of the function ϕ 7→ v(−λ;ϕ)
for ridge regression (λ > 0). Lemma 43 does the same for ridgeless regression (λ = 0).

Lemma 42 (Continuity properties in the aspect ratio for ridge regression). Let λ, a > 0
and b <∞ be real numbers. Let P be a probability measure supported on [a, b]. Consider the
function v(−λ; ·) : ϕ 7→ v(−λ;ϕ), over (0,∞), where v(−λ;ϕ) > 0 is the unique solution to
the following fixed-point equation:

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

1 + rv(−λ;ϕ)
dP (r) (121)

Then the following properties hold:

(1) The range of the function v(−λ; ·) is a subset of (0, λ−1).
(2) The function v(−λ; ·) is continuous and strictly decreasing over (0,∞). Furthermore,

limϕ→0+ v(−λ;ϕ) = λ−1, and limϕ→∞ v(−λ;ϕ) = 0.
(3) The function ṽv(−λ; ·) : ϕ 7→ ṽv(−λ;ϕ), where

ṽv(−λ;ϕ) =
(
v(−λ;ϕ)−2 −

∫
ϕr2(1 + rv(−λ;ϕ))−2 dP (r)

)−1

,

is positive and continuous over (0,∞). Furthermore, limϕ→0+ ṽv(−λ;ϕ) = λ−2, and
limϕ→∞ ṽv(−λ;ϕ) = 0.

(4) The function ṽb(−λ; ·) : ϕ 7→ ṽb(−λ;ϕ), where

ṽb(−λ;ϕ) = ṽv(−λ;ϕ)
∫
ϕr2(1 + v(−λ;ϕ)r)−2 dP (r),

is positive and continuous over (0,∞). Furthermore, limϕ→0+ ṽb(−λ;ϕ) = limϕ→∞ ṽb(−λ;ϕ) =
0.

Proof Proofs for the different parts appear below.

Part (1). Since P has positive support, we have

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

1 + rv(−λ;ϕ)
dP (r) > λ,

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

1 + rv(−λ;ϕ)
dP (r) < λ+ ϕb

which implies that 0 < (λ+ ϕb)−1 < v(−λ;ϕ) < λ−1.
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Part (2). Rearranging (121) yields

1

ϕ
=

1

1− λv(−λ;ϕ)

(
1−

∫
1

1 + rv(−λ;ϕ)
dP (r)

)
.

From Patil et al. (2022b, Lemma S.6.13), the function

h1 : t 7→ 1−
∫

1

1 + rt
dP (r)

is strictly increasing and continuous over (0,∞), limt→0 h1(t) = 0, and limt→∞ h1(t) = 1.
It is also positive from (1). Since h2 : t 7→ 1/(1 − λt) is positive, strictly increasing and
continuous over t ∈ (0, λ−1), we have that the function

T : t 7→ 1

1− λt

(
1−

∫
1

1 + rt
dP (r)

)
is strictly increasing and continuous over (0, λ−1). By the continuous inverse theorem, we
have T−1 is strictly increasing and continuous. Note that v(−λ;ϕ) = T−1(ϕ−1). Since
ϕ 7→ ϕ−1 is continuous and strictly decreasing in ϕ, we have ϕ 7→ v(−λ;ϕ) is contin-
uous and strictly decreasing over ϕ ∈ (0,∞). Moreover, limϕ→0+ T

−1(ϕ−1) = λ−1 and
limϕ→∞ T−1(ϕ−1) = 0.

Part (3). From (2), ϕ 7→ v(−λ;ϕ)−2 is continuous in ϕ and

T2 : ϕ 7→ ϕ

∫
r2

(1 + rv(−λ;ϕ))2
dP (r)

is also continuous in ϕ. Thus, the function ṽv(−λ; ·)−1 is continuous. Note that

v(−λ;ϕ)2

ṽv(−λ;ϕ)
= 1− ϕ

∫
r2v(−λ;ϕ)2

(1 + rv(−λ;ϕ))2
dP (r) > 1− ϕ

∫
rv(−λ;ϕ)

1 + rv(−λ;ϕ)
dP (r) = 0,

where the inequality holds because rv(−λ;ϕ)/(1+rv(−λ;ϕ)) is strictly positive and P (r) has
positive support. Then we have that ϕ 7→ ṽv(−λ;ϕ)−1 > 0 and ṽv(−λ; ·) is continuous over
(0,∞). Since limϕ→0+ v(−λ;ϕ) = λ−1, it follows that limϕ→0+ ṽv(−λ;ϕ) = λ−2. Similarly,
from limϕ→∞ v(−λ;ϕ) = 0, limϕ→∞ ϕv(−λ;ϕ) = 1 and the fact that

lim
ϕ→∞

∫
r2

(1 + rv(−λ;ϕ))2
dP (r) ∈ [a2, b2],

it follows that

lim
ϕ→∞

ṽv(−λ;ϕ) = lim
ϕ→∞

v(−λ;ϕ)2·
(
1− v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2(1 + rv(−λ;ϕ))−2 dP (r)

)−1

= 0.
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Part (4). The continuity of ṽb(−λ; ·) follows from the continuity of v(−λ; ·) and ṽv(−λ; ·).
Note that

1

1 + ṽb(−λ;ϕ)
= 1− v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2

(1 + rv(−λ;ϕ))2
dP (r).

From the proof in (3), we have

lim
ϕ→0+

1

1 + ṽb(−λ;ϕ)
= 1− lim

ϕ→0+
v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2

(1 + rv(−λ;ϕ))2
dP (r) = 1

lim
ϕ→∞

1

1 + ṽb(−λ;ϕ)
= 1− lim

ϕ→∞
v(−λ;ϕ) · ϕv(−λ;ϕ) ·

∫
r2

(1 + rv(−λ;ϕ))2
dP (r) = 1

and thus, limϕ→0+ ṽb(−λ;ϕ) = limϕ→∞ ṽb(−λ;ϕ) = 0.

Lemma 43 (Continuity properties in the aspect ratio for ridgeless regression). Let a > 0
and b < ∞ be real numbers. Let P be a probability measure supported on [a, b]. Consider
the function v(0; ·) : ϕ 7→ v(0;ϕ), over (1,∞), where v(0;ϕ) > 0 is the unique solution to
the followinn fixed-point equation:

1

ϕ
=

∫
v(0;ϕ)r

1 + v(0;ϕ)r
dP (r). (122)

Then the following properties hold:

(1) The function v(0; ·) is continuous and strictly decreasing over (1,∞). Furthermore,
limϕ→1+ v(0;ϕ) = ∞, and limϕ→∞ v(0;ϕ) = 0.

(2) The function ϕ 7→ (ϕv(0;ϕ))−1 is strictly increasing over (1,∞). Furthermore, limϕ→1+(ϕv(0;ϕ))
−1 =

0 and limϕ→∞(ϕv(0;ϕ))−1 = 1.
(3) The function ṽv(0; ·) : ϕ 7→ ṽv(0;ϕ), where

ṽv(0;ϕ) =

(
v(0;ϕ)−2 − ϕ

∫
r2(1 + rv(0;ϕ))−2 dP (r)

)−1

,

is positive and continuous over (1,∞). Furthermore, limϕ→1+ ṽv(0;ϕ) = ∞, and limϕ→∞ ṽv(0;ϕ) =
0.

(4) The function ṽb(0; ·) : ϕ 7→ ṽb(0;ϕ), where

ṽb(0;ϕ) = ṽv(0;ϕ)

∫
r2(1 + v(0;ϕ)r)−2 dP (r),

is positive and continuous over (1,∞). Furthermore, limϕ→1+ ṽb(0;ϕ) = ∞, and limϕ→∞ ṽb(0;ϕ) =
0.

Lemma 44, adapted from Patil et al. (2022b), confirms the continuity and differentiability
of the function λ 7→ v(−λ;ϕ) on the closed interval [0, λmax] for a certain constant λmax,
provided ϕ ∈ (1,∞). This ensures that v(0;ϕ) = limλ→0+ v(−λ;ϕ) is well-defined for ϕ > 1,
and also implies that related functions are bounded.
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Lemma 44 (Differentiability properties in the regularization parameter for ϕ ∈ (1,∞)).
Let 0 < a ≤ b <∞ be real numbers. Let P be a probability measure supported on [a, b]. Let
ϕ ∈ (1,∞) be a real number. Let Λ = [0, λmax] for some constant λmax ∈ (0,∞). For λ ∈ Λ,
let v(−λ;ϕ) > 0 denote the solution to the fixed-point equation

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

v(−λ;ϕ)r + 1
dP (r).

Then, the function λ 7→ v(−λ;ϕ) is twice differentiable over Λ. Furthermore, over Λ,
v(−λ;ϕ), ∂/∂λ[v(−λ;ϕ)], and ∂2/∂λ2[v(−λ;ϕ)] are bounded.

Lemma 45 (Substitutability of the fixed-point solution). Let v : Rp×p → R and f(v(C),C) :
Rp×p → Rp×p be a matrix function for matrix C ∈ Rp×p and p ∈ N, that is continuous in the
first augment with respect to operator norm. If v(C)

a.s.
= v(D) such that C is independent

of D, then f(v(C),C) ≃ f(v(D),C) | C.

Proof For any matrix T whose trace norm is bounded by M , conditioning on {C}p≥1, we
have

| tr[(f(v(C),C)− f(v(D),C))T ]| ≤ ∥f(v(C),C)− f(v(D),C)∥op tr(T )

≤M ∥f(v(C),C)− f(v(D),C)∥op .

Since v(C)
a.s.−−→ v(D) and f is continuous in the first argument with respect to operator

norm, we have limp→∞ ∥f(v(C),C)− f(v(D),C)∥op = 0. Thus,

lim
p→∞

| tr[(f(v(C),C)− f(v(D),C))T ]| = 0,

conditioning on {C}p≥1.

The lemma below specializes the solution to the fixed-point equations under the isotopic
model.

Lemma 46 (Properties of the fixed-point solution with isotopic features). Let P be a prob-
ability measure supported on {a} for a > 0. For λ > 0 and ϕ > 0, the fixed-point equation

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

v(−λ;ϕ)r + 1
dP (r) = λ+

ϕa

1 + v(−λ;ϕ)a

has a closed-form solution given by:

v(−λ;ϕ) =
−(λ/a+ ϕ− 1) +

√
(λ/a+ ϕ− 1)2 + 4λ/a

2λ
.

Define ṽb(−λ;ϕ) and ṽv(−λ;ϕ) via the follow equations:

ṽb(−λ;ϕ) =
∫
ϕr2(1 + v(−λ;ϕ)r)−2dP (r)

v(−λ;ϕ)−2 −
∫
ϕr2(1 + v(−λ;ϕ)r)−2dP (r)

,

ṽv(−λ;ϕ)−1 = v(−λ;ϕ)−2 −
∫
ϕr2(1 + v(−λ;ϕ)r)−2dP (r).
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As λ→ 0+, we have the following different cases:

(1) ϕ ∈ (0, 1) : v(0;ϕ) = ∞, ṽb(0;ϕ) =
ϕ

1− ϕ
, ṽv(0;ϕ) = ∞,

(2) ϕ = 1 : v(0;ϕ) = ∞, ṽb(0;ϕ) = ∞, ṽv(0;ϕ) = ∞,

(3) ϕ ∈ (1,∞) : v(0;ϕ) =
1

a(ϕ− 1)
, ṽb(0;ϕ) =

1

ϕ− 1
, ṽv(0;ϕ) =

ϕ

a2(ϕ− 1)3
,

(4) ϕ = ∞ : v(0;ϕ) = 0, ṽb(0;ϕ) = 0, ṽv(0;ϕ) = 0,

Proof For ϕ ∈ (0, 1), we have v(0;ϕ) = limλ→0+ v(−λ;ϕ) = ∞. For ϕ > 1,

v(0;ϕ) = lim
λ→0+

v(−λ;ϕ) = 1

2a
lim
λ→0+

(
−1 +

λ/a+ ϕ+ 1√
(λ/a+ ϕ− 1)2 + 4λ/a

)
=

1

a(ϕ− 1)
,

by applying L’Hospital’s rule for indeterminate forms. When ϕ = 1, we have

v(0; 1) = lim
λ→0+

v(−λ; 1) = lim
λ→0+

1

2a

(
−1 +

√
1 +

a

λ

)
= ∞.

Since ṽb(0;ϕ) and ṽv(0;ϕ) are continuous functions of v(0;ϕ), we have

ṽv(0;ϕ) =


∞, ϕ ∈ (0, 1]

ϕ

a2(ϕ− 1)3
, ϕ ∈ (1,∞)

and ṽb(0;ϕ) = 1/(ϕ − 1) for ϕ ∈ (1,∞). For ϕ ∈ (0, 1], we apply the L’Hospital’ rule to
obtain ṽb(0;ϕ) = ϕ/(1− ϕ).

Appendix I. Helper concentration results

I.1 Size of the intersection of randomly sampled datasets

In this section, we collect various helper results concerned with concentrations and conver-
gences that are used in the proofs of Lemma 4, Lemmas 20, 21 and 25.

Below we recall the definition of a hypergeometric random variable, along with its mean
and variance. See, e.g., Greene and Wellner (2017) for more related details.

Definition 47 (Hypergeometric random variable). A random variable X follows the hyper-
geometric distribution X ∼ Hypergeometric(n,K,N) if the probability mass function of X
is as follows:

P(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , where max{0, n+K −N} ≤ k ≤ min{n,K}.

The expectation and variance of X are given by:

E[X] =
nK

N
, and Var(X) =

nK(N −K)(N − n)

N2(N − 1)
.
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The following lemma provides tail bounds for the number of shared observations in two
simple random samples adapted from (Hoeffding, 1963; Serfling, 1974). See also Greene and
Wellner (2017).

Lemma 48 (Concentration bounds for the number of shared observations). For n ∈ N,
define Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n}. Let I1, I2

SRSWR∼ Ik, define the
random variable iSRSWR0 := |I1 ∩ I2| to be the number of shared samples, and define iSRSWOR0

accordingly. Then the following statements hold:

(1) iSRSWR0 follows a binomial distribution, iSRSWR0 ∼ Binomial(k, k/n) with mean E[iSRSWR0 ] =
k2/n. It holds that for all t > 0,

P
(
iSRSWR0 − E[iSRSWR0 ] ≥ kt

)
≤ exp

(
−2kt2

)
.

(2) iSRSWOR0 follows a hypergeometric distribution, iSRSWOR0 ∼ Hypergeometric(k, k, n) with
mean E[iSRSWOR0 ] = k2/n. It holds that for all t > 0,

P
(
iSRSWOR0 − E[iSRSWOR0 ] ≥ kt

)
≤ exp

(
− 2nkt2

n− k + 1

)
. (123)

The following lemma characterizes the limiting proportions of shared observations in two
simple random samples under proportional asymptotics when both the subsample and full
data sizes tend to infinity.

Lemma 49 (Asymptotic proportions of the shared observations). Consider the setting in
Lemma 48. Let {km}∞m=1 and {nm}∞m=1 be two sequences of positive integers such that nm
is strictly increasing in m, nνm ≤ km ≤ nm for some constant ν ∈ (0, 1), and km/nm → ωs ∈
[0, 1]. Then, iSRSWR0 /km

a.s.−−→ ωs, and iSRSWOR0 /km
a.s.−−→ ωs.

Proof Proofs for the two parts are split below.

Part (1). For all δ > 0,

∞∑
m=1

P
(

1

km
|iSRSWR0 − E[iSRSWR0 ]| > δ

)
≤ 2

∞∑
m=1

exp
(
−2kmδ

2
)
.

Because km, nm → ∞ and km = Ω(nνm), there exists m0 ∈ N, such that for all m > m0,
exp(−2kmδ

2) ≤ n
−(1+ν)
m . Thus,

∞∑
m=1

P
(

1

km
|iSRSWR0 − E[iSRSWR0 ]| > δ

)
≤ 2

m0∑
m=1

exp
(
−2kmδ

2
)
+ 2

∞∑
m=m0

1

n1+νm
<∞.

By the Borel–Cantelli lemma, we have

iSRSWR0

km
− E[iSRSWR0 ]

km

a.s.−−→ 0.

As limm→∞ E[iSRSWR0 ]/km = limm→∞ km/nm = ωs, we further have iSRSWR0 /km
a.s.−−→ ωs.
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Part (2). Note that

P
(
iSRSWOR0 − E[iSRSWOR0 ] ≥ kt

)
≤ exp

(
− 2nkt2

n− k + 1

)
≤ exp

(
−2kt2

)
.

The conclusion then follows analogously, as in Part 1.

I.2 Convergence of Ces̀aro-type mean and max for triangular array

In this section, we collect a helper lemma on deducing almost sure convergence of a Ces̀aro-
type mean from almost sure convergence of the original sequence. It is used in the proof of
Proposition 3 and Lemma 4.

Lemma 50 (Convergence of conditional expectation). For n ∈ N, suppose {Rn,ℓ}Nn
ℓ=1 is a set

of Nn random variables defined over the probability space (Ω,F ,P), with 1 < Nn <∞ almost
surely. If there exists a constant c such that Rn,pn

a.s.−−→ c for all deterministic sequences
{pn ∈ [Nn]}∞n=1, then the following statements hold:

(1) maxℓ∈[Nn] |Rn,ℓ(ω)− c| a.s.−−→ 0,

(2) N−1
n

∑Nn
ℓ=1Rn,ℓ

a.s.−−→ c.

Proof [Proof of Lemma 50] Proofs for the two parts are split below.

Part (1). We concatenate the sets {Rn,ℓ}Nn
ℓ=1 for all n ∈ N to form a new sequence

W = (W1,W2, · · · ) = (R1,1, · · · , R1,N1 , R2,1, · · · , R2,N2 , · · · ).

That is, Wt = Rn,ℓ for t =
∑n

j=1Nj+ ℓ. See Figure 13 for an illustration. Because Nn → ∞
if and only if n → ∞ if and only if t → ∞, it holds that Wt

a.s.−−→ c as t → ∞. Then, by
Shiryaev (2016, Chapter 2, Section 10, Theorem 1), we have that for all ϵ > 0,

lim
s→∞

P

( ∞⋃
t=s

{ω ∈ Ω : |Wt(ω)− c| > ϵ}

)
= 0.

Now, for s ∈ N, let m be the smallest natural number such that
∑m

j=1Nj ≥ s. Since

∞⋃
t=s

{ω ∈ Ω : |Wt(ω)− c| > ϵ} ⊇
∞⋃
n=m

Nn⋃
ℓ=1

{ω ∈ Ω : |Rn,ℓ(ω)− c| > ϵ}

=

∞⋃
n=m

{
ω ∈ Ω : max

ℓ∈[Nn]
|Rn,ℓ(ω)− c| > ϵ

}
.

We further have

0 ≤ lim
m→∞

P

( ∞⋃
n=m

{
ω ∈ Ω : max

ℓ∈[Nn]
|Rn,ℓ(ω)− c| > ϵ

})
≤ lim

s→∞
P

( ∞⋃
t=s

{ω ∈ Ω : |Wt(ω)− c| > ϵ}

)
= 0,
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Figure 13: Illustration of the concatenated sequence {Wt} (in maroon) constructed from the
triangle array {Rn,ℓ}Nn

ℓ=1, n ∈ N (in black), used in the proof of Lemma 50, along with the max
sequence (in blue) and the average sequence (in teal).

or in other words,

lim
m→∞

P

( ∞⋃
n=m

{
ω ∈ Ω : max

ℓ∈[Nn]
|Rn,ℓ(ω)− c| > ϵ

})
= 0.

Thus, we have that maxℓ∈[Nn] |Rn,ℓ(ω)− c| a.s.−−→ 0 by Shiryaev (2016, Chapter 2, Section 10,
Theorem 1).

Part (2). We will use the first part. Note that by triangle inequality,∣∣∣∣∣N−1
n

Nn∑
ℓ=1

Rn,ℓ − c

∣∣∣∣∣ ≤ N−1
n

Nn∑
ℓ=1

|Rn,ℓ − c| ≤ max
ℓ∈[Nn]

|Rn,ℓ(ω)− c| .

Invoking the first part, we have that N−1
n

∑Nn
ℓ=1Rn,ℓ

a.s.−−→ c.
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Appendix J. Additional numerical illustrations

J.1 Additional illustrations for Theorem 6

J.1.1 Prediction risk curves for subagged ridgeless and ridge predictors
with varying M
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Figure 14: Asymptotic prediction risk curves in (19) for ridgeless predictors (λ = 0), under model
(M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M . The
null risk is marked as a dotted line. For each value of M , the points denote finite-sample risks
averaged over 100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋. The left and the right panels
correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
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Figure 15: Asymptotic prediction risk curves in (19) for subagged ridge predictors (λ = 0.1), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of bags M .
The null risk is marked as a dotted line. For each value of M , the points denote finite-sample risks
averaged over 100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋. The left and the right panels
correspond to the cases when p < n (ϕ = 0.1) and p > n (ϕ = 1.1), respectively.
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J.1.2 Bias-variance curves for subagged ridgeless and ridge predictors
with varying M

0.0

0.5

1.0
W

R
0,

M
(

,
s) = 0.1 = 1.1

0.1 0.2 0.5 1.0 2.0 5.0 10.0
Subsample aspect ratio s

10 3

10 2

10 1

100

W
R

0,
M
(

,
s)

= 0.1
1.0 2.0 5.0 10.0

Subsample aspect ratio s

= 1.1

M 1 2 5 10 50

Figure 16: Asymptotic bias and variance curves in (22) for subagged ridgeless predictors (λ = 0),
under model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number
of bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown on a log-10 scale.
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Figure 17: Asymptotic bias and variance curves in (22) for subagged ridge predictors (λ = 0.1),
under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of
bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.
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Figure 18: Asymptotic bias and variance curves in (22) for subagged ridge predictors (λ = 0.1),
under model (M-AR1-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of
bags M . The left and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.
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J.1.3 Bias-variance curves for subagged ridge predictors with varying λ
(M = 1)
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Figure 19: Asymptotic bias and variance curves in (22) for subagged ridge and ridgeless predictors
with number of bags M = 1, under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying
regularization parameter λ. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.

J.1.4 Bias-variance curves for subagged ridge predictors with varying λ
(M = ∞)
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Figure 20: Asymptotic bias and variance curves in (22) for subagged ridge and ridgeless predictors
with number of bags M = ∞, under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying
regularization parameter λ. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The values of V sub

0,M (ϕ, ϕs) are shown in log-10 scale.
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J.2 Additional illustrations for Theorem 8

J.2.1 Prediction risk curves for splagged ridgeless and ridge predictors
with varying M
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Figure 21: Asymptotic prediction risk curves in (28) for splagged ridgeless predictors (λ = 0),
under model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number
of bags M without replacement. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The null risk is marked as a dotted line. For each value
of M , the points denote finite-sample risks averaged over 100 dataset repetitions, with n = 1000 and
p = ⌊nϕ⌋.
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Figure 22: Asymptotic prediction risk curves in (28) for splagged ridge predictors (λ = 0.1), under
model (M-ISO-LI) when ρ2 = 1 and σ2 = 0.25 for varying bag size k = ⌊p/ϕs⌋ and number of bags
M without replacement. The left and the right panels correspond to the cases when p < n (ϕ = 0.1)
and p > n (ϕ = 1.1), respectively. The null risk is marked as a dotted line. For each value of M , the
points denote finite-sample risks averaged over 100 dataset repetitions, with n = 1000 and p = ⌊nϕ⌋.
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J.2.2 Bias-variance curves for ridgeless and ridge predictors with varying
M
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Figure 23: Asymptotic bias and variance curves in (22) for splagged ridgeless predictors (λ = 0),
under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of
bags M without replacement. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The values of V spl

0,M (ϕ, ϕs) are shown in log-10 scale.
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Figure 24: Asymptotic bias and variance curves in (22) for splagged ridge predictors (λ = 0.1),
under model (M-ISO-LI) when ρ2 = 1 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number of
bags M without replacement. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The values of V spl

λ,M (ϕ, ϕs) are shown in log-10 scale.
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Figure 25: Asymptotic bias and variance curves in (22) for splagged ridgeless predictors (λ = 0),
under model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number
of bags M without replacement. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The values of V spl

0,M (ϕ, ϕs) are shown in log-10 scale.
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Figure 26: Asymptotic bias and variance curves in (22) for splagged ridge predictors (λ = 0.1),
under model (M-AR1-LI) when ρar1 = 0.25 and σ2 = 1 for varying bag size k = ⌊p/ϕs⌋ and number
of bags M without replacement. The left and the right panels correspond to the cases when p < n
(ϕ = 0.1) and p > n (ϕ = 1.1), respectively. The values of V spl

0,M (ϕ, ϕs) are shown in log-10 scale.
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J.3 Additional illustrations for Theorem 10

J.3.1 Risk monotonization for subagged ridgeless and ridge predictors
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Figure 27: Asymptotic excess risk curves for cross-validated subagged ridgeless predictors (λ = 0),
under model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋, and numbers
of bags M with replacement. The left and the right panels correspond to the cases when SNR = 1
and 4, respectively. The null risk is marked as a dotted line, and the risk for the unbagged ridgeless
predictor is denoted by the dashed line. For each value of M , the points denote finite-sample risks,
and the shaded regions denote the values within one standard deviation, with n = 1000, nte = 63,
and p = ⌊nϕ⌋.
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Figure 28: Asymptotic prediction risk curves for cross-validated subagged ridge predictors (λ =
0.1), under model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋ and numbers
of bags M with replacement. The left and the right panels correspond to the cases when SNR = 1
and 2, respectively. The null risk is marked as a dotted line. For each value of M , the points denote
finite-sample risks averaged over 100 dataset repetitions, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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Figure 29: Asymptotic excess risk curves for cross-validated subagged ridge predictors (λ = 0.1),
under model (M-AR1-LI) when σ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋ and numbers of
bags M . The left and the right panels correspond to the cases when SNR = 0.33 (ρar1 = 0.25) and
0.6 (ρar1 = 0.5), respectively. The excess null risk is marked as a dotted line, and the risk for the
unbagged ridgeless predictor is denoted by the dashed line. For each value of M , the points denote
finite-sample risks averaged over 100 dataset repetitions, and the shaded regions denote the values
within one standard deviation, with n = 1000, nte = 63, and p = ⌊nϕ⌋.

J.3.2 Risk monotonization for splagged ridgeless and ridge predictors
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Figure 30: Asymptotic excess risk curves for cross-validated splagged ridgeless predictors (λ = 0),
under model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋, and numbers of
bags M without replacement. The left and the right panels correspond to the cases when SNR = 1
and 4, respectively. The null risk is marked as a dotted line, and the risk for the unbagged ridgeless
predictor is denoted by the dashed line. For each value of M , the points denote finite-sample risks
averaged over 100 dataset repetitions, and the shaded regions denote the values within one standard
deviation, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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Figure 31: Asymptotic prediction risk curves for cross-validated splagged ridge predictors (λ = 0.1),
under model (M-ISO-LI) when ρ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋, and numbers of
bags M without replacement. The left and the right panels correspond to the cases when SNR = 1
and 4, respectively. The null risk is marked as a dotted line. For each value of M , the points denote
finite-sample risks averaged over 100 dataset repetitions, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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Figure 32: Asymptotic excess risk curves for cross-validated splagged ridge predictors (λ = 0.1),
under model (M-AR1-LI) when σ2 = 1 for varying SNR, subsample sizes k = ⌊p/ϕs⌋ and numbers
of bags M . The left and the right panels correspond to the cases when SNR = 0.33 (ρar1 = 0.25)
and 0.6 (ρar1 = 0.5), respectively. The excess null risk is marked as a dotted line, and risk for the
unbagged ridgeless predictor is denoted by the dashed line. For each value of M , the points denote
finite-sample risks averaged over 100 dataset repetitions and the shaded regions denote the values
within one standard deviation, with n = 1000, nte = 63, and p = ⌊nϕ⌋.
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J.4 Additional illustrations in Section 5

J.4.1 Subagging with replacement and splagging without replacement
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Figure 33: Asymptotic excess risk (the difference between the prediction risk and the noise level σ2)
curves of bagged ridgeless predictors (λ = 0) for subagging (left panel) and splagging (right panel),
under model (M-ISO-LI) when ρ2 = 1 and SNR = 0.1, for varying ϕ (p < n), bag size k = ⌊p/ϕs⌋
and number of bags M . The solid lines represent the optimal risks with respect to M for either with
replacement (M = ∞) or without replacement (M = ϕs/ϕ); the dashed lines represent the risks for
M = 1; the dotted lines indicates the aspect ratio ϕ of the full dataset; the solid dots represent the
optimal risk with respect to both M and ϕs.
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Figure 34: Asymptotic excess risk (the difference between the prediction risk and the noise level σ2)
curves of bagged ridgeless predictors (λ = 0) for subagging (left panel) and splagging (right panel),
under model (M-ISO-LI) when ρ2 = 1 and SNR = 0.5, for varying ϕ (p ≥ n), bag size k = ⌊p/ϕs⌋
and number of bags M . The solid lines represent the optimal risks with respect to M for either with
replacement (M = ∞) or without replacement (M = ϕs/ϕ); the dashed lines represent the risks for
M = 1; the dotted lines indicates the aspect ratio ϕ of the full dataset; the solid dots represent the
optimal risk with respect to both M and ϕs.
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