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Abstract

This paper is concerned with the low Tucker-rank tensor completion problem, which is
about reconstructing a tensor 7 € R™*™*™ of low multilinear rank from partially observed
entries. Riemannian optimization algorithms are a class of efficient methods for this prob-
lem, but the theoretical convergence analysis is still lacking. In this manuscript, we establish
the entrywise convergence of the vanilla Riemannian gradient method for low Tucker-rank
tensor completion under the nearly optimal sampling complexity O(n3/ 2). Meanwhile, the
implicit regularization phenomenon of the algorithm has also been revealed. As far as we
know, this is the first work that has shown the entrywise convergence and implicit regu-
larization property of a non-convex method for low Tucker-rank tensor completion. The
analysis relies on the leave-one-out technique, and some of the technical results developed
in the paper might be of broader interest in investigating the properties of other non-convex
methods for this problem.

Keywords: low rank tensor completion, Tucker decomposition, Riemannian gradient,
entrywise convergence, implicit regularization, leave-one-out
1. Introduction

Tensors are multidimensional arrays which are ubiquitous in data analysis, including but not
limited to topic modeling (Anandkumar et al., 2015), community detection (Anandkumar
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et al., 2013), computer version (Liu et al., 2012), collaborative filtering (Karatzoglou et al.,
2010), and signal processing (Cichocki et al., 2015). In this paper, we consider the tensor
completion problem which is about reconstructing a tensor from a few observed entries.
Without any additional assumptions, tensor completion is an ill-posed problem which does
not even have a unique solution. Therefore computationally efficient solution of this problem
is typically based on certain intrinsic low dimensional structures of tensors, a notable exam-
ple of which is low rank. Compared with matrix, tensor has more complex rank notions up
to different tensor decompositions such as CANDECOMP /PARAFAC (CP) decomposition
(Hitchcock, 1927), Tucker decomposition (Tucker, 1966), tensor train (TT) decomposition
(Oseledets, 2011), and t-SVD decomposition (Zhang and Aeron, 2016). In this manuscript,
we focus on the Tucker decomposition. Then the low-rank tensor completion problem can
be formulated as follows:
Xe]gyxnnxn 2:; |Po (X) = Pa (T)|E, st. rank(X)=r (1)
where T € R™*™*" ig the target tensor to be recovered, rank (X) is the Tucker rank of X
which will be specified later, € is a subset of indices for the observed entries, p = || /n? is
the sampling rate, P is the element-wise sampling operator, and ||-||¢ denotes the Frobenius

2
norm (e.g., || X||g = Zim”g Xi217i27i3).

1.1 Main contributions

For the low rank tensor completion problem under Tucker decomposition, many methods
have been developed (Gandy et al., 2011; Huang et al., 2015; Han et al., 2020; Kressner et al.,
2014; Liu et al., 2012; Luo and Zhang, 2021; Mu et al., 2014; Xia and Yuan, 2019; Rauhut
et al., 2017; Tong et al., 2021). Among them, Riemannian optimization algorithms are a
class of efficient methods. Despite the computational efficiency of Riemannian optimization,
there still lacks theoretical analysis for them. In this manuscript, we fill this gap by providing
an entrywise convergence of the vanilla Riemannian gradient method (RGM) for low rank
tensor completion.

RGM for tensor completion is an extension of the method for matrix completion (Van-
dereycken, 2013; Wei et al., 2016, 2020). The iteration of RGM is given by

XL = HOSVD (X! — p~'Pr,, P (X~ T)),

where the retraction HOSVD and the projection Pr,, are specified in Section 2.1. Assume
the target tensor 7T is incoherent, i.e., there exists a constant p > 0 such that

T .
[Uillzoo < /55, =123,

where U; € R™" (i = 1,2,3) are the factor matrices of the tensor 7, and ||Uilly o =
max;e|p] [Ui]j7:’ ) is the 2, oo norm of U;. Let X! € R™ ™" with factor matrices X} € R"*"

(i = 1,2,3) denote the iterate generated by the RGM in the t-th iteration. We have the
following main result.
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Theorem 1 Assume each entry of T is observed independently with probability p. Let the

6,8 3
condition number of T be k. If p > W’ the iterates of the Riemannian gradient

method (Algorithm 2) satisfy the following properties with high probability:

| X0 500 < 200/ 55 21 2)

2. The iterates Xt converges linearly to T in terms of the infinity norm:

1. Incoherence of the iterates:

t
X =T < G) Omax (T), t>1, (3)

where omax (T) denotes the upper bound on the largest singular values of the matriciza-
tion of T along every mode (see Equation 5), and || X' — ’THOO = MAXi, s | (X0 = T )ipinsis|
denotes the infinity norm of X' — T . In particular, for the first logarithm number of
iterations, a stronger entrywise convergence of RGM can be established (see Theo-
rem 6):

1

1\
H)(t - THOO < <2> 372 Omax (T), forl<t<ty, wherety= O(logyn).

Remark 2 Though the results are established for the Bernoulli model, they equally apply
to the uniform sampling model without replacement as the two models are closely related to
each other. The Bernoulli model is adopted for considerably simpler argument, as is done
in related literature (Recht, 2011; Yuan and Zhang, 2016; Xia and Yuan, 2019).

Remark 3 As a byproduct, the convergence of the vanilla RGM for low rank matriz com-
pletion follows immediately from Theorem 1. This is also a new result for the matrix case
since previous results either require a stronger initialization procedure (Wei et al., 2020)
or require an additional projection in the algorithm (Cai et al., 2021c). The analyses in
Wei et al., 2020; Cai et al., 2021c are all based on the Frobenius norm error metric, which
cannot fully exploit the incoherence property of each iterate and thus require sample splitting
for initialization (so that the initialization can be unreasonably close to the ground truth) or
explicit projection onto the incoherence region in the algorithm. However, these additional
steps are empirically not necessary. In contrast, the analysis in this paper is based on the
U o norm and infinity norm which enables us to analyse the incoherence property of each
iterate more carefully and establish the convergence of the algorithm that does not have those
empirically redundant steps.

Inequality (2) shows that iterates of the RGM remain incoherent even in the absence
of explicit regularization which is known as the implicit reqularization phenomenon. To
the best of our knowledge, this is the first work that has shown the stronger entrywise
convergence and the implicit regularization phenomenon of a non-convex method for low
Tucker-rank tensor completion under the nearly optimal sampling complexity O(n3/2). Ta-
ble 1 summarizes the theoretical recovery guarantees of different nonconvex algorithms for
both the Gaussian measurement model and the entrywise measurement model.



WAaANG, CHEN AND WEI

Table 1: Theories of different nonconvex methods for low Tucker-rank tensor completion.

Algorithms Sampling complexity Error metric | Sampling scheme

O C]liézj zstjﬁ ’(;(])31 9) nr Frobenius Gaussian
(EZiuiir;?efiﬂc)}Ql[))) n3/2p Kt Frobenius Gaussian
 (Cai e}t{i}ll.\jl 2020) n3/2r2 2 Frobenius Gaussian
Ri(eflll inZ;aani:lngS:gOe ;Vlt)on n3/2p3/24 Frobenius Gaussian
(TonSgC:iegl.G:]; 021) n3/2rK? Frobenius Gaussian
Og;a;s;g?f;i? 2(?)]1)9) n3/ 247124 log7/ Zn Frobenius Entrywise
(TonSgC:iegl(.;:]; 021) n3/2r2k (\/77 \% /<52) log®n | Frobenius Entrywise

[ thi];{?)zdper] n?/2r8k810g3 n Infinity Entrywise

The proof of Theorem 1 relies on the leave-one-out technique which has been widely used
in analyzing various high dimensional data processing methods. Our work is mostly inspired
by Cai et al., 2021b for low rank tensor completion problem under the CP decomposition
and by Ding and Chen, 2020 for low rank matrix completion, but the technical details
are substantially different. On the one hand, CP decomposition and Tucker decomposition
are essentially two different decompositions for tensors and a gradient descent algorithm is
analysed in Cai et al., 2021b. Even though a few results for the initialization step therein can
be used in our proof, the proof details for the iteration procedure are significantly different.
Even in the initialization step, we find that the structure of Tucker decomposition can be
used to simplify the proof of a related result (Lemma 16). On the other hand, tensors
are more complex than matrices which means that, compared with the analysis of iterative
hard thresholding (IHT) for low rank matrix completion, the analysis of RGM for tensor
completion are much more complicated. Moreover, differing from IHT, there is one key
different component in RGM, namely the orthogonal projection Pr,,. Indeed, we need to
carefully leverage this projection to obtain the nearly optimal sampling complexity O(n3/ 2.
Without this projection step, the near-optimal sampling complexity can not be achieved
for the low rank tensor completion problem. This is basically because in the tensor case we
need to transform the perturbation tensor into an n x n? matrix via matricization in order
to bound it and exploiting the low dimensional structure is essential for us to reduce the
dependence on n from n? to n3/2. In contrast, for the low rank matrix completion problem,
the convergence result can be established with or without this projection step since it does

not involve the transformation from an tensor to an n x n? matrix.
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1.2 Organization and Notation

This paper is organized as follows. Section 2 begins with some tensor preliminaries and
then introduces the Riemannian gradient method for low Tucker-rank tensor completion
together with the main theoretical results. The proof strategies of the main results are
outlined in Sections 3 and 4, while the details are provided in the appendix. In Section 5,
we conclude this paper with a few future directions.

Throughout this paper, tensors are denoted by capital calligraphic letters, matrices
are denoted by bold capital letters, and vectors are denoted by bold lower case letters.
In particular, we will reserve T for the ground truth tensor to be recovered, which is an
n X n X n tensor of multilinear rank r = (ry,79,73). For ease of exposition, we assume
r1 = rog = r3 = r for the ground truth tensor. For each integer d, define the set [d] =
{1,2,---,d}. We denote by e; the i-th canonical basis vector, by I the identity matrix with
suitable size, and by J the all-one tensor (i.e., all the entries of J are 1). For any matrix
M, we use [M]; ., [M]._;, [M],; to represent the i-th row, the j-th column, the (i, j)-th
element of M, respectively. The Frobenius norm, spectral norm and nuclear norm of a
matrix M are denoted by | M || , || M|, ||M]|,, respectively. In addition, the /3 . norm of

a matrix M is defined as [ M||3 o, := max;ey H [M], :HQ. For a tensor X, its infinity norm

is defined as || X|| o, = max;, 4545 |Xi) insis| - We will use C,Cp, Cp,--- to denote absolute
positive constants, whose values may vary from line to line. Lastly, we use the terminology
"with high probability” to denote the event happens with probability at least 1 — Cin~¢2
for some constants C1,Cy > 0 and Cy sufficiently large.

2. Algorithm and Main Result
2.1 Preliminaries

We begin this section with some preliminaries of tensors; for a more detailed exposition, see
Kolda and Bader (2009). For conciseness, we restrict our discussion to n x n X n three-way
tensors.

Tensor matricization. Matricization, also known as unfolding, transforms a tensor into
a matrix along different modes. Given a tensor X' € R™*"™*" the matricization operators
are defined as

n n2

My (X) e R™™ [Ml (X)]i17i2+’n(i371) = Xil,iQ,i37
n n2

Mo (X> € R™™ [MQ (X)]i27i1+n(i3—l) = Xilﬂé,is’
n n2

M3 (X) eR S (M3 (X)]i37i1+n(i2_1) = Xi iz, iz-

Mode-d tensor multiplication. The mode-1 product of a tensor X € R"*"*™ with a
matrix A € R™*" denoted X x1 A, gives a tensor of size m x n x n. Elementwise, we have

n
(X X1 A)j i, = D Xivinis [Alj 4,

i1=1
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and xo and x3 are similarly defined. A few facts regarding mode-d tensor multiplication
are in order:

XX,LAX]B:XX]BXZA(Z#]) and XXlAXZB:XXZ(BA)
Tensor norms. The inner product between two tensors is defined as

(X,2) = Z iy inis = Zin jinis-

11,12,13
The Frobenius norm and the spectral norm of a tensor are defined as

X :=+(X,X) and |X| := sup (X,x10x90T3),

z; €R™: |||, =1
where the element of @y o x4 0 &3 € R™*™*™ ig defined by
[@1 0 @2 03], 4, 50 = [T1]iy - [T2)in - [X3is- (4)

The following basic relations regarding the spectral norm, which follow immediately from
the definition, will be very useful: for any i € [3],

X < [IMi ()] and |4 x; X[| < [ X| - || -
Similar to the matrix case, the nuclear norm is the dual of spectral norm:

X, = sup (X, 2).
ZeRanX”n’HZ”Sl

Recall that the condition number for a matrix A is given by k(A) = omax (A) /Omin (A)
where oax and o, are the largest and smallest nonzero singular values of A respectively.
This concept can be naturally generalized to tensors,

 Omax (X)
k(X) = . X) X’
where opax (X) and opin (X) are defined as
Omax (X) := max {omax (M1 (X)), Omax (M2 (X)) , 0max (M3 (X))} (5)
Omin () 1= min {omin (M1 (X)), Omin (Mz2 (X)), Omin (M3 (X))} (6)

Tucker decomposition and HOSVD. The Tucker decomposition is a higher-order gen-
eralization of singular value decomposition (SVD), which has the form

3
X =G x1 X1 x2 X0 X3X3:g‘X1Xi7 (7)

where G € R™*"2%"3 ig referred to as the core tensor, and X; € R™"*" for i = 1,2,3 are
the factor matrices. Because G is usually unstructured, we can always write the Tucker
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decomposition of X into the form where X; are orthonormal matrices. Given the Tucker
decomposition of X, its matricizations are given by

M1 (X) =X 1M1 (G) (X350 Xa),
My (X) = XoM3 (G) (X3 ® X1)T,
M3 (X) = X3M3(G) (X2 ® X1)",

where ® denotes the Kronecker product of matrices.

A tensor X € R™ " ™ is said to be of multilinear rank r = (ry, ro, r3) if rank (M;(X)) =
r; for i =1,2,3. It is evident that 1 < r; <n for ¢ = 1,2,3. It is well known that SVD can
be used to find the best low rank approximation of a matrix. In contrast, computing the best
low rank approximation of a tensor is an NP hard (Hillar and Lim, 2013) problem. That
being said, there exists a higher order analogue of SVD, known as Higher Order Singular
Value Decomposition (HOSVD) (De Lathauwer et al., 2000), which is able to return a
quasi-optimal approximation; see Algorithm 1. HOSVD first estimates the principle factor
matrices of each mode by an SVD trunctation of the corresponding matricization, and then
formulates the core tensor by multiplying X by the transpose of the factor matrix along
each mode. Denoting by H,(X') the output of HOSVD, there holds (De Lathauwer et al.,
2000)

%= He (V) < VB it X = 2]l

Note that when X is already of multilinear rank », HOSVD returns the exact Tucker
decomposition of X.

Algorithm 1 HOSVD
Input: Tensor X €
fori=1,2,3 do

X, =SVD,, (M;(X)).
end for

3
G=X x X/
=1

3
6: Output: G x X;.
i=1

R™* > multilinear rank r = (r1,72,r3).

SN~

Tensor manifold. A collection of tensors with multilinear rank r = (ry, 79, 73) forms a
smooth embedded submanifold of R"*™*" (Koch and Lubich, 2010), denoted M., i.e.,

M, = {X e R™™" | rank(X)=r}.

3
Let the Tucker decomposition of X be X = G x X, where XZ.TXZ» =TI € R"*" and
i=1

G € R™ ™73 hag full multilinear rank. The tangent space of M, at X is given by Koch
and Lubich, 2010:

3
3
Ty = {c X XH—E Gxi W x X | CGRW"W‘&,WiGR"X“,WJXFO,Z:LQ,:a}.
i=1 j#£i

i=1
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Given a tensor Z, the orthogonal projection of Z onto T, denoted Pr, (Z), has the form
3 .
Pr, (2)=C x X;+ Z‘;Zl G x; W; x X;, where C and W; are to be determined. Since the
i=1 i

summands are orthogonal to each other, C and W; can be obtained independently by solving
the least squares problems, yielding the expression (Koch and Lubich, 2010; Kressner et al.,
2014; Cai et al., 2020)

3 T 3
Pry (2) = 2 X X X[ + > G W, X X, (8)

=1

where W; is defined as

Wi = (- X,XT) Mm; (Z .;.XJT)MI(‘J%
JF

Here ./\/lj (G) denotes the Moore-Penrose pseudoinverse of M; (G) (Golub and Van Loan,
1996), which obeys that M; (G) MI (G) =T and Mj (G) M; (G) is an orthogonal projector.

2.2 Riemannian Gradient Method

Algorithm 2 Riemannian Gradient Method (RGM)

1: Input: Initialization X' generated via Algorithm 3, multilinear rank » = (r,7,7),
parameter p.
2: fort=1,--- do

3: for:=1,2,3 do
x X[t =SVD, (M; (X' —p~'Pr,, Pa (X' = T))),
5: end for 3
6 Gt = (Xt —p1Pp , Pa (X —T)) X Xf“T.
7. Xl = gt+l i xitl
i=1
8: end for

The Riemannian gradient method (RGM) for solving (1) is presented in Algorithm 2. Let
X! be the current estimator, and Ty+ be the tangent space of the rank 7 tensor manifold at
Xt. RGM first updates Xt along Pr,.. Pa (X t— 'T), the gradient descent direction projected
onto the tangent space Ty, using the fixed step size 1. Then the new estimator X**! is
obtained by projecting the update to the set of rank 7 tensors via HOSVD. Note that in
description of Algorithm 2, we have included the details of HOSVD.

2.2.1 INITIALIZATION BY SPECTRAL METHOD WITH DIAGONAL DELETION

Spectral method is a widely used initialization method in matrix and tensor computation
problems (Chen et al., 2020b), which typically involves the estimation of certain principal
subspace from the data matrix or equivalently the Gram matrix corresponding to the data
matrix. In some statistical settings, directly using the data matrix may lead to a biased
estimator. Though this is usually not a problem when matrices are nearly square (for
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Algorithm 3 Initialization via spectral method with diagonal deletion

L: Input: Pq (T) € R multilinear rank r = (r,r,r), parameter p.
2: fori=1,2,3 do
3: Let X Z-l E%X}T be the top-r eigenvalue decomposition of Pyg_diag (fﬁ’_ﬁT)
4: end for
5. G' = p~ ' Po(T) ,>3<1 x!T.
i=

(=]

3
: Output: xt=g! x Xil.
i=1

example in typical matrix recovery problems (Jain et al., 2013; Keshavan et al., 2010; Ma
et al., 2020)), it does lead to sub-optimal performance for highly unbalanced matrices unless
the number of observations is unnecessarily large. This is the case for the tensor completion
problem since for an n x n X n tensor, we need to consider its matricization in the analysis
which is an n x n? matrix and hence highly unbalanced.

Specifically for the problem considered in this paper, the sample Gram matrix is given

~~T ~
by T;T; where T; := p~'M; (Pq (T)) € R™*"” is the scaled observation matrix. It is clear
that how close the top-r eigenvectors of the Gram matrix are to the target eigenvectors

~ AT
is determined by T;T; — T,,TlT Such error term can be decomposed into bias part and
unbiased parts as follows:

TT -1l = T4 -B[T4| + [T ] - Ta]

= Foff-diag (ﬁﬁT - 111117,1-> +Pdiag (f’zf‘zT - p_lj-‘iT‘iT) + (p_l - ]-) 7)diag (T‘zT‘ZT)a

bias

unbiased unbiased

where Pgiag (M) sets the non-diagonal elements of M to zeros and Pog.diag (M) = M —
Piag (M ). It can be shown that the bias term and the unbiased diagonal part lead to an
unnecessarily large number of samples to ensure a reliable estimator (Florescu and Perkins,
2016; Zhang et al., 2018). To deal with this difficulty, we adopt the diagonal deletion
strategy proposed in Florescu and Perkins, 2016; that is, performing the spectral method

~ T
on the matrix Pofdiag (Eﬂ ) In this case, we have

~ ~T ~ ~T
pof'f-diag <ﬂﬂ ) - TZLT;T = Foff-diag (1—'11—'2 - ,-Tz,-TlT) - Pdiag (ET;T> .

unbiased diagonal deletion

Therefore, if the diagonal elements of TZ'TZ»T are not too large, the matrix Pof_qiag (fﬁff)
serves as a nearly unbiased estimator of T,TZT It implies that the top-r eigenvectors of

Pott-diag (Cﬁff) could form a reliable estimator of the principal subspace of TZTZT The
complete description of the initialization procedure is summarized in Algorithm 3.

Remark 4 The diagonal deletion idea has already been used in various scenarios, including
low rank tensor completion (Cai et al., 2021b; Tong et al., 2021). We give a brief introduc-
tion here for the paper to be self-contained. In addition to diagonal deletion, one might also
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consider properly reweighting the diagonal entries, see for example (Cai and Zhang, 2016;
Cho et al., 2017; Elsener and van de Geer, 2019; Loh and Wainwright, 2012; Lounici, 2013,
2014; Montanari and Sun, 2018; Zhang et al., 2018; Zhu et al., 2019).

2.3 Implicit Regularization and Entrywise Convergence of RGM

Since the target tensor 7 is low rank, the application of HOSVD with the true parameter
r = (r,r,r) yields the exact Tucker decomposition of 7, denoted

3
T=S 'Xl UZ',

)

where U; € R™™" are the top-r left singular vectors of M;(T) for i = 1,2,3 and S =

3
T x UZ-T € R™*™*" is the core tensor. As in matrix completion, the notion of incoherence
i=1
is required for us to be able to successfully fill in the missing entries of a low rank tensor.

Specifically, the incoherence parameter of 7 is defined as

n 2 2 2
pi= 2 max { U115 0 U213 o U513 o }

Clearly, the smallest value for u can be 1, while the largest possible value is n/r. A tensor
is p-incoherent with a small p implies that the singular vectors of its matricization form are
weakly correlated with the canonical basis. Therefore, the energy of the tensor sufficiently
spreads out across the measurement basis, and a small random subset of its entries still
contains enough information for successful reconstruction. The following lemma follows
directly from the definition of incoherence, see Section B.1 for the proof.

Lemma 5 Letting T; = M;(T), we have

ur
ITilz00 < /2 man(T), |

The convergence of the Riemannian gradient method can be approximately decomposed
into two phases. In Phase I, the iterates are not sufficiently close to the target tensor, we
need to explicitly show that they remain in the incoherence region based on induction.
In Phase II, the iterates are in a local neighbourhood of the target tensor where the re-
stricted isometry property uniformly holds, and thus implicit regularization and entrywise
convergence follows directly from the convergence in terms of the Frobenius norm.

T'| <

ur ur\3/2
< oua(T). Tloe < () oumax(D).

2,00

Theorem 6 (Phase I convergence) Suppose that T is p-incoherent and the index set §)
satisfies the Bernoulli model with parameter p. If n > CorSp3r® and

N C1r81358 log3 n CorS 712 logd
p = max n3/2 ) n2

for some universal constants Cy, C1 and Ca. Suppose tg = 2logyn + c. Then with high
probability, the iterates of RGM (Algorithm 2) satisfy

N
(ROl < (5) /2 =12

10
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. 1\" 1
=Tl < (5) somes (D), o)

fort=1,--- ty, where R} = argmingrp_j HXfR— UiHF'

Theorem 6 establishes the performance guarantee of RGM within the first logarithm number
of iterations, where ¢ > 0 in tg is a constant specified in Remark 8. Analyzing the distance
between factor matrices X! and U is the key to showing the convergence of the RGM in
phase 1. As already mentioned, this explicitly shows that RGM automatically forces the
iterates to stay incoherent in each iteration.

Theorem 7 (Phase II convergence) Suppose that T is u-incoherent and the index set
Cop®r?logn

2 and

Q satisfies the Bernoulli model with parameter p. Suppose p >

o T _ e
omin (T) ~—9(1+¢€)’

where 0 < e < ﬁ. Then with high probability, the iterates of RGM (Algorithm 2) satisfy

t—to
=7l () =Tl goranes 2

Remark 8 Note that if we set ¢ = [logy(9(1 + €)/e)]| in Theorem 6, after Phase I, the
iterates of RGM will enter the local neighborhood specified in Theorem 7. This follows from
a simple calculation,

a

—
N

to _
e 7l _ 1

: 1 . 1 1
3/2 Xto o < - 3/2 ) B
Umin(T) - Umin(T)n H THoo —= Umin(T)n 72?50 n3/20'max(7-)
b c
crW e kO Ve
200 T 9(1+4+e)n ~ 9(1+¢e)

where (a) is due to (9), (b) follows from tog = 2logyn + [logy(9(1 +¢€)/e)], and (¢) uses the
fact p > K2/n?.

As an immediate consequence of Theorem 6 and Theorem 7, one can obtain the proof of
Theorem 1.
Proof [Proof of Theorem 1| Noting that the results in Theorem 6 naturally show that
the inequalities (2) and (3) hold for 1 < ¢ < ¢y. It only remains to show the above two
inequalities hold for t > tp.

A simple calculation yields that

t t 1 it to 1 it 3/2 to
¥ =Tl <l =Tlle<(5) ¥ =Tle<(5) "l =Tl,

1\t 1\° 1 1\*
< (2> n’/? (2> Wamax (T) = (2) Omax (T) -

11
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Only detailed proofs for the i = 1 case are provided for (2), and the proofs for the other
two cases are overall similar. Applying the Weyl’s inequality yields that

Omin (Ml (Xt)) 2 Omin (Ml (T)) - HMl (Xt) - M (T)H
> omin (T) — || M1 (X7) = Mo (T
1

>omn - (1) I -7l

1\ /pe 15
> Omin (T) - <2> 9(1 T 5) Omin (T) > Eamin (T) s

L
200

the fact M; (X*) = X{M; (GY) (XL ® X%)T, one can obtain

where the last inequality is due to p < 1 and € < For any /¢ satisfies 1 < ¢ < n, using

et = |leT v (21) (x5 0 x5) M ()]

© e ms () HMI (6") (M1 (") MT (gt))_lu

1

Omin (Ml (gt))
1

Omin (M1 (X1))

1\t 1\t ur 16
) ( (5) () oo <T>> o (7)
(®) 1\ /1\° 1 [ ur 16 wr
S (n (2> <2> EUmaX (T) + Wamax (T)) W S 2K F,

where (a) is due to omin (M1 (G*)) > 0 and (b) follows from to = 2logy n + c. [ |

S (BRG] B DRG]

< (n ]2 = T + 1M1 (T 0 )

2.4 Numerical Experiments

We first test the convergence of RGM for tensor completion problem under two metrics
defined below:

1" = Tl
17Tl

HXfRﬁ - Ui }2,00

Relative || - ||oo: U5 ’
112,00

and Relative || - [|2,00:

where R! = argmingrp_j HXfR - UiHF' Tests are conducted with n = 100, r = 3 and
p = 0.2. For fixed (n,r), test tensors are generated through the Tucker decomposition

3
T =38 x U,;, where S € R"™*"*" is a random tensor with i.i.d. entries of standard normal
i=1

distribution and {U;}?_, are random orthonormal matrices of size n x 7 which are obtained
via the orthogonalization of standard Gaussian matrices. The plot of average relative errors
over 100 random tests against iteration count is presented in Figure 1 (Right). Clearly, a

12
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RGM

——Relative || - || error for X" 20

——Relative || - ||2,0c error for X!
Relative || - ||2,00 error for X} |7

—s—Relative || - |20 error for X} 16

Relative error
3
>

0 5 0 15 20 25 0.1 0.1250.15 0.175 0.2 0.2250.25 0.275 0.3 0.3250.35
Iteration count Sampling Rate

Figure 1: (Left) Relative errors of X* and X! for i = 1,2,3 against iteration count when
n =100, r = 3, p = 0.2; (Right) Phase transition plot for varying r and sampling
rate when n = 100 (different colors represent different successful rates out of 100
random tests).

desirable linear convergence can be observed from the plots for both the iterates and the
factor matrices.

Our results suggests that O(n®?r%) are overall sufficient for the successful reconstruction
of a low Tucker-rank tensor. For the dependence on n, it matches the lower bound for any
known polynomial time algorithms. Moreover, it is shown in Barak and Moitra, 2016
that, conditioned on some conjecture on computational complexity theory, no polynomial
time algorithm can be successful if the sampling complexity is less than O(ng/ 2). For the
dependence on r, we conduct the phase transition tests for fixed n = 100, and varying r and
p, see Figure 1 (Right). For each pair of (r,p), 100 random random trials are tested and

a trial is considered to have successfully recover the target tensor if the output tensor X

. Xt-T .- . . .
satisfies w < 1073. The phase transition plot indicates that the sampling complexity
for successful recovery is about linearly proportional to r, which suggests the possibility of

reducing this dependency in the future.

3. Proof of Theorem 6

The proof of Theorem 6 relies on the reconstruction of auxiliary sequences via a leave-one-
out perturbation argument, and is much more involved. Thus, this section is devoted to
the proof outline of Theorem 6, while the proofs of the intermediate results are deferred to
later sections.

To obtain the entrywise error bound of the iterates, the f3 o, norm of the factor matrices
needs to be bounded which is quite difficult to control directly due to the complicated
statistical dependency. To overcome this difficulty, the leave-one-out technique proposes
to introduce a collection of leave-one-out versions of {Xt}, denoted by {Xt’z} for each

13
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1 < ¢ < n. Specifically, for every ¢, define the following auxiliary loss function

1 2 1 2

%HPQ—Z (X =Tl + 5 IPe (X =Tl (11)
where Pq_, (£) and Py (2) are defined as follows:

7) z L [Z]il,i27i3 ) if il # £a i2 # Ea i3 # K and (i17i27i3) S Qa
[ 2 )]il’iQ’i:” o 0, otherwise,
if’L'l :K,OI‘ ’ig :E,Ol“ i3 :f,

[Z]u 12,13 7
[PZ(Z)]il,iQ,ig = { e

0, otherwise.

The leave-one-out sequence {X t’z} +>1 1s produced by applying RGM to this new cost func-
tion. If Q satisfies the Bernoulli model, then we can rewrite (11) as

1 2 1 2
2 Z Oy i3 (Xi1,i2,i3 - 7;171'272'3) + 9 Z (Xi17i2,i3 - 7;1,1'272'3) ) (12)

P 11,12,i37#L HijZZ, j€[3}

where {8, i,.i, } are n® independent Bernoulli random variables. Noting that (12) does not
depend on {d;, 4,4, : Jij = ¢, j € [3]}, the sequence {Xt7£}t>1 is independent of those
random variables provided the initial guess X1¢ is independent of them. This decoupling
of the statistical dependency turns out to be crucial for us to bound the f3 oo norm of the
factor matrices. The initial guess X' can be similarly generated by the spectral method
with diagonal deletion, but with those entries at locations indexed by {(i1,12,43) : 3i; =
¢, j € [3]} being replaced by the ground truth values. The complete procedure to create
the leave-one-out sequence { X t’é} ,~1 is described in Algorithm 4. We would like to caution
that Algorithm 4 is by no means a practical algorithm, but only introduced for the sake of
analysis.

To facilitate the analysis, it is much more convenient to rewrite the iterates of Algorithm
2 into the following perturbation form,

X =, (T +&),
where the residual tensor £! is given by
&= (T—-p 'Pr,Pa) (X' -T), t>1 (13)
For t = 0, since X! can be rewritten as
X =H, (T+X' -T),

the residual tensor in the initialization step is defined as

€= T = ((T—p7Pa) (-T) 3 XIXIT 4T x XIXT =T 4)

14
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Algorithm 4 The /-th leave-one-out sequence for tensor completion
1: Input: tensors Po_, (T), P¢ (T), multilinear rank = = (r, r,r), parameter p.
2: fori=1,2,3 do
Lal,l 1,6 . o See”
3: Let X,"X,” X, be the top-r eigenvalue decomposition of Pog-qiag ( T3 T; ), where

T! = M; (p7"Pa_, (T) + Pi(T)).

T
4: end for

5 GM = (p"Pa, (T) + Pe(T)) % X7,

6 XL =ght ¥ XM i

7. fort=1,- -i-:1do

8: for i =1,2,3 do

0: X[ =8VD, (M (X0 = Pr,, (p7'Po, +P2) (X = T))).

10: end for ) ]
1 gt = <Xt’£ —Pr,., (07" Pa_, +Pe) (X" - T)) x X

1=
3
19: xi+le — gt+1,£ ~ XZHM'
i=1
13: end for

Similarly, the residual tensors of the ¢-th leave one out sequence from Algorithm 4 are
defined by

3 T 3 T
= (T -p"Pa_, = P0) (-T)) X xMxH T X xMxHT T (1)
1= i=

gl . (I —Pr,.. (07 Pa_, + 794)) (W - T) Lt (16)

which satisfy
XM= U, (T+E) and AT =3, (T + €M),

Let T, = M; (T), Ef_l = M; (Stfl) and Ef_l’e = M; (5’&*1’6) be the mode-i ma-
tricizations of the corresponding tensors. It can be seen from Algorithms 2 and 4 that
the matrices X! and Xl-t’g are the top-r eigenvectors of (TZ —i—Effl) (E —i—Effl)T and

T
(Ti + Eit_l’€> <TZ + Ef_1’€> , respectively. Recall that the eigenvalue decomposition of

’TiTiT is TiTiT = UiAiUZ-T. If we further define three auxiliary r x r orthonormal matrices
as follows:

(2

Rf = argming HXfR — U¢HF, RV = argming HXE’ER -U;

F’
T = arg ming HX:’ZR — X!R}

1

F )

the following theorem for the sequences produced by Algorithms 2 and 4.

Theorem 9 Under the assumption of Theorem 6, the following inequalities hold with high
probability for all 1 < £ <n and 1 <t <ty,

1 1

1
= g g (T, (172)
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1 1

HEE_M = W@”max(ﬂa (17b)

HX?ZREI ~Uil|, < 220%2,“ A Qt\/i (17¢)
Hgt_l B 5t—1,€HF < 22%4 2,4 9t \/ﬁa (17d)
HXfRE - X;fa@Tit,zHF < 22%% A Qt\/> (17e)
| xR — Ui”z,oo < 22% 1274 2t\/7 (17f)

We also need a lemma which transfers the convergence result in terms of the f5 and f3
norms to that in terms of the £, norm.

Lemma 10 Let X = HOSVD, (T + &) for some perturbation tensor € € R"*" ™. Let the
3

Tucker decomposition of X be G x X, with )(;rXZ = I. Define
i=1

150 max(T)
R, = arg mln ||X R —Ui||g and B =  max <||X R; — Uil g + 202 (1) 1Uill 2,00 Ez|> )

mll’l

where E; := M;(E). Suppose that maxi—123 || E;i| < omax(T)/ (10x?). Then one has
2
2 Tl < Omae(T) <33 #3052 (s 10l ) +38 (s 1075 )

+ max || E; IIHIIX 12,00 -
=1

Theorem 9 will be proved by induction, with the proof details for the base case and induction
step presented in Sections A.1 and A.2, respectively. The proof of Lemma 10 can be found
in Section B.2. Equipped with Theorem 9 and Lemma 10, we are now able to present the
proof of Theorem 6.

Proof [Proof of Theorem 6] The {3 o, convergence for the factor matrices follows directly
from (17f). It only remains to show the /., convergence of the iterates. From (17a), one
can see that

1
HEztilH < mamax(T), 1= 1,2,3.

Applying Lemma 10 with X := X¢, £ := £'~! yields that

2
3 2
HXt — THoo < Umax(T) (B +3B <Zr_n1?‘2),(3 HUZH2,00> +3B <Zr:nl?2)7(3 HU1H2,00) )

3
+ e B T e (18)

i=1,2,3

16
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By (17a) and (17f), one has

B< 2“3/{21#27‘4 % (19)
Finally, substituting (17a) and (19) into (18) yields that
. N\" 1
| =Tl < (5) sgom (D). (20)
Noting that (20) holds with high probability for each t and to = 2logy n + c. |

4. Proof of Theorem 7

In this section, we prove Theorem 7 by induction. It is trivial that when ¢t = ty the result
holds. Next, we assume (10) holds for the iterations tg,tg + 1,--- ,¢, and then prove it
also holds for £ + 1. The proof relies on several lemmas which reveal the uniform restricted
isometry property in a local neighborhood of the ground truth. We first present these
lemmas and postpone the proofs to Section B.

Lemma 11 Suppose T is the tangent space of M. at T. Then

ur
[Pr(es oes0er)E <4 (10)". (1)

Lemma 12 Suppose € is sampled according to the Bernoulli model and the tensor T obeys
2.2
the incoherence condition with parameter p. If p > %, then
[Pr (=" Pa = T) Pr <<
holds with high probability, where € > 0 s an absolute constant.

Remark 13 Lemma 11 and Lemma 12 highly resemble Lemma 2 in Yuan and Zhang, 2016
and Lemma 12 in Tong et al., 2021, respectively. However, the definition of the operator Pr
in this paper differs from the one in Tong et al., 2021; Yuan and Zhang, 2016. Specifically,
the operator Pr in the previous works was defined as

Pr(2) = Z><UUT+ZZ>< (I UU>>;UUT
=1 J7

Lemma 14 Let X! = G! >< X!and T=S8 >< U; be two tensors in M, and Ty, T be the
tangent spaces of M, at Xt (md T, respectwely Then

foxf Ut

1 ¢ .
S ﬁ“x THF’ = 172737

Omin

IPr ~ Pl < 2 [t = 7]

17
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1

Lemma 15 Assume the following inequalities hold for 0 < e < 555,

2 =Tl _ e

Pr —p "PrPoPr| < d : 22
H T—P TrQ TH & an Tmin(T)  — 9(1+ ) (22)
Then
|PaPr,.|| <2v/p(1+€) and |Pr,, —p "Pr,.PaPr,| < 5e.

Proof [Proof of Theorem 7| First, Lemma 12 implies that

|Pr—p~ " PrPoPr|| < e
holds with high probability provided that p > %.

We assume that in the ¢-th iteration X'* satisfies
xXt—T

Umin(T) - 9(1 + 6)'

Recall that At = #, (Xt — p_lpTXﬂDQ (Xt — T)) =H, ('T + €t). One can see that

2 = Tlle < |27 = (T + ) [e + [|€']]r < (VB + D [|E7] < 22 [[€]

F Y
where the second inequality follows from the quasi-optimality of HOSVD. It remains to

bound HEtHF. To this end, invoking the triangle inequality gives that

1€ = 112" = T = p~"Pr, Pa (" = T) ¢

< [|(Pry =0~ Pro PaPry) (X' =T+ [(Z = Pr,.) (X' =T)||;

+ Hp_IPTXtPQ (Z - PTxt) (Xt o T) HF :

=:v3

Bounding vi. Applying Lemma 15 gives that
vt < |[Pry = p7 Pry PaPry | - 21 = Tl < 52 |47 =71

Bounding v,. The application of (Cai et al., 2020, Lemma 5.2) gives that

8./pe
=TI < g T < 2 | - T

8
U2=H(I—7DTXt)(T)HF§U 9(1+¢)

min(T) ‘
Bounding v3. A direct computation yields that
vs <07 [PaPry || - [(Z = Pry.) (D]

<p'-2yp(1+e)-

8
S = T < et -7

18
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where the second line is due to Lemma 15.

Putting the above bounds together yields that

a)

( 1
et~ 7 < a e < 100 - 7 < Ll <7 @
where (a) is due to the induction condition and the last step follows from & < ﬁ.
By the assumption of the theorem, the inequality (23) is valid for ¢ = t3. Since
HX ¢ - ’THF is a contractive sequence following from (24), the inequality (23) is valid for
all t > to by induction. |

5. Conclusion and Discussion

In this paper, entrywise convergence of the vanilla Riemannian gradient method for low
Tucker-rank tensor completion has been established and the implicit regularization property
of the method has been revealed. For conciseness of presentation, we focus on three-way
tensors and the noiseless case. Indeed, the results can be extended to general multi-way
tensors and the noisy case, with the sampling complexity and error bound matching these
results in Cai et al., 2021b; Xia and Yuan, 2019; Xia et al., 2021, see the supplement of
this paper in Wang et al., 2021 for details. For future work, it is interesting to further
optimize the dependency of the sampling complexity on the rank r. Additionally, it may
also be possible to extend the analysis to the low rank tensor completion problem based on
the tensor train decomposition since both the Tucker decomposition and the tensor train
decomposition reduce to the same form of decomposition for the matrix case.
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Appendix A. Proof of Theorem 9
A.1 Base Case for Theorem 9

We first list two useful lemmas, whose proofs are deferred to Sections B.7 and B.8.

Lemma 16 Under the assumption of Theorem 6, the following inequality holds with high
probability,

3/2,.3/2 2,2 3/2,3/2 1003 1, 2,2 1005 1 ’
<C <M + & )long—\/7j K 80 /E S +% o2 (T).

~p ~,T
| Poaies (TE") = 1T

n3/2p n2p n3/2p nZp max
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Lemma 17 Suppose n > Cou’r’k® and

ClﬂBM&STG 10g3 n C2H16M6T11 10g5 n
p> max{ 3 , 3 . (25)
With high probability, one has
X'R -U| <+ L 2
H it T ZH = ﬁzzoﬁ%zrw (26)
1,0 1,0 1 1
|x R -] < s (27)

A.1.1 BOUNDING HE?H AND HEZMH

In light of the symmetry of tensor matricization among different modes, we only focus on
bounding HE?H and HE?’KH, and omit the proofs for the other two modes. The spectral

norm of EY can be decomposed as follows:

|22 = HMl <(I —p'Pa) (-T) x XIXIT+T x XIx!T - 7') H

=1

< HMI ((I—p—%) (-T) % XSX}T)

e (raxx )]

=:p1 =lp2

3
Bounding ¢;. Notice that (Z —p~'Pq) (=T) x X,}X}T is a tensor of multilinear rank
i=1
at most (r,r,r). Applying Lemma 22 yields that

p1 = HMl <(I—p‘1739) (=T) 51 X}XQT) H <\r

(Z—-p'Pa) (-T) ¥ X}X}T
=1

(a) log3 3log®
<VE| (7 Pa = 7) (7| < vie | <2 ”\IT\IOO+\/ - e T

1 1

(®) w3/203/210g% n u2r21og® n 1
sz T (28)

< VrC

—
INe

n3/2p n2p Tmax(T)

where (a) is due to Lemma 23, (b) follows from Lemma 5, and (¢) is due to the assumption
6,3.5,.6 3 12,,6,.11 5
P> max{clﬂ Er log n Car s log ”}

3
Bounding ¢y. Since T =T x U;U;, one has
=1

1=
3
T x XIx!T T =T %, (XllelT - UlUlT) o X3X1T x5 x1x17
1=

LT % U UT s (XQIX%T - U2U2T> x5 X3x1T
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+T 31 U] %, UoUS x (X3X3T - U307 ).

Consequently,
3
P2 = HM1 (T x xIxHT —T) H < 3 max HX}X}T ~UU| - max || Ty
i=1 i=1,2,3 i=1,2,3
11 @ 1
S 6121?2)7{3 HXZ R; — Uz” ’ Umax(T) <6 22556,“2744 : Umax(T)a (29)

where (a) follows from (26).

Putting (28) and (29) together shows that

1 1

HE?H < Wigmax(’r)'

Using the same argument as above, one can obtain

0,0 1 1
HEl H = Wi'amax(,]-).

A.1.2 BounpING || X} R} — Ui,
Theorem 3.1 in Cai et al., 2021a shows that with high probability,

2,,3/2,3/2] 42021 2
1 mi1 o [ K%/ % logn kp2r2logn  KAur ur
L] - 0] < 0t (T [ osn )
1 1 1 Jur
2220522742\ n’

where the last inequality follows from the assumption n > Cox®u?r® and

- 01/{6'&3.57‘5.5 log n C2/€12[L67‘10 log n
p > max 32 , 2 .

:

Lemma 4 in Cai et al., 2021a, Lemma 8 in Cai et al., 2021b and Lemma 34 demonstrate
that with high probability,

IN

A.1.3 BOUNDING HX}Rz1 - xMTHt

T T
HXZ.lRZl—XZ.L‘fT;”fH gHXZ.MXiM -x/ x|
F F

<C /<;2,u3/2r3/210gn+ kAu2r2logn ur
= n3/2p n2p

n
1 1 Jpr
< 225,{2Iu27a4§\/ n’ (31)

4,,3.5,5.5 8,,6,10]
C1R*p>°r ogn Caok 1L7‘2 ogn}' The

where the last line is due to the assumption p > max

n3/2 ) n

inequality (31) directly implies that (17e) holds for ¢ = 1.
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A.1.4 BOUNDING HX}’ZR}’Z -U;

2,00

Invoking the triangle inequality gives

1,4 pl,0
HXZ.’RZ.’ - U

1,6 1,0 1pl
< xi

IR U

< |xMRY - XIR!| +|X!Rl - Ui, (32)
By (26) and (31), the following inequalities hold with high probability,
1 1
|X!RI - Ui Uil < 5 and | X! RE- XM Ui < 5
Applying Lemma 32 with X; = X! R}, X, = Xil’e’I;l’[, one can see that
1ol 1,0 1,0 1ol 1,01, Y L jpr
et <ol -, gt W E

where the last line is due to (31). Plugging (30) and (33) into (32) gives

1 1 Jur
2,00 = 220,2,2r4 2\ (34)

| xR U,

A.1.5 Bounbineg ||€0— &%)

By the definitions of £ and £%¢ in (14) and (15), we can decompose £9 — £%¢ as

£~ £ = (T~ pPa) (-T)) % XIX!T— (@ —p7'P0) (7)) x X1xMT

1=

(07 Pa—p o, — P () X XPXMT

3 T 3 T
+T x XX -7 x xMxH
=1 =1

It then follows from the triangle inequality that

Jeo—eot], < (e —p ) (-7 £ XX = (@5 P0) (7)) K XX

. 7 7
=1

F

=:p3

+ 1 (('Pa —p 'Pa_, —P0) (T)) A13<1 Xil’eXil’ﬂ

F

=:p4

3 T 3 Ll 1,eT
+ |7 x X;X} -T x XX,
=1 =1

F

=:p5
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Bounding 3. Simple calculation reveals that
(Z-p7'Pa) (=7)) 31 X! X}~ (T—p 'Pa) (-T)) El X}’EX;”ZT
= (T -p7'Pa) (=T)) xa (XX = XX o X0 g X X1
+((T-p7'P0) (-T)) %1 XIXTT o (X3X3T - X;’ZXQMT) x3 X x0T
(-0 (7)< XIXT s x4 (0T - x0T

Thus we have

)

3
eos X[ xEXT - xtxvr @ -7 P (1
i=1

where the inequality is due to Lemma 22. Together with (28) and (31), one can see that

-
w3 < 31;I:nla2x3 HXl'lXilT _ Xilnyilvg HF T H (I _p—lpﬂ) (T)H

<3. 1 1 fpr N w3232 1og3 n N p2r2log® n o (T)
= 2BR22p4 2\ n n3/2p n2p e
1 1 1 Jur
< Zmi ;O'max(T)a (35)
where it is assumed that p > max { 01”4“12’2'510”, 02”8“(;:2101%" }

Bounding ¢4. Since || Z||g = || M; (Z)]|g for any tensor Z, one has

:
o= | XX (7P =5 P - P (7) (X3 0 X0 (X3 0 X1

F

< HXll’ETMl ((p_lpﬂ - p_IPQ—é - ’PK) (T)) (X;é ® XQL[) HF ’

By the definition of Pg_, and Py, it can be seen that the entries of M; ((p_IPQ —pPo_, — 774) (T))
are all zeros except those on the /-th row or the j-th column for any j € I', where I' is an
index set defined by

r={n+t--- nl-2)+4mnl—-1)+1,--- ,n(l—-1)+n,nl+24,--  nln—1)+ ¢}
Using this fact, we have
o1 = [Pe (M (07" P =7 Pa, = Po) (1)) (X3 @ X3)||

+ HXILKTP_&F (Ml ((p_po —P_IPQ,E - Pﬂ) (T))) (X??e ® XZLK) HF

D= 04,1 P42
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Here for any matrix M € Rnxnz, Pp.(M) and P_y (M) are defined by
[M]. ., ifi=1¢,
Pe.(M)]. . = b 36
[Pes( )]” {0, otherwise, (36)
M], ., ifi#landjerl,
P_er(M)),, = [M]; ; %_ j (37)
’ 0, otherwise.

e For ¢4 1, note that

Pe. (M1 ((p7'"Pa—p '"Pa_, — Pe) (T))) (X§’e ® qu)

2 2

= 37 (=97 Y0) My [ X3 0 X3] =Y a].
i=1 -

where X21 * and Xé’e are independent of {dy;};c[n2) by construction. A simple com-
1t (o

ol <5 1T (e,
2

putation implies that
2
2,oo> ’
n

4
Z]E {a:j :Bj} <p T30 <Zg11a2x3 HXz H2’Oo> ’

j=1
n? 4
T —1 2 1,4
.. < . L
D E{wa] | <p7 T (iglﬁgngXz Hz,cx)
]:

By the matrix Bernstein inequality (Tropp, 2015, Theorem 6.1.1), the following in-

equality holds with high probability,
2 logn *
2 1,4
o) BT o (e X2, )

wr
U; <24/ —. 38
oo T o <24/ 2 (39)
Therefore, with high probability,

<o (1B () 1Sl (7)o

logn 1,¢
prasC ( 5 Tl (s [

Moreover, from (34), we have

i, < i

p \n P n

1 1 1 Jur
= 52z o )

8,,6,.10
where the last step is due to the assumption p > C2rp#r "logn
n
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e For ¢4, it can be rearranged as follows:

P12 SVT||Poer (My (07" Po = 97" Pa_, = ) (T))) (X3 @ X3) |

=V | [P (M (7 P0 = Pa, = ) (M), [XF e X8|,

jer 2

=Z;

where Z; are independent mean-zero random matrices conditioned on X21 * and Xé £,
First, a straightforward computation shows that

1Z] < || [Pe (M1 (0 Pa =57 P0, =P (T))], |- H (X3 e X3

J»: 2

= H (M ((p7'"Pa—p"Pa_, — Pe) (T))]

2
2 . —a,,, H H2
,00 1=1,2,3 ,00

1,0 1,0
:,sz . H {XS ®X2 }

jy: 2

<! [y
p

Moreover, one has

1 1.0 16 /ur\3
s faa) < (am,.) it < S ()
jer ’
m 2 1 3om pry4
2/1: Tz. <7H T . H 'LK <7<7> ; :
ol ;E{ZJ ZJ} <= e [ X0, ) == () ()
J

Therefore, by the matrix Bernstein inequality, we know that

1 2
P42 < Vr-C ( ogn HTl H . ('max H)(iMH2 ) + \/max {UZZ,U2Z,} logn>
,00

1=1,2,3

logn /pry\3/2 nlogn r\3 [ ur
< \/> C ( S (IU;> +\/ s : <M7> ) MiamaX(T)
n P n n
1 1 1 Jur
< 5oz o el T)
C15*u3%r8logn  CarBu rlzlogn}

holds with high probability under the assumption p > max { 372 , p

Combining the above bounds together, one can find that

1 1 1 Jur
<l b L (T 39
=7 22054274 2\ n max(T) (39)
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Bounding 5. It follows from the triangle inequality that
o (et - T e
+ HT X1 X11X1lT X 9 <X21X21T _ X21,€X21,€T) X3 X;,gXé,gTHF
s XX s XX s (x0T xp x|

—

15 1T 1,6 51,67 a) 1 1 1 Jur
L REUEL- S N N U

where (a) follows from (31).

Combining ¢3, ¢4 and ¢5. Putting (35), (39) and (40) together yields that

1 1 r
0 0,0 1%
Hf; —¢ HF = 220542742\ 0 Omax(T)-

A.2 Induction Step for Theorem 9

For the sake of clarity, a proof roadmap is presented in Figure 2, which shows the dependen-
cies of different quantities during the induction process. We first summarize below several

HX1+1 Ri+1 |

/\

[ o]
: L 2,00

t+1 pt+1 t+1,0 t+li
|||X Rt — XA

F

Rl ‘R t/ w

Il

Figure 2: Proof roadmap for the induction step.

Hgt 1_

ol || |

immediate consequences of (17), which will be useful throughout this section. The proofs
of these results are provided in Section B.

Lemma 18 From the inequalities (17a), (17b) and (17c), one has

1 1

|XiR; - Ui|| < Q72 o

i=1,2,3, (41)
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1 1

HXZ’ERE’Z U < gy =123 (42)
HX}XZ?T ~UUT|| < W; i=1,2,3, (43)
Hva‘va’fT — Ul < W; i=1,2,3, (44)
fovexf’ﬂ ~uUl|, < W; % i=1,2,3. (45)

Lemma 19 From the inequalities (17a), (17b), (17c) and (17f), one has

I =Tl < s (5) - omestT), (46)
=7 < g () o (a7)

Lemma 20 Assuming (17a) and (17b), the largest and the smallest nonzero singular values

of M, (Xt) satisfy

15

(14 55 ) T 2 o (M1 (09) = (1= 35 ) ruinT) 2 oo, (49

(14 55 ) T 2 s (6 (27)) 2 (1= 55 ) rwinT) 2 o). 49

It follows immediately that the condition number of Xt obeys

O (A1) _ (1427°) 0rmax ()
Omin (Xt) < (1 _ 2—9) Ornin (7-) < 2K.

H(Xt) =

A.2.1 BounDING | E!|| anpD HEffH

We provide a detailed proof for HE%H, while the proofs for HEfH (i = 2,3)
(i=1,2,3)

t,l

1” can be bounded as follows:

1BL]| < [[Mi ((Z = Prp) (X = T)) || + [Mi (Pry, (T—p7"Pa) (¥ t—T))H
< [[M((Z = Pry) (X =Tl + M1 (Prys (Z=p7"Pa) (¥ = T))]|

= (2 =Pry) (X" = Tl + M1 (Pry, (=27 Po) (A - ))H
= [ = Pry) (Dl + |[Mi (Pr (Z-p7"Pa) (X' - T))].

To proceed, we need to decompose Pr,,, into a sum of products of several projectors (Cai
et al., 2020). Define the projector 7’@ P RTXXN _y RUXTXT yy

PO(Z) = Z x; XIX!', VE e R™™, (50)
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3 .
It is evident that Z x X!X!' = ., Pg?t(Z). The orthogonal complement of P;)t,

denoted Pf,?u ; Rexnxmn _y RUXXT g defined as

PU (2) =2 x (T-XIxIT).
Furthermore, we define Pgt;é{l;(t} PR R By
J#1
M (Péﬁit.} <Z>) = Mi(2) (Xjo X5) MIGHMIG) (XEe XE)' . (1)
S PEP
and ng{g}){ t} ng{g))(f} are similarly defined. All together, it is not hard to see that
i#3
PTXt can be rewrltten as ’
'PTXf HP + ZPXt L g]t;é{th} : (52)
J#i

Moreover, the following properties hold, whose proofs are provided in Section C.1.

Claim A.1 By the definition of P X“ P(i)u and PY7Y , one has

)(i7 gt {Xt}ﬁéi
(1) (j#1) _ (J#Z) (2) (1) p(3#1) (J#l) (%)
PxiPorixy = Parqxy  Fxo PXnga{x;}#, Porqxy  Pxtv
M; (PY7) (2 ) - M, (Z2) VY, puzh ol =1,
< gt’{Xj}j#( ) ( ) i) H j gt {X }gyﬁi

HP]) gjf{th} (Xt) =

J#i

where the columns of Y;' are the top-r right singular vectors of M; (Xt).

Bounding «;. Based on the decomposition of Pr,,,, it has been pointed out in Cai et al.,
2020 that

3
T - PTXt = H <P(Z) P(Zt L) (H et prt L g]t#{lxt}#)

=1

3
D SLIN ) LT B 92 ) LTS §
i=1 ‘ G i=1 G i=1 ‘

Note that, for any i =1, 2, 3,

PO () =0 and |[]PY gﬁxt} (x%) =o.
’ J#i i
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Therefore,

(T -Pr,) (1) =3 (P - PL)) (H Pt = Palixs) ) (7)
; i e

K2

3
=1
+ (PG} =P P PR + (PG - PR PRIPS

Xt 1 Xt L (T)
+ (P =P PLLPR (D + (PG = PR PR P (D)

3
S Bl -r) (I8 74y, ) -

- (PG -PY) PELPRL (X =T) - (PS) - PR PRIP

XfL

(X =17)

- (P8 - P PP (- T) — (P - PY) PLPLL (21— T).
(53)
It follows that
3
SEPMLCARE S N1 G R M
2
+4 max w07 - XX”H |2 =T
21 o - xxtT] e -7,
<7 g ol = x0T =T
7 s g () oD
1 1 1 - O (T), (54)

= 29 220,6,,2p4 "~ 9t+1
where (a) is due to Claim A.1 and (b) follows from (43) and (46).

Bounding az. By the definition of Pr,, in (8) and the triangular inequality, we have

o < HM1 ((z 7 Pa) (- T) X X;X;T> H

<gt x; Wi x X)
JFi

=l
2,1 =022

where W} is given by

Wit = (I—XfoT) M; <(Z—p_1'PQ) (Xt B T) it XtT) MT(Q )a i=1,2,3.
JF
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3
e Controlling az1. Notice that the tensor (Z — p~tPq) (X' = T) X XfXZ-tT has multi-
i=1
linear rank at most (r,r,7). Applying Lemma 22 yields that

< vrlE-p ) (- 7))

(Z—p'Pq) (X' —T) 3 X;?XfT
=1

(@
< @ =p7"Pa) ()| - 2% 2" = T

where (a) follows from Lemma 25 and the fact that X' — 7 has multilinear rank at
most (2r,2r,2r). Here J is the all-one tensor.

e Controlling ap 2. Straightforward computation gives that

ona = L@ (1)
3
< [[Ma(@)] - (Z

im1 J#i

Mi ((I—plpg) (Xt —T) x XtT)

‘ e <9t>H>
< @) (imum—w (=7 HMWH)
=1

< 3[M@)| VF (T -7 Pa) (2~ T max, M0

maX;i=1,2,3 Omax ( (gt)) -1 t
mini 1.2.3 Omin (M #(GY) H(I—p PQ) (X _T)H
<6r¥2 5 (X%) - (T = p" ' Pa) (D] - 2" = Tl

(b) 3/2 —1 t
< 6r -%-I!(I—p Po) (D - [[4° = Tl

<3Vr-

where (a) is due to Lemma 22 and (b) follows from Lemma 20.

Combining the upper bounds of a1 and a2 together yields that, with high probability,
as < g1 +agp < 14r3 2k - |[(Z—p~'Po) ()| - || X - Tl

(a) log® n nlog®n 36 1 /pury\3/2
3/2
< 14832, . O =+ p B (?) Tmax (T

1 1 1

= 29 92046201 " o1 ~omax(T),

. 5,,3/2,3 1,53 10,,3,.6
where (a) follows from Lemma 23 and the assumption p > max { SLT 573 log"n Chr n2 log? ”}

Putting the upper bounds of a; and as together, one has

1 1 1 1 1

1
| < 28 92056 ,2,4 " Qi1 ~Omax(T) < 920,624~ QtF1 “omax(T) < ngaX(T)' (55)

Using the same argument as above, one can obtain
1 1 1 1 1

H - 28 22056,2p4 " 2t+1 Tomax(T) < 2206,2p4  9t+1 “omax(T) < ZUmaX(T)' (56)

|21

HEM
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A.2.2 BOUNDING HXZHMREH’@ U

2,00

We only provide a detailed proof for the case ¢ = 1, and the proofs for the other two cases

t+1 £2t+1,£Xt+1,£T
1 1

are overall similar. Since X is the top-r eigenvalue decomposition of

T T T
(1 + BY) (T + BY) =1l + 1B + BV + BB

.0
::A1
we have

Xt+1€ <T T1 A§’£> XiJrl,ZEiJrl,é*l

Recall that the eigenvalue decomposition of T1T1T isTh TlT =U;Aq UlT , e; (X fH’ZRthM - U 1)
can be decomposed as

; (XI—HJR?_LE B U1>
T (TlTlTXt+1,£2t+1,z—lRt+1,£ _ U1> tel At,ZXt—&—l,ézt_H’g—lRH_Lé
=e U1A1 (UlTXt+1 22t+1 0 1Rt+1 ¢ Afl) el AM t+1 eztﬂ — 1Rt+1 ’
= e, Ui\ (UlTXf“MAl—lRiH/ _ A1_1>
e UMUI X (2?17671 - Af1> RIFVE 4 eT AL XL gt LT gL
1o (AT A ag
FenUM Ui (2?17(_1 B A1_1> R+ eTTnAi’EXfH?EEiH,£‘1R§+17£.

The triangle inequality then gives that

He; (Xfﬂe RIHLO )H HerTnUl (AlUlTXfﬂ,f B Rt1+1,eTA1> A[LRIM 2
=:p1
+ HeLUlAlUlTX{H,e (2?1,@*1 A ) R 2
=:B2
+ enartxit it TR (57)

2

=:03
Bounding ;. Notice that, with high probability,

T T
o e R i B G Bl

(@) 9 1 1 1
< *UmaX(T) : 278220/416,“/27,4 ' ot+1

1 * Omax <T>
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911,
= 910 920,54 ,2,:4 9t+1 Imin

(T) < Somn(T), (58)

N

where step (a) follows from (56). Given the SVD of Hf“’g = Xerl’eTUl, denoted Hf“’f =

-~ ~ ~ T -~ Py T
Atlﬂ’eEtlH’éBfH’g , it can be easily shown that Rtlﬂ’lZ = AtlJrl’EBiH’z . Therefore, the
application of Lemma 36 yields that

;
H (AlUlTX{“vZ ~ R A1> Al_1H

L
Omin (Al)

2
p— Um X 7-
< [amte - ma | A < (2 el T ) Ay
ohin(T) — HAf H
9 1 1 36 1 1
) ﬁ220/<;4,u2r4 ot+1 = ﬁ220ﬁ2ﬂ2r4 ot+17

< (2+2%) (59)

which occurs with high probability. Here the third line is due to the fact oumin (A1) > 02, (T)
and (58). Thus 1 can be bounded with high probability as follows:

T - t+1,4 t+1,6T 1 36 1 1 wur
Bl < ”UIHZ,OO H (AlUl X1 - R1 Al) A1 H < ﬁmﬁ ; (60)

Bounding (2. Applying the Weyl’s inequality yields that HA1 — 2t1+1,éH < HAtI’eH, Tt
follows that

o <2§+1’€> > omin(T) — HA?K ’ > %Ugnin(’r)?

and

1,6—1 - 1,6—1 1,6 — 1,6—1 — 1,6
[t At = e (A=) < A A - =
1 1

2 ¢
= Eemcol CRb i BN
or (2?1’6) oin(T) ! Tiin(T) !

2 9 1 1 5 2 9 1 1
< . . — - _
= ot (T) 210 220,824 o1 Tmin(T) o2 (T) 210 220,324 2t+1

Therefore, with high probability,
t+1,0—1 -1 18 1 1 Hr
B2 < |Uillg,o0 - 1Al - th — A H < 910 920,2,2,4 91\ (61)
Bounding 83. The last term 3 can be bounded as follows:
-1 T T -1
o < |lenatf], - [=1 ] = len (n + T BB,
-1
< (1Tlzoo - [ 21 + et ], - (1t + ) ) - [
ur 1 1 1, 2 T it d 30max(T)
? . ?7220f§;6u2r4 7275_’_1 O'max(T) ’ 2 (,7-) + HemEl H2 ’ 0.2. (7’)
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1 1 1 Hr T 0t l 3amax(T)
= 97 990,22, gL \/Z +enm), (62)

min

where the third inequality is due to (56) and

() [5Gt < 0

min
To this end, we focus on bounding He;Ef’eHj Recall that Ei’e is defined by
By = My ((T= Py, (07" Po_ +P2)) (X = T)).
Thus, invoking the triangle inequality yields that
en ], < lenm ((z-Pr. ) @ =),

+ |en M (Pry, (T =p""Pa, = P) (X =) | = By + B

The following two claims provide the upper bounds for 3, and B33. The proofs of the
claims can be found in Section C.2 and Section C.3, respectively.

Claim A.2 Assuming the inequalities in (17) hold, one can obtain

1 1 1 wr
P < g5 " gz g\ medT)

Cy1r8u3 576 log® n

Claim A.3 Suppose p > ==F—5=5—=. Assuming the inequalities in (17) hold, one has

1 1 1 ur
P < o gz g\ omex(T)

Combining Claim A.2 and Claim A.3 together reveals that

t,0 1 1 Hr
He By H = 25 2204 2p4 o1 ;Umax(T)‘ (63)
Furthermore, putting (62) and (63) together yields
1 1 1 ur
Ps < 2322042274 9041 \[ (64)
Combining (i, f2 and 3. Plugging (60), (61) and (64) into (57) shows that with high
probability,
T t+1,6 pt+1,6 1 1 l““
Hem (X R, Ul) H - 4 22052274 241\ Ty (65)
Taking the maximum of (65) over m gives that
t+1,0 pt+1,8 1 1 1 ur
HX R, UlH 4220/-;2,u Aottt \l
The same bound can be obtained for the other two modes. Thus, we have
t+1,€ ppt+1,6 1 1 r jpr
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A.2.3 BounpING ||EF — &5

By the definition of £ and £ in (13) and (16),

g =& = (T—p "Pry,Pa) (X' = T) = (T~ Pry, (7' Pa, + 7)) (2= T)
=(Z-Pr,) (X' =T)+Pr, (T—p 'Pa) (X" —T)
—(T=Pry.) (X =T) +Pry, (T—pPa, - P) (A = T)
= <'PT PTXt z) (T)+ (PT PTXt [) (I _pflpﬂ) (_)(t _ )

—Pr,, (T—p 'Pa) (X' =T)+Pr,, (T—p 'Po,—P) (vaf - T) .

pt.l
Thus we can bound Hé’t — EMHF as follows:
&= &) < | (Prae = Pre) D+ | (Prae = Pr) @ =97'P0) (2= 7))

=:£ =:62
+ HPTXW (I _pilpﬂ) (Xt - T) - PTXM (I _pilpﬂfi’ N 77@) (XM B T) HF '

F

=t
(67)
For the operator Pr,, — Pr,, ,, one can invoke the definition (52) to deduce that
PTXt PTXM
. (4) : (i) p(i#) : (1) (5#4)
o % J#1) JF#
= (HPXf —HPXM> + (ZP wPolixny P WPW{X;,Z}, )
=1 =1 =1 j#i
(P9 -7 + P IT (P4 - ;zze) -3 (-7 TP
i=1 ‘ : i=1 i I g#i 7
- (4) (774) (J7#4) : (#4)
+ P P —73] ‘ + < - )77] '
ZZ; X: 1 ( Gt, {Xt} Gt {th,z ]#) Z X” Xt g, {X§’[}j¢i
3
_ (1) (1) () )
—' <7D t_P ti>+zp f[H<,P)g;_,P)?Jt’[>
i=1 e
- (4) (4) j7#4)
P, —P ) pY), - P |
Z < xb JI;IZ xh gt {X ‘f}
: (1) (77#4) (7#1)
+y PV (P —purn : (68)
274 (P, {x})
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Bounding £;. By (68), this term can be bounded as follows:

3
= TP ) ) +2 P T (P2 -7 ) 7

(3

J# E
=11 =12
3 . .
+ Z (7)(1 ’P(’Lt Z) H 73 t ,— 7)(]751) y (T)
— X gt,€7{Xj } .
i= J#i J#i F
=:£1,3
: (4) (7#1) (77#9)
+3 7P, [ pur — pl (T)
z‘z; Xit’l < { t}”“ gt,g{x;,@}j#) F
=14

e Bounding &1,1,&1,2 and & 3. By the definition of P(lt and P(l)t ., we have

z

3
T T
a0 < [ xixt" - xix: 1F-amax<7>
=1
< max HXtXtT XteXteTH Umax
- \i=1,2,3

3
§12 < Z M; H <P.%

i=1 ji

IN
&Mw

H HXtXtT Xt XtTH G
i
HX XtT XtEXtK H > Umax(T)7

(P(ii Xt z) H PXt ¢ g:jl{xt z} (Xt’f - T)

jFi J#i F

O
' gAe U S .

T tl 10T j#i £
x| | ([t ) (e

IN
w
/\

§1,3

=
‘Mw

N
I
—

I
‘M“

@
I
—

e

=1 J#i J# =
t) & tyt T 50T t,0
2 i x| ,

.
Il
—

IA
w

tytT t0 0T t,0
max (x0T - Pt
1=1,2,3 F
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where step (a) and step (b) follow from the Claim A.1. Combining these three terms
together and using (47), one can see that

3 1 L fpr ’ 1 1 Jpr 2
> 61 < (g’ ) omT+3 (g ) ool
=1
1 L fur 55 36 1 rury\3/2
o W2t\/>n/22%2w12t<n> max(T)
1 3 3-36 1 1 [ar
= <219 T o1 T 51 ) 92044274 9i+1 \/70—max(7-)

1 1 1 ur
< 10 g0yt 2yt it | o Omex(T): (69)

where we have used the following bound

T T
[T x| | xtm (i) T - x0T (x0T

F
t ot - 1 1 Jur
SQHXiRi_Xi T HF =2 22012 2p4 2t \|

e For & 4, it follows that

3
(4 (5#1) (3#49) . i
PX: (Pgt {Xt} ngt’[v{th-’é}j#> (T) - ;El,él'

The proofs for different ¢ are overall similar, so we only provide details for 511,4. The
proof starts with the following bound

1 (1) (7#1) _ pl#l)
§14 = || M1 (thl (Pgt’{xgt‘}#l Pgt'é’{xyt'ye}#l) (T)) F

_ T  ytytl (G#1) —pu7l)
— (U1U1 X1 X1 )Ml ((Pgt’{xgt‘}s Pgt’e’{Xt"z}';ﬂ) (T)>
J

J#1 J

3

§la=)Y_

i=1

F

F
T ytytT J#1) _ plU#1)
< oo - xixt|- HM <(7>gt g P {X;,g}#) <T>> F
L pU#1) (3#1)
< 2HX1R UlH "Ml (( g {x:} Pgt"f,{X;"}jﬂ) (T)> F (70)
Applying Claim A.1 yields that
M 7)(]751) (J?él
H 1(( G AXi} L, g”{x” »
_ HMl(T) (YltYltT Y”Y” ) ‘ < HYl YMYM HF - T (T)
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(@ 1 1 [pr

< ﬁ : ? 7Umax(7-)a <71)

n

where the columns of Y{! and Ylt’e are the top-r right singular vectors of M (X t) and
My (X t6), respectively, (a) is due to the following claim, whose proof is presented in
Section C.4.

Claim A.4 Assuming the inequalities in (17) hold, one has

t~x tT tl t,ZT 1 1 pr .
[vveT -y, Hpgzli%’zt\/Z’ =hes

Plugging (71) into (70) reveals that

1 1 1 1 jur 1 1 1 ur
1 /
Sas2 21T dy2pd gt~ 213 " 9t Zamax(T) < 29 2204424 9141 FamaX(T)'

The upper bounds of 5%74 and 5%74 follow immediately via nearly the same argument
as above,

1 1 1 ur 1 1 1 ur
2 T 3 T
Sla s 29 22044294 9+ \/Zo—max( ) and &4 < 29 92044204 241\ Ty Omax(T).

Thus, we have

3 1 1 Jur
5174 < 2*9 : Wﬁ ;Umax(T)- (72)
Combining (69) and (72) together shows that
4
4 1 1 Jur
&1 < z;fl,i < @WW ;Umax(T)- (73)

Bounding &. For notational convenience, define
Z=(T—p 'Po) (X' =T).
First, apply (68) to deduce that

3 3
e<|[I(P0-70) 2| +3 |0 0T (P0 - 7L ) =
i=1 ‘ : Fooi=1 L ! i .
=21 —iE2
- (%) (%) (4) (3#4)
7 7 J J7? t
> <7’x; _Px.t»f> 1175 ~ P Ix:) 2
i=1 ! £ 7 U S F
=623
. (@) (5#4) (3#4)
- PoL | P, - P A 74
; X:’L< gt’{X;}j¢i gt’g,{X;’é}j;éi) F ( )
=24
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e For &1, it is easily seen that

3 3
o = T ™ x| (2] 2 T et - xexe v 2
i=1 =1

3
<8 (o xR - xm ) vz (75)
1= 1<
where (a) follows from Lemma 22.
e For &9, it can be bounded by the same argument as above,
3 . . .
=2 | PRI (P - P 2
i=1 i F
3 T T
t ot t,0 5,0 t
< TT i = xxe v (2]
=1 j#i
2
<a- (s m - xem ) Al
1= <

e For &3, letting

_ @ _ p) _ pl#) t
Z’L — (P Xt £> jl;[PXtZ gtz,{X]t.’Z} Z )

then we have &3 = S°2_ || Zi||¢. Tt is not hard to see that Z; is a tensor of multilinear
rank at most (2r, 2r, 2r) for ¢ = 1,2,3. Thus, the application of Lemma 21 yields that

3
€3 < A% <7»< P%) [179. - ;j%xw} (2"

=1 jF#i J J#i
3
3 (j# T tl 10T
SSEON NI gijixﬂ} (29| - |xixT - x|
' JFi i

To this end, we focus on bounding

() (37#9) t
523 l P té _,Pgtl,{x"f’g}_ v (Z )
J#i T g

for ¢ = 1,2,3. The triangular inequality yields that

6%73 S HPth Zt + 73(.7751) (Zt)

_ ¢la 1,b
gre {xit) =&y + &y
j#l L

J#1
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— Bounding 5%; . It can be bounded as follows:

e <12 ] || < 210
j#1
— Bounding fég A simple computation yields that

1,b (7#1) t
il (el )|
J#1

T T
<My (ZtXQX;f x3 X1 )H

)

(b) T T
< V|2t xe X5 e x5 < v 2]

where (a) is due to the definition of Pé]t fl)

e
Combining (77) and (78) together yields that
& < [|2']| +vr 2] < 2vr [ 2]
Applying the same argument as above can show that
s <2/ |2, i=23
Thus one has

T T
fo3 < 423207 |2 - max | XX - X x|

=24 | 2] - mae [ x!x[T - XU x|

i=1,2,3 F

e For {34, it is easy to see that

3
ISVES Z

(@) (7#1) _ pl#i) t
PX?L (Pgt’{X]t'}j¢i Pgt,z’{X§,Z}j¢i> (Z)

=1 J

3
S (G I R

The first term in (80) can be bounded as follows:

[ [po?n  _plAy St
o (7580, )

39

F

F

F

@ ‘Ml (2") (x5 @ X5 ) Ml (0") Mu (94) (X5 @ XQ‘)TH

(77)

< s (x5 )| 6) e (0] - st

(78)

} and (b) follows from Lemma 22.
j#1
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T T T
(29 ((xx3T o xixT) viveT - (X505 e Xyt ) vt |
T T
H/vn ) (xixsT e xixd” - Xy xy T o xyxy) YfoTHF
T T T
4 HMl (XteXte 2 XtEXt€ ) (Y1tY1tT _ Ylt,éYlt,e )HF _. 5(21’4 +£3,4,
where (a) is due to (112).
— Controlling &5 4. Notice that the matrix
T T
M) (x5x5T e x3x5T - XX o XU vivy T e ree?
is of rank at most r. Letting
T £ 1,07
Df:Xint - XX
then &5 4 can be bounded as follows:
T T
&4 < vr [z (xixiT e xixgT - XX e xg x|
-
<r HMl(Zt) (pie X§X§T>( + HMl(Zt) (x5'x3" @ DY) H

.
=V [My (2" %o XEXET x5 D) |+ v/ | My (21 %2 D x5 X551 |

(a) T
< 7|2 %o X3X4" 3 DY + 7|2 2 DY x5 X5 X5 |

< 2rmax | Dj | 2| < 4r max HXfRf — Xf’éTZ.t’ZH |2
1=2,3 F

le -

where (a) follows from Lemma 22.

— Controlling 5’2’74. A simple calculation yields that

&4 < 2vr|muzt (x5 x ) o (x'xs ) (i - vt |
<2 | mazt) ((xax ) o ()| vy T - vt
<2r HZt X9 Xé’éX;eT X3 Xé’fXév‘fTH : HYfoT _ Y1t’ZY1t’£THF

<o HYltYfT _ Ylt,eYlt,zTHF ||zt

where the fourth line is due to Lemma 22.

Combining &5, and 512’74 together gives that

M J#1) . _p (3#1) ) ) zt )
"1(<gw xiy,, ~ Tenxny ) B
<47" max HX Rt XM M

F

‘ . HZtH + 2r max ‘
1=1,2,3

]
RS A a M =L
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Applying the same argument as above shows that for ¢ = 2, 3,

(3#%) _ pli#i) t
e (P8, =P8, ) )
< 4r max HXlRE — Xit’zfl';t’zH
1=1,2,3 F

F

2 2 [T - vyt iz
i=1,2,3 F

Plugging (81) and (82) into (80), we can obtain

€4 <128 max | XIR) - XTI\ -2+ 6r max |
i=1,2,3 F i=1,2,3

_ybty st HZtH .
K3 K3 E
(83)

) )il

.
+ (2407 max | x7x/T - xPxP| )+ 12e max | XURE- XD ) - )|2
i=1,2,3 v ¢ F i=1,2,3

Putting (75), (76), (79) and (83) together, one has

3
& < <8 (iglla2x3 HXfR§ _ xHht F> 112 ( max foR§ _ Xt

1=1,2,3

+ 6 mane || v T vz

By the induction hypothesis (17e), it can be seen that

1
t pt t,0 it [ur [ur
svn (zI:nl%,LZ),(S HXZ R - XL H > =8vn <220/£2,u 2pd ot ) n’

2

t pt tlt,l L Jpr 1 /“”

m X! L Xt < [ LA < =
12%(#1?533” i Lo HF) 12\F< > —5-72

\]

2204224 2t\

T 11 1 [ur
2472 HX?X?T _ xhixtt H <ot M JHT
" <Zr:nla2xg v i i lg ) = 22022049t ' = 5.72\ n

t ot tLpt € 1 1 1 ur
12riinl?5fs”XiRi - X HF = 12rom, 2,2, o0 S 5.2\ n
Moreover, Claim A.4 implies that
tyt T Nl 11
67“ max HYY -YY” HFSGT 313 5 <5 721/
Using these bounds we can obtain
§2<5 5 72 —p 'Pa) (X' =T)|
-1 t
<5 o2 (T P) (DX - T (84)
3 5
T wur log®n nlog®n 36 1 pr\3/2
<5. [H o N .2.7.f.(7) :
- 572V n D + P " 2202294 2t \ max(T)
1 1 1 ur
< 28 920,54,2,4 9t+1 | ?UmaX(T)’ (85)
provided that p > max { 0152“1':;3;5 log3n7 0%4“;7;7 log® n }
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Bounding &. For notational convenience, define
Zo=(T-p'Po) (¥ = X) and 2= (p "o, +Pe—p ' Po) (X -T).
The triangle inequality gives that
& = |[Prys (T=7"Po) (X =T) = Pry,, (T-p7Pa, ~P) (= T)|
— | Prye (@ =p7"Pa) (2= %) + (57 Pa, + Pe = p7'Pa) (2 = T) )|
< [Pryee (20| +||Prye. (2

By the definition of Prp

F

-

the first term on the right hand side can be bounded as follows:

xt,t?
(j#
HPTXt ¢ (Za) Xf’é Xt NG L,Pg]t Z%Xt e} (Za)
J#i F
Z, x X” PUZ () (86)
H J#1 gté {Xt }g;ei F
Moreover,
73(]7&1) . (Za) — Ml (73(]#1) ) (Za)>
| gt’[’{X;’ }#1 F gt’[’{X? }#1 F
-
= (|Mi(20) (ng ® X;") Mi (g’*f) M (gtvﬂ) (X;;’f ® X;’f)
F
-
< | Mz (x5 2 x5 H - Hz x XU (87)
F j#1 £
Similarly, one has
. . T
Pl (Z)|| < HZ“ x XU, i=23. (88)
‘ gt’e’{X?é}m F il
Plugging (87) and (88) into (86) yields that
< et
|Pry. 22)||. 4 |2 o X300 (89)
Using the same argument, one can obtain
-
Pr )H <4 max ||Z, x X5 . (90)
H Ty | F i=1,2,3 i F
Combining (89) and (90) together shows that
t,eT t,eT
&3 <4 max || 2, X Xj’ +4 max ||Zp X Xj’
i=1,2,3 J# F 1=1,2,3 J#i F

To proceed, we first present the upper bounds of these terms in the following claim, whose
proofs are deferred to Section C.5 and Section C.6, respectively.
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nt ’ n

2,,15,.2.5 3 4..3..5 5
Claim A.5 Suppose p > max{cm por logmn Cortyrr’log ”} For any i = 1,2,3, the

following inequalities hold with high probability

10T 1 1 1 ur
‘ Za pot % F = ou 2204274 2t+1\ Ty o Omax(T): (51)

10T 1 1 1 ur
HZ ];ZX i < WWW ;Umax(,r)- (92)

It follows immediately from the claim that
1 1 1 Jur
&3 < ﬁmﬁ ;Umax(T)' (93)
Combining &1, & and &3 together. Plugging (73), (84) and (93) into (67) yields that
1 1 1 [ur

1€° =€ Nle < g5 G001,y e | Gy Omex(T): (94)

t+1 pt+1 1,0t 41,
A.2.4 BOUNDING HXZ R - X,"T, HF

(2

-

Recall that XEHZEHX;HT and X,Z?H’KZEH’EXIH’K are the top-r eigenvalue decompo-
T

sition of (TZ + Ef) (TZ + Ef)T and (TZ + Ef’£> (’E + Ef’€> , respectively. By the Weyl’s in-

-
equality, the eigengap ¢ between the r-th and r+1-th eigenvalues of (TZ + Ef ,e) (TZ + Ef’g)

is bounded below as follows:

.
5> o (TTT) -2 H (T.+E") (T + E)) -T2

Z O—I?nin(

T T 1
TE! + BTN+ BB 2 (1 - 220> 2T,

where the last inequality is due to (58). Define the perturbation matrix W; by
T
W= (T.+ E) (T, + E})" - (T, + E[') (T: + E}")

T T
= (T.+E) (B - B') + (B -E")(T.+E)

We have
¢ £\ T ¢ 10 e\ T
Wil < [|[Willg < ||(T; + Ef) Ez) <EZ_E”L> (TZ"‘E2>
F F
R oA
) 1 1 wr 1,
< 3T g g\ Gy Omax(T) = 575 0mn (7))
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Applying Lemma 34 and Lemma 35 yields that

A L =Ty
(a) 2 5 ’
< oma(T) - [[E1 - |
Ur2rlin(T) 2 F
() 2 5 1 1 1 ur
< = .2 e i -
= 02uw(T) 2amaX(T) 200 2204y 2p4 20HL Y max(T)
1 1 1 ur
< 23 22052204 2141\ (96)
where (a) follows from (95) and (b) is due to (94).
A.2.5 Bounpine || X[HRITT - U],
A direct computation yields that
IR 0 < [ R MR |
’ ,00 2,00
1 1 t+1,0 pt+1,6 t+1,€ ppt+1,¢
< xR - XPYRSY| 4| xR U G

We will use Lemma 32 with X; = XfHleJrl and Xy = X;H'l’eTerl’Z to bound the first
term in (97). Following the same argument as in the proof of Lemma 18, one can obtain

1 1 1

Furthermore, the inequality (96) shows that

1 1 1

t+1 pt+1 s t+1lnt+1,0 4 Lo b
| xR - XTI WO < e

7

< -.
— 4

Thus, by Lemma 32, one has
i+1 pt+1 t+1,0 pt+1,¢ t+1 pt+1 t4-1,6 gt +1,0
iRt - xR <5 xR - x|

5 1 1
ﬁ 220/4,2”27"4 2t+1 '

F

< (98)

Plugging (66) and (98) into (97) shows that

1 1 ur
X R Uil < g

Appendix B. Proofs of Key Lemmas
B.1 Proof of Lemma 5

The /3 o norm of T7 can be bounded as follows

ITillg.00 = ||[T1 M (8) (U3 @ U2)T

T
s < U1llog IMA(S)] < 4/ 00 (T).
o0 n

k]
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For HTlT H2 oo @ direct calculation yields that
r
lzT[, =W e ) MISUT|, <102l oe - 1Usll.00 - Omax(T) < 2 (T,
,00 2,00 n

where the second line following from the fact [|Us ® Uzllg o, < U2l 0 * U320~ Using
the same argument, one can obtain

-
ITls00 < /5 Omax(T) and |

Lastly, by the definition of tensor infinity norm, one has

J—viT

< M omax(T), i=2,3,
n

2,00

1Tloe = M (Dl = [U1M1(S) Us 2 U) |

o0

3
r 3/2
< TT1U e - IMS) < (5) 7 oraan(D.
j=1

B.2 Proof of Lemma 10

Notice that X is the top-r singular vectors of

(T + E)) (T, + E)' =TT, + T,E] + ET + E,E],

=A;

where T; = M; (T) and E; = M; (). Let TiTiT = U,-AZ-UZ-T be the eigenvalue decomposi-
tion. We will apply Lemma 26 to bound || X; R; — U;|| where R; = arg mingrp_j || X; R — Uj||¢.
Invoking the triangle inequality shows that

5 ) 1 1
120l < QIT + 1B 1B < S (T) Bl < S0 (T) - g (T) < 220, (7).
where the second and third lines follow from the assumption max;—1 23 || E;|]| < "fq?;g ) <

(’”“’%m. Thus, the requirement in Lemma 26 is valid, and we have
3 150 max(7T)

X;R;, - U;| < Ayl <
| | 5 A 202 (7)

O min (T)

Furthermore, HXZ'XiT — UiUz-THZOO can be bounded as follows:

1 E:] -

HXiXiT —uuT

o < || (XiR - U (xR

+ HU,-(X,RZ» _ Ui)TH
2,00

2,00

S| XiRi = Uilly o + [[Uillg, o - | XiRi — U]

150 max(T)
< | X;R; — U; ——= | ;]| - [|U;
< 12,00 T 202 (7T B3] - |Uill2, 00
150 max(7T)

12,3 202

min

< ma (\XZ-R,- —Uillg 00 + | B | ||UZ-\|2700> =: B.

(99)

(7)
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Next, we turn to control ||X — 7|,

1X =Tl = (T +8) gl X, X" - T”

[0.9]

3 T 3 T 3 T
=T x X;X;' —T x UU; +& x X;X;
=1 =1 =1

(3 1= 1=

0
3 T 3 T 3 T
<|T x X;X;' =T x U;U; + || x X;X;
i=1 i=1 . i=1 o
3 3
< T x (XZ'XZ'T — UiUiT> ’ + Z T X4 UiUiT X (XijT — UjUjT) H
i=1 00 i—1 Jj#i 00
=W =:wy
3 3
+ Z T %; (XZXIT — UlUZT> X UjUjT + Hg X XlXZT
i1 JF 00 i=1 0
=:w3 :‘:;4
Bounding w;. It is easy to see that
3 T T
w1 = M1 T X (XlXZ —U;U; )
i=1 o
e o (),

< Bg : UmaX(T)7

2,00

3
< owax (T) - ][ | X:X:T —UUT
i=1

where the last inequality is due to (99).

Bounding ws. A directly calculation gives

3
Wo = Z Ml (T X UiUiT ‘XA (XijT — UjUjT>> H
i1 JFi 00
3
<Y U oo 1T T |25 = 0505, <8 max Uil - 0 (T) - B2
i=1 J#i ’ -

Bounding ws. A straightforward computation shows that

3
wgzg

2
<3 (Amax ”Ui||2,oo> comax(7T) - B.
1 50 1=1,2,3

T X4 (XiXZ'T - UiUiT> >; UjUjT
J#i

Bounding w,. By the definition of the infinity norm, one has

T T T T T T
Wy = sup 8X1 eileXl XgeingXg X36i3X3X3 ‘

eil 781'2 7ei3

3(a) 3
< el (s 1%l ) 2 1M (e 1l )
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where step (a) follows from the fact ||X|| < [[M;(X)]| for any tensor X.
Combining these four upper bounds together, we complete the proof.

B.3 Proof of Lemma 11
By the definition of operator Pp, one can obtain

2 3

2

F =1

2

=11 + 2.

F

1Pr (e:, 0 €, 0 €3,)|F =

3

N

(ei, cei,0e€,) X U,U;
1=

8><7; Wi X Uj
JF

Bounding ;. Recall the definition of e;, o e;, 0 €;, in (4). One has

T2
¥ = |[ULWUT My (e, 0 €5, 0 €3,) <U3U3T ® UQUJ)
F

T2
= UlUireil (ei3 & 6i2)T <U3U3:r X UQU;)

F
2

.
— |iUT e, <U3U3T e, ® UyUJ ei2>

F
2§(ﬂ)3
2 n

Bounding v¢;. We only provide details for bounding ||S x; W; x9 Us X3 U3||E,

2 2
T T T
< o[- Jozes| o3

HS X1 W1 X9 U2 X3 U3H|2:
2
- WlMl(S)(U3®U2)THF

2
- (I _ UlUlT) M (e, 0 ei, 0 e5,) (Us @ Us) My(S) My (S)(Us @ UQ)THF

QS <£>2
2 n

e e T 2 t 2 T 1P lUTe,
< ||(ei; ® €i,) (Us @ Ua)|| - [ Mi(S)Mi(S)|| < ||Uzes| - ||Usei

Similarly, one can obtain
IS x1 Uy x3 Wy x5 Us||> < (%)2 and ||S x1 Uy x5 Uy x3 Wil|2 < (%)2
Therefore, 1y < 3 (%)2
Combining the above bounds together shows that
IPr e oenoen)f <4(4)",
B.4 Proof of Lemma 12

Let &, iy,i5 be the tensor with the (i1, 2, i3)-th entry being 1 and all the other entries being
0. The operator norm HPT (p_IPQ — I) PTH can be expressed as follows:

1P (0™ P = Z) Pr|
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= sup HPT (P‘lpg - I) Pr (Z)HF
|Z]|p=1,Z€Rnxnxn

) o Z (pil(sil’lé’i?’ - 1) <PT (Z) 7gi1,i27i3> PT (gi17i2,i3)
”ZHF:LZERanXn s F

= sup Z (P 041105 — 1) (Z,Pr (Eiyinis)) vee (Pr (i insis))
”ZHF:LZGRanxn iriis

— sup Z (p™ "6y iais — 1) (vec(Z), vec(Pr(Eiy inis))) vee (Pr (Eiyizis))
|Z]|g=1,Z€Rnxnxn Al

) ze Z (piléilyi%ig B 1) vee (PT (gil,iz,i:s)) vec (PT (gi1,i27i3))T vec (Z)
”ZHF:LZERanXn P

- Z (p_l(silﬂé,is - 1) VeC(PT(gil,iz,is) VeC(PT(gil,i2,i3))T )

11,12,i3
where vec(+) is used to denote the vectorization of a tensor. Define
— 3 3
Sil,iz,iS = (p 1(57?1,1'2,1'3 - 1) VeC(PT(gil,iz,is))Vec(pT(gil,iz,is))T e R™ X" ,

which are independent symmetric matrices with mean zero. Thus we can apply the matrix
Bernstein inequality to bound the above term. Lemma 11 gives that

4 2
_ 2 K
HSi17i27i3H < b ' HPT (gil’iQ’iS)HF = ]; (?) ’

T
E Sil:i27i3s

Moreover, the operator norm of ) il’i%ig} can be bounded as follows:

11,12,13

T
Z E [Sil,i27i3si1,i2,i3}

11,02,13

< p_l Z VeC(PT(gil,iz,%)) VeC(PT(gil,iQ,ﬁ))T VeC(PT(gil,iz,is)) VeC(PT(gil,imis))T

11,82,13
—1 2 T 4 pry?
<p7 mas [Pr(E il | D2 veelPr(Ei i) veelPr(Enaa))T| < (17)

11,82,93
where the least inequality follows from Lemma 11 and the fact
Z VeC(PT(Sil,iz,is))VeC(PT(gil,iQJS))T
11,92,13
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T
= sup E Vec(1zf(é%1ﬂ2ﬁ3))'Vec(7}T(é%1J2J3)) vec(Z)
[Zllg=1,ZeRmx x|, s 2
= sup > (Pr(Eiriniis)s Z)Pr(Eiy inis)
IIZHF:LZERnxnxn il,iz,ig F
= sup Pr § <PT(gi1,i27i3)7 Z>gi1,i2,i3
”ZHF:LZERnxnxn i1,i2,i3 F
< sup E <PT (gi17i27i3)7 Z>gi1,i27i3
IZllp=1, ZE€R™mX 4 i i F
= E PT Z1,12,13 >2
”ZHF_I ZeRanXn 21’12’13
= sup E 11712,237 Z)>2 <1
[Z]lg=1,Z€Rnxmxn 11,12,13

The application of Bernstein inequality yields that with high probability,

> (P sy — 1) vec(Pr(Eiy iy is) vec(Pr(Eiy in i) T

11,02,13
logn /ur\?2 logn /ur\?2
oy for )
p n p n
provided p > %, where ¢ is a small absolute constant.

B.5 Proof of Lemma 14
Applying Lemma 33 gives that for : = 1,2, 3,

M) =MDl _ [l =Tl
Umm( (T)) ~ Omin (T) ‘

To prove the second inequality of Lemma 14, first note that for any tensor Z € R™*"*",

(Pri —Pr) ( HPXt ) - [IP5 ) Z (Pé#{; . Pt ~PSioy  Poh ) (2).
] 7

foxf U7 <

Taking the Frobenius norm on both sides and applying the triangle inequality give

|(Pr: = Pr) (2)]|¢ < Z

3 3

+ITT PQ 2)-I]P5 @)

i=1 i=1

Pl ) _pU)  pl)
( oxiy, Pxe = PSioy, . Pu 1L> @)
F

I

=S4
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Bounding ¢;. It is easy to see that

(P, e 70 )
: <<Pé{?é{l))(§}j¢1 - PO?I}) }#1) P(lf L) (2) H< 3?12}]#1 <P§%’L a PT(J}BL)) ) F
<[ (P, P00, ) @) + HX1X A ET
<o (R~ P48,) @) F+w . (100

where we have used the first inequality in this lemma. Denote by Y’ and V; the top-r right
singular vectors of My (X t) and M (T), respectively. Claim A.1 gives that

(3#1) _ pU#D
HMl <<’PQ’5,{X§}J_¢1 Psv{Uj}j;él) (Z)>

Xt -T
- oz (vt - ), < e vzt < BT

F

1Z]lg, (101)

where the last inequality is due to Lemma 33. Plugging (101) into (100) gives
t
2[] 4 =Tl
o Umin(T)
Bounding ¢ and ¢3. Following a similar argument as above, we can obtain
t
2[] 4 =Tl
Omin (T)

121 -

2[|* — 7l

< zZ d <
2> Umin(T) H ”F an 3 >

121 -

Bounding ¢4. A simple calculation yields that
<z tytT T txtT tytT
+ Hz 1 ULUT x5 <X§X§T . U2U2T> X3 nggTHF

+ HZ x1 U1UY %2 UoUy x5 (XéXéT - U3U3T) HF

<3 mag, [xixt” - v 12
) [ M (X = T)|| | =T
S 3 A (M, (7)) 12 < 3m 1Z]g

where (a) is due to Lemma 33.

Putting together all of the preceding bounds on <1, <2, ¢3 and ¢4 immediately establishes
the lemma.
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B.6 Proof of Lemma 15
For any Z € R™*"*™ we have
|PaPr(2)| = (PoPr(2), PaPr(2))

= (Pr(2), PaPr(2)) — p(Pr(2),Pr(2)) + p(Pr(2),Pr(2))
<p([Pr —p™"PrPaPr|| +1) - | Zllf <p(1+2) | 2]l

which implies that ||PoPr|| < v/p(1 + ¢). Consequently,

[PaPryll < [[Pa (Pr=Pry )|l + PaPrll < [[Pr = Pry. || + IPaPrl|
?OmiTﬂmﬁ—TM+-(1+@p?N@<1i€+vﬁ+e>§2¢m1+@,

where (a) follows from Lemma 14 and (b) is due to the assumption (22).
The spectral norm of PTXt — p_lpTXt PQPTXt can be bounded as follows:

[Pry =2 PryPaPry, || < |[Pry = Prll + 27" [[(Pry = Pr) PaPr,||
+p! HPTPQ (PTXt —Pr) H + HPT - ]flPTPQPTH
<|Pry. = Pr|| + 07" [Py, = Pr|| - [|PaPr,.||
+p U PrPall - [|Pry. — Pr|| + ||Pr — p~ ' PrPoPr||

< WPr = Prll (1457 [PaPry |+ 57 [PrPall) +
9 _1 \/DPe 2
< —— X =T (1+p7 'Y=+ S [PrPall ) +¢
< Sl =Tl (147 2 4 2 el
€ 1 V/pE 2
< Jp—— (1 N L2 peV1
\/151+€<+p 1+€+p\/ﬁ +€>+6
& E
1 2¢/1
_1+€< +1+€+ +5>+5
14+2+2(1 2
< € +2e4+2(1+¢) be<se,
1+e¢ 1+e¢

which completes the proof.

B.7 Proof of Lemma 16

Lemma 16 is similar to Lemma 6 in Cai et al., 2021a, but with three slices being left out
instead of one slice. As being noted in Cai et al., 2021b, the proof can be easily adapted
from the one slice case to the three slices case. Here we only point out that the structure of
Tucker decomposition can be used to simplify the proof in our problem. First the triangle
inequality gives that

~p ~,T
| Posaies (TE) =TT
_ 10T 10T _
7Doff—diag <Ez 1’€Ei Lt )H + Hpoff—diag (EEZ Lt + Ei 1’6112‘1—) H + deiag (1111111—> )

(102)

<|

where Ei_l’f is defined as EZ-_M =M; ((p_lpgz,@ + P — I) (T))
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1l 1T
Pott-diag (El 1’EEZA 14 )H . By adapting the analysis for Pof.diag (EZ_ 1EZ-_ 1) in
Cai et al., 2021a, Lemma 1 where E; ' = M, (p™'Pq — I) (T), we have

.
| Posaieg (BT BT )| <€ (

Bounding ’

Bounding ‘

3/2,.3/2 2,.2
7 LM

n3/2p nZp

) logn -2, (T). (103)

10T _
Poft-diag <TZEZ 1.4 + E; 1’€TZ~T> H For this term, we can utilize the Tucker

structure to immediately obtain the upper bound. Invoking the triangular inequality gives
that

Wi
It suffices to control the spectral norm of Pogdiag (TlE1 14 ) To this end, we have

|

Al _
Poff-diag (EE,L LE + Ez thriT) H < ‘

—1,6T
Poff-diag (T;El ) +

Poff-diag (EZ'_LZET> H .

Pasraios (BB )| < 2| mm || = 2| My mT (6719
=2 HU1M1(S)(U3 ® U2)TMI(5—M)H

< e 7)1 (£ )|

< 200 (1) V7 €7 2 UF 3 U]

< 20max (T) VT || (Z = 271 P0) (T

2
2,00 |

(0) log® n 3log® n
< UmaX(T) ’ \/;C D ||THoo + \/ p HTlT

where (a) follows from Lemma 22 and (b) is due to Lemma 23. Therefore, the following
inequality holds with high probability,

M3/27"3/2 log3 n 212 10g5 n

10T _
Poff—diag (EEZ L + Ei 1’6111‘1—) H < CO’?nax(T) ' \/; n3/2p n2p

(104)

Bounding deiag (TZTZT) H . A straightforward computation implies that

(rT)

J5J

e (227 -3

ur
Jj€n] - H’TZH;OO S ;UIQIIax (7). (105)

Plugging (103), (104) and (105) into (102) yields that, with high probability,

3/2,.3/2 2.2 3/2,.3/2 1503 2,2 1ogD
w3l w4 w2 2r3/%log° n w2r?log® n ur 9
<C < RETEm + 2 ) logn + /1 52 + . + o Orax (T) -

~p 4T
Poseatiog (T ) =TT
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B.8 Proof of Lemma 17
Recall that le EZ«IXZ-IT is the top-r eigenvalue decomposition of

G = Poft-ding (TTT) (106)

We denote by G% the Gram matrix M;(7)M] (T). Applying Lemma 1 in Cai et al., 2021a
yields that, with high probability,

3/2,.3/2 .2 1 20254 1
HG _ GhH S C (iu‘ r Gmax(T) ogmn + \/M r O-m::;(pT) ogn + ”M'L(T)H%’Oo>

n3/2p

o7 Wamin(T)7 (107)

where (a) follows from (25) and n > Cou®r®k8. Since T is a tensor with multilinear rank
r = (r,r,7), we have o, (Gh) =02, (T;) >0, 0p11 (Gh) = 0. From (107), one can see that

min

HG — GHH < %O‘r (Gh). Therefore, Lemma 26 is applicable, which gives that

BT e e e
mln
301 1, 11
< = (T <
= o2 (T) 27 22052 Tmin(T) < 5 9206274

N 1,6 pl,e . Les1,0 51,67 . :
ext, we turn to bound || X, "R, — U;||. Notice that X" X" is the top-r eigenvalue

decomposition of Gt := off-diag (ﬁeﬁﬂ) . By Lemma 16, one can obtain that, with high
probability,

ot -

3/2,.3/2 2,.2 3/2,3/2 1503 2,2 160"
we'cr wer we'4re/<log  n war=log°n wr 9
<C ( T ) logn + /1 T \/ o + | e (T)

L 5
= 27 2204624 min(T) < Zamin<T>7
where (a) follows from (25) and n > Cou3rox8. Applying Lemma 26 immediately yields
that
3 3 1 1 1 1
XMRY Ul < 2 HGf - GhH < — 2 Ty <
H z = Oin(T) = o2, (T) 27 220k5 204 Tunin(T) < 25 9206,,274

B.9 Proof of Lemma 18

Noting that £ is indeed associated with X! (see Equation 14), we need to show Lemma 18
separately for the case t = 1. According to Lemma 17, one can see that

1 1
217/14# T4 2

1 1
M27’4 < 217H4M2T4 5'

|X!R! - U| < and || X} R} -
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Noticing the definition of G (see Equation 106) and G* (G* = M;(T)M](T)), the spectral
norm of X}X}T — UiUiT can be bounded as follows:

11T 77777 2HG_GHH
|xix!" o7 < e
2 11 ) 11

= (1- %) o2 (T) " 27 920,46 ,2p4 Tinin(T) <

2T d 24 2
min
where first line is due to Lemma 34 and Lemma 35, and the second line follows from (107).
Using the same argument yields that
1

1,0 1,67 T 1
|xx -, = A Y

By the triangle inequality,

|xrx! v < H (xR - U) (X%R}J)T (xR - UZ-)T

2,00 2,00

A

< +wmmﬂf%”

< m‘ 1 L Jur
— 220142,11 T4 n 217H4M 7“4 216,{2’u T4 2 ’

For the case t > 2, first recall that the columns of Xf are the top-r eigenvectors of

HXMRM Ui

e
Thus a simple computation yields that
A < @ITl + ([ ] - 12|
(a) 1 1 1
< <2amax(T) + 80max(T)> : W?Umax(T)
17 1 1,

1
= 23 W?amax(’r) < 4Um1n(7-)7 (108)

where (a) follows from the induction inequality (17a). Applying Lemma 26 gives that

3 HAHH(%) 3 17 1, 11

2 . 1 <
o (TTT) " o2 (T) 223k5u2r4 2tamax( )

| Xir: = Uil = S ST 3
1

where (a) follows from (108). For (43), a direct calculation yields that

HXtXtT — UzU'LT Al-1
o 7035 (T) =
16 17 L 5 1 1
< -
=702 () B2y uax(T) < g7 150

where (a) is due to Lemma 34 and Lemma 35. Following a similar argument, one also has

1 1 L fpr
S 216%2” rd 2t :

|xi X - v < and | XX~ v

i T4 2t
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B.10 Proof of Lemma 19

Recognizing that || E; || < W%Umax(T) < omax (T) / (10£?) ((17a)), we can apply

Lemma 10 to prove this lemma. Combining (17a) and (17f) together gives that

150 max (T)

tpt 7T 29%max \/ ) \irr B

i=1,2

1 1 [ur  150max (T) T 1 1 9
< 920,224 9t \| 1y T 552 7) V0 2204624 ?UmaX(T) < 920,224 ot

min
Using the same argument as proving Theorem 6 yields that
36 1 ur\3/2
t
HX - THoo < 2202204 2t (;) ~Omax(T)-

Similarly, we have

36 1 ur\3/2
t,l
HX B THoo = 22042294 " 2t (Z) +Omax(T)-

B.11 Proof of Lemma 20

We first prove the inequality (48). Recall that the tensor X! can be rewritten as

Xt = (T+&7 gl XX =T+ (T+e7Y) % xIX!T -7,

=1

Applying the Weyl’s inequality reveals that

o (0 (A1) = a0 3, (7)) < | (7407 £ x0T -7 )|

Hr
—

< HM <7' X XfoT—T>H+HMi (5“ X Xfo)H.
i=1 =1

= =99

Bounding ;. Using the same argument as controlling (29), one can obtain

1 1
791 < 3Umax(T) : W < 2T00min(T)-
Bounding 5. It is easily seen that
(a) 1 1

_ 1
¥y < 1r=nlz;ld2),(3 HMz (gt 1)H < Umax(T) < QTOUmin(T)a

220,624 ot

where (a) is due to (17a) and the fact k > 1.

Combining (109) and (110) together shows that

ok (M; (1)) = 01 (M3 ()] £ s50min(T),
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which implies that

<1 + 219> Omax(T) > Omax (Mi (X)) > omin (M (X)) > <1 - > Tmin(T),

as well as k (X t) < 2k. The inequality (49) can be proved in a similar way and the details
are omitted.

Appendix C. Proofs of Claims

C.1 Proof of Claim A.1
By the definition of projectors, it is easy to verify that

‘ (@) p#0) M. (79 (@)
m (PP ) @) = (P8 P ) )

which implies that the above two projectors are commutable. Using the same strategy, one
can obtain the second equality.

For the third equality, by symmetry, it suffices to prove M;j (73;7?))“} (Z)> =
’ i i#1

Mi(2) YltYltT. Let QtlZﬁYfT be the singular vector decomposition of M; (G*) (X% ® Xé)T,
where Qf € R"™*", Bt ¢ R™" and Y;' € R™*". We find that

My (XY = XM, (6 (Xt X4)T = X1Qisiyy,

which implies that the columns of Y{ are the top-r right singular vectors of M (X t). A
direct calculation gives that

M (Pey (@) = Mi(2) (Xi o X5) M) (6) M (@) (X )T

a T
@ My (2) (M (6% (X e XI)T) My () (X e x3)T
T
- M (2) (@ZYT) @i=iyT
=M (D) YR QUQIE Y = M (@) YY, (1)

where (a) follows from the fact that X% ® X} has orthonormal columns.
In addition, one has

(G£) =
(7, 2)
— M1 (2) (X0 XY) (Xb @ X5)T (X4 o Xb) M (9) My (6) (X5 o XE)T
= Mi(2) (X5 ® X3) (Xjo X3) VY (112)

The last two inequalities in Claim A.1 had already been used in Cai et al., 2020and can
be easily verified by definition. Thus we omit the proof here.
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C.2 Proof of Claim A.2
By the equation (53), we have

a0 = enits (2= Pr.) (2= 7))

3
< Z e;Ml <P Xt Z> H P(jt A gjjjz{x;,l} (Xt,g - T)

i=1 jF#i J#i 2
=854
T (1) _ p) (2 ©)) t,0
+lef My ((PUl PX?[> Prea Pt (2 7')) 2
=
T (3) _ p®) 1) 2) e
+|ler My <<PU3 PX;,_,> Pea P (x 7')) 2
53,
e (P - P2 ) PP (=) )|
5%,
T (1) (1) (2) ®3) t,0
+ eli <<PU1 - ,PXI’Z> PX;’Z J_PXtZJ_ (X — T)) )
.,
Bounding 5:%@- A straightforward computation yields that
Bho < |len (Lol - xp' x| - HP —pU) -7
3,a = m 1 1 1 9 th gtg{th} E

.
n (ooT - X HW*THF’

= %
where the last line follows from Claim A.1.

Bounding Bg,a and Bg”a. It follows from the triangle inequality that

Bg,a = e;I;LMl <P1(122) - ngx) H P(] ;i2{)x¢,e} (Xt’ﬁ — T)
J#2

J J
J#2 9

IN
o
34
<
TN

PG =P ) (TIP3 | (v =7)
’ j#2 )

el M, (7332? —P§2,4> PO o) (¥ =T)
2 g" ’{Xj }j;n
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The first term on the right hand side can be bounded by

el M, <73( ) HP(JM (2t~ 7)

2

T i !
_ H TXtZth <Xt’£ - T> ((Xé’éXz?Z ) ® <U2U2T - X;ZXSJ >> Hz

< flenxt, o (=T (x5 ) @ (w0 - x3 )|

t.0
= HXl 2,00

|
oo - x| -],

By the definition of pU#2)

. i
gt {Xj Z}j;sz
(17#2) £
Mo (Pg{syé, (i (¥ T))

= Mo (2= T) (x5 @ x11) M (94) Mo (67) (X3 @ Xf’Z>T

n (51), we have

= WM, (g“) (Xgi;f ® X%f)T — M, (gt’f %1 X0 sy W ng) ,

where W3 = My(X4¢ — T) (X5 @ X1*) ML (64). Tt follows that
P(]jz) te (Xt’g - T) =G xy Xf’z X9 WQM X3 X;’E.
g {x; }#2

Thus one has

o (78 7) (P2 ) (7))
7o) j#2
T (j#2) tl
e, M ((PQJ%{X;,Z}. > (X T))
J#2 2

.
= [lef vy (9 <1 X1 o Wit xs X5) H2 oeud - x5t x|
o (Mo () [w

() et ot x|

2

IN

.
.HUQUJ ~ xbixht H

< || xtf

.
: HUQUQT _ xbxb H

2,00

< || xtht

2,00

where the last line follows from

i) < oo (e = T ek (o) | < = 71, - - ey
Consequently,
] o - x| (e ()
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T
<[], ot -xi fe=,on

2,00

Using the same argument, one can obtain

T
s i, ol - x| o],

.
Bounding ﬁi , for j =4,56,7. A straightforward computation yields that
Bs.a
B.a

6 tl
63,a< Xl H

IN

.
en (vt =X Xt -7

IN

R W C R B L

2,00 ‘

T
ot x5y,

2,00 ‘

|
o < [len (o] - x|, -ae- 7

Combining all the bounds together shows that

max HUiU@‘T _ Xz_thit,eTH) HXt,E _ THF

.
By < (3 ler, (uf = x1' x| sk x| m
2 2,00 1=2,3
36 1 3/2
32, 90 (ﬂ) - O (T)

(2) 3 1 Jpr 16Kk 1 Jpr
- 216/@#27‘4? ;—’—216&4#27‘4? n ) .2201*62”27‘4 ot n

19-36 1 1 ur 1 1 1 ur
= 916 9204274 9t+1 |/ ;UmaX(T) < 26 920,424 9t+1 | ?JmaX(T)’

where (a) follows from Lemma 18.

3

C.3 Proof of Claim A.3
Let Z6¢ .= (I — 10_1779_Z — Pg) (Xt’e — T). By the definition of PTX

can be bounded as follows:

in (8), the term B3,

t,l

3
3 T
en My [ 29 XPIXPT 43 gt Wit < XY
i=1 — j#i

2

3 T
t,l t,l t,l x-t,0
<> |lenMi <gt’f x; W .xAXj’) +|lef, My <Zt’€‘>< XX > :
i=1 J#i 9 i=1 9
::ﬂ;b ::ﬁg,b

T T
where W' is given by W' = (I S b o ) M; <ZW x X4 > Mt (gt
i#i

Bounding Bib. It can be bounded as follows:

.
Bho = [Jenma (64 W o X5 X5 ) | = el Wi Ma (64 (X5 @ X5)

2
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el (I B Xf’ng’fT) M, (Zt,z) (X;,z ®X§,e> MI (gt,l) My (gt,é) (Xé,z 2 X;[)T

2

-
< GLMl (Zt’z) (X?f;,e ®X;’€) MJ{ (gm) M, (gt,é) (Xé,e ®X;’€)

2

e,Tan’ZXf’ZTMl (Zt,é) (Xg.l ®X§’5) MJ{ (gt,é) My (gt,é) (X;)’Z ®X§’Z)T

i

2

e m (24) (x4 @ X5") ‘2 + e Xt

[l (2 (x40 )|

2

T T
e (24 (x5 )] e ] o (24 o)
T T
‘e;/\/h (24 (X575®X§7’3) ’2 +\/;HXI,4H2 HZt,e s X0y X1 H
,00

t0
X,

< |lenma (24 (x5 @ X5°) | +v7

12

‘2,00
where step (a) is due to the fact HMI (G4) My (GH) H < 1 and step (b) has used Lemma 22.
Bounding Bg,b and ﬁg - A direct calculation yields that

2 T t.l tl t,0 tl
83, = |lem My (g w1 X0 s, W x5 X )H2

-
_ e;X?le <gt,£) (X?t),e 2 W2”>

<l o @)

<[] 0] o (2 ) )

el ) sl
2700 2700

< || xb!

)

where the last line is due to & (X t’ﬁ) < 2k, see Lemma 20. Using the same argument, one
can obtain

3 T t,¢ £, t.0 £, £, t0
) R A =

Bounding 551717. It can be bounded as follows:

3 T 3 T 3
ﬁ:j‘;,b = e;Ml (Zt,z X Xf’fo’e > — eLMl (Zt,z X Xf,ﬁ X X;:,e)
=1 2 =1 =1 2
3 T T 3 T
_ e;I;L Xf"’ My (24 % Xit,e (X:f;é 2 XQ") < H X?é” My (28 % Xf’e
i=1 9 2,00 i=1
(a) 3 T
< \/FHX{’EH Jlztt % xt g\/?HX{fH -HZW ,
2,00 =1 2,00

where step (a) is due to Lemma 22.

Combining these four terms together reveals that

sy < e (20) (X3 o x5 +6n | X1

- \/FHZWH . (114)
o0

3

=y
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For the second term on the right hand side, we apply Lemma 25 to show that

65 fo’f ,
[e.e]

14
] o,
o

v H (Z—p'Pa_, —Pp) (X~ T)H

< 12%\/ﬁﬁ H (I — pflPQ) (Xt,z _ 7’)”

< 125\/7\TH I—p 'Pa)(J)| ‘2’”th’€_THOO
11

[ r
< @W?H_l n Umax(T)y (115)

+Utllg,00 < 2/ and
,O0 ’

C1r3ut%r3log®n Corbudrblog® n
n3/2 ’ n2 .

Next, we turn to control the term . Recall that Z4 = (T — p~1Pq_, — Py) (X4 —T).
Letting

where the second line is due to HX f’e‘

< HX#R# -

the last step has used the assumption p > max{

Ztm = (I —p"Pa_, —Po) (X" =T,
Zt,m,f - (I . p_lfPQ,e . P£> (Xt7€ o Xt’m)7

we have 2t = Ztm 4 Ztml If ;= £, it is not hard to see that v = 0. Thus, without

-
loss of generality, we assume m # £. Denoting by O; = Rf’me’g the special orthogonal
matrix, the triangle inequality gives that

v = el My (244 (X§Z®X§€)H

IN

)
en Mi (2) (X§'© X3 — X{"03© X500 )|+ [lel My (21) (X505 @ X7 02),
)

IN

el My (2) (X4 & XY~ X370y 0 X170, |+ el My (257) (X704 0 X5 0,)]

+ [ley, My (20™F) (X505 @ X5™0s) ||,
enMi (2) (X3 0 X3 = X703 0 X370, )|+ el My (207) (X5 @ X5

+ el My (257) (X4 0 X5™)
=71+ Y2 + 3.

I

For the sake of clarity, we first give the upper bounds for the above three terms whose
proofs can be found in Sections C.3.1, C.3.2 and C.3.3:

1

Mo 220/{4# A 2t+1 \/ n Eon (116)
1 1

Y2 < 9i1 22%4“27,4 2t+1 \/ n ‘7 ), (117)

1
LR 22%% 920,424 2t+1 \/ Eon : (118)
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Thus we have

3 1 1 Jur
Y<Mmt+trty < FW% zamax(T)- (119)

Plugging (119) and (115) into (114) yields that

1 1 1 ur
P < e gz gt ||y (T

A simple calculation gives that

C.3.1 Proor orF (116)

= e;./\/h (Zt’e) (Xt,z 2 Xt,e _ Xt,mRt,mRt,eT 2 Xt,mRt,mRt,KT) H2
_ e;ran Xt€®Xt£_XtmRtmRtZ ®XtmRtmRt£ ) (jo@R;,E)Hz

= |le] My

TN 7N N
AN
-
~

|
9
|

< e;l'an Ztl XMRM@XMRM U3®U2>H

( tzRge ®XMR Xt,ng,m 2 X;,mR;,m> H2
_71(1

+ |lenm (24) (X3 RY™ @ X5 RY™ - Us @ Uy ) H2

_'71b

For the first term 71 4, it can be bounded as follows:

r2 n2

2
- Z Z M, (Zt’Z)L,L,j [Xg’eRg’e & X;ZR;! -Us® UQL S)

s=1 \j=1

2
- > om = ) M (X =T, [ XERE © X5RY ~Us o Uy )
s=1 jér 7,8

<rmax |y (p7 0 — 1) [My (XY =T)] [X;ngf ® Xy'RY —Us ® UQ] ,

s€[r2] |4 Jss
Jj¢r

< r max Z P O — ’ (M (x4 T)]M‘ : ‘ [X;ngé ® Xy'RY —Us ® UQ} 4

sE r2] Jss

<Y oy 1) X T || XS R @ XY RY - Us 0 U
o0
j¢r

(@
< resn? At T - | X R 0 XY RY Uy e |, (120)

<redn? Xt T <HX§’£R§’£ - U3H2700 x5,

+ HX“R” _U H U
- 2 Ry 2/l3.00 1Usll2,00
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®) 36 1 ur\3/2 1 1 Jur 7 [ur
2 /
s dn7r 220,224 2t (;) Tmax(T) 220220420\ 3\

1 1 1 wr
< 9 et it || OweelT):
Cilogn

Here in (a), we use the fact that whenever p > 35— with high probability, all rows have

at most 2n%p observed entries (Arratia and Gordon, 1989, Theorem 1). Step (b) has used

the fact that
: < 1 1 ,w:
2,00 — 220K2p2r4 2t

9 Jur 4 |upr
U; < oy — <=y —. 121
2,00+ | ZHQ’OO “ 8V n "3V n (121)

1 1 1 Jur
Tip < 212W2t+1 Umax(T)

Combining the above bounds together gives that

b

t0 0 ot b ,
|xi, = |xim o

Similarly, one can obtain

1 1 1 ur

7 < 1T 92045424 9t+1 ZUmax(T)' (122)

C.3.2 PrOOF OF (117)
Since X" and X Zt "™ are independent of {d,, ;} by construction, for any fixed s € [r?],

n2

Szt (X e x|
j=1
= 3 7 1) a7, (X e X5 = 3 X,
7¢Tm JEm

j78

where I'), is an index set defined by
Lp={mmn+m, - ,nim—2)+mnm-1)+1,--- n(m—-1)4+nnm+m,--- ,n(n—1)+m}.

Thus,

r2

Yo = Z Z Ml Ztm iy [X?t)’m ® X;,m]
j=1

j7S

N

n
< r max My (28™)] [Xt’m®Xt’m} =7 max X;|.
T 1<s<r? Z i ] 3 2 s 1<s<r2 Z J
j=1 JElm
A direct calculation gives that

2
X5 <pt [l -7 - (igﬁg’fg, fo’mHm) !
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2

S e <ot Y -, [ HX;’”(@X;WL} |

. . 2,8
]%Fm J¢l'm

4
<t (o [, ) e -

Applying the matrix Bernstein inequality and taking a union bound over s shows that, with
high probability,

log n n2logn . tm 2
s (B [ i (o ],
logn n2logn 36 1 rpry\3/2 K
<C-r ( » + \/T | 9204224 9t (?) max(T) .4?

1 1 1 ur
< Q11 9204 ,2,4 9t 1 |/ ?UmaX(T)’ (123)

4 4.6
provided that p > W.

C.3.3 PRrROOF OF (118)

Now we bound ~3 = He;./\/ll (Zt’mﬁé) (Xém ® X;m) H2 To simplify notation, we denote
by Hgq, the operator Z — p~'Pq_, — Py and define

T T
C;ﬁ,m,f — X:7€X:7é _ X:7me,m and D?m,é — X;ﬁ,ml—yzt,m _ X:,fil—;t,é'
T T ]
Then Xf’me’m — Xf’KXf’g can be rewritten as

T T T
X:’me’mT _ X?ZX;’Z _ Df’m’e (Xf’mfl—;-t’m) + (X:’ZT’;’Z> (Df;m/> ) (124)

1 1 Jur
<2 ——F———/—, (125
F— o 22052)2p4 9L\ 7 (125)

where the last inequality is due to (17e). Recall that Z4™¢ = Hq, (X5 — X4™). We have

It is not hard to see that

t,m,0 t,mmat,m t ot
|t < [ximzir - xi

X - xR

3 T 3
Xt,@ o Xt7m _ (7-+ gt—l,ﬁ) > X;f,fXZ't,é B (7-+ gt—l,m) % X:,mXit,mT
=1 =1

1=
3 T 3
_ (7-+5t—1,e> 'Xl X;ﬁ,KX;t,é B (T+ gt—l,é) ~X1 X;t,mXit,mT
1= 1=
3 T
t—1,0 _ ot—1, tm t,
S G IS T

_ t—1,0 t,m,l t,m ytm T t,m yt,mT
= (T+&71) i O™ e X XE™ iy X5 X

_ T T
+ (7—+5t 1,[) X1 X{’mXI"m X5 C;,m,é X3 X;,mxé,m
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_ T T
+ (7T + 51& 1,@) X1 X{,mXi,m X o X;,mXé,m X3 Cé,m,é
t—1.¢ t,m,f t,m,f t,m y-t,m T
+(T+E€ ) XlCl ><202 ><3X3 X3
+ )

T 3
+ (T + gt—l,@) X1 Xf’mXi’m X9 C;J”f X3 Cé,m/ + (T+ gt—l,f) Axl C;J”l
1=

+

(T+&71) s O™ o XX < Oy

- -1\ 3 T — _ 3 T
gt gt 1) X XXM 4 (e gty s P xT
=1 i=1

1= 1=
9
i=1
It follows that

0 = lems (o, (244 20m)) (357 0 x5
9 9
t,m t,m L
<3 [len i (e (2 (657 0 X57) |, = o
Bounding 73 ;. From (124), 731 can be decomposed as follows

Y31 <

.
el <M1 <’HQZ ((T + &) x4 (Xf’éTf’£> Dim™t X Xf»mvamT))) (X5™ @ X3™)
1#1

2

+

el (M (1o, (7 €20 D7 (i) xemxinT) ) ) (g e x5

2
b
=951+ 731

e Bounding 75;. For simplification, we define
T
Cri= (T+E7M) xq (XPT) DY e X7 s X5
It can be seen that
-
M1 (€000 < || (X3T8) DY, v (T4 €72

< x¥]

Sl L S R G|

wr 2 1 fpr
=2 V on o 220k2p204 28\ 20max(T),

where the last line is due to HXZMHZ < 2\/’%7, HMl (St’E)H < Omax(T), and (125).
,00

Then the term 5, can be bounded as follows:

= s (i (00 057 x5 57) (3570 57

t,m t,m t,mT t,mT
= HHQZ (Cl X9 X2 X3 X3 ) X9 X2 X3 X3 HF
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t t t,mT t;mT
_ sup (Ha, (€1 x2 X3 x5 X5™) w0 X5 x5 X5, 2)
ZERanxr:”ZHle
t t t t
= sup <HQZ (Cl X9 X2’m X3 Xg’m) , Z Xo X2’m X3 X37m>

ZERnxrXT|| 2]l e=1

(@ - m m
<C <pllog3n+ m> : HMl (C1)||2,ooH <Hth HF ’ Hth ‘ 9 oo>
i=2 ’
B B [ur 8 L Jpr pr
§C<p 1]og3n—|—\/[TlOg5n> . HWW\/ZUmaX(T)‘T'Zln

1 1 1 Jur
< 216 22044 1,24 91+1 ;UmaX(T)a (126)

where step (a) follows from Lemma 30 and the last step has used the assumption

C1R2p 2122 log® n Cor*pdr® log® n
p Z max n3/2 I n2

e Bounding ’yé”l. Let C5, C5 be matrices defined by
T
Cy = D™ (XTI ) (Mo (T + €71m)) (X5 @ X™ ) e R,

.
Cyi= (X§" @ Xy™) e R

Then we have

2

r2

TL2 1”2
’Yg,l = Z Z Z [02]m,k [C3]k,j (1 - p_lém,j) [Xém ® X;m}

. . j?s
s=1 ]:l,jgl—‘ k=1

2 2 n2 2
= (Z [Colps D [Csliy (1= p~'0my) {X:f,m ® Xém}

\ s=1 \ k=1 j=1,j¢T 58
r2 g2 r2 n2 2
2 —_— t7 t7
< [Colinr Z Z [Csly,; (1= p~10m,;) [Xsm ® X, m} ,
s=1k=1 k=1 \j=1,¢T I
7L2
<NCollge - 7? max | S [Caly; (1—p0mg) [X5™ 0 X5
’ 1<s,k<r2 14T ’ 7,8

TLQ
= ||C 2. Xk
1Callg00 - 7 | Jnax AZI j
j=1,j¢TI

Since {5m’j}j€[n2] and Xf "™ are independent by construction, X;’k are independent
mean zero random variables with

s,k
i

1 t,m t,m -1 t,m t,m 2
< Gl | X5 e X3 <p7t X e x|
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2 2
2 2

> E{XTH <ot Yok [ xime x|, <ot xime Xy
j=Lgr =1 |

We apply the Bernstein inequality to obtain that, with high probability,

1
S e
2700 p 2700
<o ()" flosn ).
p n p n

Furthermore, a simple computation yields that

1Colly e < [ DI, - (T4 &0

Z Xk <C(10gnHXtm®X
j=1,5¢I'

< 2?1?}]{ Xt ZTM XZtRIZe ) HMl (7—+5t—1,m)H
emn
S 4amax(7-) max Xt thf Xng
te[n] F

Thus we have

n2

b 2 s,k
951 S 1Coll - r® - max | >0 X
j=1,j¢I'

n2
-r? . max E X;’k

F 1<s,k<r2

Z

< 4o pmax(7T) max
Le(n]

j=1,j¢I’
<4 7 1 L Jjpr o (logn ot (,um) n logn g2 KT
Omax 50 9 9 4 -re - .92
— T ma 2204224 9t D n D n
1 1 1 ur
= 516 920,,4,,2,4 9141 \/:ffmax(T), (127)

provided that p > C%ui?ﬁlogn

Combining (126) and (127) together yields that

1 1 1 ur
8.0 S 315 g 2 g ||y Tmex(T)-

Bounding of 73, for i = 2,---,9. Following the same argument of bounding ~5,, one
can obtain
1 1 1 T »
731 B 215W2t+1 \/>Umax(T) 1= 27 ’9‘

Putting together all of the bounds on ~v3; for i = 1,---,9 yields that

1 1 1 ur
= g g g\ (T
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C.4 Proof of Claim A.4
.
We only show the details for bounding HYfo -y

o and the proofs for the other

3 3
two cases are similar. Recall that Xt = (’T+ Et_l) X XitXfT and X4t = (’7'+ St_l’ﬁ) X
i=1

1=
-
Xl.t’eXiM . In addition, Y7 and Yf’é are the top-r eigenvectors of M7 (Xt) My ()c't) and
MI (Xt’z) My (Xt’g), respectively. Let W1, Dy and D32 be the matrices defined as

T
Wi = M () M () =] () v (00) D1 T X
T T
Dy = XIXE @ X5XE - XXy o xxyt
By the definition of X* and X**, we have

Wil < [ DuaT (7 + ) xtxt s (740 ¢ xix(T)

F

+ [IM] ((f;t—1 — gt x Xf’fxf’ﬂ> XX M, <(T+ g X XfoT>
1#£1 7

F

+ | M] <(7’+ £ x Xj@(j”) DMy ((T+ g X XfoT>

i#

F

3

+ [IMT <(7'+ g4 x Xffva”) X’{’EX’{’ETMl ((5“ — &) XfoT>
1

i#1
T T T
| (e @ Xy X ) MT (T 4+ &) XX My (T + €71 D

F

2
<IDaall - (73 + 7+ |13+ B ) 1Dl |73+ B 7+ B
et e e (i + B+ s )

- - T T
< 80max (T)? | D allp + 40man(T) €71 = €7+ domae (T)? || XEXLT = XX |

)

where the last line is due to (17a) and (17b). Furthermore, a straightforward computation
yields that

t vt T t0 t,ZT t~t T t0 t,ZT t~t T tl t,ZT
1Dzl < [la0s637 - 20525 |- esaxs o+ s s laess” - o
T T
§2r-m221>§HXfo — XX H §4r~mz2n§HXfR§—Xf’éTit’£H
=2, F i=2,

1 1 Jur
<
= 218,2,2p3 2t n

where the last inequality follows from (17e). Thus we can obtain

8 1 Jur 4 1 Jur 8 1 Jur
2
IWille < omax(T)"- <W2\/Z+ wwztﬁ+ T Ea R\
8 4 8 02 X(T) 1 ur ]- 2 1 ur
< omtomtom) 2 o\ < 5umin(T)5y/
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where the first inequality is due to (17d) and (17e). Consequently,

1
W < [[Whllg < 2ﬂ01211in(T)‘

Note that the eigengap & between the the r-th and r+1-th eigenvalues of M (X4) My (XH)
is bounded by

5> Omin (M1 (X“))z > <12>2 02 (T),

where the last inequality follows from Lemma 20. Applying Lemma 34 and Lemma 35
shows that

W || 8v2 1 1 1 [pr 1 1 [pr
YtytT_Yt,fYt,ZTH < 2 H F < 2. - < - .
H P L F_\fts—HWﬂ‘ =T o2 (T) gt Tmin(T)ge [ < gmary

min

C.5 Proof of (91) in Claim A.5

We provide a detailed proof for ¢ = 1, while the proofs for ¢ = 2,3 are overall similar. Let
Df’f and Mzt *“ be two auxiliary matrices defined as

D} = X!R! - x['T}",
T T
M= XX - XX = Dl (xIR)T + (X1 (DY)

From (17¢) and (17e), one has

1 1 Jur

‘F = 220,2,2p4 2t \[ (128)
1 1 Jur

’F = 219521204 2t \| (129)

3 3 T
Xt—atl = (T4 x Xixt - <T+ St—L‘) X XX
=1 =1

t,e
o

2], < e < 2t
7 2700 7 F 7

By the definition of X* and A,

= (T+&7Y) 51 Mit,e + (T + &Y Z-;Zg Mf’z s Xé’eXé’eT
+ (7-_|_ gt—l) Z;ZZ Mit,é X X;’EX;’ZT n (7-_|_ St_l) %1 X#X{’ZT Z;Zl Mit,e
T g XX () X
F(T+E) x XPXIT g Myt (11— e ) < XX

i#3 iz
8
= Z A;.
i=1
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It follows that

ZHMl ((Z = p~'Pq) (A)) (X”@X”)HF

=mn;

H (=5 Po) (2= ) o x24T

All of these terms but 75 can be bounded by the same argument as controlling the term
v41, yielding

1 1 1 ur )
TS 9N g T \/70““‘”‘(7) 75 (130)

For 75, the same bound can be obtained, but a different strategy should be adopted.

C.5.1 BOUNDING 75

Notice that
x'xt" = (xR - U) (va@Rﬁf)T +U; (X['RY - UZ-)T + U,
It follows that
As = (T+E7Y) s MV o XEOXET <y XUEXL
= (T +&71) %y DY (XIRY) T o XEIXLT <y XUE X
+(T+E7Y) % (X)) <D§’£>T sy XLXLT g xBEXLT
— (T +&7") <1 DY (XIRY) " x2 (X3RS - Ue) (XQ’ZR;’K)T xs XL
T xa Us (XY'RY' - U2> w3 XL b
T2 DU s (X5 Ry - Us) (X;»ngf)T
T %o UsUsT x5 Us (Xé’ZRg’Z - U3>T
xo UsUs" x3 UsUs"
) sy XLXLT oy xbEXLT

which implies that 75 can be expressed as

3 o im0 (o 52,

=5,i
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Bounding 751, 152,753 and 75 4. A simple computation yields that
T T
M1 (B) = M, <(T+ &) s DY (XIRY) T o (X5'RY —Uo) (X5'RY') o X5/ XY )
T ™\ '
= DV (XIRY) T My (T + &Y <<X§’€X§’£ ) ® <(X§’€R§”f - UQ) (Xﬁ’éRg"’) ))

= D (X{RY) T (T £7) (X (XSRS ) (X3 o (XY'RY - 1))

=:Aq =:B;
Thus one has
N5,1 = HMI (

(Z-p'Pq) (B)) (X:?K ® X;Z) HF
= [ (@ =p7P0) () 0 M B) (X370 X51) ||
(

= [ (@ - p7'P0) () © (AsBy) (X537 @ X5 |
=\ SN (M (@ = p1Pa) () @ (A BY) (X5 @ x;vf)}js
i=1 s=1
n  r2 n2 2
=\ (Z My (Z = p71Pa) (7)) © (M B - [ X5 X )
i=1 s=1 \j=1 *
n  r2 n2 r2 2
= Z ( (1—p=16; ) ( [A4]; , [B1]q,j) . [ng ®X;q | )
\ i=1 s=1 \j=1 g=1 3,8
n r? r2 n2 2
= Z ( [A1];, > (L —=p~téi ) [Bil,; - {Xé’é ® Xéq , )
\ i=1 s=1 \ ¢=1 j=1 7,8
n  r? r2 r2 n2 2
<2 ( [Al]?,q> ' ( (1 =p~1éij) [Buly; - {Xé’e@@X;q ‘ ) )
=1 s=1 \¢g=1 g=1 \ j=1 7,8
n r2 r2 2 n2 2
< A2, | max 3OS ST (-t (B, - [ X5 @ X5
\ =1 g=1 i€ln] s=1qg=1 \ j=1 7,8

< Alle-r? - max
i€[n],s,q€r?]

j=1

<
Il
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(a)
< Al ? 302 Bl - | X5 ||51

2,00

2,00

2
< HD#HF My (T + 7Y 2302 HX:E)’E

2,00

(b) 1 1 //M' 9 o o [9\? [ur\3/2 1 L fur
= 22052,2p4 9t 8JmaX(T) ot (8> (?) 9202204 0t

11 1 1 ur
S g 92044274 ot+1 FJmaX(T)’

L LRt W
2,00

2,00

(131)

where ® denotes the entrywise product, step (a) uses the same argument as in (120) and

step (b) follows from the inequalities (121) and

1 1
920,624 ot Tmax

ML (T + €| < oman(T) + (T) < Soma(T).

Applying the same argument as above can show that

11 1 1 ur
B2 S o g g\ o)

11 1 1 ur
i S G gyt g \| oy 7T

11 1 1 ur
T S G gz g \| oy T

Bounding 755. Notice that
My (Bs) = My ((7’+ €71 x1 DY (XIRY) T %2 UnUsT 3 U3U3T)
— DY (XIR) My (T+E) Us 0 Us) (Us @ Uy)T,

—:As =:Bs

where the matrices A; and Bj obey that

9 1
I4slle < [ D] M0 (T 4+ < g ragy/ oy omes(T)
nr

1Bslloo = 1U2ll2,00 * 1Usll2,00 = =

A simple computation yields that

= - ) (x5 1) 1 )
< M1((I—p*1PQ ((Xéthé) (XEZRM>_U3®U2)HF
+{|Mi((Z - p 1%) 65) (Us 0 U)|.
< ) ) () o ()|

—na
=55

72
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n H/\/h ((Z = p~"Pq) (B5)) (U3 ® (X;fR;’f - UQ)) HF

=8 5
+[|M1((Z = p'Pa) (Bs)) (Us @ Uy -

—eC
=55

e Controlling 75 5. It can be bounded as follows:

ngs = HMl (T —p 'Pq) (Bs)) ((XQKRQK - U3> ® (XQKR%Z)) HF

n2

<NAslle e max IS (1-p70y) (Bl - |(XORY - Us) @ (X5°RY)|
i€[n],s,q€[r?] — ) is

(a)

< | Asllg-r? - 3n? (| Bs|| o, - H (ngRgf - Ug) ® (X§’€R§’£>

HOO

< [ Aslle 12302 | Byl - [ X5RY ~ U

.y,
xR,

2,00 ‘

9 L fur 9 9 HT 1 1 fur 9 [pr
< smgt\|  omex(T) 307 S o g s

11 1 1 ur
S gant gty it ||y T T

where step (a) uses the same argument as in (120).
e Controlling 7735. Similarly, one has

n?

5 < [|Aslg - 12 - i€lnl sl Z (1=p7"0i5) [Bs]y - [U3 © (X;ZRE’Z B UQ)L
,8,q€[r = *

IN

| Aslle -1 - 30 | Bsllog - [Us © (X5°R ~ Ua) |

11 1 1 ur
S TRt gttt || g OmaxlT):

e Controlling 75 5. Recall that

0.9]

Bs = (T +&71) xu Di’é (XfRﬁ)T %o UsUs" x3 UsUs"
= ((T+&7) %1 DY (XLRY) T 2 UF %3 UT ) xaUs %3 Us,

=55
where V55 € R™*"*". A straightforward computation yields that
s = [|Mi ((Z—p""Pa) (Bs)) (Us @ Us) |

— H((Z—p_lpﬂ) (Bs)) x2 U3 x3 U?’THF

73



WAaANG, CHEN AND WEI

= sup ((Z—p 'Pq) (V55 x2 Us x3U3), Z x2 Uz x3 Us)

ZeRnXnxn| z|| =1
(a /,u r logn _c /,ur 10gn My )]
F
wr?logn 7 _
SC\/H—%'HD?HF-HXH\ My (T

2,2
Wer logn 1 L fpr 9
¢ nZp  220x22042t\ p | g Tmax (7

11 1 1 ur
< 18214 920,54, 274 Qt+1 \/ ;UmaX(T)’

provided that p > W, where (a) follows from Lemma 27 .

IN

Combining the above bounds together, we have

(). (135)

1
T 920,424 941\

Bounding 756. Notice that
t—1 0t € 4o\ T 60 x0T £, 51,0 T
Bs = (T+E77) x <X1’ v ) (Dl’ ) X2 Xo" Xo X3 X3" Xy

T T T
_ ((T+5t_1) X1 (Xi‘/,let,f) (D?@) X9 X;’é X 3 X;’e ) XQX;Z X3 X:?@

=:Vs56

where V56 € R"*"*". Following the same argument of bounding 751, one has

11 1 1 ur

M5,6 < 6ol Wﬁ ?O—max(,r)- (136)

Combining 75, together. Combining (131), (132), (133), (134), (135) and (136) to-
gether, we have

6
1 1 1
M5 <D 150 < 5ii g g\ Omax(T)- (137)

C.5.2 COMBINING 1; TOGETHER

Combining (130) and (137) together yields that

¢T

8 1 1 1 [ar
<Y i< o7 s gt Tmax(T).

1 ¢ £ t,
H((I—p Pa) (X - & )) X X 911 " 920,,4,2,4 9141\

i#

Thus we have completed the proof of (91) in Claim A.5.
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C.6 Proof of (92) in Claim A.5

We prove the case i = 1 and the others are similar. Notice that only the ¢-th row and those
columns in the set I' of

M, ((p_IPQ_Z + Py —p 1 Pg) (X” _ T))

are non-zeros. By the definition of P;. and P_,r in (36) and (37), we have

H ((07'Pa_, +Pe—p7'Po) (¥~ T)) x x x xbt F

7 e (1) (5 )
e (7 o) a4 ) (x5
+ HP—K,F (/\/h ((p_lpg,e + Py — p_IPQ) <Xt’£ - T))) <X§’£ ® X;’e) HF = @1+ ¢a.

C.6.1 BOUNDING ¢

A straightforward computation yields that

¢1 = 3 M1 (7' Pa +Pe—p ' Po) (2= T))] X5 X5
i=1 , I,
= S 1(5@,] [M1 (Xt’g — T)Lj {X;E ® X;’KL_ = ia:;
J=1 ’ “lla j=1 9

Notice that conditioned on X f *for i = 2,3, the vectors x; € R™*1 are independent mean-
zero random vectors with

Ll yte 10 1
ol < 5 et = - |5 265
,00 2,00
n? 2 2
e fmag)| o S o (w7 o xy],
= J Jilla
n’ t,0 t.0]|?
S A N
p 00 2,00 2,00
7Z2 n2 2
Soe{efm} < T
- p 2,00 2,00
7j=1
By the matrix Bernstein inequality, with high probability, one has
logn anogn t0 te t,0
axC| = et =7l - 5]
p 2,00 2,00
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logn n?logn 36 1 sury\3/2 9\? pr
< N : o (EE Y I
=¢ ( P + D ) 22042294 2t < n ) Omax(T) 8) n
1 1 1 ur
S o 920,424 941 |/ ;UmﬂX(T) (138)

Cortutrtlogn
n? :

under the assumption p >

C.6.2 BOUNDING ¢9

A simple computation yields that

or= P (s (0717 e (14 7))) (o 32|
< [pcn (o i+ o) 14-)) (8 )|
=7 Zajb]T =r sz ’
Jjer jer
where a; € R with [a;], = (1—p~'dr;) [Ma (X5 = T)]k,j for k # ¢ and [a;], = 0,

T

and b; = [Xé’e ® X;’q ~ € R™*!. Notice that conditioned on Xf o Z; are independent
]7:

mean-zero matrices with

Vi e e 1
<ot ot < 5 =] ],
2
2 — 2
(a7} < 5 o) ] < pe o o (7]
jer jer S jer !
2 2 2
S Al O s Y S
b 00 2,00 2,00

where we have used the fact that |I'| < 2n. Similarly, one has

S E{Z7Z}| = > E{lasl3 f o] | < D1kl E {llasll} }

jer jer jer
2 - 2
<SOUbIE S [ (X - T
jer i=1 I
N2 2 2 2
<=, 1
p 0o 2,00 2,00

Applying the matrix Bernstein inequality shows that, with high probability,

2
<O (ﬁlogn . [on logn> ' th,@ B TH , Hx;eH ' HX;e
P p 00 2,00
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Vnlogn n2logn 36 1 sur\3/2 9\ ? pr
S < P * D 92042204 " 2t (;) Omax(T) - 8) n
1 1 1 ur
Some 920,424 9t+1 ;UmaX(T)’ (139)

C1r2p2r3logn Cor*ptrSlogn }

provided that p > max{ TS ) 2
1 1 1 ur
S g g\ gy mex(T);

Combining (138) and (139) together gives

-
X X]t-’g

H ((p*IPQ,Z + P —p 'Pg) (Xt’e — T)) ol

which completes the proof of (92) in Claim A.5.

Appendix D. Auxiliary Lemmas

Lemma 21 (Xia and Yuan, 2019, Lemma 1) For any X € R™ ™™ with multilinear
rank (r1,7r2,73), one has

¥l oo < 1¥N < |¥]lp < v/rirars - [[ X[ and [ X[, < min{y/r179, Vr173, v/T2r3} - || X ]| -

Lemma 22 (Xia et al., 2017, Lemma 6) For a tensor X € R™ ™™ with multilinear
rank r = (ri,72,73), the following bound holds for i =1,2,3

3
Hj:l T

Tq - MaX £ T4

IMi(X)] < X = fminey - [l
JF#i

Lemma 23 (Cai et al., 2021b, Lemma EC.12; Tong et al., 2021, Lemma 13) Suppose
Q satisfies the Bernoulli observation model. Then for any fized Z € R™"*"*"™,

1 < —17..3 —1 10D H T H
7 Pa ) 2)] £ € (o8 12l + o ow s MT 2, ) (a0
holds with high probability.

Lemma 24 Suppose Z € R" " "™ s a tensor with multilinear rank (r1,7r2,73). Then for
any a,b,c € R™ with ||all, = ||bll, = ||lc|l, = 1, the tensor Z ® (aobo ¢) has multilinear
rank at most (r1,r2,73), where © denotes the entrywise product.

Proof [Proof of Lemma 24| Since Z is of multilinear rank (r,r2,r3), it can be decomposed
3

as Z =H x Z;, where H € R"1*"2%"3 and Z; € R™*"i for i = 1,2, 3. To complete the proof,
i=1

it suffices to show that the matrix M;(Z® (aoboc))is of rank at most r; for i = 1,2, 3.
By the definition of entrywise product,

Mi(ZO(aoboc)) =Mi(Z2)®Mi(aoboc)
= <ZlM1(H)(Zg ® Z2)T> ® (a(c ® b)T)

7
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_ ( (Z1], | M (1) (Z5 ®ZQ)TL,:> © (alcw b))
_ 'T ([zl]:,i Mi(H)(Z5 zz)T]L:) © (alcwb)T)

=3 (121, 0a) ([W”)(ZB © 27

; i,
i=1 ’

®(e® b)T> ,

which implies that this matrix has rank at most r;. This is certainly true for i =2,3. H

Lemma 25 (Uniform bound) Suppose J € R™ ™™ s the full-one tensor. For any

tensor Z € R™ ™™ with multilinear rank (r1,72,73), the following inequality holds,

|(Z —p7'Pa) (2)|| < ||(Z —p 'Pa) (T - min {\/ri72, V173, Vr2rs} [ 2]l

Proof [Proof of Lemma 25| Let a, b, c € R"*! be unit vectors and 7 = min {\/7"17”2, V7173, \/7“27“3}.
We have

IZ=pPa) (D) = I(Z - Pa) (7) © 2]

:sup<(I plpg) J)o Z, aoboc>
a,b,c

:sup<( —-p 1739) ), ZO( aoboc)>
a,b,c

<|(Z—=p""Pa) ()| - sup |2© (a0boc)l,

(a)
< ||(Z—=p""Pa) (7| -7sup |Z® (@aoboc)|e

a,b,c

- H (I - p_LPQ) ( +T sup Z z1 42, 13 az1bizci3)2

a,b,c

11,02,13
<@ =p7"Pa) (D -Fsup [ D (anbici) - [12]
a,b,c 81,6283
= 1T =p7"Pa) (DI - 712l
where (a) is due to Lemma 21 and Lemma 24. [ |

Lemma 26 (Ma et al., 2020, Lemma 45; Chen et al., 2020a, Lemma 16) Let M and
M € R pe symmetmc matrices with top-r eigenvalue decomposztzon M = UAUT and
M = UAU, respectively. Assume or(M) >0, op41(M) =0 and HM - MH < to(M).

Define Q = argmingrp_j HﬁR— U ‘F. Then

0@ -v] < g5 a0 - 5]
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Lemma 27 Let T € R""™ "™ be q tensor with Tucker decomposition S >< U, where UTU =

I e R™" fori=1,2,3. Suppose T is p-incoherent, and 2 obeys the Bernoullz observation
with parameter p. If p > Cop®r? logn/n?, then with high probability,

1
(T -p"Pa)(X), 2)| < c,/“ﬁlﬂuxmuzuﬁ

holds simultaneously for all tensors X, Z € R™™™ of the form
X =0 x; Xi X2 Ui, Z="H x; Z; X2 U,
where G, H € R"™"™" and X;, Z; € R™™™ are arbitrary factors.

Remark 28 This lemma is essentially a restatement of Lemma 12 in Tong et al., 2021.
Considering the case i = 1, the only difference is that here G (or H) and X; (or Z;) are
respectively of size n X r X r and n X n instead of r X r X r and n X r. However, the proof
therein is equally applicable here and thus we omit the proof.

Lemma 29 (Tong et al., 2021, Lemma 14) Suppose ) satisfies the Bernoulli observa-
tion model. Then with high probability,

3 3
'<(I —p "Pa) (g ) Xi) H X Z1>‘ <C <p_1 log® n + \/p~'nlog® n> T

3 3
holds simultaneously for all tensors G x X; and H X Z;, where the quantity T obeys
i=1 i=1

7 < (IXIM1 (@)l 00 | Z1M1 () A XM (Dl 1 Z3M1 (H)] 3,0

(1%l 00 1 22l A 1Kl 12206 ) (1Kol 2,00 1 Z6lle A 1 Xl 1 Z61l 5,00 -

Lemma 30 Suppose Q) satisfies the Bernoulli observation model. Then with high probabil-
iy,

3 3
Z—pt — X, Z )| <C(ptlog? ~Inlog®
(@ po 20 (9 3, 3) 4 3, 2) <0 (5 togns o intogn)

3 3
holds simultaneously for all tensors G x X; and H x Z;, where the quantity T obeys

=1 =

7 < (IXM1 (@)l 00 | Z1M1 () A X M(Dl [1Z3M1 (H)] .0

(1%l 00 122l A 1Kl 12200 ) (1Kol 200 1 Z6lle A 1Kl 1 Z61l5,00) -

Remark 31 The proof of Lemma 30 is similar to the proof of Lemma 29, so we omit it.
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Lemma 32 (Ma et al., 2018, Lemma 37; Chen et al., 2020a, Lemma 6) Suppose U,
X1, X9 € R™" are matrices such that

o2(U o2(U
1% - Ul w) < 77w 1x0 - ) o) < 2P
Let Ry and Rs be orthogonal matrices such that

R, = arg m1n ||X1R Ul and Ry = arg m1n ||X2R Ullg.

Then one has

ot (U)

XiRi — XoR <5
[ X1R1 — XoRy||g < 22(U)

[ X1 — Xl

Lemma 33 (Wei et al., 2020, Lemma 4.1) Let X =USVT and X =USVT be rank
r matrices. Then

|x- x|
Umin(X)

X~ x|,

HﬁﬁT—UUTH < Y

and H‘/}‘A/T — VVTH <

Lemma 34 (Cai and Zhang, 2018, Lemma 1) Suppose V, V € R"™ " gre orthonormal
matrices. Then the following relations hold,

F~ RTR=I

sin © (V, ‘7)‘ < RTirllzf:I H‘/} - VRH < \fQHSin@ (V’ ‘7> H ’

sin © (V, ‘A/)‘ < H?‘A/T — VVTH <2 Hsin@ (V, ‘7)

9

w0 (V. V)| < it |V-VE| <v2|sme (v, V)|

VVT vy ‘F - \/§Hsin® (V,V)HF.

Lemma 35 (Dav1s-Kahan sin ® Theorem) Suppose G A € R™™ are symmetric ma-
trices, and G = G + A. Let § = O'T(Gh) — 0,41(G%) be the gap between the top r-th and
r+ 1-th eigenvalues of G’h and U, U be matrices whose columns are the top v orthonormal
eigenvectors of G and G respectively. If 6 > ||A||, then we have

avuf

H < Je llAU|e

Hsm@ (v.0) <SoTAT

and Hsm@ (U, U)H

Lemma 36 (Ding and Chen, 2020, Lemma 1) Suppose Gf, A € R™ " are symmetric
matrices, and G = G4 + A. The eigenvalue decomposition of Gh is denoted G* = UAUT,
where U € R™™" has orthonormal columns and A = diag(oy,--- ,0,). Let X € R™" be
the matriz whose columns are the top-r orthonormal eigenvectors of G. Let the SVD of the
matriv H = XU be H = AXBT, and define R = ABT. If |A|| < 1o, then one has

g1
|AR - HA| < (2+ ) Al
PR—YN]
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