
Journal of Machine Learning Research 24 (2023) 1-61 Submitted 4/21; Revised 1/23; Published 4/23

Combinatorial Optimization and Reasoning
with Graph Neural Networks

Quentin Cappart quentin.cappart@polymtl.ca
Department of Computer Engineering and Software Engineering
Polytechnique Montréal
Montréal, Canada

Didier Chételat didier.chetelat@polymtl.ca
CERC in Data Science for Real-Time Decision-Making
Polytechnique Montréal
Montréal, Canada

Elias B. Khalil khalil@mie.utoronto.ca
Department of Mechanical & Industrial Engineering
University of Toronto
Toronto, Canada

Andrea Lodi andrea.lodi@cornell.edu
Jacobs Technion-Cornell Institute
Cornell Tech and Technion - IIT
New York, USA

Christopher Morris morris@cs.rwth-aachen.de
Department of Computer Science
RWTH Aachen University
Aachen, Germany

Petar Veličković petarv@deepmind.com

DeepMind

London, UK

Editor: Francis Bach

Abstract

Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation,
ignoring that they often stem from related data distributions in practice. However, recent
years have seen a surge of interest in using machine learning, especially graph neural networks
(GNNs), as a key building block for combinatorial tasks, either directly as solvers or by
enhancing exact solvers. The inductive bias of GNNs effectively encodes combinatorial and
relational input due to their invariance to permutations and awareness of input sparsity.
This paper presents a conceptual review of recent key advancements in this emerging field,
aiming at optimization and machine learning researchers.

Keywords: Combinatorial optimization, graph neural networks, reasoning

©2023 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, Petar Veličković.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/21-0449.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/21-0449.html

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

1. Introduction

Combinatorial optimization (CO) has developed into an interdisciplinary field spanning
optimization, operations research, discrete mathematics, and computer science, with many
critical real-world applications such as vehicle routing or scheduling; see (Korte and Vygen,
2012) for a general overview. Intuitively, CO deals with problems that involve optimizing a
cost (or objective) function by selecting a subset from a finite set, with the latter encoding
constraints on the solution space. Although CO problems are generally hard from a com-
plexity theory standpoint due to their discrete, non-convex nature (Karp, 1972), many of
them are routinely solved in practice. Historically, the optimization and theoretical com-
puter science communities have been focusing on finding optimal (Korte and Vygen, 2012),
heuristic (Boussäıd et al., 2013), or approximate (Vazirani, 2010) solutions for individual
problem instances. However, in many practical situations of interest, one often must solve
problem instances with specific characteristics or patterns. For example, a trucking company
may solve vehicle routing instances for the same city daily, with only slight differences
across instances in the travel times due to varying traffic conditions. Hence, data-dependent
algorithms or machine learning approaches, which may exploit these patterns, have recently
gained traction in the CO field (Bengio et al., 2021; Gasse et al., 2022). The promise is that
one can develop faster algorithms for practical cases by exploiting common patterns in the
given instances.

Due to the discrete nature of most CO problems and the prevalence of network data in the
real world, graphs are a central object of study in the CO field. For example, well-known and
relevant problems such as the Traveling Salesperson problem (TSP) and other vehicle routing
problems naturally induce a graph structure. In fact, from the 21 NP-complete problems
identified by Karp (1972), ten are decision versions of graph optimization problems. Most
other ones, such as the set covering problem, can also be modeled over graphs. Moreover,
the interaction between variables and constraints in combinatorial optimization problems
naturally induces a bipartite graph, i.e., a variable and constraint share an edge if the variable
appears with a non-zero coefficient in the constraint. These graphs commonly exhibit patterns
in their structure and features, which machine learning approaches should exploit.

1.1 What Are the Challenges for Machine Learning?

There are several critical challenges in successfully applying machine learning methods within
CO, especially for problems involving graphs. Graphs exhibit symmetries, i.e., renaming or
reordering the nodes does not result in different graphs. Hence, for any machine learning
method dealing with graphs, taking into account invariance to permutation is crucial.
Combinatorial optimization problem instances are large and usually sparse, especially those
arising from the real world. Hence, the employed machine learning method must be scalable
and sparsity aware. Simultaneously, the employed method has to be expressive enough to
detect and exploit the relevant patterns in the given instance or data distribution. The
machine learning method should be capable of handling auxiliary information, such as
objective and user-defined constraints. Most of the current machine learning approaches
are within the supervised regime. They require a large amount of training data to optimize
the model’s parameters. In the context of CO, this means solving many possibly hard
problem instances, which might prohibit the application of these approaches in real-world

2

Combinatorial Optimization and Reasoning with GNNs

scenarios. Further, the machine learning method has to generalize beyond its training data,
e.g., transferring to instances of different sizes.

Overall, there is a trade-off between scalability, expressivity, and generalization, which
might conflict. In summary, the key challenges are:

1. Machine learning methods that operate on graph data have to be invariant to node
permutations. They should also exploit the graph’s sparsity.

2. Models should distinguish critical structural patterns in the provided data while still
scaling to large real-world instances.

3. Side information in the form of high-dimensional vectors attached to nodes and edges,
i.e., modeling objectives and additional information, need to be considered.

4. Models should be data efficient. That is, they should ideally work without requiring
large amounts of labeled data, and they should be transferable to out-of-sample or
out-of-distribution instances.

1.2 How Do GNNs Address These Challenges?

Graph neural networks (GNNs) (Gilmer et al., 2017; Scarselli et al., 2009) have recently
emerged as machine learning architectures that partially address the challenges above.

The key idea underlying GNNs is to compute a vectorial representation, e.g., a real
vector, of each node in the input graph by iteratively aggregating features of neighboring
nodes. The GNN is trained in an end-to-end fashion against a loss function, using (stochastic)
first-order optimization techniques to adapt to the given data distribution by parameterizing
this aggregation step. The promise here is that the learned vector representation encodes
crucial graph structures that help solve a CO problem more efficiently. GNNs are invariant
and equivariant by design, i.e., they automatically exploit the invariances or symmetries
inherent to the given instance or data distribution. Due to their local nature, by aggregating
neighborhood information, GNNs naturally exploit sparsity, leading to more scalable models
on sparse inputs. Moreover, although scalability is still an issue, they scale linearly with the
number of edges and employed parameters while taking multi-dimensional node and edge
features into account (Gilmer et al., 2017), naturally exploiting cost and objective function
information. However, the data-efficiency question is still largely open (Morris et al., 2021).

Although GNNs have clear limitations, which we will also explore and outline, they have
already proven useful in CO. In fact, they have already been applied in various settings,
either to directly predict a solution or as an integrated component of an existing solver. We
will extensively investigate both of these aspects within our survey.

Perhaps one of the most widely publicized applications of GNNs in CO at the time of
writing is the work by Mirhoseini et al. (2021), which studies chip placement. The aim is
to map the nodes of a netlist (the graph describing the desired chip) onto a chip canvas
(a bounded 2D space), optimizing the final power, performance, and area. The authors
observe this as a combinatorial problem and tackle it using reinforcement learning. Owing
to the graph structure of the netlist, at the core of the representation learning pipeline is
a GNN, which computes node features in a (permutation-)invariant way. This represents
the first chip placement approach that can quickly generalize to previously unseen netlists,

3

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

generating optimized placements for Google’s TPU accelerators (Jouppi et al., 2017). While
this approach has received wide coverage in the popular press, we believe that it only scratches
the surface of the innovations that can be enabled by a careful synergy of GNNs and CO.
We have designed our survey to facilitate future research in this emerging area.

1.3 Going Beyond Classical Algorithms

The previous discussion mainly dealt with machine learning approaches, especially GNNs,
replacing and imitating classical combinatorial algorithms or parts of them, potentially
adapting better to the specific data distribution of naturally-occurring problem instances.
However, classical algorithms heavily depend on human-made pre-processing or feature
engineering by abstracting raw, real-world inputs, e.g., specifying the underlying graph itself.
The discrete graph input, forming the basis of most CO problems, is seldom directly induced
by the raw data, requiring costly and error-prone feature engineering. This might lead to
biases that do not align with the real world and, consequently, imprecise decisions. Such
issues have been known as early as the 1950s in the context of railways network analysis
(Harris and Ross, 1955), but remained out of the spotlight of theoretical computer science
that assumes problems are abstractified, to begin with.

In the long-term, machine learning approaches can further enhance the CO pipeline,
from raw input processing to aiding in solving abstracted CO problems in an end-to-end
fashion. Several viable approaches in this direction have been proposed recently, and we will
survey them in detail, along with motivating examples, in Section 3.3.3.

1.4 Present Work

In this paper, we give an overview of recent advances in using GNNs in the context of CO,
aiming at both CO and machine learning researchers. To this end, we thoroughly introduce
CO, machine learning regimes, and GNNs. Most importantly, we give a comprehensive,
structured overview of recent applications of GNNs in the CO context. We discuss challenges
arising from the use of GNNs and future work. Our contributions can be summarized as
follows:

1. We provide a comprehensive, structured overview of the application of GNNs to the
CO setting for both heuristic and exact algorithms.

2. We survey recent progress in using GNN-based end-to-end algorithmic reasoners.

3. We highlight the shortcomings of GNNs in the context of CO and provide guidelines
and recommendations on how to tackle them.

4. We provide a list of open research directions to stimulate future research.

We believe that reaping the benefits of GNNs for CO is a promising research direction.
This survey is intended to provide the required material for readers eager to discover
this field. On the other hand, we highlight that this survey should not be considered as a
recommendation that GNNs is the best way to solve CO problems. There are clear limitations
and fundamental challenges to tackle. Besides, the results obtained are currently below what
can be achieved by traditional CO solvers in most situations. Such limitations are discussed
throughout the paper and summarized in Section 4.

4

Combinatorial Optimization and Reasoning with GNNs

1.5 Related Work

The following briefly reviews key papers and survey efforts involving GNNs and machine
learning for CO.

GNNs Graph neural networks (Gilmer et al., 2017; Scarselli et al., 2009) have recently
(re-)emerged as the leading machine learning method for graph-structured inputs. Notable
instances of this architecture include, e.g., Duvenaud et al. (2015); Hamilton et al. (2017);
Veličković et al. (2018), and the spectral approaches proposed by, e.g., Bruna et al. (2014);
Defferrard et al. (2016); Kipf and Welling (2017); Monti et al. (2017)—all of which descend
from early work of Kireev (1995); Merkwirth and Lengauer (2005); Scarselli et al. (2009);
Sperduti and Starita (1997). Aligned with the field’s recent rise in popularity, many surveys
exist on recent advances in GNN techniques. Some of the most recent ones include Chami
et al. (2020); Wu et al. (2019); Zhou et al. (2020).

Continuous Formulations The discrete nature of CO problems makes standard con-
tinuous optimization tools unavailable, such as first- and second-order gradient methods.
However, many problems admit alternative reformulations as non-convex continuous opti-
mization problems over graphs. Such problems include graph partitioning, maximum cut,
minimum vertex cover, maximum independent set, and maximum clique problems. Some
early work at the intersection of machine learning and combinatorial optimization involves
reinterpreting these continuous optimization problems as energy-based training of Hopfield
neural networks or self-organizing maps, such as in the work of Hopfield and Tank (1985),
Durbin and Willshaw (1987), Ramanujam and Sadayappan (1995) and Gold et al. (1996).
Although not using GNNs, these works use graphs as a central object. They can be seen as
foreshadowing various GNN-based differentiable proxy loss approaches that we summarize
in Section 3.1.1.

Surveys The seminal survey of Smith (1999) centers around the use of popular neural
network architectures of the time, namely Hopfield networks and self-organizing maps, as a
basis for combinatorial heuristics, as described in the previous section. It is worth noting
that such architectures were mostly used for a single instance at a time rather than being
trained over a set of training instances; this may explain their limited success at the time.
Bengio et al. (2021) give a high-level overview of machine learning methods for CO, with no
special focus on graph-structured input, while Lodi and Zarpellon (2017) focus on machine
learning for branching in the context of mixed-integer programming. Concurrently to our
work, Kotary et al. (2021) have categorized various approaches for machine learning in CO,
focusing primarily on end-to-end learning setups and paradigms, making representation
learning—and GNNs in particular—a secondary topic. Moreover, the surveys by Mazyavkina
et al. (2021); Yang and Whinston (2020) focus on using reinforcement learning for CO. The
survey of Vesselinova et al. (2020) deals with machine learning for network problems arising
in telecommunications, focusing on non-exact methods and not including recent progress.
Finally, Lamb et al. (2020) give a high-level overview of the application of GNNs in various
reasoning tasks, missing out on the most recent developments, e.g., the algorithmic reasoning
direction we study in detail here.

5

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

v1

v2 v3

v4 v5

v6

(a) Instance.

v1

v2 v3

v4 v5

v6

(b) Optimal solution.

Figure 1: A complete graph with edge labels (blue and red) and its optimal solution for the
TSP (in green). Blue edges have a cost of 1 and red edges a cost of 2.

1.6 Outline

We start by giving the necessary background on CO and relevant optimization frameworks,
machine learning, and GNNs; see Section 2. In Section 3, we review recent research using
GNNs in the CO context. Specifically, in Section 3.1, we survey works aiming at finding primal
solutions, i.e., high-quality feasible solutions to CO problems, while Section 3.2 gives an
overview of works aiming at enhancing dual methods, i.e., proving the optimality of solutions.
Going beyond that, Section 3.3 reviews recent research trying to facilitate algorithmic
reasoning behavior in GNNs, as well as applying GNNs as raw-input combinatorial optimizers.
Finally, Section 4 discusses the limits of current approaches and offers a list of research
directions intending to stimulate future research.

2. Preliminaries

Here, we introduce notation and give the necessary formal background on combinatorial
optimization, the different machine learning regimes, and GNNs.

2.1 Notation

Let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and let {{. . . }} denote a multiset. For a (finite) set S, we
denote its power set as 2S .

A graph G is a pair (V,E) with a finite set of nodes V and a set of edges E ⊆ V × V .
We denote the set of nodes and the set of edges of G by V (G) and E(G), respectively.
A labeled graph G is a triplet (V,E, l) with a label function l : V (G) ∪ E(G) → Σ, where
Σ is some finite alphabet. Then, l(x) is a label of x, for x in V (G) ∪ E(G). Note that
x here can be either a node or an edge. The neighborhood of v in V (G) is denoted by
N(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. A tree is a connected graph without cycles.

We say that two graphsG andH are isomorphic if there exists an edge-preserving bijection
φ : V (G) → V (H), i.e., (u, v) is in E(G) if and only if (φ(u), φ(v)) is in E(H). For labeled
graphs, we further require that l(v) = l(φ(v)) for v in V (G) and l((u, v)) = l((φ(u), φ(v)))
for (u, v) in E(G).

2.2 Combinatorial Optimization

CO deals with problems that involve optimizing a cost (or objective) function by selecting a
subset from a finite set, with the latter encoding constraints on the solution space. Formally,
we define an instance of a combinatorial optimization problem as follows.

6

Combinatorial Optimization and Reasoning with GNNs

Definition 1 (Combinatorial optimization instance) An instance of a combinatorial
optimization problem is a tuple (Ω,F,w), where Ω is a finite set, F ⊆ 2Ω is the set of
feasible solutions, c : 2Ω → R is a cost function with c(S) =

∑
ω∈S w(ω) for S in F .

Consequently, CO deals with selecting an element S∗ (optimal solution) in F that minimizes
c over the feasible set F .1 The corresponding decision problem asks if there exists an element
in the feasible set such that its cost is smaller than or equal to a given value, i.e., whether
there exists S in F such that c(S) ≤ k (i.e., we require a Yes/No answer).

The TSP is a well-known CO problem aiming at finding a cycle along the edges of a
graph with minimal cost that visits each node exactly once; see Figure 1 for an illustration
of an instance of the TSP problem and its optimal solution. The corresponding decision
problem asks whether a cycle exists along the edges of a graph with cost ≤ k that visits
each node exactly once.

Example 1 (Traveling Salesperson Problem)
Input: A complete directed graph G, i.e., E(G) = {(u, v) | u, v ∈ V (G)}, with edge costs
w : E(G) → R.
Output: A permutation of the nodes σ : {0, . . . , n− 1} → V such that

n−1∑
i=0

w
(
(σ(i), σ((i+ 1) mod n)

)
is minimal over all permutations, where n = |V |.

Due to their discrete nature, many classes or sets of combinatorial decision problems arising
in practice, e.g., TSP or other vehicle routing problems, are NP-hard (Korte and Vygen,
2012), and hence likely intractable in the worst-case sense. However, instances are routinely
solved in practice by formulating them as integer linear optimization problems or integer
linear programs (ILPs), constrained problems, or as satisfiability problems (SAT) and utilizing
well-engineered algorithms (and associated solvers) for these problems, e.g., branch-and-cut
algorithms in the case of ILPs; see the next section for details.

2.3 General Optimization Frameworks: ILPs, SAT, and Constrained Problems

We describe common modeling and algorithmic frameworks for CO problems in the following.
More precisely, the next three sections describe the modeling approaches: integer program-
ming, SAT, and constraint satisfaction/optimization. Finally, Section 2.3.4 partitions the
algorithmic frameworks into three categories. Note that this section is not an exhaustive list
of optimization approaches but serves as an introduction to the main frameworks.

2.3.1 Integer linear programs and mixed-integer programs

First, we define a linear program or linear optimization problem. A linear program aims at
optimizing a linear cost function over a feasible set described as the intersection of finitely
many half-spaces, i.e., a polyhedron. Formally, we define an instance of a linear program as
follows.

1. Without loss of generality, we choose minimization instead of maximization.

7

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

Definition 2 (Linear programming instance) An instance of a linear program (LP)
is a tuple (A, b, c), where A is a matrix in Rm×n, and b and c are vectors in Rm and Rn,
respectively.

The associated optimization problem asks to minimize a linear objective over a polyhedron.2

That is, we aim at finding a vector x in Rn that minimizes cTx over the feasible set

X = {x ∈ Rn | Ajx ≤ bj for j ∈ [m] and xi ≥ 0 for i ∈ [n]}.

In practice, LPs are solved using the Simplex method or polynomial-time interior-point
methods (Bertsimas and Tsitsiklis, 1997). Due to their continuous nature, LPs cannot encode
the feasible set of a CO problem. Hence, we extend LPs by adding integrality constraints,
i.e., requiring that the value assigned to each variable is an integer. Consequently, we aim to
find the vector x in Zn that minimizes cTx over the feasible set

X = {x ∈ Zn | Ajx ≤ bj for j ∈ [m], xi ≥ 0 and xi ∈ Z for i ∈ [n]}.

Such integer linear optimization problems are solved by tree search algorithms, e.g., branch-
and-bound algorithms, see Section 2.3.4 for details. By dropping the integrality constraints,
we again obtain an instance of an LP, which we call relaxation. Solving the LP relaxation
of an ILP provides a valid lower bound on the optimal solution of the problem, i.e., an
optimistic approximation, and the quality of such an approximation is largely responsible of
the effectiveness of the search scheme.

Example 2 We provide an ILP that encodes all feasible solutions of the TSP and selects
the optimal one due to the objective function. Essentially, it encodes the order of the nodes
or cities within its variables. Thereto, let

xij =

{
1 if the cycle goes from city i to city j,

0 otherwise,

and let wij > 0 be the cost or distance of traveling from city i to city j, i ̸= j. Then, the
TSP can be written as the following ILP:3

min
n∑

i=1

n∑
j ̸=i,j=1

wijxij

subject to

n∑
i=1,i ̸=j

xij = 1 j ∈ [n],

n∑
j=1,j ̸=i

xij = 1 i ∈ [n],

∑
i∈Q

∑
j ̸∈Q

xij ≥ 1 ∀Q ⊊ [n], |Q| ≥ 2.

2. In the above definition, we assumed that the LP is feasible, i.e., X ̸= ∅, and that a finite minimum value
exists. In what follows, we assume that both conditions are always fulfilled.

3. Technically, the presented TSP model is for the asymmetric version, where the costs wij and wji might
be different. Such a TSP version is represented in a directed graph. Instead, the version in Figure 1 is
symmetric, i.e., wij = wji, and it is represented on an undirected graph.

8

Combinatorial Optimization and Reasoning with GNNs

The first two constraints encode that each city should have exactly one in-going and out-going
edge, respectively. The last constraint ensures that all cities are within the same tour, i.e.,
no sub-tours exist (thus, the returned solution is not a collection of smaller tours).

In practice, one often faces problems consisting of integer and continuous variables. These
are commonly known as mixed-integer programs (MIPs). Formally, given an integer p > 0,
MIPs aim at finding a vector x in Rn that minimizes cTx over the feasible set

X = {x ∈ Rn | Ajx ≤ bj for j ∈ [m], xi ≥ 0 for i ∈ [n], and x ∈ Zp × Rn−p}.

Here, n is the number of variables we optimize, out of which p must be integers.

2.3.2 SAT

The Boolean satisfiability problem (SAT) asks, given a Boolean formula or propositional
logic formula, if there exists a variable assignment (assign true or false to variables) such
that the formula evaluates to true. Hence, formally we can define it as follows.

Definition 3 (SAT)
Input: A propositional logic formula φ with variable set V .
Output: Yes, if there exists a variable assignment A : V → {true, false} such that the formula
φ evaluates to true; No, otherwise.

The SAT problem was the first one to be shown to be NP-complete (Cook, 1971). However,
modern solvers routinely solve industrial-scale instances in practice (Prasad et al., 2005).
Despite the simplicity of its formalization, SAT has many practical applications, such as
hardware verification (Clarke et al., 2003; Gupta et al., 2006), configuration management
(Mancinelli et al., 2006; Tucker et al., 2007), or planning (Behnke et al., 2018). A realistic
case study of SAT is illustrated in Example 3.

Example 3 Let us consider the problem of installing a new (software) package P on a
system where the installation is subject to dependency and conflict constraints. The goal
is to determine which packages must be installed on the system such that the package P is
installed in the system, the dependencies of all the installed packages are satisfied, and there
are no conflicts among the installed packages. This problem can be conveniently modeled as
an SAT problem (Tucker et al., 2007). Formally, let I be the set of packages involved in the
installation, and let xi be a Boolean variable stating if the package i in I is installed. The
constraints are encoded as follows: (1) xP , it ensures that the target package P is installed,
(2) xA → xB, it ensures that the package A can be installed only if package B is also installed
(dependency between packages), (3) ¬xA ∨ ¬xB, it ensures that packages A and B cannot be
installed together (conflict between packages). Assuming that Cd

1 , . . . , C
d
n are the dependency

constraints, and that Cc
1, . . . , C

c
m are the conflict constraints, the Boolean formula to resolve

corresponds to the logical conjunction of all the constraints, i.e.,

φ = xP ∧ Cd
1 ∧ · · · ∧ Cd

n ∧ Cc
1 ∧ · · · ∧ Cc

m.

Many variants can be inferred from this formalization, such as integrating dependencies
among more packages or finding the minimum set of packages that must be installed.

9

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

A natural extension of SAT is the maximum satisfiability problem (MaxSAT), which aims
to determine the maximum number of clauses, of a given Boolean formula in conjunctive
normal form that can be evaluated to true by assigning truth values to the variables.

2.3.3 Constraint satisfaction and constraint optimization problems

This section presents both constraint satisfaction problems and constraint optimization
problems, the most generic way to formalize CO problems. Formally, an instance of a
constraint satisfaction problem is defined as follows.

Definition 4 (Constraint satisfaction problem instance) An instance of a constraint
satisfaction problem (CSP) is a tuple

(
X,D(X), C

)
, where X is the set of variables, D(X) is

the set of domains of the variables, and C is the set of constraints that restrict assignments
of values to variables. A solution is an assignment of values from D to X that satisfies all
the constraints of C.

A natural extension of CSPs are constrained optimization problems, i.e., CSPs that also have
an objective function. The goal becomes finding a feasible assignment that minimizes the
objective function. The main difference with the previous optimization frameworks is that
constrained optimization problems do not require underlying assumptions on the variables,
constraints, and objective functions. Unlike MIPs, non-linear objectives and constraints are
applied within this framework. For instance, a TSP model is presented next.

Example 4 Given a configuration with n cities and a weight matrix w in Rn×n, the TSP
can be modeled using n variables xi over the domains D(xi) : [n]. Variable xi indicates the
i-th city to be visited. The objective function and constraints read as

min wxn,x1 +
n−1∑
i=1

wxi,xi+1

subject to allDifferent(x1, . . . , xn),

where allDifferent(X) enforces that each variable from X takes a different value (Régin,
1994), and the entries of the weight matrix w are indexed using variables. This model forces
each city to have another city as a successor and sums up the distances between each pair of
consecutive cities along the cycle.

As shown above, constrained problems can model arbitrary constraints and objective
functions. This generality makes it possible to use general-purpose solving methods such as
local search or constraint programming ; see next section. In addition to their convenience on
the modeling side, the high-level constraints generally referred to as global constraints are
also useful on the solving side (Régin, 2004). They enable the design of efficient algorithms
dedicated to pruning the search space. Leveraging the pruning ability of global constraints
is a fundamental component of a constraint programming solver as explained below.

10

Combinatorial Optimization and Reasoning with GNNs

2.3.4 Solving CO problems

Major algorithmic frameworks—whose components and tasks have been recently considered
through the GNN lens—will be discussed when necessary in the core of the survey. However,
in this section, we briefly distinguish three algorithmic categories.4

Exact methods ILP models are generally solved to proven optimality (or proof of infeasi-
bility) by variations of the branch-and-bound algorithm (Land and Doig, 1960; Lodi, 2010).
Essentially, the algorithm is an iterative divide-and-conquer method that

1. solves LP relaxations (see Section 2.3.1),

2. improves them through valid inequalities (or cutting planes), and

3. guarantees to find an optimal solution through implicit enumeration performed by
branching, see Figure 3.

As anticipated in Section 2.3.1, the quality of the LP relaxation plays a fundamental role
in the effectiveness of the above scheme. Thus, step 2 above is particularly important,
especially at the beginning of the search. The above scheme is called branch and cut. If
integer programming techniques do not directly model the CO problem, then combinatorial
versions of the branch-and-bound framework are devised, i.e., featuring relaxations different
from the LP one, specifically associated with the structure of the CO problem at hand.

Specifically designed as an exact method for constrained satisfaction and optimization
problems, constraint programming (CP) (Rossi et al., 2006) is a general framework proposing
algorithmic solutions also within the divide-and-conquer scheme. It is a complete approach,
meaning it is possible to prove the optimality of the solutions found. The solving process
consists of a complete enumeration of all possible variable assignments until the best
solution has been found. To cope with the implied (exponentially) large search trees, one
utilizes a mechanism called propagation, which reduces the number of possibilities. Here, the
propagation of the constraint c removes values from domains violated by c. This process is
repeated at each domain change and for each constraint until no value exists any more. A
CP solver’s efficiency relies heavily on its propagators’ quality. Example 4 introduced the
well-known allDifferent constraint. Its propagator (Régin, 1994) is based on maximum
matching algorithms in a graph. Many other global constraints are available in the literature,
such as Element constraint, allowing indexation with variables, or Circuit constraint,
enforcing a set of variables to create a valid circuit. At the time of writing, the global
constraints catalog reports more than 400 global constraints (Beldiceanu et al., 2005). The
CP search commonly proceeds in a depth-first fashion, together with branch-and-bound.
For each feasible solution found, the solver adds a constraint, ensuring that the following
solution has to be better than the current one. Upon finding an infeasible solution, the
search backtracks to the previous decision. With this procedure, and provided that the whole
search space has been explored, the final solution is guaranteed to be optimal.

Finally, although initially designed for solving decision problems, SAT solvers can also be
used for combinatorial optimization. One way to do that is to specify objectives through soft
constraints. The objective turns to satisfy as many soft constraints as possible in a solution,

4. We refer to Festa (2014) for additional details on the classification of algorithms for CO.

11

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

such as in the MaxSAT variant. Another option is to add a repertoire of commonly used
objective functions in the solver and invoke the specialized optimization module when it
corresponds to the objective function that must be optimized. Satisfiability modulo theories
(SMT) solvers, a generalization of SAT, which can handle more complex formulas, generally
support both options; see for instance Z3 solver (de Moura and Bjørner, 2008).

Local search and metaheuristics Local search (Potvin and Gendreau, 2018) is another
algorithmic framework that is commonly used to solve general, large-scale CO problems.
Local search only partially explores the solution space in a perturbative fashion and is thus
an incomplete approach that does not provide an optimality guarantee on the solution it
returns. In its simplest form, the search starts from a candidate solution s and iteratively
explores the solution space by selecting a neighboring solution until no improvement occurs.
Here, a solution’s neighborhood is the set of solutions obtained by modifying the solution s.
In practice, local search algorithms are improved through metaheuristic concepts (Glover
and Kochenberger, 2006), leading to algorithms like simulated annealing (Van Laarhoven
and Aarts, 1987; Delahaye et al., 2019), tabu search (Glover and Laguna, 1998; Laguna,
2018), genetic algorithms (Kramer, 2017), variable neighborhood search (Mladenović and
Hansen, 1997; Hansen et al., 2019), all of which are designed to help escape local minima.

Approximation algorithms The class of approximation algorithms (Vazirani, 2010) is
designed to produce, typically in polynomial time, feasible solutions for CO problems. Unlike
local search and metaheuristics, the value of those feasible solutions is guaranteed to be
within a certain bound from the optimal one. Notable examples of approximation algorithms
are polynomial-time approximation schemes (PTAS) that provide a solution that is within a
factor 1+ ϵ (with ϵ > 0 being an input for the algorithm) of being optimal (e.g., Arora (1996)
for the TSP), or fully polynomial-time approximation schemes (FPTAS), where additional
conditions on the running time of the algorithm are imposed (Ausiello et al., 2012).

2.4 Machine Learning

This section gives a short and concise overview of machine learning. We cover the three
main branches of the field, i.e., supervised learning, unsupervised learning, and reinforcement
learning. For details, see Mohri et al. (2012); Shalev-Shwartz and Ben-David (2014). Moreover,
we introduce imitation learning highly relevant to CO.

Supervised learning Given a finite training set, i.e., a set of examples (e.g., graphs)
together with target values (e.g., real values in the case of regression), supervised learning tries
to adapt the parameters of a model (e.g., a neural network) based on the examples and targets.
The adaptation of the parameters is achieved by minimizing a loss function that measures how
well the chosen parameters align with the target values. Formally, let X be the set of possible
examples and let Y be the set of possible target values. We assume that the pairs in X × Y
are independently and identically distributed (i.i.d.) with respect to a fixed but unknown
distribution D. Moreover, we assume that there exists a target concept c : X → Y that maps
each example to its target value. Given a sample S = ((s1, c(s1)), . . . , (sm, c(sm))) drawn i.i.d.
from D, the aim of supervised machine learning is to select a hypothesis h : X → Y from the
set of possible hypotheses by minimizing the empirical error R̂(h) = 1

m

∑m
i=1 ℓ(h(si), c(si)),

where ℓ : X × Y → R is the loss function. To avoid overfitting the given samples, we add a

12

Combinatorial Optimization and Reasoning with GNNs

regularization penalty Ω : H → R to the empirical error. Examples of supervised machine
learning methods include logistic regression, support vector machines, and decision trees.

Unsupervised learning Unlike supervised learning, no training set in the unsupervised
case, i.e., no target values are available. Accordingly, unsupervised learning aims to capture
representative characteristics of the data (features) by minimizing an unsupervised loss
function, l : X → R. In this case, the loss function only directly depends on the input samples
si, as no labels are provided upfront. Examples of unsupervised machine learning methods
include autoencoders, clustering, and principal component analysis.

Reinforcement learning (RL) Similarly to unsupervised learning, reinforcement learning
does not rely on a labeled training set. Instead, an agent explores an environment, e.g.,
a graph, by taking actions. To guide the agent in its exploration, it receives two types of
feedback, its current state, and a reward, usually a real-valued scalar, indicating how well
it has achieved its goal so far. The RL agent aims to maximize its cumulative reward by
determining the best actions. Formally, let (S,A, T,R) be a tuple representing a Markov
decision process (MDP). Here, S is the set of states in the environment, and A is the set of
actions that the agent can do. The function T : S×S×A → [0, 1] is the transition probability
function giving the probability, T (s, s′, a), of transitioning from s to s′ if action a is performed,
such that

∑S
s′ T (s, s

′, a) = 1 for all s in S and a in A. Finally, R : S ×A → R is the reward
function of taking an action from a specific state. An agent’s behavior is defined by a policy
π : S ×A → [0, 1], describing the probability of taking an action from a given state. From
an initial state s1, the agent performs actions, yielding a sequence of states until reaching
a terminal state, sΘ. Such a sequence s1, . . . , sΘ is referred to as an episode. An agent’s
goal is to learn a policy maximizing the cumulative sum of rewards, eventually discounted
by a value γ in [0, 1], during an episode, i.e.,

∑Θ
k=1 γ

kR(sk, ak) is maximized. While such a
learning setting is very general, the number of combinations increases exponentially with
the number of states and actions, quickly making the problem intractable. Excluding hybrid
approaches, e.g., RL with Monte Carlo tree search (Browne et al., 2012) and model-based
approaches (Polydoros and Nalpantidis, 2017), there exist two kinds of reinforcement learning
algorithms, value-based methods, aiming to learn a function characterizing the goodness of
each action, and policy-based methods, aiming to learn the policy directly.

Imitation learning Imitation learning (Ross, 2013) attempts to solve sequential decision-
making problems by imitating another (“expert”) policy rather than relying on rewards for
feedback as done in RL. This makes imitation learning attractive for CO because, for many
control problems, one can devise rules that make excellent decisions but are not practical
because of computational cost or because they cheat by using information that would not be
available at solving time. Imitation learning algorithms can be offline or online. When offline,
examples of expert behavior are collected beforehand, and the student policy’s training is
done subsequently. In this scenario, training is simply a form of supervised learning. When
online, however, the training occurs while interacting with the environment, usually by
querying the expert for advice when encountering new states. Online algorithms can be
further subdivided into on-policy and off-policy algorithms. In on-policy algorithms, the
distribution of states from which examples of expert actions were collected matches the
student policy’s stationary distribution to be updated. In off-policy algorithms, there is a
mismatch between the distribution of states from which the expert was queried and the

13

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

v1 v2 v3

v4 v5

v1 v2 v3

v4 v5

fW1
merge

(
f(v4), f

W2
aggr

(
{{f(v2), f(v5)}}

))
fW1
merge

(
f(v4), f

W2
aggr

(
{{f(v2), f(v5)}}

))

Figure 2: Illustration of the neighborhood aggregation step of a GNN around node v4.

distribution of states the student policy is likely to encounter. Some off-policy algorithms
attempt to correct this mismatch accordingly.

2.5 Graph Neural Networks

Intuitively, GNNs compute a vectorial representation, i.e., a d-dimensional real vector,
representing each node in a graph by aggregating information from neighboring nodes;
see Figure 2 for an illustration. Formally, let (G, l) be a labeled graph with initial node
features f (0) : V (G) → R1×d that is consistent with l. This means that each node v is
annotated with a feature f (0)(v) in R1×d such that f (0)(u) = f (0)(v) if l(u) = l(v), e.g.,
a one-hot encoding. Alternatively, f (0)(v) can be an arbitrary real-valued feature vector
associated with v, such as a cost function of a CO problem. A GNN model consists of a
stack of neural network layers or, more formally, a composition of (permutation-invariant)
functions. Each layer or function aggregates local neighborhood information, i.e., neighbors’
features, within each node and then passes this aggregated information to the next layer.

For example, following (Morris et al., 2019), the aggregation of neighboring features can
be realized via a simple component-wise sum, which naturally satisfies the requirement of a
permutation-invariant function. That is, in each layer t > 0, we compute new features

f (t)(v) = σ
(
f (t−1)(v) ·W (t)

1 +
∑

w∈N(v)

f (t−1)(w) ·W (t)
2

)
(1)

in R1×e for v, where W
(t)
1 and W

(t)
2 are parameter matrices from Rd×e, and σ denotes a

component-wise non-linear function, e.g., a sigmoid or a ReLU.5

Following Gilmer et al. (2017), one may also replace the sum defined over the neighborhood
in the above equation by a permutation-invariant, differentiable function. One may substitute
the outer sum, e.g., by a column-wise vector concatenation. Thus, in full generality, a new
feature f (t)(v) is computed as

fW1
merge

(
f (t−1)(v), fW2

aggr

(
{{f (t−1)(w) | w ∈ N(v)}}

))
, (2)

where fW1
aggr aggregates over the multiset of neighborhood features and fW2

merge merges the

node’s representations from step (t−1) with the computed neighborhood features. Both fW1
aggr

and fW2
merge may be arbitrary, differentiable functions and, by analogy to (1), we denote their

5. For clarity of presentation, we omit biases.

14

Combinatorial Optimization and Reasoning with GNNs

parameters as W1 and W2, respectively. To adapt the parameters W1 and W2 of (1) and (2),
they are optimized in an end-to-end fashion (usually via stochastic gradient descent methods)
together with the parameters of a neural network used for classification or regression.

3. GNNs for Combinatorial Optimization: The State of the Art

Given that many practically relevant CO problems are NP-hard, it is helpful to characterize
algorithms for solving them as prioritizing one of two goals. The primal goal of finding
good feasible solutions, and the dual goal of certifying optimality or proving infeasibility.
In both cases, GNNs can serve as a tool for representing problem instances, states of an
iterative algorithm, or both. It is not uncommon to combine the GNN’s variable or constraint
representations with hand-crafted features, which would otherwise be challenging to extract
automatically with the GNN. Coupled with an appropriate ML paradigm (Section 2.4),
GNNs have been shown to guide exact and heuristic algorithms towards finding good feasible
solutions faster (Section 3.1). GNNs have also been used to guide certifying optimality or
infeasibility more efficiently (Section 3.2). In this case, GNNs are usually integrated with an
existing complete algorithm because an optimality certificate has in general, exponential
size concerning the problem description size, and it is not clear how to devise GNNs with
such large outputs. Beyond using standard GNN models for CO, the emerging paradigm
of algorithmic reasoning provides new perspectives on designing and training GNNs that
satisfy natural invariants and properties, possibly enabling improved generalization and
interpretability, as we will discuss in Section 3.3.

3.1 On the Primal Side: Finding Feasible Solutions

We begin by discussing the use of GNNs in improving the solution-finding process in CO.
The following practical scenarios motivate the need to quickly obtain high-quality feasible
solutions, even without optimality or approximation guarantees.

a) Optimality guarantees are often not needed A practitioner may only be interested
in the quality of a feasible solution in absolute terms rather than relative to the optimal
value of a problem instance. For example, if the objective value represents financial
cost, it might only care about how much profit is gained from switching from one
resolution method to another. In this scenario then, heuristics are all that are needed.
Moreover, there are many CO problems which are both practically intractable with
an exact solver, and for which no proxy in the form of a good dual bound is easily
computable as well. For these problems, a practitioner has no other guide to assess
the suitability of a resolution method than to compare absolute objective values as
well. For example, many vehicle routing problems admit strong MIP formulations with
an exponential number of variables or constraints, similar to the TSP formulation
in Example 2, see Toth and Vigo (2014). For such problems, simply computing the
linear relaxation (typically using column or constraint generation (Dror et al., 1994))
is challenging, so a heuristic that consistently finds good solutions within a short
user-defined time limit might be preferable.

b) Optimality is desired, but quickly finding a good solution is the priority
Because optimality is still of interest here, one would like to use an exact solver focused

15

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

on the primal side. A common use case is manually analyzing a good solution in the
current application context while the exact solver keeps running in the background.
An early feasible solution allows for fast decision-making, early termination of the
solver, or even revisiting the mathematical model with additional constraints that were
initially ignored. MIP solvers usually provide a parameter that can be set to emphasize
finding solutions quickly; see CPLEX’s emphasis switch parameter for an example.6

Among other measures, these parameters increase the time or iterations allotted to
primal heuristics at nodes of the search tree, which improves the odds of finding a
good solution early on in the search.

Alternatively, one could develop a custom, standalone heuristic executed first, providing
a warm start solution to the exact solver. This simple approach is widely used and addresses
goals a) and b) simultaneously when the heuristic in question is effective for the problem of
interest. This can also be done to obtain a high-quality first solution for initiating a local
search.

Next, we will discuss various approaches that leverage GNNs in the primal setting,
categorizing them according to the learning paradigms of Section 2.4. In surveying the
various works, we will touch on the following key aspects: the CO problem(s) tackled (e.g.,
TSP, SAT, MIP, graph coloring, etc.); the training approaches or loss functions used, with
a focus on how hard constraints are satisfied; and GNN architecture choices. We do note
that while, in some cases, the choice of architecture was intentional and well-justified, most
works use one of the many interchangeable GNN architectures due to favorable empirical
results or architectural novelty. This points to principled architecture design for CO as an
impactful potential topic of future research, as discussed in Section 4.

3.1.1 Supervised Learning

Assuming access to one or more optimal or near-optimal solutions to training instances of
the CO problem of interest, a supervised learning approach is justified.

One-shot solution prediction The TSP, see Example 1, has received substantial attention
from the machine learning community following the work of Vinyals et al. (2015). The authors
use a sequence-to-sequence “pointer network” (Ptr-Net) to map two-dimensional points,
encoding the TSP instance, to a tour of a small total length. The Ptr-Net was trained with
supervised learning and thus required near-optimal solutions as labels; this may be a limiting
factor when the TSP instances of interest are hard to solve and thus to label.

Prates et al. (2019) train a GNN in a supervised manner to predict the satisfiability
of the decision version of the TSP. Small-scale instances of up to 105 cities are considered.
This idea has been further extended by Lemos et al. (2019) for the decision version of the
graph coloring problem. An important limitation of this last approach is that the model
may generate infeasible solutions (violating some constraints). While this is expected, given
that these two approaches tackle decision problems, it also motivates the need to design
appropriate mechanisms for handling combinatorial constraints.

6. https://www.ibm.com/support/knowledgecenter/SSSA5P_20.1.0/ilog.odms.cplex.help/CPLEX/
Parameters/topics/MIPEmphasis.html

16

https://www.ibm.com/support/knowledgecenter/SSSA5P_20.1.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/MIPEmphasis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_20.1.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/MIPEmphasis.html

Combinatorial Optimization and Reasoning with GNNs

Combining supervised models with search Joshi et al. (2019) propose the use of
residual gated graph convolutional networks (Bresson and Laurent, 2017) in a supervised
manner to solve the TSP. Unlike the approach of Vinyals et al. (2015), the model does not
output a valid TSP tour but a probability for each edge to belong to the tour. The final circuit
is computed subsequently using a greedy decoding or a beam search procedure. The current
limitations of GNN architectures for finding good primal solutions have been subsequently
analyzed by Joshi et al. (2022) using the TSP as a case study. It is shown that for this
supervised learning approach to work well, combining it with the more expensive beam search
is preferable. On the other hand, an RL policy can perform as well by acting greedily. This
finding is not surprising as supervised learning with a single optimal solution per training
instance is inherently limited when there are multiple optima (a common situation for CO
problems).

Similarly, Li et al. (2018b) propose to solve combinatorial problems that are easy to
reduce to the Maximum Independent Set (MIS) by a combination of supervised learning with
a GNN model, and classical algorithms such as tree search. On a training set of instances
where each problem is labeled with a precomputed optimal solution, the GNN is trained to
output multiple continuous solution predictions, with a hindsight loss function (Guzman-
Rivera et al., 2012) that considers the minimum (cross-entropy) loss value across the multiple
predictions. As such, the training encourages the generation of diverse solutions. Then, at
test time, these multiple (continuous) predictions are passed on to a tree search and local
search in an attempt to transform them into feasible, potentially high-quality solutions.
Finally, the authors report favorable results compared to some RL methods and non-learned
heuristics. However, follow-up work by Böther et al. (2022) details, despite careful attempts,
being incapable of reproducing the results, even reporting that using random weights in the
GNN yields similar results as the trained weights. Thus, at this moment this approach should
be considered at best inconclusive. Böther et al. (2022) however report more encouraging
results with the unsupervised approach of Ahn et al. (2020), which we describe further below.

Graph matching and related problems Besides the TSP, Fey et al. (2020); Li et al.
(2019) investigate using GNNs for graph matching. Here, graph matching refers to finding
an alignment between two graphs such that a cost function is minimized, i.e., similar nodes
in one graph are matched to similar nodes in the other graph. Specifically, Li et al. (2019)
use a GNN architecture that learns node embeddings for each node in the two graphs and
an attention score that reflects the similarity between two nodes across the two graphs. The
authors propose to use pair-wise and triplet losses to train the above architecture. Fey et al.
(2020) propose a two-stage architecture for the above matching problem. In the first stage, a
GNN learns a node embedding to compute a similarity score between nodes based on local
neighborhoods. To fix potential misalignments due to the first stage’s purely local nature,
the authors propose a differentiable, iterative refinement strategy to reach a consensus of
matched nodes.

Bai et al. (2020) introduces a GNN-based architecture, called GraphSIM, to solve the
maximum common sub-graph and the graph edit distance problems. The idea is to generate
vector representations for each node in the two graphs that must be compared, then compute
similarity matrices based on the embeddings of every pair of nodes in the two graphs, and

17

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

finally use a standard convolutional neural network to obtain a similarity score between the
two graphs. The training is carried out in an end-to-end fashion with supervision.

Nowak et al. (2018) train GNNs in a supervised fashion to predict solutions to the
Quadratic Assignment Problem (QAP). To do so, they represent QAP instances as two
adjacency matrices and use the two corresponding graphs to input a GNN.

Guiding primal heuristics for MIP with supervised GNNs Going beyond particular
CO problems and towards more general frameworks, Ding et al. (2020) explore leveraging
GNNs to heuristically solve MIPs by representing them as a tripartite graph consisting of
variables, constraints, and a single objective node. Here, a variable and constraint node
share an edge if the variable participates in the constraints with a non-zero coefficient.
The objective shares an edge with every other node. The GNN aims to predict if a binary
variable should be assigned 0 or 1. They utilize the output, i.e., a variable assignment for
binary variables, of the GNN to generate either local branching global cuts (Fischetti and
Lodi, 2003) or use these cuts to branch at the root node. Since the generation of labeled
training data is costly, they resort to predicting so-called stable variables, i.e., a variable
whose assignment does not change over a given set of feasible solutions. Still, within the
local branching framework, Liu et al. (2022) use a GNN to predict the initial size of the
neighborhood to be explored by the algorithm, and they leverage reinforcement learning
to train a policy that dynamically adapts the neighborhood size at the subsequent local
branching iterations.

Nair et al. (2020) propose a neighborhood search heuristic for ILPs, called neural diving,
that consists of a two-step procedure. Using the bipartite graph induced by the variable
constraint relationship, they first train a GNN by energy modeling to predict feasible
assignments, with higher probability given to better objective values. The GNN is used
to produce a tentative assignment of values. In a second step, some of these values are
thrown away, then computed again by an integer programming solver by solving the sub-ILP
obtained by fixing the values of those kept variables. A binary classifier is trained to predict
which variables should be thrown away at the second step. Notice how these supervised
GNNs for MIP are all combined with some form of search that leverages the powerful MIP
solver to guarantee that the hard linear constraints are satisfied.

SAT and related problems For SAT problems, Selsam et al. (2019) introduce the
NeuroSAT architecture, a GNN that learns to solve SAT problems in an end-to-end fashion.
The model is directly trained to act as a satisfiability classifier, which was further investigated
in Cameron et al. (2020), also showing that GNNs are capable of generalizing to larger
random instances. It is stressed that the NeuroSAT system is still vastly less reliable than
state-of-the-art SAT solvers. This is acknowledged by the authors (Selsam et al., 2019)
who explain that the main motivation was to better understand the potential of neural
networks capable of logical reasoning. As a suggestion for further works, they propose to use
the NeuroSAT prediction inside a traditional SAT solver, instead of relying on end-to-end
solving. This integration is discussed in more detail in Section 3.2. Another improvement has
been proposed by Sun et al. (2020b). They conjectured that the limitations of NeuroSAT
are mainly due to the difficulty of learning an all-purpose SAT solver. They evaluate this
hypothesis by training another classifier, NeuroGIST, trained and tested only with SAT
problems generated from differential cryptanalysis on the block cipher GIFT. Experimental

18

Combinatorial Optimization and Reasoning with GNNs

results show that the new model can perform better than the original NeuroSAT for this
specific family of instances.

Abboud et al. (2020) learn an algorithm for estimating the model count (i.e., the number
of satisfying assignments) of a Boolean formula expressed in a disjunctive normal form. To
do so, they train with supervision a GNN on graphs representing formulae and output the
parameters of a Gaussian distribution. The loss is the Kullback-Leibler (KL) divergence
between the predicted and ground truth distributions.

3.1.2 Unsupervised Learning

The approaches in this section use GNNs to produce solutions that simultaneously and directly
optimize a CO problem’s objective (if one exists) and minimize a measure of constraint
violation (on average across a set of training instances). As such, no optimal solutions are
required for the training instances, circumventing the limitations of the supervised paradigm.
Toenshoff et al. (2019) propose a purely unsupervised approach for solving constrained
optimization problems on graphs. Thereto, they trained a GNN using an unsupervised loss
function, reflecting how the current solution adheres to the constraints. This idea has been
also investigated by Amizadeh et al. (2018) for solving the circuit-SAT problem. Specifically,
instances of such a problem are Boolean circuits and can be represented as a directed acyclic
graph (DAG). The authors use directly the DAG structure as an input, as opposed to typical
undirected representations of SAT problems such as in NeuroSAT. The training is carried
out with no supervision and is based on an innovative loss function that, when minimized,
pushes the model to produce an assignment that yields a higher satisfiability. Schuetz et al.
(2022) follow a similar approach, applicable to CO problems that can be formulated as a
quadratic unconstrained binary optimization problem (QUBO). Specifically, they express
the QUBO as a graph by creating a node for each variable and connecting two such nodes if
the corresponding variables interact in the QUBO objective. To make the QUBO objective
differentiable, they resort to a relaxation approach, i.e., allowing the variables to take values
from [0, 1]. A final integral solution is obtained via a simple rounding heuristic. Xu et al.
(2020a) tackle the non-periodic 2D tiling problem, which consists of covering an arbitrary 2D
shape using one or more types of tiles given as input. To do so, they propose a loss function
containing three terms: (1) maximizing the tiling coverage of a region, (2) minimizing the
tile overlap, and (3) avoiding holes in the shape. The loss is minimized by a self-supervised
approach that does not need ground-truth tiling solutions for the training. The problem
is modeled as a graph problem, and a new GNN architecture referred to as TilinGNN, is
introduced. This method can efficiently cover many 2D shapes (moons, butterflies, turtles,
etc.) involving more than 2 000 tiles.

Further, Karalias and Loukas (2020) propose an unsupervised approach with theoretical
guarantees. Concretely, they use a GNN to produce a distribution over subsets of nodes,
representing a possible solution of the given graph problem7, by minimizing a probabilistic
penalty loss function. To produce an integral solution, they de-randomize the continuous
values, using sequential decoding, showing that this solution obeys the given, problem-specific
constraints with high probability. This result is noteworthy as most other works referenced
in this survey lack theoretical guarantees of any kind.

7. Graph Partitioning and Maximum Clique are the examples considered in (Karalias and Loukas, 2020).

19

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

More recently, Duan et al. (2022) revisit the supervised NeuroSAT (Selsam et al., 2019)
through the lens of “contrastive learning” (Chen et al., 2020), a popular unsupervised
learning method. First, multiple views of every (unlabelled) SAT instance were generated
through label-preserving augmentations: transformations that preserve the satisfiability of
the instance. Then, the same GNN encoder of NeuroSAT was trained by maximizing the
agreement between the representations of different views of the same instance (positive
pairs) while minimizing the agreement between the representations of distinct instances
(negative pairs). They show that these representations can then be fine-tuned with much less
labeled data than the fully-supervised method of NeuroSAT, to produce an equally accurate
predictor of satisfiability. They argue that this method can be applied to problems beyond
SAT to help reduce the sample complexity in various downstream tasks. Finally, Ozolins et al.
(2022) show that for SAT problems evaluating a loss term after each term and minimizing
their sum can lead to performance benefits over several baselines.

3.1.3 Reinforcement Learning for Iterative Solution Construction

Common to the supervised and unsupervised approaches discussed thus far is that the GNN
is used to produce values or scores for the decision variables being optimized over after which
a feasible solution is directly read out or a search algorithm (beam search, MIP, etc.) is
seeded based on the predicted variable scores. Alternatively, iterative construction algorithms
are natural for many CO problems. This makes reinforcement learning an obvious candidate
for automatically deriving data-driven heuristics.

Although the use of RL in combinatorial problems had been explored much earlier,
e.g., by Zhang and Dietterich (1995), the work of Bello et al. (2017) was one of the first
to combine RL with deep neural networks in the CO setting. To overcome the need for
near-optimal solutions in the approach of Vinyals et al. (2015), Bello et al. (2017) propose
to train Ptr-Net models using policy gradient RL methods. However, this approach failed to
address a fundamental modeling limitation of Ptr-Nets: a Ptr-Net deals with sequences as
its inputs and outputs, whereas a solution to the TSP has no natural ordering and is better
viewed as a set of edges that form a valid tour.

GNNs enable RL-based policies for CO Dai et al. (2017) leverage GNNs for the first
time in the context of graph optimization problems, addressing this last limitation. The
GNN served as the function approximator for the value function in a Deep Q-learning (DQN)
formulation of CO on graphs. The authors use a Structure2Vec GNN architecture (Dai et al.,
2016), similar to Equation (1), to embed nodes of the input graph. Through the combination
of GNN and DQN, a greedy node selection policy—S2V-DQN—is learned on a set of problem
instances drawn from the same distribution. In this context, the TSP can be modeled as a
graph problem by considering the weighted complete graph on the cities, where the edge
weights are the distances between a pair of cities. A greedy node selection heuristic for the
TSP iteratively selects nodes, adding the edge connecting every two consecutively selected
nodes to the final tour. A feasible solution is guaranteed to be obtained after n− 1 greedy
node selection steps, where the first node is chosen arbitrarily, and n is the number of nodes
or cities of a TSP instance. Because embedding the complete graph with a GNN can be
computationally expensive and possibly unnecessary to select a suitable node, a k-nearest
neighbor graph can be used instead of the complete graph. Dai et al. (2017) apply the above

20

Combinatorial Optimization and Reasoning with GNNs

approach to other classical graph optimization problems such as Maximum Cut (Max-Cut)
and Minimum Vertex Cover (MVC).

Additionally, they extend the framework to the Set Covering Problem (SCP), in which a
minimal number of sets must be selected to cover a universe of elements. While the SCP is
not typically modeled as a graph problem, it can be naturally modeled as a bipartite graph,
enabling the use of GNNs as in TSP, MVC, and Max-Cut. More broadly, the reducibility
among NP-complete problems (Karp, 1972) guarantees that a polynomial-time transformation
between any two NP-complete problems exists. Whether such a transformation is practically
tractable (e.g., a quadratic or cubic-time transformation might be considered too expensive)
or whether the greedy node selection approach makes sense depends on the particular
combinatorial problem. However, the approach introduced by Dai et al. (2017) seems useful
for various problems and admits many direct extensions and improvements, some of which
we will survey next.

The role of attention Kool et al. (2019) tackle routing-type problems by training an
encoder-decoder architecture using the REINFORCE RL algorithm (Sutton et al., 1999).
This is based on Graph Attention Networks (Veličković et al., 2018), a well-known GNN
architecture. Problems tackled by Kool et al. (2019) include the TSP, the capacitated VRP
(CVRP), the Orienteering Problem (OP), and the Prize-Collecting TSP (PCTSP). Nazari
et al. (2018) also tackle the CVRP with a somewhat similar encoder-decoder approach.
Deudon et al. (2018), Nazari et al. (2018), and Kool et al. (2019) were perhaps the first
to use attention-based models for routing problems. Attention-based models for routing
problems allow each city to learn the importance of other cities to its own representation.
This inductive bias seems to be useful for combinatorial problems. Additionally, as one
moves from basic problems to richer ones, the GNN architecture’s flexibility becomes more
important in that it should be easy to incorporate additional characteristics of the problem.
Notably, the encoder-decoder model of Kool et al. (2019) is adjusted for each type of problem
to accommodate its special characteristics, e.g., node penalties and capacities, the constraint
that a feasible tour must include all nodes or the lack thereof, etc. This allows for a unified
learning approach to produce good heuristics for different optimization problems. Besides,
François et al. (2019) show that the solutions obtained by Deudon et al. (2018); Kool et al.
(2019); Joshi et al. (2019); Dai et al. (2017) can be efficiently used as the first solution of a
local search procedure for solving the TSP.

Handling hard constraints The problems discussed thus far in this section have relatively
easy-to-satisfy constraints. For example, a feasible solution to a TSP instance is simply a
tour on all nodes, implying that a constructive policy should only consider nodes, not in
the current partial solution, and terminate as soon as a tour has been constructed. These
requirements can be enforced by restricting the RL action space appropriately. As such, the
training procedure and the GNN model need to focus exclusively on optimizing the average
objective function of the combinatorial problem while enforcing these “easy” constraints
by manually constraining the action space of the RL agent. In many practical problems,
some constraints may be more difficult to satisfy. Consider the more general TSP with
Time Windows (Savelsbergh, 1985, TSPTW), in which a node can only be visited within a
node-specific time window. Here, edge weights should be interpreted as travel times rather
than distances. It is easy to see how a constructive policy may “get stuck” in a state or

21

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

partial solution in which all actions are infeasible. Ma et al. (2019) tackle the TSPTW by
augmenting the building blocks we have discussed so far (GNN with RL) with a hierarchical
perspective. Some learnable parameters generate feasible solutions, while others focus on
minimizing costs. Note, however, that the approach of Ma et al. (2019) may still produce
infeasible solutions, although it is reported to do so very rarely in experiments. Also, using
RL, Cappart et al. (2021) take another direction and propose to tackle problems that are
hard to satisfy (such as the TSPTW) by reward shaping. The reward signal they introduce
has two specific and hierarchic goals: first, finding a feasible and complete solution, and
second, finding the solution minimizing the objective function among the feasible solutions.
The construction of a solution is stopped as soon as no action is available, which corresponds
to an infeasible partial solution. Each complete solution obtained has then the guarantee to
be feasible.

Ahn et al. (2020) propose to handle combinatorial constraints as follows. They introduce
the notion of deferred Markov Decision Process, where at each iteration, the agent decides
whether a decision should be carried directly or deferred to a subsequent iteration. This
enables the agent to focus on the easiest decisions and to tackle the hardest decision only at
the end when the set of candidate solutions is narrowed. Experiments are carried out on the
maximum independent set problem, and competitive results are obtained for graphs having
millions of vertices. However, the approach is limited to locally decomposable problems,
where locally connected variables can decompose the feasibility constraint and the objective.
The model is trained with an actor-critic reinforcement learning algorithm and is based on
the GraphSAGE architecture (Hamilton et al., 2017).

Other applications For SAT problems, Yolcu and Póczos (2019) propose to encode SAT
instances as an edge-labeled, bipartite graph and use a reinforcement learning approach
to learn satisfying assignments inside a stochastic local search procedure, representing
each clause and variable as a node. Here, a clause and a variable share an edge if the
variable appears in the clause, while the edge labels indicate if a variable is negated in
the corresponding clause. They propose to use REINFORCE parameterized by a GNN
on the above graph to learn a valid assignment on various problems, e.g., 3-SAT, clique
detection, and graph coloring. To overcome the sparse reward nature of SAT problems, they
additionally employ curriculum learning (Bengio et al., 2009).

Within the RL framework for learning heuristics for graph problems, Abe et al. (2019)
propose to guide a Monte-Carlo Tree Search (MCTS) algorithm using a GNN, inspired by
the success of AlphaGo Zero (Silver et al., 2017). A similar approach appears in (Drori et al.,
2020). Liu et al. (2021) employ GNNs to learn chordal extensions in graphs. Specifically, they
employ an on-policy imitation learning approach to imitate the minimum degree heuristic.

3.1.4 Summary

In the above, we overviewed how GNNs can be leveraged to (quickly) find feasible solutions
to CO problems in both the supervised and the unsupervised regimes. The overarching aim
here is to find a feasible solution quickly rather than find optimal ones. In the supervised
regime, approaches directly predict a feasible solution using a GNN or integrate the GNN’s
prediction into heuristics, e.g., some form of a tree or local search. In the former, guaranteeing
that a predicted solution remains a challenge. Moreover, the costly curation of a large enough

22

Combinatorial Optimization and Reasoning with GNNs

x7 ≤ 0 x7 ≥ 1

x4 ≤ 2 x4 ≥ 3

at = 4

x7 ≤ 0 x7 ≥ 1

x4 ≤ 2 x4 ≥ 3

x5 ≤ −2 x5 ≥ −1

Figure 3: Variable selection in the branch-and-bound integer programming algorithm as a
MDP.

training set usually hinders real-world applicability in both cases. Unsupervised approaches,
e.g., based on reinforcement learning, address this problem. However, for many practically
relevant CO problems, it remains challenging to handle constraints, and their performance
is lacking behind heuristic approaches. Further, the high training time and computational
needs of typical reinforcement learning approaches hinder real-world applicability. In the
next section, we will focus on dual solutions. Here, the GNNs’ predictions are integrated
into exhaustive searches to guarantee that an optimal solution is found.

3.2 On the Dual Side: Proving Optimality

Besides finding solutions that achieve as good an objective value as possible, another common
task in CO is proving that a given solution is optimal, or at least proving that the gap between
the best-found objective value and the optimal objective value, known as the optimality gap,
is no greater than some bound. Determining such bounds is usually achieved by computing
(cheap) relaxations of the optimization problem. A few works have successfully used GNNs
to guide or enhance algorithms to achieve this goal. Because the task’s objective is to offer
proofs (of optimality or of validity of a bound), GNNs usually replace specific algorithms’
components. In this context, GNNs are commonly combined with an exact solving process
(see Section 2.3.4), such as integer programming, logic solving, constraint programming, or
branch-and-bound based on decision diagrams.

3.2.1 Integer programming

In integer linear programming, the prototypical algorithm is branch-and-bound, forming
the core of all state-of-the-art solving software. Here, branching attempts to bound the
optimality gap and eventually prove optimality by recursively dividing the feasible set and
computing relaxations to prune away subsets that cannot contain the optimal solution. In
the course of this algorithm, many decisions are repeatedly taken, whose influence is still
poorly understood, and which have been described as the “dark” side of integer programming
(Lodi, 2013). One of the most critical is the choice, at every iteration, of the variable whose
range will be divided in two. As this choice significantly impacts the algorithm’s execution
time (essentially, the size of the branch-and-bound tree), there has been increased interest in
learning policies, e.g., parameterized by a GNN, to select the best variable in a given context.

23

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

This problem can be assimilated to the task of finding the optimal policy of an MDP, as
illustrated in Figure 3.

Preliminary work attempted the learning from fixed-dimensional representations of the
problem, although without reaching the same level of performance as the best human-designed
rules. In this regard, the usage of GNNs was a breakthrough and currently represents state-
of-the-art. The first such GNN-based approach work was the approach of Gasse et al. (2019),
who teach a GNN to imitate strong branching, an expert policy taking excellent decisions,
but computationally too expensive to use in practice. The resulting policy leads to faster
solving times than the solver default procedure and generalizes to larger instances than those
the model is trained on.

This work represented an important advance in that it was the first time that variable
selection was shown to be improved by machine learning in a full-fledged integer programming
solver, at least in some classes of instances. Nonetheless, it quickly became evident that
there were many aspects of the approach that could be improved, which led to a succession
of works that tried to further improve on the method. One concern that was quickly brought
up was that their approach requires the usage of a GPU at inference time, which might be
impractical. Gupta et al. (2020) propose a hybrid branching model using a GNN at the initial
decision points and a light multilayer perceptron for subsequent steps, showing improvements
on CPU-only hardware. Another concern that was brought up is that the resulting policy is
specialized to a type of problem rather than being a good universal policy. Nair et al. (2020)
address the latter, first by proposing a GPU-friendly parallel linear programming solver using
the alternating direction method of multipliers (ADMM) approach and second, by showing
that it could be used to scale the training to much larger datasets. In particular, they showed
that they could learn a policy that performed well on MIPLIB (Gleixner et al., 2020), the
gold standard benchmark for solvers, although at a high computational cost. Nonetheless, it
is a remarkable achievement that suggests that the GNN approach can generalize over very
heterogeneous datasets, perhaps all MIPs, simply by scaling up.

Finally, an alternative criticism is that the performance of the imitation learning policy
will never exceed that of the expert, strong branching, which is known to perform badly in
some families, such as multiple knapsack problems. This suggests that reinforcement learning
methods could be a better long-term solution for training graph neural networks to select
variables in integer programming solvers. The preliminary work of Sun et al. (2020a) hints
in this direction by showing that evolution strategies can offer improvements over small
homogeneous datasets. However, one severe limitation on using RL for branching is that, in
the presence of large branch-and-bound trees, it is very difficult to perform the so-called
credit assignment, i.e., selecting which RL actions should be credited for a specific outcome.
Two recent works (Etheve et al., 2020; Scavuzzo et al., 2022) show that the structure itself of
the branch-and-bound tree can be leveraged in the attempt to simplify the credit assignment,
leading to a faster convergence of RL algorithms.

So far, most of the work in this area has focused on variable selection. Nonetheless,
many other components of integer programming solvers seem just as amenable to machine
learning approaches. Other aspects have started to be approached with GNN methods, such
as column selection for column generation (Morabit et al., 2021; Chi et al., 2022), node
selection (Labassi et al., 2022) or cutting plane selection. Cutting planes are additional
constraints that simplify the search process yet are guaranteed not to remove the optimal

24

Combinatorial Optimization and Reasoning with GNNs

solution and are continuously generated throughout the solving process. As one does not
want to include all generated cutting planes for fear of rendering the computational burden
unnecessarily heavy, only the most “useful” cuts are to be added, something which is difficult
to estimate. Paulus et al. (2022) use GNNs over a tripartite graph representation inspired
by the bipartite representation of Gasse et al. (2019) and show improvements over standard
cut selection procedures in a variety of benchmarks. Also of note is the work of Khalil et al.
(2022), where a GNN is used to predict the most likely value of variables in optimal solutions
of binary integer linear programs. This, in turn, is used in their work to guide the selection
of the next node to explore, as well as warm-starting the solver by rounding the predicted
values combined with solver-provided “solution repair” heuristics.

Naturally, these works can be extended in many directions, and many other aspects
of integer programming solvers seem ripe for improvement by machine learning methods,
especially using GNN models. As described, many works already outperform the state-of-
the-art designed by humans, and it seems likely that solvers will integrate, over time, many
such learned rules in their systems. One could, in fact, imagine an online training scenario
where such components would continuously learn, and solvers would improve on the type of
problem of interest to the practitioner each time it solves a problem.

Finally, a closely related problem to integer linear programming is neural network
verification, where a branch-and-bound algorithm is also used as the backbone solution
method. In fact, the properties of a neural network are often verified by solving a mixed-
integer optimization problem. Lu and Kumar (2020) represent the neural network to be
verified as a graph with attributes and train a GNN to imitate strong branching. The
approach is thus close to the one of Gasse et al. (2019), although the graphs and the GNN
architecture are specifically designed for neural network verification, showing state-of-the-art
improvements over hand-designed methods. Although this area has received comparatively
less attention than general integer programming, their proximity suggests many opportunities
for translating advances in that field to neural network verification and, maybe, vice versa.

3.2.2 Logic solving

In logic solving, such as for Boolean Satisfiability, Satisfiability Modulo Theories, and Quan-
tified Boolean formulae, replacing human-designed decision rules with trained GNN models
has also brought improvements, although the wider variety of algorithms and competing ap-
proaches make the impact less recognizable than in integer programming so far. Nonetheless,
the analogies are strong enough for advances in one field to extend to the other. In particular,
the role of branch-and-bound as the core algorithm is instead taken by Conflict-Driven
Clause Learning (CDCL), a tree search algorithm that constructs a solution through a
combination of backtracking and learning new clauses from conflicts (Marques-Silva et al.,
2021). Analogously to branch-and-bound in integer programming, in this algorithm, one
must repeatedly “branch”, which in this case involves picking both an unassigned variable
and a polarity (value) to assign to this variable.

In this context, some authors have proposed representing logical formulae as graphs
and using a GNN to select the best next variable, the analog of a branching step. Namely,
Lederman et al. (2020) model quantified boolean formulae as bipartite graphs and teach
a GNN to branch using REINFORCE. Although the reinforcement learning algorithm is

25

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

very simple, they achieve substantial improvements in several formulae solved within a given
time limit compared to VSIDS, the standard branching heuristic. Two other works apply
similar ideas to related problems. Kurin et al. (2020) model propositional Boolean formulae
as bipartite graphs and train a GNN to branch with Q-learning. Although the problem is
different, they similarly show that the learned heuristic can improve on VSIDS, namely in
the number of iterations needed to solve a given problem. Moreover, Vaezipoor et al. (2021)
represent propositional Boolean formulae as bipartite graphs and train a GNN to branch
with evolution strategies, but on a Davis–Putnam–Logemann–Loveland solver for #SAT, the
counting analog of SAT. They show that this improves solving time compared to SharpSAT,
a state-of-the-art exact method.

It is interesting to note here that these works all rely on reinforcement learning, in
contrast with integer programming, where this approach, so far, is much less successful
compared to imitation learning. One possible explanation is that the boolean nature of the
variables and of the formulae makes the problem combinatorially less complex; another is
those good experts are less obvious for these problems. Nonetheless, integer programming
experience suggests that imitation learning methods, despite their drawbacks, could have a
strong impact.

Finally, it is worth mentioning an approach that resembles more closely to imitation
learning. We already mentioned in Section 3.1 the work of Selsam et al. (2019) that trains
a GNN “NeuroSAT” architecture to predict the satisfiability of SAT formulae based on
bipartite variable-clause graph representations. In follow-up work, Selsam and Bjørner (2019)
train the same architecture to predict the probability of a variable being in an unfeasible
core based on pre-solved formulae. This is used to inform variable branching decisions inside
the MiniSat, Glucode and Z3 SAT solvers through the assumption that this probability
correlates well with being a good variable to branch on. Using the resulting network for
branching periodically, they report solving more problems on standard benchmarks than
the state-of-the-art heuristic EVSIDS. Although the approach is SAT specific, it suggests
that an alternative approach to variable selection can be achieved in a more indirect way by
training models to predict optimal solutions and using those predictions to guide solving, as
also partially done by Khalil et al. (2022).

3.2.3 Constraint programming

The approach to variable selection found in integer programming and logic solving can
also be extended to constraint programming (CP). In CP, standard algorithms, such as
branch-and-bound, iterative limited discrepancy search, and restart-based search, are all
variants of backtracking search algorithms where one must repeatedly select variables and
corresponding value assignments. Value selection, in particular, significantly impacts the
quality of the search.

In the case of constraint satisfaction programs that can be formulated as MDPs on graph
states, such as the TSP with time windows, Cappart et al. (2021) train a GNN to learn a
good policy or action-value function for the Markov decision process using reinforcement
learning. The resulting model is used to drive value selection within the backtracking search
algorithms of CP solvers. This idea is been further extended by Chalumeau et al. (2021),
who propose a new CP solver that natively handles a learning component. To do so, they

26

Combinatorial Optimization and Reasoning with GNNs

represent a CSP as a simple and undirected tripartite graph on which nodes represent each
variable, possible value, and constraint. The nodes are connected by an edge if and only if
a variable is involved in a constraint or if a value is inside the domain of a variable. This
representation has the benefit of being generic to any combinatorial problem and has been
reused by Song et al. (2022) for learning variable ordering heuristics. However, a current
challenge is the size of the generated graph, which can be prohibitive, making the training
more tedious. Similarly, van Driel et al. (2021) leverage GNNs to initialize a variable-selection
heuristic inside a hybrid CP-SAT solver.

3.2.4 Decision diagrams

A similar situation holds with decision diagrams (DD) which are graphs that can be used
to encode the feasible space of discrete problems to obtain dual bounds in CO problems
(Bergman et al., 2016). In many problems, it is possible to identify an appropriate merging
operator that yields relaxed decision diagrams whose best solution (corresponding to the
shortest path in the graph) gives a dual bound. This mechanism is particularly interesting
as the bounds obtained are flexible, meaning that their quality depends on algorithmic
choices made during the diagram’s construction, unlike, e.g.,, the linear relaxation bound
found in integer programming. Unfortunately, finding the algorithmic choices yielding the
best bounds is often NP-hard. For instance, it is the case for determining the best variable
ordering to build the diagram. Cappart et al. (2019) tackle this problem by training a
GNN with reinforcement learning to decide which variable to add next to an incomplete
decision diagram representing the problem instance that needs to be solved. The resulting
diagram then readily yields a bound on the optimal objective value of the problem. The
GNN architecture and the problem representation as a graph are similar to the one proposed
by Dai et al. (2017). This idea is leveraged by Parjadis et al. (2021) and Cappart et al.
(2022). They integrate the bounds obtained through this mechanism into a full-fledged
branch-and-bound algorithm. The experimental results show that the learned bounds allow
reducing the solving time for the maximum independent set problem compared to methods
based on non-learned bounds or on linear relaxations.

When designing such an approach, an important consideration is the increased computa-
tional power required to obtain the bounds through a deep architecture. As the model must
be called many times inside the branch-and-bound tree, it is important that the inference is
carried out efficiently. This issue is further discussed in Section 4. This approach also suffers
from some limitations, such as the need to be able to encode the problem into a decision
diagram, making this strategy not suited for solving any kind of CO problem.

3.2.5 Summary

In the above, we overviewed the application of GNNs to prove that a given solution is
optimal. Here, in the area of integer programming, GNNs show promising performance to
replace common heuristics within solvers. For example, the seminal work of Gasse et al.
(2019) showed that GNNs can imitate costly variable selection heuristics, often beating
the solver’s default heuristic and initiating many follow-up works. Especially, Nair et al.
(2020) proposed several refinements that showed promising performance on the notoriously
hard MIP instances. However, all such approaches suffer from the need to compute a large

27

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

enough training dataset. However, recently, several works, e.g., Sun et al. (2020a); Scavuzzo
et al. (2022), tried to address this limitation via reinforcement learning-based approaches.
Interestingly, in logic solving, e.g., Boolean Satisfiability, several reinforcement learning-based
approaches have been successfully applied, e.g., to learn branching heuristics. However,
similar approaches have been tried for CP and decision diagrams, with mixed success.

3.3 Algorithmic Reasoning

We now turn our attention to neural algorithmic reasoning (Veličković and Blundell, 2021),
a paradigm aiming to build neural networks that align with invariants and properties of
classical algorithms (Cormen et al., 2009). While initially conceived as a way to probe,
theoretically and empirically, the extent to which neural network architectures can solve
classical reasoning tasks, the area holds the potential for attacking combinatorial problems
over natural, noisy inputs (Deac et al., 2021). Further, it offers a framework for building
neural networks in the presence of an algorithmic prior, which demonstrated significant
returns for applications in pure mathematics (Davies et al., 2021; Blundell et al., 2022).

Interest in such a direction persisted over many years, with several works investigating
the construction of general-purpose neural computers, e.g., the neural Turing machine
(Graves et al., 2014), the differentiable neural computer (Graves et al., 2016), and its variants
(Csordas and Schmidhuber, 2019). While such architectures have all the hallmarks of general
computation, they introduce several components at once, making them often challenging to
optimize. In practice, they are almost always outperformed by simple relational reasoners
(Santoro et al., 2017, 2018). More carefully constructed variants and inductive biases for
learning to execute (Zaremba and Sutskever, 2014) have also been constructed, focusing
mainly on primitive algorithms (such as arithmetic). Prominent examples include the neural
GPU (Kaiser and Sutskever, 2015), neural RAM (Kurach et al., 2015), neural programmer-
interpreters (Reed and De Freitas, 2015), and neural arithmetic-logic units (Trask et al.,
2018; Madsen and Johansen, 2020).

In recent times, the work in neural algorithmic reasoning has consolidated towards using
graph-structured models—that is, GNNs—at the core and moving beyond primitive algo-
rithms towards combinatorial algorithms of super-linear complexity. The primary motivation
for using GNNs comes from the framework of algorithmic alignment (Xu et al., 2020b;
Dudzik and Veličković, 2022). Through this framework, an argument is made that GNNs
are potentially capable of executing polynomial-time dynamic programming algorithms
(Bellman, 1966), a paradigm from which many polynomial-time algorithms of interest can
be constructed. We will investigate this framework in more detail throughout this section.

Studying supervised algorithmic execution tasks brings up another important issue of
training neural networks. Namely, (G)NNs are traditionally powerful in the interpolation
regime, i.e., when we expect the distribution of unseen (“test”) inputs to roughly match
the distribution of the inputs used to train the network. However, they tend to struggle
in extrapolation, i.e., when evaluated out of distribution. For example, increasing the test
input size, e.g., the number of nodes in the input graph, is often sufficient to lose most of
the training’s predictive power. Extrapolation is a potentially important issue for tackling
CO problems with (G)NNs trained end-to-end. As a critical feature of a powerful reasoning
system, it should apply to any plausible input, not just ones within the training distribution.

28

Combinatorial Optimization and Reasoning with GNNs

Therefore, unless we can accurately foreshadow the kinds of inputs our neural CO approach
will be solved, it could be helpful to address the issue of out-of-distribution generalization in
neural networks meaningfully.

It is also important to clarify what we mean by extrapolation in this context. Many CO
problems of interest are NP-hard and, therefore, likely to be out of reach of GNN computation.
This is because decision problems solvable by end-to-end GNNs of tractable depth (i.e.,
polynomial in the number of nodes) are necessarily in P, by definition. Furthermore, even if
a problem is in P, a GNN needs to have sufficient depth and width to be able to solve it
(Loukas, 2020). Hence, when we say a GNN extrapolates on a hard CO task, we will not
imply that the GNN will produce optimal solutions for arbitrarily large inputs. Instead, we
will require the GNN to produce solutions that align with an appropriate polynomial-time
heuristic, see Section 3.3.1. Similarly, extrapolation to the entire set of plausible inputs may
not even be relevant. We may, instead, only care about extrapolation on a diverse8 set of
inputs that are relevant for the real-world task being solved. Training algorithmic neural
networks capable of extrapolating only over those instances would still be valuable to an
SAT solver portfolio, even if their general extrapolation power may be substantially limited
beyond those instances.

Building neural networks that extrapolate also has a natural corollary, i.e., being able
to generalize across completely different kinds of problems. For example, in the work of
(Li et al., 2018c), a model is trained on the 3-SAT problem (by reduction to the maximal
independent set problem), and it is still able to competitively solve related tasks, like finding
maximum cliques or vertex covers. A better understanding of algorithmic alignment could
also help us foretell which classes of related problems could benefit most from such a transfer.
An example is work on learning local heuristics from Yolcu and Póczos (2019), where training
on instances of one decision problem only transfers well to problems that are similar to it,
such as vertex covering and finding dominating sets.

3.3.1 Algorithmic alignment

The concept of algorithmic alignment introduced by Xu et al. (2020b) is central to constructing
effective algorithmic reasoners that extrapolate better. Informally, a neural network aligns
with an algorithm if that algorithm can be partitioned into several parts, each of which can
be “easily” modeled by one of the neural network’s modules. Essentially, alignment relies on
designing neural network components and control flow to line up well with the underlying
algorithm to be learned from data. This section will use Figure 4 as a guiding example.
Guided by this principle, novel GNN architectures and training regimes have been recently
proposed to facilitate aligning with broader classes of combinatorial algorithms. Those works
concretize the theoretical findings of Xu et al. (2020b).

The work of Veličković et al. (2020) on the neural execution of graph algorithms is among
the first such papers. It focuses entirely on the practical implications of learning to execute
abstract algorithmic tasks. Accordingly, it suggests several general-purpose modifications to
GNNs to make them extrapolate better on combinatorial reasoning tasks.

8. For example, it is well known that existing powerful SAT solvers can struggle over specific instances of
logical formulae such as cryptography (Ganesh and Vardi, 2020).

29

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

du = min
v∈Nu

dv + wvu
⊕

v2 v3

v4 v5

⊕m21

m51m41

Figure 4: Illustration of algorithmic alignment, in the case of the Bellman-Ford shortest
path-finding algorithm (Bellman, 1958). It computes distance estimates for every node, du,
and is shown on the left. Specifically, a GNN aligns well with this dynamic programming
update. Node features align with intermediate computed values (red), message functions
align with the candidate solutions from each neighbor (blue), and the aggregation function
(if, e.g., chosen to be max) aligns with the optimization across neighbors (green).

Using the encode-process-decode paradigm (Hamrick et al., 2018) Inputs, x in
X , are encoded into latents, z in Z (e.g., Z = Rd for d > 0), using an encoder
(G)NN, f : X → Z. Latents are decoded into outputs, y in Y , using a decoder (G)NN,
g : Z → Y, and computation in the latent space is performed by a processor GNN,
P : Z → Z, which is typically executed over a certain (fixed or inferred) number of steps.
Such a factorized computational model allows for easier modeling of the algorithm’s
intermediate state (by decoding at different points in executing P). It also allows for
sharing the processor across several tasks if we assume any relevant computation can
be reused across them.

Favoring the (component-wise) max aggregation function This aligns well with the
fact combinatorial algorithms often require some form of local decision-making, e.g.,
“which neighbor is the predecessor along the shortest path?” Moreover, max aggregation
is generally more stable for larger inputs and neighborhoods. Such findings have been
independently verified empirically (Joshi et al., 2022; Richter and Wattenhofer, 2020;
Corso et al., 2020) and contradict the common advice to use sum aggregation (Xu
et al., 2019). Algorithmically aligned aggregation has also recently been generalised
beyond tasks requiring “pure” maximisation, to tasks leveraging arbitrary commutative
monoids by Ong and Veličković (2022).

Leveraging strong supervision with teacher forcing (Williams and Zipser, 1989)
If, at training time, we have access to execution traces from the ground truth algorithm,
which illustrates how input data is manipulated9 throughout that algorithm’s execution,
these can be used as auxiliary supervision signals, and further, the model may be
asked only to predict one-step manipulations. Such an imitation learning setting can
substantially improve out-of-distribution performance, as the additional supervision
acts as a strong regularizer, constraining the function learned by the processor to

9. In this sense, for sequences of unique inputs all correct sorting algorithms have the same input-output
pairs, but potentially different sequences of intermediate states.

30

Combinatorial Optimization and Reasoning with GNNs

more closely follow the ground-truth algorithm’s iterations (Hussein et al., 2017).
This provides a mechanism for encoding and aligning with algorithmic pre- and post-
conditions, e.g., after k iterations of a shortest-path algorithm such as Bellman-Ford
(Bellman, 1958), the shortest paths that use up to k hops from the source node can be
computed. Strong supervision works well even without access to execution traces, as is
demonstrated by the RRN model of Palm et al. (2018). Therein, the authors achieve
“convergent message passing” by supervising a GNN to decode the ground-truth output
at every step of execution.

Masking of outputs (and, by extension, loss functions) GNNs are capable of
processing all objects in a graph simultaneously—but for many combinatorial reasoning
procedures of interest, this is unnecessary. Many efficient combinatorial algorithms are
efficient precisely because they focus on only a small amount of nodes at each iteration,
leaving the rest unchanged. Explicitly making the neural network predict which nodes
are relevant to the current step (via a learnable mask, as done in Yan et al. (2020)) can
therefore be impactful and at times more important than the choice of processor.10

Executing multiple related algorithms In this case, the processor network is shared
across algorithms and becomes a multi-task learner, either simultaneously or in a
curriculum (Bengio et al., 2009). When done properly, this can positively reinforce the
pair-wise relations between algorithms, allowing for combining multiple heuristics into
one reasoner (Xhonneux et al., 2021; Numeroso et al., 2023) or using the output of
simpler algorithms as “latent input” for more complex ones, significantly improving
empirical performance on the complex task. Recently, it was shown that many diverse
algorithms can be meaningfully learnt by the same processor network in this way,
performing at single-task expert level on average (Ibarz et al., 2022).

While initially applied only to path-finding and spanning-tree algorithms, the prescriptions
listed above have been applied for heuristically solving bipartite matching (Georgiev and Lió,
2020), mazes (Schwarzschild et al., 2021; Bansal et al., 2022), max-flow/min-cut (Awasthi
et al., 2022; Numeroso et al., 2023), model-based planning (Deac et al., 2020, 2021; He
et al., 2022), network configuration protocols (Beurer-Kellner et al., 2022) and TSP (Joshi
et al., 2022). It is worth noting that, concurrently, significant strides have been made on
using GNNs for physics simulations (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020). These
proposals came up with a largely equivalent set of prescriptions to the ones discussed above.

Several works have expanded on these prescriptions even further, yielding stronger classes
of GNN executors. PrediNets (Shanahan et al., 2020) are capable of forming representations
of propositions in the context of propositional logic, and ACER (Georgiev et al., 2022)
further demonstrates that correct, interpretable propositional formulae can be extracted
from trained PrediNets for certain tasks, such as computing minimum spanning trees.
IterGNNs (Tang et al., 2020) align well with a broad class of algorithms that repeatedly
execute some computation until a certain stopping criterion is satisfied. The design of
IterGNNs allows for adaptively learning the stopping criterion without requiring an explicit

10. For example, Veličković et al. (2020) show empirically that, for learning minimum spanning tree algorithms,
LSTM processors with the masking inductive bias perform significantly better out of distribution than
GNN processors without it.

31

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

b c e h d f g

c

h e

b

f

d

g

f

c d

gh e

b

f

b h c d g

e

Figure 5: The utility of dynamically choosing the graph to reason over for incremental
connectivity. It is easy to construct an example path graph (top), wherein deciding whether
one vertex is reachable from another requires linearly many GNN iterations. This can be
ameliorated by reasoning over different links—namely, ones of the disjoint set union (DSU)
data structure (Galler and Fisher, 1964) that represent each connected component as a
rooted tree. At the bottom, from left-to-right, we illustrate the evolution of the DSU for the
graph above, once the edge (h, d) is added and query (b, g) is executed. Note how the DSU
gets compressed after each query (Tarjan, 1975), thus making it far easier for subsequent
querying of whether two nodes share the same root.

network to predict when to terminate. HomoGNNs (Tang et al., 2020) remove all biases
from the GNN computation, making them align well with homogeneous functions. These are
functions exhibiting multiplicative scaling behavior—i.e. for any λ in R, f(λx) = λf(x)—a
property held by many combinatorial tasks.11

Recently, significant interest was also dedicated to inferring the graph over which the
(G)NN should operate when solving a combinatorial task. Neural shuffle-exchange networks
(Freivalds et al., 2019; Draguns et al., 2021) directly fix connectivity patterns between nodes
based on results from routing theory (such as Beneš networks (Beneš et al., 1965)), aligning
them with O(n log n) sequence processing algorithms. Lastly, pointer graph networks (PGNs)
(Veličković et al., 2020) take a more pragmatic view of this issue. Rather than trying to fix a
graph used by the processor GNN upfront (which may not even be given in many problems
of interest), PGNs explicitly predict a graph to be used by the processor, enforcing it to
match data structures’ behavior.

As a motivating example, PGNs tackle the incremental connectivity task (Figure 5).
Here, the model needs to answer queries of the form: given two nodes in an undirected
graph, u and v, does a path exist between them (i.e., is v reachable from u?)? The graph
can be modified between two queries by adding one edge at a time. It is easy to construct a
worst-case “path graph” for which answering such queries would require Ω(n) GNN steps.
PGNs instead learn to imitate edges of a disjoint-set union (DSU) data structure (Galler
and Fisher, 1964). DSUs efficiently represent sets of connected components, allowing for
querying reachability in O(α(n)) amortized complexity (Tarjan, 1975), where α is the inverse

11. For example, if all the edge weights in a shortest path problem are multiplied by λ, any path length—
including the shortest path length—also gets multiplied by λ.

32

Combinatorial Optimization and Reasoning with GNNs

Ackermann function—essentially, a constant for all astronomically sensible values of n. Thus,
by carefully choosing auxiliary edges for the processor GNN, PGNs can significantly improve
on the prior art in neural execution.

All of the executors listed above focus on performing message passing over exactly the
nodes provided by the input graph, never modifying this node set during execution. This
fundamentally limits them to simulating algorithms with up to O(1) auxiliary space per
node.12 The persistent message passing (PMP) model of Strathmann et al. (2021) has
lifted this restriction: by taking inspiration from persistent data structures (Driscoll et al.,
1989), PMP allows the GNN to selectively persist their nodes’ state after every step of
message passing. Now, the nodes’ latent state is never overwritten; instead, a copy of the
persisted nodes is performed, storing their new latents. This effectively endows PMP with an
episodic memory (Pritzel et al., 2017) of its past computations. Further, it has the potential
to overcome more general problematic aspects in learning GNNs, such as over-smoothing
(see also Section 4), beyond the realm of what is possible with simple approaches like skip
connections: since latent features are never overwritten, there exist no means for them to
ever get smoothed out in the future.

3.3.2 Perspectives and outlooks

According to the previous discussion, algorithmically-aligned GNNs have already been ex-
plored in the context of dynamic programming, iterative computation,13 as well as algorithms
backed by data structures. While novel architectures continue to be developed, interesting
theoretical results also elucidate what makes an architecture extrapolate well on algorithmic
execution tasks. We summarize and refer to some of these theoretical results here and
highlight two emerging outlooks on algorithmic GNNs.

Recent theoretical results have provided a unifying explanation for why algorithmically-
inspired prescriptions benefit extrapolating both in algorithmic and physics-based tasks (Xu
et al., 2021). Specifically, the authors make a useful geometric argument: ReLU-backed MLPs,
being piece-wise linear functions, always tend to extrapolate linearly outside of the support
of the training set. Hence, if we can design architecture components or task featurization
such that the individual parts (e.g., message functions in GNNs) have to learn roughly-linear
ground-truth functions, this theoretically and practically implies stronger out-of-distribution
performance. This explains, e.g., why (component-wise) max aggregation performs well for
shortest path-finding. The Bellman-Ford dynamic programming rule (e.g., as in Figure 4)

du = min
v∈Nu

dv + wvu (3)

is an edge-wise linear function followed by a minimization. Hence, assuming a GNN of the
form

h′u = max
v∈Nu

M(hu, hv, wvu), (4)

we can see that the message function M now has to learn a linear function in hv and wvu—a
substantially easier feat than if the sum-aggregation is used. Recent research has taken

12. In reality, each node in typical GNN stores a d-dimensional real vector. However, for most GNN architectures
used in practice today, d ≤ 2, 048, so O(d) can be treated as a constant for this analysis.

13. Recent work (Yang et al., 2021) has also demonstrated that GNNs can be made to align with iterative
optimization algorithms, such as proximal gradient descent and iterative reweighted least squares.

33

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

this insight further, demonstrating that algorithmic extrapolation may necessitate either
maintaining a causal model of the distribution shift (Bevilacqua et al., 2021), or carefully
crafted self-supervised learning objectives (Yehudai et al., 2021).

While all of the above dealt with improving the performance of GNNs when reasoning
algorithmically, for some combinatorial applications, we require the algorithmic performance
to always remain perfect—a trait known as strong generalization (Li et al., 2020). Strong
generalization is demonstrated to be possible. That is, neural execution engines (NEEs) (Yan
et al., 2020) are capable of empirically maintaining 100% accuracy on various combinatorial
tasks by leveraging several low-level constructs, learning individual primitive units of com-
putation, such as addition, multiplication, or argmax, in isolation. Moreover, they employ
binary representations of inputs, and conditionally mask the computation; that is, at every
step, a prediction is made on which nodes are relevant, and then a GNN is executed only
over the relevant nodes. Here, the focus is less on learning the algorithm itself—the dataflow
between the computation units is provided in a hard-coded way, allowing for zero-shot
transfer of units between related algorithms. For example, Dijkstra’s algorithm (Dijkstra,
1959) and Prim’s algorithm (Prim, 1957) have an identical implementation backbone—the
main difference is in the key function used for a priority queue. This allows Yan et al. (2020)
to directly re-use the components learned in the context of one algorithm when learning the
other.

Lastly, an important concurrent research direction that shares many insights with al-
gorithmic reasoning is knowledge graph reasoning. Briefly put, this area is concerned with
expanding the body of knowledge in a (usually closed-domain) knowledge base, typically
by inferring additional links or answering logical queries (Hamilton et al., 2018; Ren et al.,
2019). Answering logical queries can often be helped by path-finding primitives, which was
recently embodied in the NBFNet model (Zhu et al., 2021). NBFNet is a knowledge graph
reasoning system designed to align algorithmically to generalized versions of the previously
discussed Bellman-Ford algorithm.

3.3.3 Reasoning on natural inputs

Until now, we have focused on methodologies allowing GNNs to strongly reason out of
distribution, purely by more faithfully imitating existing classical algorithms. Imitation is
an excellent way to benchmark GNN architectures for their reasoning capacity. In theory,
it allows for infinite amounts of training or testing data of various distributions, and the
fact that the underlying algorithm is known means that extrapolation can be rigorously
defined.14 However, an obvious question arises: if all we are doing is imitating a classical
algorithm, why not just apply the algorithm?

Many potential applications of algorithmic reasoning may provide answers to this question
in principle.15 However, one particularly appealing direction for CO has already emerged—

14. In principle, any function could be a correct extrapolant if the underlying target unknown known.
15. Perhaps a more “direct” application is the ability to discover novel algorithms. This is potentially quite

promising, as most classical algorithms were constructed with a single-threaded CPU model in mind.
Many of their computations may be amenable to more efficient execution on a GPU. There certainly
exist preliminary signs of potential: Li et al. (2020) detect data-driven sorting procedures that seem to
improve on quicksort, and Veličković et al. (2020) indicate, on small examples, that they can generalize
the operations of the disjoint-set union data structure in a GPU-friendly way.

34

Combinatorial Optimization and Reasoning with GNNs

algorithmic learning executors allow us to generalize these classical combinatorial reasoners
to natural inputs. We will thoroughly elaborate on this here.

Classical algorithms are designed with abstraction in mind, enforcing their inputs to
conform to stringent preconditions. This is done for an apparent reason. Keeping the inputs
constrained enables an uninterrupted focus on “reasoning” and makes it far easier to certify
the resulting procedure’s correctness, i.e., stringent constraints. However, we must never
forget why we design algorithms, to apply them to real-world problems. For an example of
why this is at timeless odds with the way such algorithms are designed, we will look back to
a 1955 study by Harris and Ross (1955), which is among the first to introduce the maximum
flow problem, before the seminal work of Ford and Fulkerson (1956), and Dinic (1970), both
of which present algorithms for solving it.

In line with the Cold War’s contemporary issues, Harris and Ross studied the Soviet
railway lines’ bottleneck properties. They analyzed the rail network as a graph with edges
representing railway links with scalar capacities, corresponding to the train traffic flow rate
the railway link may support. The authors used this representation as a tool to search for
the bottleneck capacity—identifying links that would be the most effective targets for the
aerial attack to disrupt the capacity maximally. Subsequent analyses have shown that this
problem can be related to the minimum cut problem on graphs and can be shown equivalent
to finding a maximal flow through the network; this follows directly from the subsequently
proven max-flow min-cut theorem (Ford and Fulkerson, 2015). This problem inspired a
fruitful stream of novel combinatorial algorithms and data structures (Ford and Fulkerson,
1956; Edmonds and Karp, 1972; Dinic, 1970; Sleator and Tarjan, 1983; Goldberg and Tarjan,
1988), with applications stretching far beyond the original intent.

However, throughout their writeup, Harris and Ross remain persistently mindful of one
crucial shortcoming of their proposal: the need to attach a single, scalar capacity to an
entire railway link necessarily ignores a potential wealth of nuanced information from the
underlying system. Quoting verbatim just one such instance:

“The evaluation of both railway system and individual track capacities is, to a
considerable extent, an art. The authors know of no tested mathematical model
or formula that includes all variations and imponderables that must be weighed.
Even when the individual has been closely associated with the particular territory
he is evaluating, the final answer, however accurate, is largely one of judgment
and experience.”

In many ways, this problem continues to affect the applications of classical CO algorithms.
Satisfying their preconditions necessitates converting their inputs into an abstractified form,
which, if done manually, often implies drastic information loss, meaning that our combinatorial
problem no longer accurately portrays the dynamics of the real world. On the other hand,
the data we need to apply the algorithm may be only partially observable, which can often
render the algorithm completely inapplicable.

The recent “Amazon Last Mile Routing Research Challenge” (2021) (Winkenbach et al.,
2021) serves as early evidence of this recognition in a high-stakes setting.16 The challenge is
motivated by the fact that

16. https://routingchallenge.mit.edu/

35

https://routingchallenge.mit.edu/

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

“there remains an important gap between theoretical route planning and real-life
route execution that most optimization-based approaches cannot bridge. This gap
relates to the fact that in real-life operations, the quality of a route is not exclusively
defined by its theoretical length, duration, or cost but by a multitude of factors
that affect the extent to which drivers can effectively, safely, and conveniently
execute the planned route under real-life conditions.”

These factors involve additional contextual features and tacit knowledge (e.g., the driver’s
familiarity with certain routes or their observations of traffic) that would typically be
dismissed if one models the routing problem using path lengths as the only data to optimize
over.17

On the surface, these issues appear to be fertile ground for neural networks. Their
capabilities, as a replacement for human feature engineering and a powerful raw data
processor, are highly suggestive of their potential applicability. However, this can run into
several obstacles. The first one concerns the learnability of such systems via gradient descent,
as even if we use a neural network to encode inputs for a classical combinatorial algorithm
properly, due to the discrete nature of CO problems, usual gradient-based computation is
often not applicable. However, promising ways to tackle the issue of gradient estimation have
already emerged18 in the literature (Knöbelreiter et al., 2017; Wang et al., 2019; Vlastelica
et al., 2020; Mandi and Guns, 2020; Niepert et al., 2021).

A more fundamental issue to consider is data efficiency. Even if a feasible backward
pass becomes available for a combinatorial algorithm, the potential richness of raw data
still needs to be bottlenecked to a scalar value. While explicitly recovering such a value
allows for easier interpretability of the system, the solver is still committing to using it; its
preconditions often assume that the inputs are free of noise and estimated correctly. In
contrast, neural networks derive great flexibility from their latent representations, that are
inherently high-dimensional,19 if any component of the neural representation ends up poorly
predicted, other components are still able to step in and compensate. This partly enabled
neural networks’ emergence as a flexible tool for raw data processing. If there is insufficient
data to learn how to compress it into inputs expected by the algorithm meaningfully, this
may make the ultimate results of applying combinatorial algorithms on them suboptimal.

Mindful of the above, we can identify that the latest advances in neural algorithmic
reasoning could lend a remarkably elegant pipeline for reasoning on natural inputs. The
power comes from using the aforementioned encode-process-decode framework. Assume we
have trained a GNN executor to perform a target algorithm on many abstract algorithmic
inputs. The executor trained as prescribed before will have a processor network P , which
directly emulates one step of the algorithm, in the latent space.

17. It could be possible to encode this knowledge as classical CO constraints. However, the exact manner in
which this can be done, especially if we want it to generalize across different drivers, is unlikely to be
simple.

18. Proposals for perceptive black-box CO solvers have also emerged outside the realm of end-to-end learning;
for example, Brouard et al. (2020) demonstrate an effective perceptive combinatorial solver by leveraging
a convex formulation of graphical models.

19. There is a caveat that allows some classical combinatorial algorithms to escape this bottleneck; namely, if
they are designed to operate over high-dimensional latent representations, one may apply them out of
the box to the latent representations of neural networks. A classical example is k-means clustering: this
insight lead Wilder et al. (2019) to propose the powerful ClusterNet model.

36

Combinatorial Optimization and Reasoning with GNNs

Abstract inputs, x̄

Natural inputs, x

Abstract outputs, ȳ ≈ A(x̄)

Natural outputs, y

f g

P

f̃ g̃

ve

va

vh

vdvb vc

vgvf

∞ ∞ ∞

∞ ∞ ∞ ∞

0

xa xb xc xd

xe xf xg xh

1 0 2 3

2 1 2 3

ya yb yc yd

ye yf yg yh

Figure 6: The proposed algorithmic reasoning blueprint. First, an algorithmic reasoner is
trained in the encode-process-decode fashion, learning a function g(P (f(x̄))) ≈ A(x̄), for a
target combinatorial algorithm A; in this case, A is breadth-first search. Once trained, the
processor network P is frozen and stitched into a pipeline over natural inputs—with new
encoder and decoder f̃ and g̃. This provides an end-to-end differentiable function that has
no explicit information loss while retaining alignment with BFS.

Thus, within the weights of a properly-trained processor network, we find a polynomial-
time combinatorial algorithm that is (a) aligned with the computations of the target algorithm;
(b) operates by matrix multiplications, hence natively admits useful gradients; (c) operates
over high-dimensional latent spaces and may be more data efficient.

Such a processor thus seems to be a perfect component in a neural end-to-end pipeline
that goes straight from raw inputs to general outputs. The general procedure for applying
an algorithm A (that admits abstract inputs x̄) to raw inputs x is as follows (see Figure 6):

1. Learn an algorithmic reasoner for A, on generated abstract inputs, x̄, using the encode-
process-decode pipeline. This yields functions f, P, g such that g(P (f(x̄))) ≈ A(x̄).

2. Set up appropriate encoder and decoder neural networks, f̃ and g̃, to process raw
data and produce desirable outputs.20 The encoder should produce embeddings that
correspond to the input dimension of P , while the decoder should operate over input
embeddings that correspond to the output dimension of P .

20. In the case where the desired output is exactly the output of the algorithm, one may set g̃ = g and re-use
the decoder.

37

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

3. Swap out f and g for f̃ and g̃, and learn their parameters by gradient descent on any
differentiable loss function that compares g̃(P (f̃(x))) to ground-truth outputs, y. The
parameters of P should be kept frozen throughout this process.

Therefore, algorithmic reasoning presents a strong approach—through pre-trained pro-
cessors21—to reasoning over natural inputs. The raw encoder function f̃ learns how to
map raw inputs onto the algorithmic input space for P—a task analogous to the human
feature engineer—purely by backpropagation. This construction has already yielded useful
architectures in the space of reinforcement learning, mainly implicit planning.

Value Iteration (VI) represents one of the most prominent model-based planning algo-
rithms guaranteed to converge to an optimal RL policy. However, it requires the underlying
Markov decision process to be discrete, fixed, and completely known—all requirements that
are hardly satisfied in most settings of interest to deep RL. Its appeal had inspired prior
work on designing neural networks that algorithmically align with VI in certain special cases,
namely, in grid-worlds22 VI aligns with convolution. This yields the Value Iteration Network
architecture (Tamar et al., 2016, VIN) that is a CNN-based agent, where certain convolutions
share parameters in a manner that aligns with value iteration. While this construction can
outperform baseline CNN agents in terms of generalization, and its extensions to graph-based
environments using GNNs have been made (Niu et al., 2018), the above strong constraints
on the MDP remained.

In the XLVIN architecture, Deac et al. (2021) surpass these limitations by following
precisely the algorithmic reasoning blueprint above. They pre-train an algorithmic executor
for VI on several randomly generated, known MDPs, then deploy it over a local neighborhood
of the current state, derived using self-supervised learning. CNAP (He et al., 2022) extends
these results even further by allowing planning over a continuous space of actions (enabling
applications in robotics).

The representations produced by this VI executor substantially improve a corresponding
model-free RL baseline, especially regarding data efficiency. Additionally, the model performs
strongly in the low-data regime against ATreeC (Farquhar et al., 2018) that resorts to
predicting scalar values in every node of the inferred local MDP, so that VI-style rules can be
directly applied exactly according to the predictions above. As shown further by Deac et al.
(2021), even over challenging RL environments such as Atari, neurally learned algorithmic
cores prove to be a viable way of applying classical combinatorial algorithms to natural
inputs in a way that can surpass even a hard-coded hybrid pipeline. This is a first-view
account of the potential of neural algorithmic reasoning in the real world and, given that
XLVIN is only one manner in which this blueprint may see the application, we anticipate
that it paves the way for many more practical CO applications.

21. While presenting an earlier version of our work, Max Welling raised a very important point: if we aim to
encode a high-dimensional algorithmic solver within P , why not just set its weights manually to match the
algorithm’s steps? While this would certainly make P trivially extrapolate, it is our belief that it would
be very difficult to manually initialize it in a way that robustly and diversely uses all the dimensions
of its latent input. And if P only sparsely uses its latent input, we would face yet another algorithmic
bottleneck, limiting data efficiency. That being said, deterministic distillation of algorithms into robust
high-dimensional processor networks is a potentially exciting area for future work.

22. Note that this does not ameliorate the requirements listed above. Assuming an environment is a grid-world
places strong assumptions on the underlying MDP.

38

Combinatorial Optimization and Reasoning with GNNs

3.3.4 Summary

In the present subsection, we have focused on constructing GNN architectures that are
capable of executing individual steps of algorithms in a high-dimensional latent space.
Neural algorithmic reasoning draws on a significant body of work on learning-to-execute,
encompassing both a rich history of prior work on differentiable neural computers (Graves
et al., 2014, 2016) and modern developments in modular, algorithmically-aligned (Xu et al.,
2020b, 2021) architectures (Veličković et al., 2020). We showed the potential of neural
algorithmic reasoning for going into the realm of general-purpose machine learning tasks
with algorithmic priors (Deac et al., 2021; He et al., 2022; Veličković et al., 2022b; Numeroso
et al., 2023). With the recent progress in learning generalist algorithmic reasoning agents
(Ibarz et al., 2022), such modules could become viable parts of the next generation of
artificially-intelligent agents.

Many challenges remain, of course—as evidenced by the large body of work investigating
algorithmic alignment only recently, we are yet to understand the fundamentals of what does
it mean to create truly robust neural executors (Bevilacqua et al., 2021; Yehudai et al., 2021;
Dudzik and Veličković, 2022). Beyond this, significant work is needed to properly endow
these models with a notion of thinking time, memory, and similar constructs.

4. Limitations and Research Directions

In the following, we give an overview of works that quantify the limitations of GNNs and
the implications for their use in CO. Moreover, we provide directions for further research.

4.1 Limitations

In the following, we survey known limitations of GNN approaches to CO.

Expressivity of GNNs Recently, different works explored the limitations of GNNs (Xu
et al., 2019; Morris et al., 2019). Specifically, Morris et al. (2019) show that any GNN archi-
tecture’s power to distinguish non-isomorphic graphs is upper-bounded by the 1-dimensional
Weisfeiler-Leman algorithm (Weisfeiler and Leman, 1968), a well-known polynomial-time
heuristic for the graph isomorphism problem. The heuristic is well understood and is known
to have many shortcomings (Arvind et al., 2015), such as being unable to detect cyclic
information or distinguish between non-isomorphic bipartite graphs. These shortcomings
have direct implications for CO applications, as they imply the existence of pairs of non-equal
MIP instances that no GNN architecture can distinguish. This inspired a large body of
research on stronger variants of GNNs (Chen et al., 2019; Morris et al., 2019; Maron et al.,
2019a,b; Morris et al., 2020; Murphy et al., 2019a,b) that provably overcome these limitations.
However, such models typically do not scale to large graphs, making their usage in CO
prohibitive. Alternatively, recent works (Sato et al., 2021; Abboud et al., 2021) indicate that
randomly initialized node features can help boost the expressivity of GNNs, although the
impact of such an approach on generalization remains unclear.

Generalization of GNNs To successfully deploy supervised machine learning models for
CO, understanding generalization (out-of-training-set performance) is crucial. For example,
Garg et al. (2020) prove generalization bounds for a large class of GNNs that depend mainly

39

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

on the maximum degree of the graphs, the number of layers, width, and the norms of the
learned parameter matrices. Importantly, these bounds strongly depend on the sparsity of
the input, which suggests that GNN’s generalization ability might worsen the denser the
graphs get.

Other limitations of GNNs Besides understanding generalization and expressivity in
the context of combinatorial optimization, other GNN issues might also hinder their success
in the realm of CO. For example, GNNs’ node features, under specific assumptions, become
indistinguishable, a phenomenon referred to as over-smoothing (Li et al., 2018a). Moreover,
for GNNs, the bottleneck problem (over-squashing) refers to the observation that large
neighborhoods cannot be accurately represented (Alon and Yahav, 2020). These problems
prevent both methods from capturing global or long-range information, which is important
for several CO problems, e.g., shortest-path applications. While there are some empirical
studies (Dwivedi et al., 2020; You et al., 2020) investigating how different architectural design
choices, e.g., skip connections or layer norm, circumvent the above-mentioned problems, a
theoretical understanding is still lacking.

Approximation and computational power As explained in Section 3.1, GNNs are
often designed as (part of) a direct heuristic for CO tasks. Therefore, it is natural to
ask what is the best approximation ratio achievable on various problems. By transferring
results from distributed local algorithms (Suomela, 2013), Sato et al. (2019) show that
the best approximation ratio achievable by a large class of GNNs on the minimum vertex
cover problem is 2, which is suboptimal (Karakostas, 2005). They also show analogous
suboptimality results regarding the minimum dominated set problem and the maximum
matching problem. Regarding computability, Loukas (2020) proves that some GNNs can be
too small to compute some properties of graphs, such as finding their diameter or a minimum
spanning tree, and gives minimum depth and width requirements for such tasks.

Large inference cost In some machine learning applications for CO, the inference might
be repeated thousands of times. If the inference is time-consuming, the overall wall-clock
time of a solver or heuristic may not be reduced, even if the total number of iterations is
smaller. A typical example is repeated decision-making within a CO solver, e.g., branching
or bounding. In this common scenario, making worse decisions fast might lead to better
overall solving times than good decisions slowly. The low-degree polynomial complexity
of GNN inference might be insufficient to be competitive against simpler models in this
setting. Gupta et al. (2020) suggests a hybrid approach in one of these scenarios by running
a full-fledged GNN once and using a suitably trained MLP to continue making decisions
using the embedding computed by the GNN with additional features. Another option is
to limit the number of times the GNN is invoked inside the solver, for instance, when the
decisions are the most critical (Cappart et al., 2022).

Data limitations in CO Making the common assumption that the complexity classes NP
and co-NP are not equal, Yehuda et al. (2020) show that any polynomial-time sample generator
for NP-hard problems samples from an easier sub-problem. Under some circumstances, these
sampled problems may be trivially classifiable; for example, a classifier only checks the
value of one input feature. This indicates that the observed performance metrics of current
supervised approaches for intractable CO tasks may be over-inflated. However, it remains

40

Combinatorial Optimization and Reasoning with GNNs

unclear how these results translate into practice, as real-world CO problems are rarely
worst-case. Solving NP-hard problems for particular (real-world) distribution can be much
easier than constructed, hard worst-case instances. Many important CO problems can be
solved in polynomial time when considering some constraints on the input graphs. For
example, developing a polynomial time algorithm is often easy if the considered graphs are
trees or tree-like. Furthermore, it is known that the maximum independent set and the
maximum clique problems can be solved in polynomial time for perfect graphs even though
the problems are NP-hard.

Achieving state-of-the-art performances While progress has been made in the past
few years with GNN approaches for CO, the state-of-the-art is still mainly dominated by
specialized solvers and heuristics. As a concrete example, Angelini and Ricci-Tersenghi (2022)
highlighted that a simple, linear-time, greedy heuristic outperforms modern GNNs (Schuetz
et al., 2022). See also the discussion in Section 3.1.2 for the maximum independent set
problem. Another example, emphasized by Yolcu and Póczos (2019), is that WalkSAT, a
traditional local search algorithm introduced in the nineties (Selman et al., 1994), matches
the performance of a GNN trained to perform a stochastic local search through reinforcement
learning. Yao et al. (2019); Karalias and Loukas (2020) have made similar observations.
Finally, most of the problems currently tackled by GNN approaches in the literature are
generally much easier than what can be solved by traditional approaches. For example, in
the case of the traveling salesperson problem, Joshi et al. (2022) highlighted that GNNs can
obtain promising results for trivially small instances up to a few hundred cities. However,
the well-known Lin-Kernighan-Helsgaun algorithm (Helsgaun, 2000; Taillard and Helsgaun,
2019) finds solutions close to optimality to instances of 107 cities (with a duality gap of
0.588%, according to the Held-Karp lower bound23). That being said, there is evidence that
good integration has already reached viable results. For example, this is the case of the
GNN use for branching (Gasse et al., 2019) as well as for cut selection (Paulus et al., 2022),
i.e., ML-augmented MIP tasks. However, in the same spirit, competitive results have been
obtained in the enhancement of primal heuristics for MIP (Liu et al., 2022), or in physics
simulations (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020).

4.2 Proposed New Directions

To stimulate further research, we propose the following key challenges and extensions.

Understanding when GNNs speed up CO solvers As outlined in the previous
subsection, current GNN architectures might miss crucial structural patterns in the data.
At the same time, more expressive approaches do not scale to large-scale inputs. Moreover,
decisions inside CO solvers, e.g., a branching decision, are often driven by simple heuristics
that are cheap to compute. Although negligible when called only a few times, resorting to a
GNN inside a solver for such decisions is time-consuming compared to a simple heuristic.
Furthermore, internal computations inside a solver can hardly be parallelized. Hence, devising
GNN architectures that scale and simultaneously capture essential patterns remains an
open challenge. However, increased expressiveness might negatively impact generalization.
Nowadays, most supervised approaches do not give meaningful predictive performance when

23. This specific value has been reported in Table 4 (instance E10M.0) of Helsgaun (2009).

41

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

evaluated on out-of-training-distribution samples. Even evaluating trained models on slightly
larger graph instances often leads to a significant drop in performance. Hence, understanding
the trade-offs among these three aspects remains an open challenge for deploying GNNs on
CO tasks.

Programmatic primitives Existing work in algorithmic reasoning has produced GNN
architectures capable of fitting certain classes of iterative algorithms and data structures.
That being said, there exist many kinds of reasoning primitives that are of high interest
to CO but are still not explicitly treated by this emerging area. As only a few examples,
we highlight string algorithms, which are very common in bioinformatics and explicitly
support recursive primitives for which any existing GNN executor would eventually run out
of representational capacity.

Perceptive CO Significant strides have already been made to use GNNs to strengthen
abstractified CO pipelines. Further efforts are needed to support combinatorial reasoning
over real-world inputs, as most CO problems are ultimately designed as proxies for solving
them. Our algorithmic reasoning section hints at a few possible blueprints for supporting
this, but they are still in the early stages. One issue still untackled by prior research is how to
meaningfully extract variables for the CO optimizer when they are not trivially given. While
natural inputs pose several such challenges for the CO pipeline, it is equally important to
keep in mind that “nature is not an adversary”—even if the underlying problem is NP-hard,
the instances provided in practice may well be effectively solvable with fast heuristics, or, in
some cases, exactly.

Building a generic implementation framework for GNNs for CO Although im-
plementation frameworks for GNNs have now emerged, it is still cumbersome to integrate
GNN and machine learning into state-of-the-art solvers for practitioners. Hence, developing
a kind of modeling language for integrating ML methods that abstract from technical details
remains an open challenge and is key for adopting machine learning and GNN approaches in
the real world. Some of the early attempts are discussed in the next section.

5. Implementation Frameworks

Nowadays, several well-documented, open-source libraries for implementing custom GNN
architectures provide a large set of readily available models from the literature. Notable
examples are PyTorch Geometric (Fey and Lenssen, 2019) and Deep Graph Library (Wang
et al., 2019). Conversely, libraries to simplify the usage of machine learning in CO have also
been developed. OR-Gym (Hubbs et al., 2020) and OpenGraphGym (Zheng et al., 2020) are
libraries designed to facilitate the learning of heuristics for CO problems in a similar interface
to the popular OpenAI Gym library (Brockman et al., 2016). In contrast, MIPLearn (Xavier
and Qiu, 2020) is a library that facilitates the learning of configuration parameters for CO
solvers. Ecole (Prouvost et al., 2020) offers a general, extensible framework for implementing
and evaluating machine learning-enhanced CO. It is also based on OpenAI Gym, and it
exposes several essential decision tasks arising in general-purpose CO solvers—such as
SCIP (Gamrath et al., 2020)—as control problems over MDPs. SeaPearl (Chalumeau et al.,
2021) is a constraint programming solver guided by reinforcement learning that uses GNNs
for representing training instances. Finally, research in algorithmic reasoning has recently

42

Combinatorial Optimization and Reasoning with GNNs

also received a supporting benchmark dataset, CLRS-30 (Veličković et al., 2022a). In this
benchmark, graph neural networks execute thirty diverse algorithms outlined in Cormen
et al. (2009). Implementations of all relevant data generation pipelines and several popular
models in the literature are provided within CLRS, making it a potentially useful starting
point for research in the area.

6. Conclusions

We gave an overview of the recent applications of GNNs for CO. To that end, we briefly
introduced CO, the different machine learning regimes, and GNNs. Most importantly, we
surveyed primal approaches that aim at finding a heuristic or optimal solution with the help
of GNNs. We then presented recent dual approaches, i.e., those that use GNNs to facilitate
proving that a given solution is optimal. Moreover, we gave an overview of algorithmic
reasoning, i.e., data-driven approaches aiming to overcome classical algorithms’ limitations.
We discussed shortcomings and research directions regarding applying GNNs to CO. Finally,
we identified critical challenges to stimulate future research and advance the emerging
field. We hope that our survey presents a useful handbook of graph representation learning
methods, perspectives, and limitations for CO, operations research, and machine learning
practitioners alike and that its insights and principles will help spur novel research results
and future avenues.

Acknowledgements and Disclosure of Funding

Christopher Morris is partially funded by a DFG Emmy Noether grant (468502433) and
RWTH Junior Principal Investigator Fellowship under Germany’s Excellence Strategy. We
thank anonymous referees for their useful comments and helpful suggestions.

References

R. Abboud, I. Ceylan, and T. Lukasiewicz. Learning to reason: Leveraging neural networks
for approximate dnf counting. In AAAI Conference on Artificial Intelligence, pages
3097–3104, 2020.

R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph
neural networks with random node initialization. In International Joint Conference on
Artificial Intelligence, pages 2112–2118, 2021.

K. Abe, I. Sato, and M. Sugiyama. Solving NP-hard problems on graphs by reinforcement
learning without domain knowledge. Simulation, 1:1–1, 2019.

S. Ahn, Y. Seo, and J. Shin. Learning what to defer for maximum independent sets. In
International Conference on Machine Learning, pages 134–144, 2020.

U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical
implications. arXiv preprint, abs/2006.05205, 2020.

S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An unsupervised
differentiable approach. In International Conference on Learning Representations, 2018.

43

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

M. C. Angelini and F. Ricci-Tersenghi. Cracking nuts with a sledgehammer: when mod-
ern graph neural networks do worse than classical greedy algorithms. arXiv preprint
arXiv:2206.13211, 2022.

S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric
problems. In Conference on Foundations of Computer Science, pages 2–11, 1996.

V. Arvind, J. Köbler, G. Rattan, and O. Verbitsky. On the power of color refinement. In
International Symposium on Fundamentals of Computation Theory, pages 339–350, 2015.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. Complexity and approximation: Combinatorial optimization problems and their
approximability properties. Springer Science & Business Media, 2012.

P. Awasthi, A. Das, and S. Gollapudi. Beyond GNNs: A sample efficient architecture for
graph problems. In AAAI Conference on Artificial Intelligence, 2022.

Y. Bai, H. Ding, K. Gu, Y. Sun, and W. Wang. Learning-based efficient graph similarity
computation via multi-scale convolutional set matching. In AAAI Conference on Artificial
Intelligence, pages 3219–3226, 2020.

A. Bansal, A. Schwarzschild, E. Borgnia, Z. Emam, F. Huang, M. Goldblum, and T. Gold-
stein. End-to-end algorithm synthesis with recurrent networks: Extrapolation without
overthinking. In Advances in Neural Information Processing Systems, 2022.

G. Behnke, D. Höller, and S. Biundo. totsat-totally-ordered hierarchical planning through
sat. In AAAI Conference on Artificial Intelligence, 2018.

N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. 2005.

R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.

R. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning. In International Conference on Learning Representations,
2017.

V. E. Beneš et al. Mathematical theory of connecting networks and telephone traffic. Academic
press, 1965.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In International
Conference on Machine Learning, pages 41–48, 2009.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: A
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

D. Bergman, A. A. Cire, W.-J. Van Hoeve, and J. Hooker. Decision diagrams for optimization,
volume 1. Springer, 2016.

44

Combinatorial Optimization and Reasoning with GNNs

D. Bertsimas and J. Tsitsiklis. Introduction to linear optimization. Athena Scientific, 1997.

L. Beurer-Kellner, M. Vechev, L. Vanbever, and P. Veličković. Learning to configure computer
networks with neural algorithmic reasoning. In Advances in Neural Information Processing
Systems, 2022.

B. Bevilacqua, Y. Zhou, and B. Ribeiro. Size-invariant graph representations for graph
classification extrapolations. In International Conference on Machine Learning, pages
837–851, 2021.

C. Blundell, L. Buesing, A. Davies, P. Veličković, and G. Williamson. Towards combinatorial
invariance for Kazhdan-Lusztig polynomials. Representation Theory, 2022.

M. Böther, O. Kißig, M. Taraz, S. Cohen, K. Seidel, and T. Friedrich. What’s wrong with deep
learning in tree search for combinatorial optimization. arXiv preprint arXiv:2201.10494,
2022.

I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics. Information
sciences, 237:82–117, 2013.

X. Bresson and T. Laurent. Residual gated graph convnets. arXiv preprint, abs/1711.07553,
2017.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. CoRR, abs/1606.01540, 2016.

C. Brouard, S. de Givry, and T. Schiex. Pushing data into cp models using graphical model
learning and solving. In International Conference on Principles and Practice of Constraint
Programming, pages 811–827, 2020.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally
connected networks on graphs. In International Conference on Learning Representation,
2014.

C. Cameron, R. Chen, J. S. Hartford, and K. Leyton-Brown. Predicting propositional
satisfiability via end-to-end learning. In AAAI Conference on Artificial Intelligence, pages
3324–3331, 2020.

Q. Cappart, E. Goutierre, D. Bergman, and L.-M. Rousseau. Improving optimization bounds
using machine learning: Decision diagrams meet deep reinforcement learning. In AAAI
Conference on Artificial Intelligence, pages 1443–1451, 2019.

Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. A. Cire. Combining
reinforcement learning and constraint programming for combinatorial optimization. In
AAAI Conference on Artificial Intelligence, pages 3677–3687, 2021.

45

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

Q. Cappart, D. Bergman, L.-M. Rousseau, I. Prémont-Schwarz, and A. Parjadis. Improv-
ing variable orderings of approximate decision diagrams using reinforcement learning.
INFORMS Journal on Computing, 2022.

F. Chalumeau, I. Coulon, Q. Cappart, and L.-M. Rousseau. SeaPearl: A constraint program-
ming solver guided by reinforcement learning. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research, pages 392–409,
2021.

I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. Machine learning on graphs:
A model and comprehensive taxonomy. arXiv preprint, abs/2005.03675, 2020.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pages
1597–1607, 2020.

Z. Chen, S. Villar, L. Chen, and J. Bruna. On the equivalence between graph isomorphism
testing and function approximation with GNNs. In Advances in Neural Information
Processing Systems, pages 15868–15876, 2019.

C. Chi, A. Aboussalah, E. Khalil, J. Wang, and Z. Sherkat-Masoumi. A deep reinforcement
learning framework for column generation. Advances in Neural Information Processing
Systems, 35:9633–9644, 2022.

E. Clarke, M. Talupur, H. Veith, and D. Wang. Sat based predicate abstraction for hardware
verification. In International Conference on Theory and Applications of Satisfiability
Testing, pages 78–92, 2003.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, pages 151–158, 1971.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2009.

G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković. Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems, pages
13260–13271, 2020.

R. Csordas and J. Schmidhuber. Improving differentiable neural computers through memory
masking, de-allocation, and link distribution sharpness control. International Conference
on Learning Representations, 2019.

H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for
structured data. In International Conference on Machine Learning, pages 2702–2711,
2016.

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, pages
6348–6358, 2017.

46

Combinatorial Optimization and Reasoning with GNNs

A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn,
P. Battaglia, C. Blundell, A. Juhász, M. Lackenby, G. Williamson, D. Hassabis, and
P. Kohli. Advancing mathematics by guiding human intuition with ai. Nature, 600(7887):
70–74, 2021.

L. de Moura and N. Bjørner. Z3: An efficient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

A. Deac, P. Bacon, and J. Tang. Graph neural induction of value iteration. arXiv preprint,
abs/2009.12604, 2020.

A. Deac, P. Veličković, O. Milinkovic, P.-L. Bacon, J. Tang, and M. Nikolic. Neural algorithmic
reasoners are implicit planners. Advances in Neural Information Processing Systems, 2021.

M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pages 3844–3852, 2016.

D. Delahaye, S. Chaimatanan, and M. Mongeau. Simulated annealing: From basics to
applications. In Handbook of metaheuristics, pages 1–35. Springer, 2019.

M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau. Learning heuristics
for the TSP by policy gradient. In International conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 170–181, 2018.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

J.-Y. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song. Accelerating primal
solution findings for mixed integer programs based on solution prediction. In AAAI
Conference on Artificial Intelligence, 2020.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power
estimation. In Soviet Math. Doklady, volume 11, pages 1277–1280, 1970.

A. Draguns, E. Ozoliņš, A. Šostaks, M. Apinis, and K. Freivalds. Residual shuffle-exchange
networks for fast processing of long sequences. In AAAI Conference on Artificial Intelli-
gence, pages 7245–7253, 2021.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38(1):86–124, 1989.

M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with split deliveries. Discrete Applied
Mathematics, 50(3):239–254, 1994.

I. Drori, A. Kharkar, W. R. Sickinger, B. Kates, Q. Ma, S. Ge, E. Dolev, B. Dietrich, D. P.
Williamson, and M. Udell. Learning to solve combinatorial optimization problems on
real-world graphs in linear time. In IEEE International Conference on Machine Learning
and Applications, pages 19–24, 2020.

47

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

H. Duan, P. Vaezipoor, M. B. Paulus, Y. Ruan, and C. Maddison. Augment with care:
Contrastive learning for combinatorial problems. In International Conference on Machine
Learning, pages 5627–5642, 2022.

A. J. Dudzik and P. Veličković. Graph neural networks are dynamic programmers. In
Advances in Neural Information Processing Systems, 2022.

R. Durbin and D. Willshaw. An analogue approach to the travelling salesman problem using
an elastic net method. Nature, 326(6114):689–691, 1987.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs for learning molecular fingerprints.
In Advances in Neural Information Processing Systems, pages 2224–2232, 2015.

V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking graph
neural networks. arXiv preprint, abs/2003.00982, 2020.

K. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264, 1972.

M. Etheve, Z. Alès, C. Bissuel, O. Juan, and S. Kedad-Sidhoum. Reinforcement learning for
variable selection in a branch and bound algorithm. In CPAIOR, 2020.

G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson. TreeQN and ATreeC: Differentiable
tree-structured models for deep reinforcement learning. In International Conference on
Learning Representations, 2018.

P. Festa. A brief introduction to exact, approximation, and heuristic algorithms for solving
hard combinatorial optimization problems. In International Conference on Transparent
Optical Networks, pages 1–20, 2014.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric.
arXiv preprint, abs/1903.02428, 2019.

M. Fey, J. E. Lenssen, C. Morris, J. Masci, and N. M. Kriege. Deep graph matching consensus.
In International Conference on Learning Representations, 2020.

M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1-3):23–47, 2003.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton University Press, 2015.

A. François, Q. Cappart, and L.-M. Rousseau. How to evaluate machine learning approaches
for combinatorial optimization: Application to the travelling salesman problem. arXiv
preprint, abs/1909.13121, 2019.

K. Freivalds, E. Ozoliņš, and Šostaks. Neural shuffle-exchange networks-sequence processing in
O(n log n) time. In Advances in Neural Information Processing Systems, pages 6626–6637,
2019.

48

Combinatorial Optimization and Reasoning with GNNs

A. Galler, B and M. J. Fisher. An improved equivalence algorithm. Communications of the
ACM, 7(5):301–303, 1964.

G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. Le Bodic, S. J.
Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E. Pfetsch, F. Schlösser,
F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig.
The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin, March 2020.

V. Ganesh and M. Y. Vardi. On the unreasonable effectiveness of sat solvers, 2020.

V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph
neural networks. In International Conference on Machine Learning, pages 3419–3430,
2020.

M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization
with graph convolutional neural networks. In Advances in Neural Information Processing
Systems, pages 15554–15566, 2019.

M. Gasse, S. Bowly, Q. Cappart, J. Charfreitag, L. Charlin, D. Chételat, A. Chmiela, J. Du-
mouchelle, A. Gleixner, A. M. Kazachkov, E. Khalil, P. Lichocki, A. Lodi, M. Lubin, C. J.
Maddison, C. Morris, D. J. Papageorgiou, A. Parjadis, S. Pokutta, A. Prouvost, L. Scav-
uzzo, G. Zarpellon, L. Yang, S. Lai, A. Wang, X. Luo, X. Zhou, H. Huang, S. Shao, Y. Zhu,
D. Zhang, T. Quan, Z. Cao, Y. Xu, Z. Huang, S. Zhou, B. Chen, M. He, H. Hao, Z. Zhang,
Z. An, and M. Kun. The machine learning for combinatorial optimization competition
(ml4co): Results and insights. In NeurIPS 2021 Competitions and Demonstrations Track,
pages 220–231, 2022.

D. Georgiev and P. Lió. Neural bipartite matching. arXiv preprint, abs/2005.11304, 2020.

D. Georgiev, P. Barbiero, D. Kazhdan, P. Veličković, and P. Liò. Algorithmic concept-based
explainable reasoning. In AAAI Conference on Artificial Intelligence, pages 6685–6693,
2022.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International Conference on Machine Learning, 2017.

A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, P. M.
Christophel, K. Jarck, T. Koch, J. Linderoth, M. Lübbecke, H. D. Mittelmann, D. Ozyurt,
T. K. Ralphs, D. Salvagnin, and Y. Shinano. MIPLIB 2017: Data-Driven Compilation of
the 6th Mixed-Integer Programming Library. Mathematical Programming Computation,
2020.

F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimization, pages
2093–2229. Springer, 1998.

F. W. Glover and G. A. Kochenberger. Handbook of metaheuristics, volume 57. Springer
Science & Business Media, 2006.

49

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

S. Gold, A. Rangarajan, et al. Softmax to softassign: Neural network algorithms for
combinatorial optimization. Journal of Artificial Neural Networks, 2(4):381–399, 1996.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35(4):921–940, 1988.

A. Graves, G. Wayne, and I. Danihelka. Neural Turing machines. arXiv preprint,
abs/1410.5401, 2014.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska,
S. Gómez Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. Badia Puigdomènech,
K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom,
K. Kavukcuoglu, and D. Hassabis. Hybrid computing using a neural network with dynamic
external memory. Nature, 538(7626):471–476, 2016.

A. Gupta, M. K. Ganai, and C. Wang. SAT-based verification methods and applications
in hardware verification. In International School on Formal Methods for the Design of
Computer, Communication and Software Systems, pages 108–143, 2006.

P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio. Hybrid models for
learning to branch. Advances in Neural Information Processing Systems, 33:18087–18097,
2020.

A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice learning: Learning to produce
multiple structured outputs. In Advances in Neural Information Processing Systems, pages
1808–1816, 2012.

W. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Embedding logical queries
on knowledge graphs. Advances in neural information processing systems, 31, 2018.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pages 1025–1035, 2017.

J. B. Hamrick, K. R. Allen, V. Bapst, T. Zhu, K. R. McKee, J. B. Tenenbaum, and P. W.
Battaglia. Relational inductive bias for physical construction in humans and machines. In
Annual Meeting of the Cognitive Science Society, 2018.

P. Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez. Variable neighborhood search.
In Handbook of metaheuristics, pages 57–97. Springer, 2019.

T. E. Harris and F. S. Ross. Fundamentals of a method for evaluating rail net capacities.
Technical report, RAND Coperation, Santa Monica, CA, 1955.

Y. He, P. Veličković, P. Lio, and A. Deac. Continuous neural algorithmic planners. In The
First Learning on Graphs Conference, 2022. URL https://openreview.net/forum?id=

60avttW0Mv.

K. Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

50

https://openreview.net/forum?id=60avttW0Mv
https://openreview.net/forum?id=60avttW0Mv

Combinatorial Optimization and Reasoning with GNNs

K. Helsgaun. General k-opt submoves for the lin–kernighan tsp heuristic. Mathematical
Programming Computation, 1:119–163, 2009.

J. J. Hopfield and D. W. Tank. “Neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

C. D. Hubbs, H. D. Perez, O. Sarwar, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick.
OR-Gym: A reinforcement learning library for operations research problems. arXiv
preprint, abs/2008.06319, 2020.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys, 50(2):1–35, 2017.

B. Ibarz, V. Kurin, G. Papamakarios, K. Nikiforou, M. Bennani, R. Csordás, A. J. Dudzik,
M. Bošnjak, A. Vitvitskyi, Y. Rubanova, A. Deac, B. Bevilacqua, Y. Ganin, C. Blundell,
and P. Veličković. A generalist neural algorithmic learner. In The First Learning on
Graphs Conference, 2022.

C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network technique
for the travelling salesman problem. arXiv preprint, abs/1906.01227, 2019.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent. Learning the travelling salesperson
problem requires rethinking generalization. Constraints, pages 1–29, 2022.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al. In-datacenter performance analysis of a tensor processing
unit. In Annual International Symposium on Computer Architecture, pages 1–12, 2017.

L. Kaiser and I. Sutskever. Neural GPUs learn algorithms. arXiv preprint, abs/1511.08228,
2015.

G. Karakostas. A better approximation ratio for the vertex cover problem. In International
Colloquium on Automata, Languages, and Programming, pages 1043–1050. Springer, 2005.

N. Karalias and A. Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In Advances in Neural Information Processing
Systems, 2020.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

E. B. Khalil, C. Morris, and A. Lodi. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. In AAAI Conference on Artificial Intelligence, 2022.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representation, 2017.

D. B. Kireev. Chemnet: A novel neural network based method for graph/property mapping.
Journal of Chemical Information and Computer Sciences, 35(2):175–180, 1995.

51

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and T. Pock. End-to-end training of
hybrid cnn-crf models for stereo. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2339–2348, 2017.

W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 5th
edition, 2012.

J. Kotary, F. Fioretto, P. Van Hentenryck, and B. Wilder. End-to-end constrained optimiza-
tion learning: A survey. In International Joint Conference on Artificial Intelligence, pages
4475–4482, 8 2021.

O. Kramer. Genetic algorithms. In Genetic algorithm essentials, pages 11–19. Springer,
2017.

K. Kurach, M. Andrychowicz, and I. Sutskever. Neural random-access machines. arXiv
preprint, abs/1511.06392, 2015.

V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro. Can Q-learning with graph networks learn
a generalizable branching heuristic for a SAT solver? In Advances in Neural Information
Processing Systems, 2020.

A. G. Labassi, D. Chételat, and A. Lodi. Learning to compare nodes in branch and bound
with graph neural networks. In Advances in Neural Information Processing Systems,
volume 35, pages 32000–32010, 2022.

M. Laguna. Tabu search. In Handbook of heuristics, pages 741–758. Springer, 2018.

L. C. Lamb, A. S. d’Avila Garcez, M. Gori, M. O. R. Prates, P. H. C. Avelar, and M. Y.
Vardi. Graph neural networks meet neural-symbolic computing: A survey and perspective.
In International Joint Conference on Artificial Intelligence, pages 4877–4884, 2020.

A. Land and A. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28:497–520, 1960.

G. Lederman, M. N. Rabe, and S. A. Seshia. Learning heuristics for automated reasoning
through deep reinforcement learning. In International Conference on Learning Represen-
tations, 2020.

H. Lemos, M. Prates, P. Avelar, and L. Lamb. Graph colouring meets deep learning:
Effective graph neural network models for combinatorial problems. In IEEE International
Conference on Tools with Artificial Intelligence, pages 879–885, 2019.

Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In AAAI Conference on Artificial Intelligence, pages 3538–3545,
2018a.

52

Combinatorial Optimization and Reasoning with GNNs

Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching networks for learning the
similarity of graph structured objects. In International Conference on Machine Learning,
pages 3835–3845, 2019.

Y. Li, F. Gimeno, P. Kohli, and O. Vinyals. Strong generalization and efficiency in neural
programs. arXiv preprint, abs/2007.03629, 2020.

Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Advances in Neural Information Processing Systems,
pages 537–546, 2018b.

Z. Li, Q. Chen, and V. Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in Neural Information Processing Systems, 31,
2018c.

D. Liu, A. Lodi, andM. Tanneau. Learning chordal extensions. Journal of Global Optimization,
81(1):3–22, 2021.

D. Liu, M. Fischetti, and A. Lodi. Learning to search in local branching. In AAAI Conference
on Artificial Intelligence, pages 3796–3803, 2022.

A. Lodi. Mixed integer programming computation. In 50 years of integer programming
1958-2008, pages 619–645. Springer, Berlin, Heidelberg, 2010.

A. Lodi. The heuristic (dark) side of MIP solvers. In Hybrid metaheuristics, pages 273–284.
Springer, 2013.

A. Lodi and G. Zarpellon. On learning and branching: A survey. TOP: An Official Journal
of the Spanish Society of Statistics and Operations Research, 25(2):207–236, July 2017.

A. Loukas. What graph neural networks cannot learn: Depth vs width. In International
Conference on Learning Representations, 2020.

K. Lu and M. P. Kumar. Neural network branching for neural network verification. In
International Conference on Learning Representations, 2020.

Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori. Combinatorial optimization by graph pointer
networks and hierarchical reinforcement learning. arXiv preprint, abs/1911.04936, 2019.

A. Madsen and A. R. Johansen. Neural arithmetic units. In International Conference on
Learning Representations, 2020.

F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy, and R. Treinen.
Managing the complexity of large free and open source package-based software distributions.
In IEEE/ACM International Conference on Automated Software Engineering, pages 199–
208, 2006.

J. Mandi and T. Guns. Interior point solving for LP-based prediction+optimisation. In
Advances in Neural Information Processing Systems, 2020.

53

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks.
In Advances in Neural Information Processing Systems, pages 2153–2164, 2019a.

H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
Handbook of Satisfiability, pages 133–182. 2021.

N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

C. Merkwirth and T. Lengauer. Automatic generation of complementary descriptors with
molecular graph networks. Journal of Chemical Information and Modeling, 45(5):1159–1168,
2005.

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson,
O. Pathak, A. Nazi, et al. A graph placement methodology for fast chip design. Nature,
594(7862):207–212, 2021.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097–1100, 1997.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT
Press, 2012.

F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric
deep learning on graphs and manifolds using mixture model CNNs. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 5425–5434, 2017.

M. Morabit, G. Desaulniers, and A. Lodi. Machine-learning–based column selection for
column generation. Transportation Science, 55(4):815–831, 2021.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and Leman go neural: Higher-order graph neural networks. In Conference on
Artificial Intelligence, pages 4602–4609, 2019.

C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and Leman go sparse: Towards higher-order
graph embeddings. In Advances in Neural Information Processing Systems, 2020.

C. Morris, M. Fey, and N. M. Kriege. The power of the Weisfeiler-Leman algorithm for
machine learning with graphs. In International Joint Conference on Artificial Intelligence,
pages 4543–4550, 2021.

R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro. Relational pooling for graph
representations. In International Conference on Machine Learning, pages 4663–4673,
2019a.

R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro. Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs. In International Conference on
Learning Representations, 2019b.

54

Combinatorial Optimization and Reasoning with GNNs

V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue,
N. Sonnerat, C. Tjandraatmadja, P. Wang, et al. Solving mixed integer programs using
neural networks. arXiv preprint, abs/2012.13349, 2020.

M. Nazari, A. Oroojlooy, M. Takáč, and L. V. Snyder. Reinforcement learning for solving the
vehicle routing problem. In International Conference on Neural Information Processing
Systems, pages 9861–9871, 2018.

M. Niepert, P. Minervini, and L. Franceschi. Implicit MLE: backpropagating through discrete
exponential family distributions. Advances in Neural Information Processing Systems,
pages 14567–14579, 2021.

S. Niu, S. Chen, H. Guo, C. Targonski, M. Smith, and J. Kovačević. Generalized value
iteration networks: Life beyond lattices. In AAAI Conference on Artificial Intelligence,
2018.

A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna. Revised note on learning quadratic
assignment with graph neural networks. In IEEE Data Science Workshop, pages 1–5,
2018.

D. Numeroso, D. Bacciu, and P. Veličković. Dual algorithmic reasoning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.

net/forum?id=hhvkdRdWt1F.

E. Ong and P. Veličković. Learnable commutative monoids for graph neural networks. In
The First Learning on Graphs Conference, 2022.

E. Ozolins, K. Freivalds, A. Draguns, E. Gaile, R. Zakovskis, and S. Kozlovics. Goal-aware
neural SAT solver. In International Joint Conference on Neural Networks, pages 1–8,
2022.

R. Palm, U. Paquet, and O. Winther. Recurrent relational networks. Advances in Neural
Information Processing Systems, 31, 2018.

A. Parjadis, Q. Cappart, L.-M. Rousseau, and D. Bergman. Improving branch-and-bound
using decision diagrams and reinforcement learning. In International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 446–455, 2021.

M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut by
looking ahead: Cutting plane selection via imitation learning. In International Conference
on Machine Learning, pages 17584–17600, 2022.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations,
2020.

A. S. Polydoros and L. Nalpantidis. Survey of model-based reinforcement learning: Applica-
tions on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.

55

https://openreview.net/forum?id=hhvkdRdWt1F
https://openreview.net/forum?id=hhvkdRdWt1F

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

J.-Y. Potvin and M. Gendreau. Handbook of Metaheuristics. Springer, 2018.

M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in sat-based formal
verification. International Journal on Software Tools for Technology Transfer, 7(2):156–173,
2005.

M. Prates, P. H. C. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi. Learning to solve
np-complete problems: A graph neural network for decision tsp. In AAAI Conference on
Artificial Intelligence, pages 4731–4738, 2019.

R. C. Prim. Shortest connection networks and some generalizations. The Bell System
Technical Journal, 36(6):1389–1401, 1957.

A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, D. Wierstra, and
C. Blundell. Neural episodic control. In International Conference on Machine Learning,
pages 2827–2836, 2017.

A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole: A
gym-like library for machine learning in combinatorial optimization solvers. arXiv preprint,
abs/2011.06069, 2020.

J. Ramanujam and P. Sadayappan. Mapping combinatorial optimization problems onto
neural networks. Information sciences, 82(3-4):239–255, 1995.

S. Reed and N. De Freitas. Neural programmer-interpreters. arXiv preprint, abs/1511.06279,
2015.

J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In National Conference
on Artificial Intelligence, pages 362–367, 1994.

J.-C. Régin. Global constraints and filtering algorithms. In Constraint and Integer Program-
ming, pages 89–135. Springer, 2004.

H. Ren, W. Hu, and J. Leskovec. Query2box: Reasoning over knowledge graphs in vector
space using box embeddings. In International Conference on Learning Representations,
2019.

O. Richter and R. Wattenhofer. Normalized attention without probability cage. arXiv
preprint, abs/2005.09561, 2020.

S. Ross. Interactive Learning for Sequential Decisions and Predictions. PhD thesis, Carnegie
Mellon University, 2013.

F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier, 2006.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning
to simulate complex physics with graph networks. In International Conference on Machine
Learning, pages 8459–8468, 2020.

56

Combinatorial Optimization and Reasoning with GNNs

A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lill-
icrap. A simple neural network module for relational reasoning. In Advances in Neural
Information Processing Systems, pages 4967–4976, 2017.

A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski, T. Weber, D. Wierstra,
O. Vinyals, R. Pascanu, and T. Lillicrap. Relational recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 7299–7310, 2018.

R. Sato, M. Yamada, and H. Kashima. Approximation ratios of graph neural networks for
combinatorial problems. In Advances in Neural Information Processing Systems, pages
4083–4092, 2019.

R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks.
In SIAM International Conference on Data Mining, pages 333–341. SIAM, 2021.

M. W. P. Savelsbergh. Local search in routing problems with time windows. Annals of
Operations research, 4(1):285–305, 1985.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

L. Scavuzzo, F. Chen, D. Chételat, M. Gasse, A. Lodi, N. Yorke-Smith, and K. Aardal.
Learning to branch with tree mdps. In Advances in Neural Information Processing Systems,
volume 35, pages 18514–18526, 2022.

M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

A. Schwarzschild, E. Borgnia, A. Gupta, F. Huang, U. Vishkin,M. Goldblum, and T. Goldstein.
Can you learn an algorithm? generalizing from easy to hard problems with recurrent
networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021.

B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In AAAI
Conference on Artifical Intelligence, volume 94, pages 337–343, 1994.

D. Selsam and N. Bjørner. Guiding high-performance sat solvers with unsat-core predictions.
In M. Janota and I. Lynce, editors, Theory and Applications of Satisfiability Testing, pages
336–353, 2019.

D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT solver
from single-bit supervision. In International Conference on Learning Representations,
2019.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

M. Shanahan, K. Nikiforou, A. Creswell, C. Kaplanis, D. G. T. Barrett, and M. Garnelo. An
explicitly relational neural network architecture. In International Conference on Machine
Learning, pages 8593–8603, 2020.

57

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of Go without human knowledge.
Nature, 550(7676):354–359, 2017.

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of computer
and system sciences, 26(3):362–391, 1983.

K. A. Smith. Neural networks for combinatorial optimization: a review of more than a
decade of research. INFORMS Journal on Computing, 11(1):15–34, 1999.

W. Song, Z. Cao, J. Zhang, C. Xu, and A. Lim. Learning variable ordering heuristics for
solving constraint satisfaction problems. Engineering Applications of Artificial Intelligence,
109:104603, 2022.

A. Sperduti and A. Starita. Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, 8(2):714–35, 1997.

H. Strathmann, M. Barekatain, C. Blundell, and P. Veličković. Persistent message passing.
arXiv preprint, abs/2103.01043, 2021.

H. Sun, W. Chen, H. Li, and L. Song. Improving learning to branch via reinforcement
learning. In Workshop on Learning Meets Combinatorial Algorithms, NeurIPS, 2020a.

L. Sun, D. Gerault, A. Benamira, and T. Peyrin. Neurogift: Using a machine learning based
sat solver for cryptanalysis. In International Symposium on Cyber Security Cryptography
and Machine Learning, pages 62–84, 2020b.

J. Suomela. Survey of local algorithms. ACM Computing Surveys, 45(2):24:1–24:40, 2013.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

E. D. Taillard and K. Helsgaun. Popmusic for the travelling salesman problem. European
Journal of Operational Research, 272(2):420–429, 2019.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. Value iteration networks. Advances
in Neural Information Processing Systems, 29:2154–2162, 2016.

H. Tang, Z. Huang, J. Gu, B.-L. Lu, and H. Su. Towards scale-invariant graph-related problem
solving by iterative homogeneous gnns. Advances in Neural Information Processing Systems,
33, 2020.

R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22(2):215–225, 1975.

J. Toenshoff, M. Ritzert, H. Wolf, and M. Grohe. RUN-CSP: unsupervised learning of message
passing networks for binary constraint satisfaction problems. CoRR, abs/1909.08387, 2019.

P. Toth and S. Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

58

Combinatorial Optimization and Reasoning with GNNs

A. Trask, F. Hill, S. E. Reed, J. Rae, C. Dyer, and P. Blunsom. Neural arithmetic logic
units. In Advances in Neural Information Processing Systems, pages 8035–8044, 2018.

C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Opium: Optimal package install/uninstall
manager. In International Conference on Software Engineering, pages 178–188, 2007.

P. Vaezipoor, G. Lederman, Y. Wu, C. Maddison, R. B. Grosse, S. A. Seshia, and F. Bacchus.
Learning branching heuristics for propositional model counting. In AAAI Conference on
Artificial Intelligence, pages 12427–12435, 2021.

R. van Driel, E. Demirović, and N. Yorke-Smith. Learning variable activity initialisation
for lazy clause generation solvers. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research: 18th International Conference, CPAIOR 2021,
Vienna, Austria, July 5–8, 2021, Proceedings 18, pages 62–71. Springer, 2021.

P. J. M. Van Laarhoven and E. H. L. Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

V. V. Vazirani. Approximation Algorithms. Springer, 2010.

P. Veličković and C. Blundell. Neural algorithmic reasoning. Patterns, 2(7):100273, 2021.

P. Veličković, L. Buesing, M. C. Overlan, R. Pascanu, O. Vinyals, and C. Blundell. Pointer
graph networks. Advances in Neural Information Processing Systems, 33:2232–2244, 2020.

P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell,
and C. Blundell. The CLRS algorithmic reasoning benchmark. In International Conference
on Machine Learning, 2022a.

P. Veličković, M. Bošnjak, T. Kipf, A. Lerchner, R. Hadsell, R. Pascanu, and C. Blundell.
Reasoning-modulated representations. In The First Learning on Graphs Conference,
2022b.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

P. Veličković, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph
algorithms. In International Conference on Learning Representations, 2020.

N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman. Learning combinatorial
optimization on graphs: A survey with applications to networking. IEEE Access, 8:
120388–120416, 2020.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, pages 2692–2700, 2015.

M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Roĺınek. Differentiation of blackbox
combinatorial solvers. In International Conference on Learning Representations, 2020.

59

Cappart, Chételat, Khalil, Lodi, Morris, and Veličković

M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai, T. Xiao,
T. He, G. Karypis, J. Li, and Z. Zhang. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint, abs/1909.01315, 2019.

P.-W. Wang, P. Donti, B. Wilder, and Z. Kolter. SATnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In International Conference on
Machine Learning, pages 6545–6554, 2019.

B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

B. Wilder, E. Ewing, B. Dilkina, and M. Tambe. End to end learning and optimization on
graphs. In Advances in Neural Information Processing Systems, pages 4674–4685, 2019.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280, 1989.

M. Winkenbach, S. Parks, and J. Noszek. Technical proceedings of the amazon last mile
routing research challenge. 2021.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph
neural networks. arXiv preprint, abs/1901.00596, 2019.

A. S. Xavier and F. Qiu. MIPLearn, 2020. URL https://anl-ceeesa.github.io/

MIPLearn.

L.-P. Xhonneux, A.-I. Deac, P. Veličković, and J. Tang. How to transfer algorithmic reasoning
knowledge to learn new algorithms? Advances in Neural Information Processing Systems,
34:19500–19512, 2021.

H. Xu, K.-H. Hui, C.-W. Fu, and H. Zhang. TilinGNN: learning to tile with self-supervised
graph neural network. ACM Transactions on Graphics, 39(4):129–1, 2020a.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

K. Xu, J. Li, M. Zhang, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka. What can neural
networks reason about? In International Conference on Learning Representations, 2020b.

K. Xu, M. Zhang, J. Li, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka. How neural networks
extrapolate: From feedforward to graph neural networks. In International Conference on
Learning Representations, 2021.

Y. Yan, K. Swersky, D. Koutra, P. Ranganathan, and M. Hashemi. Neural execution engines.
In Advances in Neural Information Processing, 2020.

Y. Yang and A. B. Whinston. A survey on reinforcement learning for combinatorial
optimization. arXiv preprint, abs/2008.12248, 2020.

60

https://anl-ceeesa.github.io/MIPLearn
https://anl-ceeesa.github.io/MIPLearn

Combinatorial Optimization and Reasoning with GNNs

Y. Yang, T. Liu, Y. Wang, J. Zhou, Q. Gan, Z. Wei, Z. Zhang, Z. Huang, and D. Wipf. Graph
neural networks inspired by classical iterative algorithms. In International Conference on
Machine Learning, pages 11773–11783, 2021.

W. Yao, A. S. Bandeira, and S. Villar. Experimental performance of graph neural networks
on random instances of max-cut. In Wavelets and Sparsity XVIII, volume 11138, pages
242–251. SPIE, 2019.

G. Yehuda, M. Gabel, and A. Schuster. It’s not what machines can learn, it’s what we cannot
teach. In International Conference on Machine Learning, pages 10831–10841, 2020.

G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron. From local structures to
size generalization in graph neural networks. In International Conference on Machine
Learning, pages 11975–11986, 2021.

R. Yolcu and B. Póczos. Learning local search heuristics for boolean satisfiability. In
Advances in Neural Information Processing Systems, pages 7992–8003, 2019.

J. You, Z. Ying, and J. Leskovec. Design space for graph neural networks. In Advances in
Neural Information Processing Systems, 2020.

W. Zaremba and I. Sutskever. Learning to execute. arXiv preprint, abs/1410.4615, 2014.

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop scheduling.
In International Joint Conference on Artificial Intelligence, pages 1114–1120, 1995.

W. Zheng, D. Wang, and F. Song. OpenGraphGym: A parallel reinforcement learning
framework for graph optimization problems. In International Conference on Computational
Science, pages 439–452. Springer, 2020.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–81, 2020.

Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang. Neural Bellman-Ford networks: A general
graph neural network framework for link prediction. Advances in Neural Information
Processing Systems, 34:29476–29490, 2021.

61

	Introduction
	What Are the Challenges for Machine Learning?
	How Do GNNs Address These Challenges?
	Going Beyond Classical Algorithms
	Present Work
	Related Work
	Outline

	Preliminaries
	Notation
	Combinatorial Optimization
	General Optimization Frameworks: ILPs, SAT, and Constrained Problems
	Integer linear programs and mixed-integer programs
	SAT
	Constraint satisfaction and constraint optimization problems
	Solving CO problems

	Machine Learning
	Graph Neural Networks

	GNNs for Combinatorial Optimization: The State of the Art
	On the Primal Side: Finding Feasible Solutions
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning for Iterative Solution Construction
	Summary

	On the Dual Side: Proving Optimality
	Integer programming
	Logic solving
	Constraint programming
	Decision diagrams
	Summary

	Algorithmic Reasoning
	Algorithmic alignment
	Perspectives and outlooks
	Reasoning on natural inputs
	Summary

	Limitations and Research Directions
	Limitations
	Proposed New Directions

	Implementation Frameworks
	Conclusions

