
Journal of Machine Learning Research 18 (2017) 1-35 Submitted 2/17; Revised 5/17; Published 8/17

Hierarchical Clustering via Spreading Metrics

Aurko Roy aurko@gatech.edu
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

Sebastian Pokutta sebastian.pokutta@isye.gatech.edu
ISyE
Georgia Institute of Technology
Atlanta, GA 30332, USA

Editor: Sanjoy Dasgupta

Abstract
We study the cost function for hierarchical clusterings introduced by (Dasgupta, 2016) where hierarchies are
treated as first-class objects rather than deriving their cost from projections into flat clusters. It was also
shown in (Dasgupta, 2016) that a top-down algorithm based on the uniform Sparsest Cut problem returns
a hierarchical clustering of cost at most O (αn log n) times the cost of the optimal hierarchical clustering,
where αn is the approximation ratio of the Sparsest Cut subroutine used. Thus using the best known approx-
imation algorithm for Sparsest Cut due to Arora-Rao-Vazirani, the top-down algorithm returns a hierarchical
clustering of cost at most O

(
log3/2 n

)
times the cost of the optimal solution. We improve this by giving

an O(log n)-approximation algorithm for this problem. Our main technical ingredients are a combinatorial
characterization of ultrametrics induced by this cost function, deriving an Integer Linear Programming (ILP)
formulation for this family of ultrametrics, and showing how to iteratively round an LP relaxation of this
formulation by using the idea of sphere growing which has been extensively used in the context of graph
partitioning. We also prove that our algorithm returns an O(log n)- approximate hierarchical clustering for a
generalization of this cost function also studied in (Dasgupta, 2016). Experiments show that the hierarchies
found by using the ILP formulation as well as our rounding algorithm often have better projections into flat
clusters than the standard linkage based algorithms. We conclude with constant factor inapproximability re-
sults for this problem: 1) no polynomial size LP or SDP can achieve a constant factor approximation for this
problem and 2) no polynomial time algorithm can achieve a constant factor approximation under the Small
Set Expansion hypothesis.
Keywords: Hierarchical clustering, clustering, convex optimization, linear programming, approximation
algorithms

1. Introduction

Hierarchical clustering is an important method in cluster analysis where a data set is recursively partitioned
into clusters of successively smaller size. They are typically represented by rooted trees where the root cor-
responds to the entire data set, the leaves correspond to individual data points and the intermediate nodes
correspond to a cluster of its descendant leaves. Such a hierarchy represents several possible flat clusterings
of the data at various levels of granularity; indeed every pruning of this tree returns a possible clustering.
Therefore in situations where the number of desired clusters is not known beforehand, a hierarchical cluster-
ing scheme is often preferred to flat clustering.
The most popular algorithms for hierarchical clustering are bottom-up agglomerative algorithms like single
linkage, average linkage and complete linkage. In terms of theoretical guarantees these algorithms are known
to correctly recover a ground truth clustering if the similarity function on the data satisfies corresponding

©2017 Aurko Roy and Sebastian Pokutta.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/17-081.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-081.html

Roy and Pokutta

stability properties (see, e.g., (Balcan et al., 2008)). Often, however, one wishes to think of a good clustering
as optimizing some kind of cost function rather than recovering a hidden “ground truth”, since one can
then assign a numerical score to an algorithm’s performance on every instance. This is useful for objectively
comparing the output of different clustering algorithms. Popular objective functions in the classical clustering
setting are k-means, k-median, min-sum and k-center (see Chapter 14, (Friedman et al., 2001)). However as
pointed out by (Dasgupta, 2016) for a lot of popular hierarchical clustering algorithms including linkage based
algorithms, it is hard to pinpoint explicitly the cost function that these algorithms are optimizing. Moreover,
much of the existing cost function based approaches towards hierarchical clustering evaluate a hierarchy
based on a cost function for flat clustering, e.g., assigning the k-means or k-median cost to a pruning of this
tree. Motivated by this, (Dasgupta, 2016) introduced a cost function for hierarchical clustering where the
cost takes into account the entire structure of the tree rather than just the projections into flat clusterings.
This cost function is shown to recover the intuitively correct hierarchies on several synthetic examples like
planted partitions and cliques. In addition, a top-down graph partitioning algorithm based on the uniform
Sparsest Cut problem is presented that outputs a tree with cost at most O(αn log n) times the cost of the
optimal tree and where αn is the approximation guarantee of the Sparsest Cut subroutine used. Thus using
the Leighton-Rao algorithm (Leighton and Rao, 1988, 1999) or the Arora-Rao-Vazirani algorithm (Arora
et al., 2009) gives an approximation factor of O

(
log2 n

)
and O

(
log3/2 n

)
respectively.

In this work we give a polynomial time algorithm to recover a hierarchical clustering of cost at mostO(log n)
times the cost of the optimal clustering according to this cost function. We also analyze a generalization of
this cost function studied by (Dasgupta, 2016) and show that our algorithm still gives an O(log n) approx-
imation in this setting. We do this by viewing the cost function in terms of the ultrametric it induces on
the data, writing a convex relaxation for it and concluding by analyzing a popular rounding scheme used in
graph partitioning algorithms. We also implement the integer program, its LP relaxation, and the rounding
algorithm and test it on some synthetic and real world data sets to compare the cost of the rounded solutions
to the true optimum as well as to compare its performance to other hierarchical clustering algorithms used in
practice. Our experiments suggest that the hierarchies found by this algorithm are often better than the ones
found by linkage based algorithms as well as the k-means algorithm in terms of the error of the best pruning
of the tree compared to the ground truth.

1.1 Related Work

The immediate precursor to this work is (Dasgupta, 2016) where the cost function for evaluating a hierarchical
clustering was introduced. Prior to this there has been a long line of research on hierarchical clustering in the
context of phylogenetics and taxonomy (see, e.g., (Jardine and Sibson, 1971; Sneath et al., 1973; Felsenstein
and Felenstein, 2004)). Several authors have also given theoretical justifications for the success of the popular
linkage based algorithms for hierarchical clustering (see, e.g. (Jardine and Sibson, 1968; Zadeh and Ben-
David, 2009; Ackerman et al., 2010)). In terms of cost functions, one approach has been to evaluate a
hierarchy in terms of the k-means or k-median cost that it induces (see (Dasgupta and Long, 2005)). The
cost function and the top-down algorithm in (Dasgupta, 2016) can also be seen as a theoretical justification
for several graph partitioning heuristics that are used in practice.
Besides this prior work on hierarchical clustering, we are also motivated by the long line of work in the
classical clustering setting where a popular strategy is to study convex relaxations of these problems and to
round an optimal fractional solution into an integral one with the aim of getting a good approximation to the
cost function. A long line of work (see, e.g., (Charikar et al., 1999; Jain and Vazirani, 2001; Jain et al., 2003;
Charikar and Li, 2012)) has employed this approach on LP relaxations for the k-median problem, including
(Li and Svensson, 2013) which gives the best known approximation factor of 1 +

√
3 + ε. Similarly, a

few authors have studied LP and SDP relaxations for the k-means problem (see, e.g., (Peng and Xia, 2005;
Peng and Wei, 2007; Awasthi et al., 2015)), while one of the best known algorithms for kernel k-means and

2

Hierarchical Clustering via Spreading Metrics

spectral clustering is due to (Recht et al., 2012) which approximates the nonnegative matrix factorization
(NMF) problem by LPs.

LP relaxations for hierarchical clustering have also been studied in (Ailon and Charikar, 2005) where the
objective is to fit a tree metric to a data set given pairwise dissimilarities. While the LP relaxation and
rounding algorithm in (Ailon and Charikar, 2005) is similar in flavor, the result is incomparable to ours (see
Section 8 for a discussion). Another work that is indirectly related to our approach is (Di Summa et al.,
2015) where the authors study an ILP to obtain a closest ultrametric to arbitrary functions on a discrete set.
Our approach is to give a combinatorial characterization of the ultrametrics induced by the cost function of
(Dasgupta, 2016) which allows us to use the tools from (Di Summa et al., 2015) to model the problem as
an ILP. The natural LP relaxation of this ILP turns out to be closely related to LP relaxations considered
before for several graph partitioning problems (see, e.g., (Leighton and Rao, 1988, 1999; Even et al., 1999;
Krauthgamer et al., 2009)) and we use a rounding technique studied in this context to round this LP relaxation.

Recently, we became aware of independent work by (Charikar and Chatziafratis, 2017) obtaining similar re-
sults for hierarchical clustering. In particular (Charikar and Chatziafratis, 2017) improve the approximation
factor to O (αn), where αn is the approximation factor of the uniform Sparsest Cut problem, by showing how
to round a spreading metric SDP relaxation. The analysis of this rounding procedure also enabled them to
show that the top-down heuristic of (Dasgupta, 2016) actually returns anO(αn) approximate clustering rather
than an O (αn log n) approximate clustering. This improves the approximation factor to O

(√
log n

)
using

(Arora et al., 2009) for solving the uniform Sparsest Cut problem. (Charikar and Chatziafratis, 2017) also
analyzed a similar LP relaxation using the divide-and-conquer approximation algorithms using spreading
metrics paradigm of (Even et al., 2000) together with a result of (Bartal, 2004) to show an O(log n) ap-
proximation. Finally, (Charikar and Chatziafratis, 2017) also gave similar constant factor inapproximability
results for this problem.

1.2 Contribution

While studying convex relaxations of optimization problems is fairly natural, for the cost function introduced
in (Dasgupta, 2016) however, it is not immediately clear how one would go about writing such a relaxation.
Our first contribution is to give a combinatorial characterization of the family of ultrametrics induced by this
cost function on hierarchies. Inspired by the approach in (Di Summa et al., 2015) where the authors study an
integer linear program for finding the closest ultrametric, we are able to formulate the problem of finding the
minimum cost hierarchical clustering as an integer linear program. Interestingly and perhaps unsurprisingly,
the specific family of ultrametrics induced by this cost function give rise to linear constraints studied before
in the context of finding balanced separators in weighted graphs. We then show how to round an optimal
fractional solution using the sphere growing technique first introduced in (Leighton and Rao, 1988) (see also
(Garg et al., 1996; Even et al., 1999; Charikar et al., 2003)) to recover a tree of cost at most O(log n) times
the optimal tree for this cost function. The generalization of this cost function involves scaling every pairwise
distances by an arbitrary strictly increasing function f satisfying f (0) = 0. We modify the integer linear
program for this general case and show that the rounding algorithm still finds a hierarchical clustering of cost
at most O(log n) times the optimal clustering in this setting. Complementing the algorithms, we also show a
constant factor inapproximability result for this problem under two different settings: 1) for any polynomial
time algorithm under the Small Set Expansion hypothesis and, 2) unconditionally, for any polynomial sized
LP and SDP relaxations. We conclude with an experimental study of the integer linear program and the
rounding algorithm on some synthetic and real world data sets to show that the approximation algorithm
often recovers clusters close to the true optimum (according to this cost function) and that its projections into
flat clusters often has a better error rate than the linkage based algorithms and the k-means algorithm.

3

Roy and Pokutta

2. Preliminaries

A similarity based clustering problem consists of a dataset V of n points and a similarity function κ : V ×
V → R≥0 such that κ(i, j) is a measure of the similarity between i and j for any i, j ∈ V. We will assume
that the similarity function is symmetric i.e., κ(i, j) = κ(j, i) for every i, j ∈ V. Note that we do not make
any assumptions about the points in V coming from an underlying metric space. For a given instance of a
clustering problem we have an associated weighted complete graph Kn with vertex set V and weight function
given by κ. A hierarchical clustering of V is a tree T with a designated root r and with the elements of V
as its leaves, i.e., leaves(T) = V. For any set S ⊆ V we denote the lowest common ancestor of S in T by
lca(S). For pairs of points i, j ∈ V wewill abuse the notation for the sake of simplicity and denote lca({i, j})
simply by lca(i, j). For a node v of T we denote the subtree of T rooted at v by T[v]. The following cost
function was introduced by (Dasgupta, 2016) to measure the quality of the hierarchical clustering T

cost(T) := ∑
{i,j}∈E(Kn)

κ(i, j) |leaves(T[lca(i, j)])| . (1)

The intuition behind this cost function is as follows. Let T be a hierarchical clustering with designated root
r so that r represents the whole data set V. Since leaves(T) = V, every internal node v ∈ T represents
a cluster of its descendant leaves, with the leaves themselves representing singleton clusters of V. Starting
from r and going down the tree, every distinct pair of points i, j ∈ V will be eventually separated at the
leaves. If κ(i, j) is large, i.e., i and j are very similar to each other then we would like them to be separated
as far down the tree as possible if T is a good clustering of V. This is enforced in the cost function (1): if
κ(i, j) is large then the number of leaves of lca(i, j) should be small i.e., lca(i, j) should be far from the root
r of T. Such a cost function is not unique however; see Section 8 for some other cost functions of a similar
flavor.
Note that while requiring κ to be non-negative might seem like an artificial restriction, cost function (1)
breaks down when all the κ(i, j) < 0, since in this case the trivial clustering r, T∗ where T∗ is the star graph
with V as its leaves is always the minimizer. Therefore in the rest of this work we will assume that κ ≥ 0.
This is not a restriction compared to (Dasgupta, 2016), since the Sparsest Cut algorithm used as a subroutine
also requires this assumption. Let us now briefly recall the notion of an ultrametric.

Definition 1 (Ultrametric) An ultrametric on a set X of points is a distance function d : X × X → R

satisfying the following properties for every x, y, z ∈ X

1. Nonnegativity: d(x, y) ≥ 0 with d(x, y) = 0 iff x = y,

2. Symmetry: d(x, y) = d(y, x),

3. Strong triangle inequality: d(x, y) ≤ max{d(y, z), d(z, x)}.

Note that due to the requirement of strong triangle inequality, ultrametrics only admit acute isosceles triangles
and equilaterial triangles, in contrast to general metric spaces. Under the cost function (1), one can interpret
the tree T as inducing an ultrametric dT onV given by dT(i, j) := |leaves(T[lca (i, j)])| − 1. This is an ultra-
metric since dT(i, j) = 0 iff i = j and for any triple i, j, k ∈ V we have dT(i, j) ≤ max{dT(i, k), dT(j, k)}.
In the following definition we introduce the notion of non-trivial ultrametrics, which turn out to be precisely
the ultrametrics that are induced by tree decompositions of V corresponding to cost function (1), as we will
show in Corollary 8. We use the notation x ∼ y to denote an equivalence relation between x and y. Note
that if d is an ultrametric, then x ∼ y iff d(x, y) ≤ t is an equivalence relation for every t ∈ R.

Definition 2 An ultrametric d on a set of points V is non-trivial if the following conditions hold.

4

Hierarchical Clustering via Spreading Metrics

r

lca(i, j)

i j

Figure 1: Example hierarchical clustering showing the lca of two data points i and j.

1. For every non-empty set S ⊆ V, there is a pair of points i, j ∈ S such that d(i, j) ≥ |S| − 1.

2. For any t, if St is an equivalence class of V under the relation i ∼ j iff d(i, j) ≤ t, then

max
i,j∈St

d(i, j) ≤ |St| − 1.

Note that for an equivalence class St where d(i, j) ≤ t for every i, j ∈ St it follows from Condition 1 that
t ≥ |St| − 1. Thus in the case when t = |St| − 1 the two conditions imply that the maximum distance
between any two points in S is t and that there is a pair i, j ∈ S for which this maximum is attained. The
following lemma shows that non-trivial ultrametrics behave well under restrictions to equivalence classes St
of the form i ∼ j iff d(i, j) ≤ t. All missing proofs from this section can be found in Appendix A.

Lemma 3 Let d be a non-trivial ultrametric on V and let St ⊆ V be an equivalence class under the relation
i ∼ j iff d(i, j) ≤ t. Then d restricted to St is a non-trivial ultrametric on St.

The intuition behind the two conditions in Definition 2 is as follows. Condition 1 imposes a certain lower
bound by ruling out trivial ultrametrics where, e.g., d(i, j) = 1 for every distinct pair i, j ∈ V. On the other
hand Condition 2 discretizes and imposes an upper bound on d by restricting its range to the set {0, 1, . . . , n−
1} (see Lemma 4). This rules out the other spectrum of triviality where for example d(i, j) = n for every
distinct pair i, j ∈ V with |V| = n.

Lemma 4 Let d be a non-trivial ultrametric on the set V as in Definition 2. Then the range of d is contained
in the set {0, 1, . . . , n− 1} with |V| = n.

3. Ultrametrics and Hierarchical Clusterings

We start with the following easy lemma about the lowest common ancestors of subsets of V in a hierarchical
clustering T of V. See Figure 1 for a helpful illustration. All missing proofs from this section can be found
in Appendix B.

Lemma 5 Let S ⊆ V with |S| ≥ 2. If r = lca(S) then there is a pair i, j ∈ S such that lca(i, j) = r.

5

Roy and Pokutta

We will now show that non-trivial ultrametrics on V as in Definition 2 are exactly those that are induced by
hierarchical clusterings on V under cost function (1). The following lemma shows the forward direction: the
ultrametric dT induced by any hierarchical clustering T is non-trivial.
Lemma 6 Let T be a hierarchical clustering on V and let dT be the ultrametric on V induced by it. Then
dT is non-trivial.
The following crucial lemma shows the converse: every non-trivial ultrametric on V is realized by a hierar-
chical clustering T of V.
Lemma 7 For every non-trivial ultrametric d on V there is a hierarchical clustering T on V such that for
any pair i, j ∈ V we have

dT(i, j) = |leaves(T[lca (i, j)])| − 1 = d(i, j).

Moreover this hierarchy can be constructed in time O
(
n3) by Algorithm 1 where |V| = n.

Lemmas 6 and 7 together imply the following corollary about the equivalence of hierarchical clusterings and
non-trivial ultrametrics.
Corollary 8 There is a bijection between the set of hierarchical clusterings T on V and the set of non-trivial
ultrametrics d on V satisfying the following conditions.

1. For every hierarchical clustering T on V, there is a non-trivial ultrametric dT defined as dT(i, j) :=
|leaves T[lca(i, j)]| − 1 for every i, j ∈ V.

2. For every non-trivial ultrametric d on V, there is a hierarchical clustering T on V such that for every
i, j ∈ V we have |leaves T[lca(i, j)]| − 1 = d(i, j).

Moreover this bijection can be computed in O(n3) time, where |V| = n.
Therefore to find the hierarchical clustering of minimum cost, it suffices to minimize 〈κ, d〉 over non-trivial
ultrametrics d : V × V → {0, . . . , n − 1}, where V is the data set. Note that the cost of the ultrametric
dT corresponding to a tree T is an affine offset of cost(T). In particular, we have 〈κ, dT〉 = cost(T) −
∑{i,j}∈E(Kn) κ(i, j).
A natural approach is to formulate this problem as an Integer Linear Program (ILP) and then study LP or SDP
relaxations of it. We consider the following ILP for this problem that is motivated by (Di Summa et al., 2015).
We have the variables x1

ij, . . . , xn−1
ij for every distinct pair i, j ∈ V with xt

ij = 1 if and only if d(i, j) ≥ t. For
any positive integer n, let [n] := {1, 2, . . . , n}.

min
n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)xt
ij (ILP-ultrametric)

s.t. xt
ij ≥ xt+1

ij ∀i, j ∈ V, t ∈ [n− 2] (2)

xt
ij + xt

jk ≥ xt
ik ∀i, j, k ∈ V, t ∈ [n− 1] (3)

∑
i,j∈S

xt
ij ≥ 2 ∀t ∈ [n− 1], S ⊆ V, |S| = t + 1 (4)

∑
i,j∈S

x|S|ij ≤ |S|
2

∑
i,j∈S

xt
ij + ∑

i∈S
j/∈S

(
1− xt

ij

) ∀t ∈ [n− 1], S ⊆ V (5)

xt
ij = xt

ji ∀i, j ∈ V, t ∈ [n− 1] (6)

xt
ii = 0 ∀i ∈ V, t ∈ [n− 1] (7)

xt
ij ∈ {0, 1} ∀i, j ∈ V, t ∈ [n− 1] (8)

6

Hierarchical Clustering via Spreading Metrics

Input: Data set V of n points, non-trivial ultrametric d : V ×V → R≥0
Output: Hierarchical clustering T of V with root r

1 r ← arbitrary choice of designated root in V
2 X ← {r}
3 E← ∅
4 if n = 1 then
5 T ← (X, E)
6 return r, T
7 else
8 Partition V into {V1, . . . Vm} under the equivalence relation i ∼ j iff d(i, j) < n− 1
9 for l ∈ {1, . . . , m} do

10 Let rl , Tl be output of Algorithm 1 on Vl , d|Vl

11 X ← X ∪V(Tl)
12 E← E ∪ {r, rl}
13 end
14 T ← (X, E)
15 return r, T
16 end

Algorithm 1: Hierarchical clustering of V from non-trivial ultrametric

Constraints (2) and (7) follow from the interpretation of the variables xt
ij: if d(i, j) ≥ t, i.e., xt

ij = 1 then
clearly d(i, j) ≥ t− 1 and so xt−1

ij = 1. Furthermore, for any i ∈ V we have d(i, i) = 0 and so xt
ii = 0

for every t ∈ [n − 1]. Note that constraint (3) is the same as the strong triangle inequality (Definition 1)
since the variables xt

ij are in {0, 1}. Constraint (6) ensures that the ultrametric is symmetric. Constraint (4)
ensures the ultrametric satisfies Condition 1 of non-triviality: for every S ⊆ V of size t + 1 we know that
there must be points i, j ∈ S such that d(i, j) = d(j, i) ≥ t or in other words xt

ij = xt
ji = 1. Constraint (5)

ensures that the ultrametric satisfies Condition 2 of non-triviality. To see this note that the constraint is active
only when ∑i,j∈S xt

ij = 0 and ∑i∈S,j/∈S(1− xt
ij) = 0. In other words d(i, j) ≤ t− 1 for every i, j ∈ S and

S is a maximal such set since if i ∈ S and j /∈ S then d(i, j) ≥ t. Thus S is an equivalence class under the
relation i ∼ j iff d(i, j) ≤ t− 1 and so for every i, j ∈ S we have d(i, j) ≤ |S| − 1 or equivalently x|S|ij = 0.
The ultrametric d represented by a feasible solution xt

ij is given by d(i, j) = ∑n−1
t=1 xt

ij.

Definition 9 For any
{

xt
ij | t ∈ [n− 1], i, j ∈ V

}
let Et be defined as Et :=

{
{i, j} | xt

ij = 0
}
. Note that

if xt
ij is feasible for ILP-ultrametric then Et ⊆ Et+1 for any t since xt

ij ≥ xt+1
ij . The sets {Et}n−1

t=1 induce a
natural sequence of graphs {Gt}n−1

t=1 where Gt = (V, Et) with V being the data set.

For a fixed t ∈ {1, . . . , n− 1}, it is instructive to study the combinatorial properties of the layer-t problem,
where we restrict ourselves to the constraints corresponding to that particular t and drop constraints (2) and

7

Roy and Pokutta

(5) since they involve different layers in their expression.

min ∑
{i,j}∈E(Kn)

κ(i, j)xt
ij (ILP-layer)

s.t. xt
ij + xt

jk ≥ xt
ik ∀i, j, k ∈ V (9)

∑
i,j∈S

xt
ij ≥ 2 ∀S ⊆ V, |S| = t + 1 (10)

xt
ij = xt

ji ∀i, j ∈ V (11)

xt
ii = 0 ∀i ∈ V (12)

xt
ij ∈ {0, 1} ∀i, j ∈ V (13)

The following lemma provides a combinatorial characterization of feasible solutions to the layer-t problem.

Lemma 10 Let Gt = (V, Et) be the graph as in Definition 9 corresponding to a solution xt
ij to the layer-t

problem ILP-layer. Then Gt is a disjoint union of cliques of size ≤ t. Moreover this exactly characterizes
all feasible solutions of ILP-layer.

ProofWe first note that Gt = (V, Et) must be a disjoint union of cliques since if {i, j} ∈ Et and {j, k} ∈ Et
then {i, k} ∈ Et since xt

ik ≤ xt
ij + xt

jk = 0 due to constraint (9). Suppose there is a clique in Gt of size > t.
Choose a subset S of this clique of size t + 1. Then ∑i,j∈S xt

ij = 0 which violates constraint (10).
Conversely, let Et be a subset of edges such that Gt = (V, Et) is a disjoint union of cliques of size ≤ t. Let
xt

ij = 0 if {i, j} ∈ Et and 1 otherwise. Clearly xt
ij = xt

ji by definition. Suppose xt
ij violates constraint (9),

so that there is a pair i, j, k ∈ V such that xt
ik = 1 but xt

ij = xt
jk = 0. However this implies that Gt is not

a disjoint union of cliques since {i, j}, {j, k} ∈ Et but {i, k} /∈ Et. Suppose xt
ij violates constraint (10) for

some set S of size t + 1. Therefore for every i, j ∈ S, we have xt
ij = 0 since xt

ij = xt
ji for every i, j ∈ V and

so S must be a clique of size t + 1 in Gt which is a contradiction.

By Lemma 10 the layer-t problem is to find a subset Et ⊆ E(Kn) of minimum weight under κ, such that
the complement graph Gt = (V, Et) is a disjoint union of cliques of size ≤ t. Note that this implies that
the number of components in the complement graph is ≥ dn/te.The converse however, is not necessarily
true: when t = n − 1 then the layer t-problem is the minimum (weighted) cut problem whose partitions
may have size larger than 1. Our algorithmic approach is to solve an LP relaxation of ILP-ultrametric and
then round the solution to obtain a feasible solution to ILP-ultrametric. The rounding however proceeds
iteratively in a layer-wise manner and so we need to make sure that the rounded solution satisfies the inter-
layer constraints (2) and (5). The following lemma gives a combinatorial characterization of solutions that
satisfy these two constraints.

Lemma 11 For every t ∈ [n− 1], let xt
ij be feasible for the layer-t problem ILP-layer. Let Gt = (V, Et)

be the graph as in Definition 9 corresponding to xt
ij, so that by Lemma 10, Gt is a disjoint union of cliques

Kt
1, . . . , Kt

lt each of size at most t. Then xt
ij is feasible for ILP-ultrametric if and only if the following conditions

hold.

Nested cliques For any s ≤ t every clique Ks
p for some p ∈ [ls] in Gs is a subclique of some

clique Kt
q in Gt where q ∈ [lt].

Realization If
∣∣∣Kt

p

∣∣∣ = s for some s ≤ t, then Gs contains Kt
p as a component clique, i.e.,

Ks
q = Kt

p for some q ∈ [ls].

8

Hierarchical Clustering via Spreading Metrics

Proof Since xt
ij is feasible for the layer-t problem ILP-layer it is feasible for ILP-ultrametric if and only if it

satisfies constraints (2) and (5). The solution xt
ij satisfies constraint (2) if and only if Et ⊆ Et+1 by definition

and so Condition Nested cliques follows.
Let us now assume that xt

ij is feasible for ILP-ultrametric, so that by the above argument Condition Nested
cliques is satisfied. Note that every clique Kt

p in the clique decomposition of Gt corresponds to an equivalence
class St under the relation i ∼ j iff xt

ij = 0. Moreover, by Lemma 10 we have |St| ≤ t. Constraint (5)

implies that x|St|
ij = 0 for every i, j ∈ St. In other words, if |St| = s ≤ t, then xs

ij = 0 for every i, j ∈ St

and so St is a subclique of some clique Ks
q in the clique decomposition of Gs. However by Condition Nested

cliques, Ks
q must be a subclique of a clique Kt

p′ in the clique decomposition of Gt, since s ≤ t. However, as
Kt

p ∩ Kt
p′ = St and the clique decomposition decomposes Gt into a disjoint union of cliques, it follows that

St ⊆ Ks
q ⊆ Kt

p′ = Kt
p = St and so Ks

q = Kt
p. Therefore Condition Realization is satisfied.

Conversely, suppose that xt
ij satisfies Conditions Nested cliques and Realization, so that by the argument in

the paragraph above xt
ij satisfies constraint (2). Let us assume for the sake of contradiction that for a set

S ⊆ V and a t ∈ [n− 1] constraint (5) is violated, i.e.,

∑
i,j∈S

x|S|ij > |S|

∑
i,j∈S

xt
ij + ∑

i∈S
j/∈S

(
1− xt

ij

) .

Since xt
ij ∈ {0, 1} it follows that xt

ij = 0 for every i, j ∈ S and xt
ij = 1 for every i ∈ S, j /∈ S so that S is a

clique in Gt. Note that |S| < t since ∑i,j∈S x|S|ij > 0. This contradicts Condition Realization however, since
S is clearly not a clique in G|S|.

The combinatorial interpretation of the individual layer-t problems allow us to simplify the formulation of
ILP-ultrametric by replacing the constraints for sets of a specific size (constraint (4)) by a global constraint
about all sets (constraint (14)). These global constraints are also referred to as spreading constraints.

Lemma 12 We may replace constraint (4) of ILP-ultrametric by the following equivalent spreading con-
straint:

∑
j∈S

xt
ij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S. (14)

Proof Let xt
ij be a feasible solution to ILP-ultrametric. Note that if |S| ≤ t then the constraints are redundant

since xt
ij ∈ {0, 1}. Thus we may assume that |S| > t and let i be any vertex in S. Let us suppose for the

sake of a contradiction that ∑j∈S xt
ij < |S| − t. This implies that there is a t sized subset S′ ⊆ S \ {i} such

that for every j ∈ S′ we have xt
ij′ = 0. In other words {i, j′} is an edge in Gt = (V, Et) for every j′ ∈ S′

and since Gt is a disjoint union of cliques (constraint (3)), this implies the existence of a clique of size t + 1.
Thus by Lemma 10, xt

ij could not have been a feasible solution to ILP-ultrametric.
Conversely, suppose xt

ij is feasible for the modified ILP where constraint (4) is replaced by constraint (14).
Then again Gt = (V, Et) is a disjoint union of cliques since xt

ij satisfies constraint (3). Assume for con-
tradiction that constraint (4) is violated: there is a set S of size t + 1 such that ∑i,j∈S xt

ij < 2. Note that
this implies that ∑i,j xt

ij = 0 since xt
ij = xt

ji for every i, j ∈ V and t ∈ [n − 1]. Fix any i ∈ S, then
∑j∈S xt

ij < 1 = |S| − t since xt
ij = xt

ji by constraint (6), a violation of constraint (14). Thus xt
ij is feasible

for ILP-ultrametric since it satisfies every other constraint by assumption.

9

Roy and Pokutta

4. Rounding an LP relaxation

In this section we consider the following natural LP relaxation for ILP-ultrametric. All missing proofs from
this section can be found in Appendix C. We keep the variables xt

ij for every t ∈ [n− 1] and i, j ∈ V but
relax the integrality constraint on the variables as well as drop constraint (5).

min
n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)xt
ij (LP-ultrametric)

s.t. xt
ij ≥ xt+1

ij ∀i, j ∈ V, t ∈ [n− 2] (15)

xt
ij + xt

jk ≥ xt
ik ∀i, j, k ∈ V, t ∈ [n− 1] (16)

∑
j∈S

xt
ij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S (17)

xt
ij = xt

ji ∀i, j ∈ V, t ∈ [n− 1] (18)

xt
ii = 0 ∀i, j ∈ V, t ∈ [n− 1] (19)

0 ≤ xt
ij ≤ 1 ∀i, j ∈ V, t ∈ [n− 1] (20)

A feasible solution xt
ij to LP-ultrametric induces a sequence {dt}t∈[n−1] of distance metrics over V defined

as dt(i, j) := xt
ij. Constraint (17) enforces an additional structure on this metric: informally points in a “large

enough” subset S should be spread apart according to the metric dt. Metrics of type dt are called spreading
metrics and were first studied in (Even et al., 1999, 2000) in relation to graph partitioning problems. The
following lemma gives a technical interpretation of spreading metrics (see, e.g., (Even et al., 1999, 2000;
Krauthgamer et al., 2009)); we include a proof for completeness.

Lemma 13 Let xt
ij be feasible for LP-ultrametric and for a fixed t ∈ [n− 1], let dt be the induced spreading

metric. Let i ∈ V be an arbitrary vertex and let S ⊆ V be a set with i ∈ S such that |S| > (1+ ε)t for some
ε > 0. Then maxj∈S dt(i, j) > ε

1+ε .

Proof For the sake of a contradiction suppose that for every j ∈ S we have dt(i, j) = xt
ij ≤ ε

1+ε . This implies
that xt

ij violates constraint (17) leading to a contradiction:

∑
j∈S

xt
ij ≤

ε

1 + ε
|S| < |S| − t,

where the last inequality follows from |S| > (1 + ε)t.

Note that there are exponentially many inequalities for constraint (17); however the following lemma shows
that we can still optimize over LP-ultrametric in polynomial time using the Ellipsoid method.

Lemma 14 An optimal solution to LP-ultrametric can be computed in time polynomial in n and log
(
maxi,j κ(i, j)

)
.

Proof We argue in the standard fashion via the application of the Ellipsoid method (see e.g., (Schrijver,
1998)). As such it suffices to verify that the encoding length of the numbers is small (which is indeed the
case here) and that the constraints can be separated in polynomial time in the size of the input, i.e., in n and the
logarithm of the absolute value of the largest coefficient. Since constraints of type (15), (16), (18), and (19)
are polynomially many in n, we only need to check separation for constraints of type (17). Given a claimed
solution xt

ij we can check constraint (17) by iterating over all t ∈ [n− 1], vertices i ∈ V, and sizes m of the
set S from t+ 1 to n. For a fixed t, i, and set size m sort the vertices in V \ {i} in increasing order of distance
from i (according to the metric dt) and let S be the first m vertices in this ordering. If ∑j∈S xt

ij < m− t then

10

Hierarchical Clustering via Spreading Metrics

clearly xt
ij is not feasible for LP-ultrametric, so we may assume that ∑j∈S xt

ij ≥ m− t. Moreover this is the
only set to check: for any set S ⊆ V containing i such that |S| = m, ∑j∈S xt

ij ≥ ∑j∈S xt
ij ≥ m− t. Thus for

a fixed t ∈ [n− 1], i ∈ V and set size m, it suffices to check that xt
ij satisfies constraint (17) for this subset

S.

From now on we will simply refer to a feasible solution to LP-ultrametric by the sequence of spreading
metrics {dt}t∈[n−1] it induces. The following definition introduces the notion of an open ball BU (i, r, t) of
radius r centered at i ∈ V according to the metric dt and restricted to the set U ⊆ V.

Definition 15 Let {dt | t ∈ [n− 1]} be the sequence of spreading metrics feasible for LP-ultrametric. Let
U ⊆ V be an arbitrary subset of V. For a vertex i ∈ U, r ∈ R, and t ∈ [n− 1] we define the open ball
BU (i, r, t) of radius r centered at i as

BU (i, r, t) := {j ∈ U | dt(i, j) < r} ⊆ U.

If U = V then we denote BU (i, r, t) simply by B (i, r, t).

Remark 16 For every pair i, j ∈ V we have dt(i, j) ≥ dt+1(i, j) by constraint (15). Thus for any subset
U ⊆ V, i ∈ U, r ∈ R, and t ∈ [n− 2], it holds BU (i, r, t) ⊆ BU (i, r, t + 1).

To round LP-ultrametric to get a feasible solution for ILP-ultrametric, we will use the technique of sphere
growingwhich was introduced in (Leighton and Rao, 1988) to show an O(log n) approximation for the max-
imum multicommodity flow problem. Recall from Lemma 10 that a feasible solution to ILP-layer consists
of a decomposition of the graph Gt into a set of disjoint cliques of size at most t. One way to obtain such a
decomposition is to choose an arbitrary vertex, grow a ball around this vertex until the expansion of this ball
is below a certain threshold, chop off this ball and declare it as a partition and then recurse on the remain-
ing vertices. This is the main idea behind sphere growing, and the parameters are chosen depending on the
constraints of the specific problem (see, e.g., (Garg et al., 1996; Even et al., 1999; Charikar et al., 2003) for
a few representative applications of this technique). The first step is to associate to every ball BU (i, r, t) a
volume vol (BU (i, r, t)) and a boundary ∂BU (i, r, t) so that its expansion is defined. For any t ∈ [n− 1]
and U ⊆ V we denote by γU

t the value of the layer-t objective for solution dt restricted to the set U, i.e.,

γU
t := ∑

i,j∈U
i<j

κ(i, j)dt(i, j).

When U = V we refer to γU
t simply by γt. Since κ : V × V → R≥0, it follows that γU

t ≤ γt for any
U ⊆ V. We are now ready to define the volume, boundary, and expansion of a ball BU (i, r, t). We use the
definition of (Even et al., 1999) modified for restrictions to arbitrary subsets U ⊆ V.

Definition 17 (Even et al., 1999) Let U be an arbitrary subset of V. For a vertex i ∈ U, radius r ∈ R≥0,
and t ∈ [n− 1], let BU (i, r, t) be the ball of radius r as in Definition 15. Then we define its volume as

vol (BU (i, r, t)) :=
γU

t
n log n

+ ∑
j,k∈BU(i,r,t)

j<k

κ(j, k)dt(j, k) + ∑
j∈BU(i,r,t)
k/∈BU(i,r,t)

k∈U

κ(j, k) (r− dt(i, j)) .

The boundary of the ball ∂BU (i, r, t) is the partial derivative of volume with respect to the radius:

∂BU (i, r, t) :=
∂ vol (BU (i, r, t))

∂r
= ∑

j∈BU(i,r,t)
k/∈BU(i,r,t)

k∈U

κ(j, k).

11

Roy and Pokutta

The expansion φ(BU (i, r, t)) of the ball BU (i, r, t) is defined as the ratio of its boundary to its volume, i.e.,

φ (BU (i, r, t)) :=
∂BU (i, r, t)

vol (BU (i, r, t))
.

The following lemma shows that the volume of a ball BU (i, r, t) is differentiable with respect to r in the
interval (0, ∆] except at finitely many points (see e.g., (Even et al., 1999)).

Lemma 18 Let BU (i, r, t) be the ball corresponding to a set U ⊆ V, vertex i ∈ U, radius r ∈ R and
t ∈ [n− 1]. Then vol (BU (i, r, t)) is differentiable with respect to r in the interval (0, ∆] except at finitely
many points.

Input: Data set V, {dt}t∈[n−1] : V ×V, ε > 0, κ : V ×V → R≥0

Output: A solution set of the form
{

xt
ij ∈ {0, 1} | t ∈

[⌊ n−1
1+ε

⌋]
, i, j ∈ V

}
1 mε ←

⌊ n−1
1+ε

⌋
2 t← mε

3 Ct+1 ← {V}
4 ∆← ε

1+ε

5 while t ≥ 1 do
6 Ct ← ∅
7 for U ∈ Ct+1 do
8 if |U| ≤ (1 + ε)t then
9 Ct ← Ct ∪ {U}

10 Go to line 7
11 end
12 while U 6= ∅ do
13 Let i be arbitrary in U

14 Let r ∈ (0, ∆] be s.t. φ (BU (i, r, t)) ≤ 1
∆ log

(
vol(BU(i,∆,t))
vol(BU(i,0,t))

)
15 Ct ← Ct ∪ {BU (i, r, t)}
16 U ← U \ BU (i, r, t)
17 end
18 end
19 xt

ij = 1 if i ∈ U1 ∈ Ct, j ∈ U2 ∈ Ct and U1 6= U2, else xt
ij = 0

20 t← t− 1
21 end
22 return

{
xt

ij | t ∈ [mε], i, j ∈ V
}

Algorithm 2: Iterative rounding algorithm to find a low cost ultrametric

The following theorem establishes that the rounding procedure of Algorithm 2 ensures that the cliques in Ct
are “small” and that the cost of the edges removed to form them, is not too high. It also shows that Algorithm 2
can be implemented to run in time polynomial in n.

Theorem 19 Let mε :=
⌊ n−1

1+ε

⌋
as in Algorithm 2 and let

{
xt

ij | t ∈ [mε], i, j ∈ V
}

be the output of Al-
gorithm 2 run on a feasible solution {dt}t∈[n−1] of LP-ultrametric and any choice of ε ∈ (0, 1). For any

12

Hierarchical Clustering via Spreading Metrics

t ∈ [mε], we have that xt
ij is feasible for the layer-b(1 + ε) tc problem ILP-layer and there is a constant

c(ε) > 0 depending only on ε such that

∑
{i,j}∈E(Kn)

κ(i, j)xt
ij ≤ c(ε)(log n)γt.

Moreover, Algorithm 2 can be implemented to run in time polynomial in n.

Remark 20 A discrete version of the volumetric argument for region growing can be found in (Gupta, 2005).

We are now ready to prove the main theorem showing that we can obtain a low cost non-trivial ultrametric
from Algorithm 2.

Theorem 21 Let {xt
ij | t ∈ [mε] , i, j ∈ V} be the output of Algorithm 2 on an optimal solution {dt}t∈[n−1]

of LP-ultrametric for any choice of ε ∈ (0, 1). Define the sequence
{

yt
ij

}
for every t ∈ [n− 1] and i, j ∈ V

as

yt
ij :=

{
xbt/(1+ε)c

ij if t > 1 + ε

1 if t ≤ 1 + ε.

Then yt
ij is feasible for ILP-ultrametric and satisfies

n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)yt
ij ≤ (2c(ε) log n)OPT

where OPT is the optimal solution to ILP-ultrametric and c(ε) is the constant in the statement of Theorem 19.

Proof Note that by Theorem 19 for every t ∈ [mε], xt
ij is feasible for the layer-b(1 + ε)tc problem ILP-

layer and that there is a constant c(ε) > 0 such that for every t ∈ [mε], we have ∑{i,j}∈E(Kn) κ(i, j)xt
ij ≤

(c(ε) log n) γt.
Let yt

ij be as in the statement of the theorem. The graph Gt = (V, Et) as in Definition 9 corresponding to yt
ij

for t ≤ 1 + ε consists of isolated vertices, i.e., cliques of size 1: By definition yt
ij is feasible for the layer-t

problem ILP-layer. The collection C1 corresponding to x1
ij consists of cliques of size at most 1 + ε, however

since 0 < ε < 1 it follows that the cliques in C1 are isolated vertices and so x1
ij = 1 for every {i, j} ∈ E(Kn).

Thus ∑i,j κ(i, j)yt
ij = ∑i,j κ(i, j)x1

ij ≤ (c(ε) log n) γ1 for t ≤ 1 + ε by Theorem 19. Moreover for every
t > 1+ ε, we have ∑i,j κ(i, j)yt

ij ≤ (c(ε) log n)γbt/(1+ε)c again by Theorem 19. We claim that yt
ij is feasible

for ILP-ultrametric. The solution yt
ij corresponds to the collection Cb t

1+ε c for t > 1 + ε or to the collection
C1 for t ≤ 1 + ε from Algorithm 2. For any t < mε, every ball BU (i, r, t) ∈ Ct comes from the refinement
of a ball BU′ (i′, r′, t′) for some i′ ∈ V, r′ ≥ r, t′ ≥ t and U′ ⊇ U. Thus yt

ij satisfies Condition Nested
cliques of Lemma 11. On the other hand line 8 ensures that if |BU (i, r, t)| = b(1 + ε)sc for some U ⊆ V
and s < t then BU (i, r, t) also appears as a ball in Cs. Therefore yt

ij also satisfies Condition Realization of
Lemma 11 and so is feasible for ILP-ultrametric. The cost of yt

ij is at most

n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)yt
ij ≤ (c(ε) log n)

(
γ1 +

n−1

∑
t=2

γbt/(1+ε)c

)

≤ 2c(ε) log n
n−1

∑
t=1

γt

≤ 2c(ε) log n OPT,

13

Roy and Pokutta

where we use the fact that ∑n−1
t=1 γt = OPT(LP) ≤ OPT since LP-ultrametric is a relaxation of ILP-

ultrametric.

Theorem 21 implies the following corollary where we put everything together to obtain a hierarchical cluster-

Input: Data set V of n points, similarity function κ : V ×V → R≥0
Output: Hierarchical clustering of V

1 Solve LP-ultrametric to obtain optimal sequence of spreading metrics {dt | dt : V ×V → [0, 1]}
2 Fix a choice of ε ∈ (0, 1)
3 mε ←

⌊ n−1
1+ε

⌋
4 Let

{
xt

ij | t ∈ [mε]
}
be the output of Algorithm 2 on V, κ, {dt}t∈[n−1]

5 Let yt
ij :=

{
xbt/(1+ε)c

ij if t > 1 + ε

1 if t ≤ 1 + ε
for every t ∈ [n− 1], i, j ∈ E(Kn)

6 d(i, j)← ∑n−1
t=1 yt

ij for every i, j ∈ E(Kn)

7 d(i, i)← 0 for every i ∈ V
8 Let r, T be the output of Algorithm 1 on V, d
9 return r, T

Algorithm 3: Hierarchical clustering of V for cost function (1)

ing of V in time polynomial in n with |V| = n. Let T denote the set of all possible hierarchical clusterings
of V.
Corollary 22 Given a data set V of n points and a similarity function κ : V × V → R≥0, Algorithm 3
returns a hierarchical clustering T of V satisfying

cost(T) ≤ O (log n) min
T′∈T

cost(T′).

Moreover Algorithm 3 runs in time polynomial in n and log
(
maxi,j∈V κ(i, j)

)
.

Proof Let T̂ be the optimal hierarchical clustering according to cost function (1). By Corollary 8 and Theo-
rem 21 we can find a hierarchical clustering T satisfying

∑
{i,j}∈E(Kn)

κ(i, j)(|leaves(T[lca(i, j)])| − 1) ≤ O(log n)

 ∑
{i,j}∈E(Kn)

κ(i, j)
(∣∣∣leaves(T̂[lca(i, j)])

∣∣∣− 1
) .

Let K := ∑{i,j}∈E(Kn) κ(i, j). Then it follows from the above expression that cost(T) ≤ O(log n) cost(T̂)−
O(log n)K + K ≤ O(log n) cost(T̂).
We can find an optimal solution to LP-ultrametric due to Lemma 14 using the Ellipsoid algorithm in time
polynomial in n and log

(
maxi,j∈V κ(i, j)

)
. Algorithm 2 runs in time polynomial in n due to Theorem 19.

Finally, Algorithm 1 runs in time O
(
n3) due to Lemma 7.

5. Generalized Cost Function

In this section we study the following natural generalization of cost function (1) also introduced by (Dasgupta,
2016) where the distance between the two points is scaled by a function f : R≥0 → R≥0, i.e.,

cost f (T) := ∑
{i,j}∈E(Kn)

κ(i, j) f (|leaves T[lca(i, j)]|) . (21)

14

Hierarchical Clustering via Spreading Metrics

In order that cost function (21) makes sense, f should be strictly increasing and satisfy f (0) = 0. Possi-
ble choices for f could be

{
x2, ex − 1, log(1 + x)

}
. The top-down heuristic in (Dasgupta, 2016) finds the

optimal hierarchical clustering up to an approximation factor of cn log n with cn being defined as

cn := 3αn max
1≤n′≤n

f (n′)
f (dn′/3e)

and where αn is the approximation factor from the algorithm used for solving uniform Sparsest Cut problem.
A naive approach to solving this problem using the ideas of Algorithm 2 would be to replace the objective
function of ILP-ultrametric by

∑
{i,j}∈E(Kn)

κ(i, j) f

(
n−1

∑
t=1

xt
ij

)
.

This makes the corresponding analogue of LP-ultrametric non-linear however, and for a general κ and f it is
not clear how to compute an optimum solution in polynomial time. One possible solution is to assume that f
is convex and use the Frank-Wolfe algorithm to compute an optimum solution. That still leaves the problem
of how to relate f

(
∑n−1

t=1 xt
ij

)
to ∑n−1

t=1 f
(

xt
ij

)
as one would have to do to get a corresponding version of

Theorem 21. The following simple observation provides an alternate way of tackling this problem.

Observation 23 Let d : V × V → R be an ultrametric and f : R≥0 → R≥0 be a strictly increasing
function such that f (0) = 0. Define the function f (d) : V ×V → R as f (d)(i, j) := f (d(i, j)). Then f (d)
is also an ultrametric on V.

Therefore by Corollary 8 to find a minimum cost hierarchical clustering T of V according to the cost func-
tion (21), it suffices to minimize 〈κ, d〉 where d is the f -image of a non-trivial ultrametric as in Definition 2.
The following lemma lays down the analogue of Conditions 1 and 2 from Definition 2 that the f -image of a
non-trivial ultrametric satisfies. As in Definition 2, we will use the notation x ∼ y to denote an equivalence
relation between x and y.

Lemma 24 Let f : R≥0 → R≥0 be a strictly increasing function satisfying f (0) = 0. An ultrametric d on
V is the f -image of a non-trivial ultrametric on V iff

1. for every non-empty set S ⊆ V, there is a pair of points i, j ∈ S such that d(i, j) ≥ f (|S| − 1),

2. for any t, if St is an equivalence class ofV under the relation i ∼ j iff d(i, j) ≤ t, thenmaxi,j∈St d(i, j) ≤
f (|St| − 1).

Proof If d is the f -image of a non-trivial ultrametric d′ on V then clearly d satisfies Conditions 1 and 2.
Conversely, let d be an ultrametric on V satisfying Conditions 1 and 2. Note that f is strictly increasing
and V is a finite set and thus f−1 exists and is strictly increasing as well, with f−1(0) = 0. Define d′

as d′(i, j) := f−1(d(i, j)) for every i, j ∈ V. By Observation 23 d′ is an ultrametric on V satisfying
Conditions 1 and 2 of Definition 2 and so d′ is a non-trivial ultrametric on V.

Lemma 24 allows us to write the analogue of ILP-ultrametric for finding the minimum cost ultrametric that
is the f -image of a non-trivial ultrametric on V. Note that by Lemma 4 the range of such an ultrametric is
the set { f (0), f (1), . . . , f (n − 1)}. We have the binary variables xt

ij for every distinct pair i, j ∈ V and

15

Roy and Pokutta

t ∈ [n− 1], where xt
ij = 1 if d(i, j) ≥ f (t) and xt

ij = 0 if d(i, j) < f (t).

min
n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j) (f (t)− f (t− 1)) xt
ij (f-ILP-ultrametric)

s.t. xt
ij ≥ xt+1

ij ∀i, j ∈ V, t ∈ [n− 2] (22)

xt
ij + xt

jk ≥ xt
ik ∀i, j, k ∈ V, t ∈ [n− 1] (23)

∑
i,j∈S

xt
ij ≥ 2 ∀t ∈ [n− 1], S ⊆ V, |S| = t + 1 (24)

∑
i,j∈S

x|S|ij ≤ |S|
2

∑
i,j∈S

xt
ij + ∑

i∈S
j/∈S

(
1− xt

ij

) ∀t ∈ [n− 1], S ⊆ V (25)

xt
ij = xt

ji ∀i, j ∈ V, t ∈ [n− 1] (26)

xt
ii = 0 ∀i ∈ V, t ∈ [n− 1] (27)

xt
ij ∈ {0, 1} ∀i, j ∈ V, t ∈ [n− 1] (28)

If xt
ij is a feasible solution to f-ILP-ultrametric then the ultrametric represented by it is defined as

d(i, j) :=
n−1

∑
t=1

(f (t)− f (t− 1))xt
ij.

Constraint (24) ensures that d satisfies Condition 1 of Lemma 24, since for every S ⊆ V of size t + 1 we
have a pair i, j ∈ S such that d(i, j) ≥ f (t). Similarly constraint (25) ensures that d satisfies Condition 2
of Lemma 24 since it is active if and only if S is an equivalence class of V under the relation i ∼ j iff
d(i, j) < f (t). In this case Condition 2 of Lemma 24 requires maxi,j∈S d(i, j) ≤ f (|S| − 1) or in other
words x|S|ij = 0 for every i, j ∈ S.
Similar to ILP-layer we define an analogous layer-t problem where we fix a choice of t ∈ [n− 1] and drop
the constraints that relate the different layers to each other.

min ∑
{i,j}∈E(Kn)

κ(i, j) (f (t)− f (t− 1)) xt
ij (f-ILP-layer)

s.t. xt
ij + xt

jk ≥ xt
ik ∀i, j, k ∈ V (29)

∑
i,j∈S

xt
ij ≥ 2 ∀S ⊆ V, |S| = t + 1 (30)

xt
ij = xt

ji ∀i, j ∈ V (31)

xt
ii = 0 ∀i ∈ V (32)

xt
ij ∈ {0, 1} ∀i, j ∈ V (33)

Note that f-ILP-ultrametric and f-ILP-layer differ from ILP-ultrametric and ILP-layer respectively only in the
objective function. Therefore Lemmas 10 and 11 also give a combinatorial characterization of the set of
feasible solutions to f-ILP-layer and f-ILP-ultrametric respectively. Similarly, by Lemma 12 we may replace
constraint (24) by the following equivalent constraint over all subsets of V

∑
j∈S

xt
ij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S.

16

Hierarchical Clustering via Spreading Metrics

This provides the analogue of LP-ultrametric in which we drop constraint (25) and enforce it in the rounding
procedure.

min
n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j) (f (t)− f (t− 1)) xt
ij (f-LP-ultrametric)

s.t. xt
ij ≥ xt+1

ij ∀i, j ∈ V, t ∈ [n− 2] (34)

xt
ij + xt

jk ≥ xt
ik ∀i, j, k ∈ V, t ∈ [n− 1] (35)

∑
j∈S

xt
ij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S (36)

xt
ij = xt

ji ∀i, j ∈ V, t ∈ [n− 1] (37)

xt
ii = 0 ∀i ∈ V, t ∈ [n− 1] (38)

0 ≤ xt
ij ≤ 1 ∀i, j ∈ V, t ∈ [n− 1] (39)

Since f-LP-ultrametric differs from LP-ultrametric only in the objective function, it follows from Lemma 14
that an optimum solution to f-LP-ultrametric can be computed in time polynomial in n. As before, a fea-
sible solution xt

ij of f-LP-ultrametric induces a sequence {dt}t∈[n−1] of spreading metrics on V defined as
dt(i, j) := xt

ij. Note that in contrast to the ultrametric d, the spreading metrics {dt}t∈[n−1] are independent
of the function f .
Let BU (i, r, t) be a ball of radius r centered at i ∈ U for some set U ⊆ V as in Definition 15. For a subset
U ⊆ V, let γU

t be defined as before to be the value of the layer-t objective corresponding to a solution dt of
f-LP-ultrametric restricted to U, i.e.,

γU
t := ∑

i,j∈U
i<j

(f (t)− f (t− 1)) κ(i, j)dt(i, j).

As before, we denote γV
t by γt. We will associate a volume vol (BU (i, r, t)) and a boundary ∂BU (i, r, t) to

the ball BU (i, r, t) as in Section 4.

Definition 25 Let U be an arbitrary subset of V. For a vertex i ∈ U, radius r ∈ R≥0, and t ∈ [n− 1], let
BU (i, r, t) be the ball of radius r as in Definition 15. Then we define its volume as

vol (BU (i, r, t)) :=
γU

t
n log n

+ (f (t)− f (t− 1))

 ∑
j,k∈BU(i,r,t)

j<k

κ(j, k)dt(j, k) + ∑
j∈BU(i,r,t)
k/∈BU(i,r,t)

k∈U

κ(j, k) (r− dt(i, j))

 .

The boundary of the ball ∂BU (i, r, t) is the partial derivative of volume with respect to the radius:

∂BU (i, r, t) := (f (t)− f (t− 1))
(

∂ vol (BU (i, r, t))
∂r

)
= (f (t)− f (t− 1))

 ∑
j∈BU(i,r,t)
k/∈BU(i,r,t)

k∈U

κ(j, k)

 .

The expansion φ (BU (i, r, t)) of the ball BU (i, r, t) is defined as the ratio of its boundary to its volume, i.e.,

φ (BU (i, r, t)) :=
∂BU (i, r, t)

vol (BU (i, r, t))
.

17

Roy and Pokutta

Note that the expansion φ (BU (i, r, t)) ofDefinition 25 is the same as inDefinition 17 since the (f (t)− f (t− 1))
term cancels out. Thus one could run Algorithm 2 with the same notion of volume as in Definition 17, how-
ever in that case the analogous versions of Theorems 19 and 21 do not follow as naturally. The following is
then a simple corollary of Theorem 19.

Corollary 26 Let mε :=
⌊ n−1

1+ε

⌋
as in Algorithm 2. Let

{
xt

ij | t ∈ [n− 1], i, j ∈ V
}

be the output of Al-
gorithm 2 using the notion of volume, boundary and expansion as in Definition 25, on a feasible solution
to f-LP-ultrametric and any choice of ε ∈ (0, 1). For any t ∈ [mε], we have that xt

ij is feasible for the
layer-b(1 + ε)tc problem f-ILP-layer and there is a constant c(ε) > 0 depending only on ε such that

∑
{i,j}∈E(Kn)

κ(i, j) (f (t)− f (t− 1)) xt
ij ≤ (c(ε) log n) γt.

Corollary 26 allows us to prove the analogue of Theorem 21, i.e., we can use Algorithm 2 to get an ultrametric
that is an f -image of a non-trivial ultrametric and whose cost is at most O(log n) times the cost of an optimal
hierarchical clustering according to cost function (21).

Theorem 27 Let {xt
ij | t ∈ [mε] , i, j ∈ V} be the output of Algorithm 2 using the notion of volume,

boundary, and expansion as in Definition 25 on an optimal solution {dt}t∈[n−1] of f-LP-ultrametric for any
choice of ε ∈ (0, 1). Define the sequence

{
yt

ij

}
for every t ∈ [n− 1] and i, j ∈ V as

yt
ij :=

{
xbt/(1+ε)c

ij if t > 1 + ε

1 if t ≤ 1 + ε.

Then yt
ij is feasible for f-ILP-ultrametric and there is a constant c(ε) > 0 such that

n−1

∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j) (f (t)− f (t− 1)) yt
ij ≤ (c(ε) log n)OPT

where OPT is the optimal solution to f-ILP-ultrametric.

Proof Immediate from Corollary 26 and Theorem 21.

Finally we put everything together to obtain the corresponding Algorithm 4 that outputs a hierarchical clus-
tering of V of cost at most O (log n) times the optimal clustering according to cost function (21).

Corollary 28 Given a data set V of n points and a similarity function κ : V ×V → R, Algorithm 4 returns
a hierarchical clustering T of V satisfying

cost f (T) ≤ O (cn + log n) min
T′∈T

cost f (T′),

where cn := maxn′∈[n] f (n′)− f (n′ − 1). Moreover Algorithm 4 runs in time polynomial in n, log f (n)
and log

(
maxi,j∈V κ(i, j)

)
.

Proof Let T̂ be an optimal hierarchical clustering according to cost function (21). By Corollary 8, Lemma 24
and Theorem 27 it follows that we can find a hierarchical clustering T satisfying

∑
{i,j}∈E(Kn)

κ(i, j) f (|leaves(T[lca(i, j)]| − 1) ≤ O(log n)

 ∑
{i,j}∈E(Kn)

κ(i, j) f
(∣∣∣leaves(T̂[lca(i, j)]

∣∣∣− 1
) .

18

Hierarchical Clustering via Spreading Metrics

Recall that cost f (T) := ∑{i,j}∈E(Kn) κ(i, j) f (|leaves(T[lca(i, j)]|). Let K := ∑{i,j}∈E(Kn) κ(i, j). Note
that for any hierarchical clustering T′ we have K ≤ cost f (T′) since f is an increasing function. From the
above expression we infer that

cost f (T)− cnK ≤ ∑
{i,j}∈E(Kn)

κ(i, j) f (|leaves(T[lca(i, j)]| − 1) ≤ O(log n) cost f (T̂),

and so cost f (T) ≤ O(log n) cost f (T̂) + cnK ≤ O(cn + log n) cost f (T̂). We can find an optimal solu-
tion to f-LP-ultrametric due to Lemma 14 using the Ellipsoid algorithm in time polynomial in n, log f (n),
and log

(
maxi,j∈V κ(i, j)

)
. Note the additional log f (n) in the running time since now we need to binary

search over the interval
[
0, maxi,j∈V κ(i, j) · f (n) · n

]
. Algorithm 2 runs in time polynomial in n due to

Theorem 19. Finally, Algorithm 1 runs in time O
(
n3) due to Lemma 7.

Input: Data set V of n points, similarity function κ : V ×V → R≥0, f : R≥0 → R≥0 strictly
increasing with f (0) = 0

Output: Hierarchical clustering of V
1 Solve f-LP-ultrametric to obtain optimal sequence of spreading metrics {dt | dt : V ×V → [0, 1]}
2 Fix a choice of ε ∈ (0, 1)
3 mε ←

⌊ n−1
1+ε

⌋
4 Let

{
xt

ij | t ∈ [mε]
}
be the output of Algorithm 2 on V, κ, {dt}t∈[n−1]

5 Let yt
ij :=

{
xbt/(1+ε)c

ij if t > 1 + ε

1 if t ≤ 1 + ε
for every t ∈ [n− 1], i, j ∈ E(Kn)

6 d(i, j)← ∑n−1
t=1 (f (t)− f (t− 1)) yt

ij for every i, j ∈ E(Kn)

7 d(i, i)← 0 for every i ∈ V
8 Let r, T be the output of Algorithm 1 on V, f−1(d)
9 return r, T

Algorithm 4: Hierarchical clustering of V for cost function (21)

6. Experiments

Finally, we describe the experiments we performed. For small data sets ILP-ultrametric and f-ILP-ultrametric
describe integer programming formulations that allow us to compute the exact optimal hierarchical clustering
for cost functions (1) and (21) respectively. We implement f-ILP-ultrametric where one can plug in any
strictly increasing function f satisfying f (0) = 0. In particular, setting f (x) = x gives us ILP-ultrametric.
We use the Mixed Integer Programming (MIP) solver Gurobi 6.5 (Gurobi Optimization, 2015). Similarly,
we also implement Algorithms 1, 2, and 4 using Gurobi as our LP solver. Note that Algorithm 4 needs to fix
a parameter choice ε ∈ (0, 1). In Sections 4 and 5 we did not discuss the effect of the choice of the parameter
ε in detail. In particular, we need to choose an ε small enough such that for every U ⊆ V encountered
in Algorithm 2, vol (BU (i, ∆, t)) is of the same sign as vol (BU (i, 0, t)) for every t ∈ [n − 1], so that
log
(

vol(BU(i,∆,t))
vol(BU(i,0,t))

)
is defined. In our experiments we start with a particular value of ε (say 0.5) and halve it

till the volumes have the same sign. For the sake of exposition, we limit ourselves to the following choices
for the function f {

x, x2, log(1 + x), ex − 1
}

.

19

Roy and Pokutta

By Lemma 14 we can optimize over f-LP-ultrametric in time polynomial in n using the Ellipsoid method. In
practice however, we use the dual simplex method where we separate triangle inequality constraints (35) and
spreading constraints (36) to obtain fast computations. For the similarity function κ : V ×V → R we limit
ourselves to using cosine similarity and the Gaussian kernel with σ = 1. They are defined formally below.

Definition 29 (Cosine similarity) Given a data set V ∈ Rm for some m ≥ 0, the cosine similarity κcos is
defined as κcos(x, y) := 〈x,y〉

‖x‖‖y‖ , for any pair of points x, y ∈ V.

Since the LP rounding Algorithm 2 assumes that κ ≥ 0 in practice we implement 1 + κcos rather than κcos.

Definition 30 (Gaussian kernel) Given a data set V ∈ Rm for some m ≥ 0, the Gaussian kernel κgauss

with standard deviation σ is defined as κgauss(x, y) := exp
(
− ‖x−y‖2

2σ2

)
, for any pair of points x, y ∈ V.

The main aim of our experiments was to answer the following two questions.

1. How good is the hierarchal clustering obtained from Algorithm 4 as opposed to the true optimal output
by f-ILP-ultrametric?

2. How good does Algorithm 4 perform compared to other hierarchical clustering methods?

For the first question, we are restricted to working with small data sets since computing an optimum solution
to f-ILP-ultrametric is expensive. In this case we consider synthetic data sets of small size and samples of
some data sets from the UCI database (Lichman, 2013). The synthetic data sets we consider are mixtures
of Gaussians in various small dimensional spaces. Figure 2 shows a comparison of the cost of the hierarchy
(according to cost function (21)) returned by solving f-ILP-ultrametric and by Algorithm 4 for various forms
of f when the similarity function is κcos and κgauss. Note that we normalize the cost of the tree returned by
f-ILP-ultrametric and Algorithm 4 by the cost of the trivial clustering r, T∗ where T∗ is the star graph with
V as its leaves and r as the internal node. In other words dT∗(i, j) = n− 1 for every distinct pair i, j ∈ V
and so the normalized cost of any tree lies in the interval (0, 1].
For the study of the second question, we consider some of the popular algorithms for hierarchical clustering
such as single linkage, average linkage, complete linkage, and Ward’s method (Ward Jr, 1963). To get a
numerical handle on how good a hierarchical clustering T of V is, we prune the tree to get the best k flat
clusters and measure its error relative to the target clustering. We use the following notion of error also
known as Classification Error that is standard in the literature for hierarchical clustering (see, e.g., (Meilă
and Heckerman, 2001)). Note that we may think of a flat k-clustering of the data V as a function h mapping
elements of V to a label set L := {1, . . . , k}. Let Sk denote the group of permutations on k letters.

Definition 31 (Classification Error) Given a proposed clustering h : V → L its classification error relative
to a target clustering g : V → L is denoted by err (g, h) and is defined as

err (g, h) := min
σ∈Sk

[
Pr

x∈V
[h(x) 6= σ(g(x))

]
.

We compare the error of Algorithm 4 with the various linkage based algorithms that are commonly used
for hierarchical clustering, as well as Ward’s method and the k-means algorithm. We test Algorithm 4 most
extensively for f (x) = x while doing a smaller number of tests for f (x) ∈

{
x2, log(1 + x), ex − 1

}
.

Note that both Ward’s method and the k-means algorithm work on the squared Euclidean distance ‖x− y‖2
2

between two points x, y ∈ V, i.e., they both require an embedding of the data points into a normed vector
space which provides extra information that can be potentially exploited. For the linkage based algorithms
we use the same notion of similarity 1+ κcos or κgauss that we use for Algorithm 4. For comparison we use a
mix of synthetic data sets as well as theWine, Iris, Soybean-small, Digits, Glass, andWdbc data sets from the

20

Hierarchical Clustering via Spreading Metrics

0.0 0.2 0.4 0.6 0.8 1.0

Cost of HC by solving ILP formulation

0.0

0.2

0.4

0.6

0.8

1.0
C

os
t

of
H

C
re

tu
rn

ed
by

A
lg

or
it

hm
4

f(x) = x

f(x) = x2

f(x) = ex − 1

f(x) = log(1 + x)

0.0 0.2 0.4 0.6 0.8 1.0

Cost of HC by solving ILP formulation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
of

H
C

re
tu

rn
ed

by
A

lg
or

it
hm

4

f(x) = x

f(x) = x2

f(x) = ex − 1

f(x) = log(1 + x)

Figure 2: Comparison of f-ILP-ultrametric and Algorithm 4 for 1 + κcos (left) and κgauss (right)

0 10 20 30 40 50

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 10 20 30 40 50

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 3: Comparison of Algorithm 4 using f (x) = x, with other algorithms for clustering using 1 + κcos
(left) and κgauss (right)

UCI repository (Lichman, 2013). For some of the larger data sets, we sample uniformly at random a smaller
number of data points and take the average of the error over the different runs. Figures 3, 4, 5, and 6 plot the
performance of the various algorithms, with the x-axis representing the data sets (sorted in decreasing order
of average classification error) and the y-axis representing the classification error. From the figures, we see
that the hierarchical clustering returned by Algorithm 4 with f (x) ∈

{
x, x2, log(1 + x), ex − 1

}
often has

better projections into flat clusterings than the other algorithms. This is especially true when we compare
it to the linkage based algorithms, since they use the same pairwise similarity function as Algorithm 4, as
opposed to Ward’s method and k-means.

7. Hardness of finding the optimal hierarchical clustering

In this section we study the hardness of finding the optimal hierarchical clustering according to cost func-
tion (1). We show that under the assumption of the Small Set Expansion (SSE) hypothesis there is no constant
factor approximation algorithm for this problem. We also show that no polynomial sized Linear Program

21

Roy and Pokutta

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x2

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x2

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 4: Comparison of Algorithm 4 using f (x) = x2, with other algorithms for clustering using 1 + κcos
(left) and κgauss (right)

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = log(1 + x)

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = log(1 + x)

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 5: Comparison of Algorithm 4 using f (x) = log(1 + x), with other algorithms for clustering using
1 + κcos (left) and κgauss (right)

22

Hierarchical Clustering via Spreading Metrics

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0
E

rr
or

w
it

h
re

sp
ec

t
to

gr
ou

nd
tr

ut
h

Algorithm 4, f(x) = ex − 1

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = ex − 1

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 6: Comparison of Algorithm 4 using f (x) = ex − 1, with other algorithms for clustering using
1 + κcos (left) and κgauss (right)

(LP) or Semidefinite Program (SDP) can give a constant factor approximation for this problem without the
need for any complexity theoretic assumptions. Both these results make use of the similarity of this problem
with the minimum linear arrangement problem. To show hardness under Small Set Expansion, we make use
of the result of (Raghavendra et al., 2012) showing that there is no constant factor approximation algorithm
for the Minimum Linear Arrangement problem under the assumption of SSE. To show the LP and SDP in-
approximability results, we make use of the reduction framework of (Braun et al., 2015) together with the
NP-hardness proof for Minimum Linear Arrangement due to (Garey et al., 1976). We also note that both
these hardness results hold even for unweighted graphs (i.e., when κ ∈ {0, 1}).
Note that the individual layer-t problem f-ILP-layer for t = bn/2c is equivalent to the minimum bisection
problem for which the best known approximation is O(log n) due to (Räcke, 2008), while the best known
bi-criteria approximation is O

(√
log n

)
due to (Arora et al., 2009) and improving these approximation fac-

tors is a major open problem. However it is not clear if an improved approximation algorithm for hierarchical
clustering under cost function (1) would imply an improved algorithm for every layer-t problem, which is
why a constant factor inapproximability result is of interest. We recall the following setup for LP and SDP re-
ductions between optimization problems from (Braun et al., 2015). We denote by P = (S , I, val), a generic
optimization problem consisting of solutions, feasible instances and an objective function respectively. The
(C, S)-approximate LP and SDP complexity of a problem P is denoted by fcLP(P , C, S) and fcSDP(P , C, S)
respectively. A reduction from problem P1 with approximation guarantees (C1, S1) to a problem P2 with
approximation guarantees (C2, S2) is formally defined as:

Definition 32 (Reduction) (Braun et al., 2015) Let P1 = (S1, I1, val) and P2 = (S2, I2, val) be opti-
mization problems with guarantees C1, S1 and C2, S2, respectively. Let τ1 = +1 if P1 is a maximization
problem, and τ1 = −1 if P1 is a minimization problem. Similarly, let τ2 = ±1 depending on whether P2 is
a maximization problem or a minimization problem.
A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible solutions indepen-
dently;

2. two nonnegative I1 × S1 matrices M1, M2

23

Roy and Pokutta

subject to the conditions

τ1 [C1(I1)− valI1(s1)] = τ2

[
C2(I∗1)− valI∗1 (s

∗
1)
]

M1(I1, s1) + M2(I1, s1) (40-complete)

τ2 OPT (I∗1) ≤ τ2S2(I∗1) if τ1 OPT (I1) ≤ τ1S1(I1). (40-sound)

The matrices M1 and M2 control the parameters of the reduction relating the integrality gap of relaxations for
P1 to the integrality gap of corresponding relaxations for P2. For a matrix A, let rk+ A and rkpsd A denote
the nonnegative rank and psd rank of A respectively. The following theorem is a restatement of Theorem 3.2
from (Braun et al., 2015) ignoring constants.

Theorem 33 (Braun et al., 2015) Let P1 and P2 be optimization problems with a reduction from P1 to P2
respecting the completeness guarantees C1, C2 and soundness guarantees S1, S2 of P1 and P2, respectively.
Then

fcLP(P1, C1, S1) ≤ rk+ M2 + rk+ M1 + rk+ M1 · fcLP(P2, C2, S2), (41)
fcSDP(P1, C1, S1) ≤ rkpsd M2 + rkpsd M1 + rkpsd M1 · fcSDP(P2, C2, S2), (42)

where M1 and M2 are the matrices in the reduction as in Definition 32.

Therefore to obtain a lower bound for problem P2, it suffices to find a source problem P1 and matrices M1
and M2 of low nonnegative rank and low psd rank, satisfying Definition 32.
Below, we cast the hierarchical clustering problem (HCLUST) as an optimization problem. We also recall
a different formulation of cost function (1) due to (Dasgupta, 2016) that will be useful in the analysis of the
reduction.

Definition 34 (HCLUST as optimization problem) The minimization problem HCLUST of size n consists
of

instances similarity function κ : E(Kn)→ R≥0

feasible solutions hierarchical clustering r, T of V(Kn)

measure valκ(T) = ∑{i,j}∈E(Kn) κ(i, j) |leaves(T[lca(i, j)])|.

Wewill also make use of the following alternate interpretation of cost function (1) given by (Dasgupta, 2016).
Let κ : V × V → R≥0 be an instance of HCLUST. For a subset S ⊆ V, a split S1, . . . , Sk is a partition of
S into k disjoint pieces. For a binary split S1, S2 we can define κ(S1, S2) := ∑i∈S1,j∈S2

κ(i, j). This can be
extended to k-way splits in the natural way:

κ(S1, . . . , Sk) := ∑
1≤i≤j≤k

κ(Si, Sj).

Then the cost of a tree T is the sum over all the internal nodes of the splitting costs at the nodes, as follows.

cost(T) = ∑
splits S→(S1,...,Sk) in T

|S| κ(S1, . . . , Sk).

We now briefly recall the MAXCUT problem.

Definition 35 (MAXCUT as optimization problem) The maximization problem MAXCUT of size n con-
sists of

24

Hierarchical Clustering via Spreading Metrics

instances all graphs G with V(G) ⊆ [n]
feasible solutions all subsets X of [n]
measure valG(X) = |δG(X)|.

Similarly, the Minimum Linear Arrangement problem can be phrased as an optimization problem as follows.

Definition 36 (MLA as optimization problem) The minimization problem MLA of size n consists of

instances weight function w : E(Kn)→ R≥0

feasible solutions all permutations π : V(Kn)→ [n]
measure valw(π) := ∑{i,j}∈E(Kn) w(i, j) |π(i)− π(j)|.

We now describe the reduction from MAXCUT to HCLUST which is a modification of the reduction from
MAXCUT to MLA due to (Garey et al., 1976). Note that an instance of MAXCUT maps to an unweighted
instance of HCLUST, i.e., κ ∈ {0, 1}.

Mapping instances Given an instance G = (V, E) of MAXCUT of size n, let r = n4 and
U = {u1, u2, . . . , ur}. The instance κ of HCLUST is on the graph with vertex set V ′ :=
V ∪U and has weights in {0, 1}. For any distinct pair i, j ∈ V ′, if {i, j} ∈ E then we
define κ(i, j) := 0 and otherwise we set κ(i, j) := 1.

Mapping solutions Given a cut X ⊆ V of MAXCUT we map it to the clustering r, T of V ′

where the root r has the following children: n4 leaves corresponding to U, and 2 internal
vertices corresponding to X and X. The internal vertices for X and X are split into |X|
and

∣∣X∣∣ leaves respectively at the next level.
The following lemma relates the LP and SDP formulations for MAXCUT and MLA.

Lemma 37 For any completeness and soundness guarantee (C, S), we have the following

fcLP (MAXCUT, C, S) ≤ fcLP
(
HCLUST, C′, S′

)
+ O(n2)

fcSDP (MAXCUT, C, S) ≤ fcSDP
(
HCLUST, C′, S′

)
+ O(n2).

where C′ := (n4+n)3−(n4+n)
3 − C(n4 + n) and S′ := (n4+n+1

3)− Sn4.

Proof To show completeness, we analyze the cost of the tree T that a cut X maps to, using the alternate
interpretation of the cost function (1) due to (Dasgupta, 2016) (see above). Let H be the graph on vertex set
V ′ induced by κ, i.e. {i, j} ∈ E(H) iff κ(i, j) = 1. Let H denote the complement graph of H and let κ be the
similarity function induced by it, i.e., κ(i, j) = 1 iff {i, j} 6∈ E(H) and κ(i, j) = 0 otherwise. For a hierarchi-
cal clustering T of V ′, we denote by costH(T) and costH(T) the cost of T induced by κ and κ respectively,
i.e., costH(T) := ∑{i,j}∈E(H) |leaves(T[lca(i, j)])| and costH(T) := ∑{i,j}6∈E(H) |leaves(T[lca(i, j)])|.
Let X := V ′ \ X. The cost of the tree T that the cut X maps to, is given by

cost(T) = costH(T)

=

(
n + n4)3 − (n + n4)

3
− costH(T)

=

(
n + n4)3 − (n + n4)

3
− ∑

splits S→(S1,...,Sk) in T
|S| κ(S1, . . . , Sk)

=

(
n + n4)3 − (n + n4)

3
−
(

n + n4
)

valG(X)−
(
|X| |E[X]|+

∣∣X∣∣ ∣∣E[X]
∣∣) ,

25

Roy and Pokutta

where E[X] and E[X] are the edges of E(H) induced on the set X and X respectively. Therefore, we have
the following completeness relationship between the two problems

C− valG(X) =
1

n + n4

(
cost(T)−

(
(n + n4)3 − (n + n4)

3
− C(n + n4)

))
+
|X| |E[X]|+

∣∣X∣∣ ∣∣E[X]
∣∣

n4 + n
.

We now define the matrices M1 and M2 as M1(H, X) := 1
n+n4 and M2(H, X) := |X| |E[X]|+

∣∣X∣∣ ∣∣E[X]
∣∣.

Clearly, M1 has O(1) nonnegative rank and psd rank. We claim that the nonnegative rank of M2 is at most
2(n

2). The vectors vH ∈ R2(n
2) corresponding to the instances H is defined as the concatenation [uH, wH]

of two vectors uH, wH ∈ R(n
2). Both the vectors uH, wH encode the edges of H scaled by n4 + n, i.e.,

uH({i, j}) = wH({i, j}) = 1/(n4 + n) iff {i, j} ∈ E(H) and 0 otherwise. The vectors vX ∈ R2(n
2)

corresponding to the solutions are also defined as the concatenation [uX, wX] of two vectors uX, wX ∈ Rn.
The vector uX encodes the vertices in X scaled by |X| i.e., uX({i, j}) = |X| iff i, j ∈ X and 0 otherwise.
The vector wX encodes the vertices in X scaled by

∣∣X∣∣ i.e., wX({i, j}) =
∣∣X∣∣ iff i, j ∈ X and 0 otherwise.

Clearly, we have M2(H, X) = 〈vH, vX〉 and so the nonnegative (and psd) rank of M2 is at most 2(n
2).

Soundness follows due to the analysis in (Garey et al., 1976) and by noting that the cost of a linear arrange-
ment obtained by projecting the leaves of T is a lower bound on cost(T). By the analysis in (Garey et al.,
1976) if the optimal value OPT(G) of MAXCUT is at most S, then the optimal value of MLA on V ′, κ is
at least (n4+n+1

3) − Sn4. Therefore, it follows that the optimal value of HCLUST on V ′, κ is also at least
(n4+n+1

3)− Sn4.

The constant factor inapproximability result for HCLUST now follows due to the following theorems.

Theorem 38 ((Chan et al., 2013, Theorem 3.2)) For any ε > 0 there are infinitely many n such that

fcLP

(
MAXCUT, 1− ε,

1
2
+

ε

6

)
≥ nΩ(log n/ log log n).

Theorem 39 ((Braun et al., 2015, Theorem 7.1)) For any δ, ε > 0 there are infinitely many n such that

fcSDP

(
MAXCUT,

4
5
− ε,

3
4
+ δ

)
= nΩ(log n/ log log n). (43)

Thus we have the following corollary about the LP and SDP inapproximability for the problem HCLUST.

Corollary 40 (LP and SDP hardness for HCLUST) For any constant c ≥ 1, HCLUST is LP-hard and
SDP-hard with an inapproximability factor of c.

Proof Straightforward by using Theorems 38 and 39 together with Lemma 37 and by choosing n large enough.

The following lemma shows that a minor modification of the argument in (Raghavendra et al., 2012) also
implies a constant factor inapproximability result under the Small Set Expansion (SSE) hypothesis. Note that
this reduction is also true for unit capacity graphs, i.e., κ ∈ {0, 1}. The SSE hypothesis implies the well-
known Unique Games Conjecture (UGC) and it is believed that the two may be equivalent. We briefly recall
the formulation of the Small Set Expansion hypothesis. Informally, given a graph G = (V, E) the problem
is to decide whether all “small” sets in the graph are expanding. Let d(i) denote the degree of a vertex i ∈ V.
For a subset S ⊆ V let µ(S) := |S| / |V| be the volume of S, and let φ(S) := E(S, S)/ ∑i∈S d(i) be the
expansion of S. Then the SSE problem is defined as follows.

26

Hierarchical Clustering via Spreading Metrics

Definition 41 (Small set expansion (SSE) hypothesis (Raghavendra et al., 2012)) For every constant η >
0, there exists sufficiently small δ > 0 such that given a graph G = (V, E), it is NP-hard to decide the fol-
lowing cases,

Completeness there exists a subset S ⊆ V with volume µ(S) = δ and expansion φ(S) ≤ η,

Soundness every subset S ⊆ V of volume µ(S) = δ has expansion φ(S) ≥ 1− η.

Under this assumption, (Raghavendra et al., 2012) proved the following amplification result about the expan-
sion of small sets in the graph.

Theorem 42 (Theorem 3.5 (Raghavendra et al., 2012)) For all q ∈ N and ε′, γ > 0 it is SSE-hard to
distinguish the following for a given graph H = (VH, EH)

Completeness There exist disjoint sets S1, . . . , Sq ⊆ VH satisfying µ(Si) = 1
q and φ(Si) ≤

ε′ + o(ε′) for all i ∈ [n],

Soundness For all sets S ⊆ VH we have φ(S) ≥ φG(1− ε′/2)(µ(S))− γ/µ(S),

where φG(1− ε′/2)(µ(S)) is the expansion of sets of volume µ(S) in the infinite Gaussian graph G(1−
ε′/2).

The following lemma establishes that it is SSE-hard to approximate HCLUST to within any constant factor.
The argument closely parallels Corollary A.5 of (Raghavendra et al., 2012) where it was shown that it is
SSE-hard to approximate MLA to within any constant factor.

Lemma 43 Let G = (V, E) be a graph on V with κ induced by the edges E i.e., κ(i, j) = 1 iff {i, j} ∈ E
and 0 otherwise. Then it is SSE-hard to distinguish between the following two cases

Completeness There exists a hierarchical clustering T of V with cost(T) ≤ εn |E|,
Soundness Every hierarchical clustering T of V satisfies cost(T) ≥ c

√
εn |E|

for some constant c not depending on n.

Proof Apply Theorem 42 on the graph G with the following choice of parameters: q = d2/εe, ε′ = ε/3 and
γ = ε. Suppose there exist S1, . . . , Sq ⊆ V satisfying φ(Si) ≤ ε′ + o(ε′) and |Si| = |V| /q ≤ ε |V| /2.
Then consider the tree r, T with the root r having q children corresponding to each Si, and each Si being
further separated into |Si| leaves at the next level. We claim that cost(T) ≤ εn |E|. We analyze this using
the alternate interpretation of cost function (1) (see above). Every crossing edge between Si, Sj for distinct
i, j ∈ [q] incurs a cost of n, but by assumption there are at most ε |E| /2 such edges. Further, any edge in Si
incurs a cost n

q ≤ εn/2 and thus their contribution is upper bounded by εn |E|.
The analysis for soundness follows by the argument of Corollary A.5 in (Raghavendra et al., 2012). In par-
ticular, if for every S ⊆ V we have φ(S) ≥ φG(1− ε′/2)(µ(S))− γ/µ(S) then the cost of the optimal
linear arrangement on G is at most

√
εn |E|. Since the cost of any tree (including the optimal tree) is at least

the cost of the linear arrangement induced by projecting the leaf vertices, the claim about soundness follows.

27

Roy and Pokutta

8. Discussion

In this work we have studied the cost functions (1) and (21) for hierarchical clustering given a pairwise sim-
ilarity function over the data and shown an O(log n) approximation algorithm for this problem. As briefly
mentioned in Section 2 however, such a cost function is not unique. Further, there is an intimate connection
between hierarchical clusterings and ultrametrics over discrete sets which points to other directions for for-
mulating a cost function over hierarchies. In particular we briefly mention the related notion of hierarchically
well-separated trees (HST) as defined in (Bartal, 1996) (see also (Bartal et al., 2001, 2003)). A k-HST for
k ≥ 1 is a tree T such that each vertex u ∈ T has a label ∆(u) ≥ 0 such that ∆(u) = 0 if and only if u
is a leaf of T. Further, if u is a child of v in T then ∆(u) ≤ ∆(v)/k. It is well known that any ultrametric
d on a finite set V is equivalent to a 1-HST where V is the set of leaves of T and d(i, j) = ∆ (lca(i, j)) for
every i, j ∈ V. Thus in the special case when ∆(u) = |leaves T[u]| − 1 we get the cost function (1), while
if ∆(u) = f (|leaves T[u]| − 1) for a strictly increasing function f with f (0) = 0 then we get cost function
(21). It turns out this assumption on ∆ enables us to prove the combinatorial results of Section 3 and give
an O(log n) approximation algorithm to find the optimal cost tree according to these cost functions. It is an
interesting problem to investigate cost functions and algorithms for hierarchical clustering induced by other
families of ∆ that arise from a k-HST on V, i.e., if the cost of T is defined as

cost∆(T) := ∑
{i,j}∈E(Kn)

κ(i, j)∆ (lca(i, j)) . (44)

Note that not all choices of∆ lead to ameaningful cost function. For example, choosing∆(u) = diam (T[u])−
1 gives rise to the following cost function

cost(T) := ∑
{i,j}∈E(Kn)

κ(i, j)distT(i, j) (45)

where distT(i, j) is the length of the unique path from i to j in T. In this case, the trivial clustering r, T∗ where
T∗ is the star graph with V as its leaves and r as the root is always a minimizer; in other words, there is no
incentive for spreading out the hierarchical clustering. Also worth mentioning is a long line of related work
on fitting tree metrics to metric spaces (see e.g., (Ailon and Charikar, 2005; Räcke, 2008; Fakcharoenphol
et al., 2003)). In this setting, the data points V are assumed to come from a metric space dV and the objective
is to find a hierarchical clustering T so as to minimize ‖dV − dT‖p. If the points in V lie on the unit sphere
and the similarity function κ is the cosine similarity κcos(i, j) = 1− dV(i, j)/2, then the problem of fitting
a tree metric with p = 2 minimizes the same objective as cost function (45). Since dV ≤ 1 in this case, the
minimizer is the trivial tree r, T∗ (as remarked above). In general, when the points in V are not constrained
to lie on the unit sphere, the two problems are incomparable.

Acknowledgments

Research reported in this paper was partially supported by NSF CAREER award CMMI-1452463 and NSF
grant CMMI-1333789. We would like to thank Kunal Talwar and Mohit Singh for helpful discussions and
anonymous reviewers for helping improve the presentation of this paper.

Appendix A. Missing proofs from Section 2

Lemma 44 (Restatement of Lemma 3.) Let d be a non-trivial ultrametric on V and let St ⊆ V be an
equivalence class under the relation i ∼ j iff d(i, j) ≤ t. Then d restricted to St is a non-trivial ultrametric
on St.

28

Hierarchical Clustering via Spreading Metrics

ProofClearly d restricted to St is an ultrametric on St and so we need to establish that it satisfies Conditions 1
and 2 of Definition 2. Let S ⊆ St be any set. Since d is a non-trivial ultrametric on V it follows that there is
a pair i, j ∈ S with d(i, j) ≥ |S| − 1, and so d restricted to St satisfies Condition 1.
If S′r is an equivalence class in St under the relation i ∼ j iff d(i, j) ≤ r then clearly S′r = St if r > t. Since d
is a non-trivial ultrametric on V, it follows that maxi,j∈S′r d(i, j) = maxi,j∈St d(i, j) ≤ |St| − 1 = |S′r| − 1.
Thus we may assume that r ≤ t. Consider an i ∈ S′r and let j ∈ V be such that d(i, j) ≤ r. Since r ≤ t
and i ∈ St, it follows that j ∈ St and so j ∈ S′r. In other words S′r is an equivalence class in V under the
relation i ∼ j iff d(i, j) ≤ r. Since d is an ultrametric on V it follows that maxi,j∈S′r d(i, j) ≤ |S′r| − 1. Thus
d restricted to St satisfies Condition 2.

Lemma 45 (Restatement of Lemma 4.) Let d be a non-trivial ultrametric on the set V as in Definition 2.
Then the range of d is contained in the set {0, 1, . . . , n− 1} with |V| = n.

ProofWe will prove this by induction on |V|. The base case when |V| = 1 is trivial. Therefore, we now as-
sume that |V| > 1. By Condition 1 there is a pair i, j ∈ V such that d(i, j) ≥ n− 1. Let t = maxi,j∈V d(i, j),
then the only equivalence class under the relation i ∼ j iff d(i, j) ≤ t is V. By Condition 2 it follows that
maxi,j∈V d(i, j) = t = n− 1. Let V1, . . . Vm denote the set of equivalence classes of V under the relation
i ∼ j iff d(i, j) ≤ n− 2. Note that m > 1 as there is a pair i, j ∈ V with d(i, j) = n− 1, and therefore
each Vl (V. By Lemma 3, d restricted to each of these Vi’s is a non-trivial ultrametric on those sets. The
claim then follows immediately: for any i, j ∈ V either i, j ∈ Vl for some Vl in which case by the induction
hypothesis d(i, j) ∈ {0, 1, . . . , |Vl | − 1}, or i ∈ Vl and j ∈ Vl′ for l 6= l′ in which case d(i, j) = n− 1.

Appendix B. Missing proofs from Section 3

Lemma 46 (Restatement of Lemma 5) Let S ⊆ V with |S| ≥ 2. If r = lca(S) then there is a pair i, j ∈ S
such that lca(i, j) = r.

Proof We will proceed by induction on |S|. If |S| = 2 then the claim is trivial and so we may assume
|S| > 2. Let i ∈ S be an arbitrary point and let r′ = lca(S \ {i}). We claim that r = lca(i, r′). Clearly the
subtree rooted at lca(i, r′) contains S and since T[r] is the smallest such tree it follows that r ∈ T[lca(i, r′)].
Conversely, T[r] contains S \ {i} and so r′ ∈ T[r] and since i ∈ T[r], it follows that lca(i, r′) ∈ T[r]. Thus
we conclude that r = lca(i, r′).
If lca(i, r′) = r′, then we are done by the induction hypothesis. Thus wemay assume that i /∈ T[r′]. Consider
any j ∈ S such that j ∈ T[r′]. Then we have that lca(i, j) = r as lca(i, r′) = r and j ∈ T[r′] and i /∈ T[r′].

Lemma 47 (Restatement of Lemma 6) Let T be a hierarchical clustering on V and let dT be the ultramet-
ric on V induced by it. Then dT is non-trivial.

Proof Let S ⊆ V be arbitrary and r = lca(S), then T[r] has at least |S| leaves. By Lemma 5 there must be
a pair i, j ∈ S such that r = lca(i, j) and so dT(i, j) ≥ |S| − 1. This satisfies Condition 1 of non-triviality.
For any t, let St be a non-empty equivalence class under the relation i ∼ j iff dT(i, j) ≤ t. Since dT sat-
isfies Condition 1 it follows that |St| − 1 ≤ t. Let us assume for the sake of contradiction that there is a
pair i, j ∈ St such that dT(i, j) > |St| − 1. Let r = lca(St); using the definition of dT it follows that
t + 1 ≥ |leaves (T[r])| > |St| since i, j ∈ St. Let k ∈ leaves (T[r]) \ St be an arbitrary point, then for
every l ∈ St it follows that dT(k, l) ≤ |leaves(T[r])| − 1 ≤ t since the subtree rooted at r contains both k

29

Roy and Pokutta

and l. This is a contradiction to St being an equivalence class under i ∼ j iff dT(i, j) ≤ t since k /∈ St. Thus
dT also satisfies Condition 2 of Definition 2.

Lemma 48 (Restatement of Lemma 7) For every non-trivial ultrametric d on V there is a hierarchical
clustering T on V such that for any pair i, j ∈ V we have

dT(i, j) = |leaves(T[lca (i, j)])| − 1 = d(i, j).

Moreover this hierarchy can be constructed in time O
(
n3) by Algorithm 1 where |V| = n.

Proof The proof is by induction on n. The base case when n = 1 is straightforward. We now suppose that
the statement is true for sets of size < n. Note that i ∼ j iff d(i, j) ≤ n − 2 is an equivalence relation
on V and thus partitions V into m equivalence classes V1, . . . , Vm. We first observe that m > 1 since by
Condition 1 there is a pair of points i, j ∈ V such that d(i, j) ≥ n− 1 and in particular |V|l < n for every
l ∈ {1, . . . , m}. By Lemma 3, d restricted to any Vl is a non-trivial ultrametric on Vl and there is a pair of
points i, j ∈ Vl such that d(i, j) = |Vl | − 1 by Conditions 1 and 2. Therefore by the induction hypothesis
we construct trees T1, . . . , Tm such that for every l ∈ {1, . . . , m} we have leaves(Tl) = Vl . Further for any
pair of points i, j ∈ Vl for some l ∈ {1, . . . , m}, we also have d(i, j) = dTl (i, j).
We construct the tree T as follows: we first add a root r and then connect the root rl of Tl to r for every
l ∈ {1, . . . , m}. Consider a pair of points i, j ∈ V. If i, j ∈ Vl for some l ∈ {1, . . . , m} then we are done
since dTl (i, j) = dT(i, j) as lca(i, j) ∈ Tl . If i ∈ Vl and j ∈ Vl′ for some l 6= l′ then d(i, j) = n − 1
since d(i, j) ≥ n− 1 by definition of the equivalence relation and the range of d lies in {0, 1, . . . , n− 1}
by Lemma 4. Moreover i and j are leaves in Tl and Tl′ respectively, and thus by construction of T we have
lca(i, j) = r, i.e., dT(i, j) = n− 1 and so the claim follows. Algorithm 1 simulates this inductive argument
can be easily implemented to run in time O

(
n3).

Appendix C. Missing proofs from Section 4

Lemma 49 (Restatement of Lemma 18) Let BU (i, r, t) be the ball corresponding to a set U ⊆ V, vertex
i ∈ U, radius r ∈ R and t ∈ [n− 1]. Then vol (BU (i, r, t)) is differentiable with respect to r in the interval
(0, ∆] except at finitely many points.

Proof Note that for any fixed U ⊆ V, vol (BU (i, r, t)) is a monotone non-decreasing function in r since
for a pair j, k ∈ U such that j ∈ BU (i, r, t) and k /∈ BU (i, r, t) we have r − dt(i, j) ≤ dt(j, k) oth-
erwise r − dt(i, j) > dt(j, k) so that r > dt(i, j) + dt(j, k) ≥ dt(i, k), a contradiction to the fact that
k /∈ BU (i, r, t). Therefore adding the vertex k to the ball centered at i is only going to increase its volume
as r− dt(i, j) ≤ dt(j, k) (see Definition 15). Thus vol (BU (i, r, t)) is differentiable with respect to r in the
interval (0, ∆] except at finitely many points which correspond to a new vertex from U being added to the
ball.

Theorem 50 (Restatement of Theorem 19) Letmε :=
⌊ n−1

1+ε

⌋
as in Algorithm 2 and let

{
xt

ij | t ∈ [mε], i, j ∈ V
}

be the output of Algorithm 2 run on a feasible solution {dt}t∈[n−1] of LP-ultrametric and any choice of
ε ∈ (0, 1). For any t ∈ [mε], we have that xt

ij is feasible for the layer-b(1 + ε) tc problem ILP-layer and
there is a constant c(ε) > 0 depending only on ε such that

∑
{i,j}∈E(Kn)

κ(i, j)xt
ij ≤ c(ε)(log n)γt.

30

Hierarchical Clustering via Spreading Metrics

Moreover, Algorithm 2 can be implemented to run in time polynomial in n.

ProofWe first show that for a fixed t, the constructed solution xt
ij is feasible for the layer-b(1+ ε)tc problem

ILP-layer. Let Ct be as in Algorithm 2 so that xt
ij = 1 if i, j belong to different sets in Ct and xt

ij = 0 otherwise.
Let Gt = (V, Et) be as in Definition 9 corresponding to xt

ij. Note that for any t ∈ [mε], every Vi ∈ Ct is a
clique in Gt by construction (line 19) and for every distinct pair Vi, Vj ∈ Ct we have Vi ∩Vj = ∅ (lines 15
and 16). Therefore by Lemma 10, it suffices to prove that for any Vi ∈ Ct, it holds |Vi| ≤ b(1 + ε)tc. If Vi
is added to Ct in line 9 then there is nothing to prove.
Thus let us assume that Vi is of the form BU (i, r, t) for some U ⊆ V as in line 14 so that φ (BU (i, r, t)) ≤
1
∆ log

(
vol(BU(i,∆,t))
vol(BU(i,0,t))

)
. Note that by Lemma 13 it suffices to show that there is such an r ∈ (0, ∆]. This

property follows from the rounding scheme due to (Even et al., 1999) as we will explain now.
By Lemma 18 vol (BU (i, r, t)) is differentiable everywhere in the interval (0, ∆] except at finitely many
points X. Let the set of discontinuous points be X = {x1, x2, . . . , xk−1} with x0 = 0 < x1 < x2 . . . xk−1 <

xk = ∆. We claim that there must be an r ∈ (0, ∆] \ X such that φ (BU (i, r, t)) ≤ 1
∆ log

(
vol(BU(i,∆,t))
vol(BU(i,0,t))

)
.

Let us assume for the sake of a contradiction that for every r ∈ (0, ∆] \ X we have φ (BU (i, r, t)) >
1
∆ log

(
vol(BU(i,∆,t))
vol(BU(i,0,t))

)
. However integrating both sides from 0 to ∆ results in a contradiction:

∫ ∆

r=0
φ (BU (i, r, t)) dr =

∫ ∆

r=0

∂BU (i, r, t)
vol (BU (i, r, t))

dr (46)

=
k

∑
i=1

∫ xi

r=xi−1

∂BU (i, r, t)
vol (BU (i, r, t))

dr (47)

=
k

∑
i=1

∫ xi

r=xi−1

d (vol (BU (i, r, t)))
vol (BU (i, r, t))

(48)

≤ log vol (BU (i, ∆, t))− log vol (BU (i, 0, t)) (49)

=
∫ ∆

r=0

1
∆

log
(

vol (BU (i, ∆, t))
vol (BU (i, 0, t))

)
dr, (50)

where line 49 follows since f is monotonic increasing. For any t ∈ [mε] the set Ct is a disjoint partition of
V with balls of the form BU (i, r, t′) for some t′ ≥ t and U ⊆ Ul ∈ Ct′+1: this is easily seen by induction
since Cmε+1 is initialized as V. Further, a cluster Vi is added to Ct either in line 15 in which case it is a ball of
the form BU (i, r, t) for some U ∈ Ct+1, i ∈ U, and r ∈ R or it is added in line 9 in which case it must have
been a ball BU (i′, r′, t′) for some t′ > t, U ⊆ Ul ∈ Ct′+1, i′ ∈ V, and r′ ∈ R. Note that for any t′ ≥ t and
U ⊆ V, it holds γU

t′ ≤ γU
t since for every pair i, j ∈ V we have κ(i, j) ≥ 0 and dt(i, j) ≥ dt′(i, j) because

of constraint (15). Moreover, for any subset U ⊆ V we have γU
t ≤ γt since κ, dt ≥ 0. We claim that for any

t ∈ [mε] the total volume of the balls in Ct is at most
(

2 + 1
log n

)
γt. First note that the affine term γU

t′
n log n

in the volume of a ball BU (i, r, t′) in Ct is upper bounded by γt
n log n and appears at most n times. Next we

claim that the contribution to the total volume from the term involving the edges inside and crossing a ball
BU (i, r, t′) ∈ Ct is at most 2γt. This is because the balls are disjoint, r− dt′(i, k) ≤ dt′(j, k) ≤ dt(j, k) for
the crossing edges of a ball BU (i, r, t′) ∈ Ct and a crossing edge contributes to the volume of at most 2 balls
in Ct. Note that for any U ⊆ V, i ∈ U, and r ∈ R≥0 we have vol (BU (i, r, t)) ∈

[
γU

t
n log n ,

(
1 + 1

n log n

)
γU

t

]
.

31

Roy and Pokutta

Using this observation and the stopping condition of line 14 it follows that

∑
{i,j}∈E(Kn)

κ(i, j)xt
ij = ∑

{i,j}∈E(Kn):
i,j separated in Ct

κ(i, j)

=
1
2 ∑
BU(i,r,t′)∈Ct :

t′≥t
U⊆Ul∈Ct′+1

∑
j∈BU(i,r,t′)
k/∈BU(i,r,t′)

κ(j, k)

︸ ︷︷ ︸
Since κ is symmetric

=
1
2 ∑
BU(i,r,t′)∈Ct :

t′≥t
U⊆Ul∈Ct′+1

∂BU
(
i, r, t′

)

=
1
2 ∑
BU(i,r,t′)∈Ct :

t′≥t
U⊆Ul∈Ct′+1

φ
(
BU
(
i, r, t′

))
vol
(
BU
(
i, r, t′

))

≤ ∑
BU(i,r,t′)∈Ct :

t′≥t
U⊆Ul∈Ct′+1

1
2∆

log
(

vol (BU (i, ∆, t′))
vol (BU (i, 0, t′))

)
vol
(
BU
(
i, r, t′

))

≤ 1
2∆

(log (n log n + 1))︸ ︷︷ ︸
via interval bounds

∑
BU(i,r,t′)∈Ct :

t′≥t
U⊆Ul∈Ct′+1

vol
(
BU
(
i, r, t′

))

≤ 1 + ε

2ε
(log (n log n + 1))

(
2 +

1
log n

)
γt︸ ︷︷ ︸

contribution of affine term ≤ γt
log n

contribution of edge terms ≤ 2γt

≤ c(ε)(log n)γt,

for some constant c(ε) > 0 depending only on ε.
For the run time of Algorithm 2 note that the loop in line 5 runs for at most n− 1 steps, while the loop in
line 7 runs for at most n steps. For a set U ⊆ V, to compute the ball BU (i, r, t) of least radius r such that
φ (BU (i, r, t)) ≤ 1

∆ log
(

vol(BU(i,∆,t))
vol(BU(i,0,t))

)
, sort the vertices in U \ {i} in increasing order of distance from i

according to dt. Let the vertices in U \ {i} in this sorted order be
{

j1, . . . , j|U|−1
}
. Then it suffices to check

the expansion of the balls {i} and {i} ∪ {j1, . . . , jk} for every k ∈ [|U| − 1]. It is straightforward to see that
all the other steps in Algorithm 2 run in time polynomial in n.

References

Margareta Ackerman, Shai Ben-David, and David Loker. Characterization of linkage-based clustering. In
COLT, pages 270–281. Citeseer, 2010.

Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 73–82. IEEE, 2005.

32

Hierarchical Clustering via Spreading Metrics

Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph parti-
tioning. Journal of the ACM (JACM), 56(2):5, 2009.

Pranjal Awasthi, Afonso S Bandeira, Moses Charikar, Ravishankar Krishnaswamy, Soledad Villar, and
Rachel Ward. Relax, no need to round: Integrality of clustering formulations. In Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science, pages 191–200. ACM, 2015.

Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A discriminative framework for clustering via
similarity functions. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
671–680. ACM, 2008.

Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In Foundations
of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 184–193. IEEE, 1996.

Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In European Sym-
posium on Algorithms, pages 89–97. Springer, 2004.

Yair Bartal, Béla Bollobás, andManorMendel. A ramsey-type theorem for metric spaces and its applications
for metrical task systems and related problems. In Foundations of Computer Science, 2001. Proceedings.
42nd IEEE Symposium on, pages 396–405. IEEE, 2001.

Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phenomena. In Proceed-
ings of the thirty-fifth annual ACM symposium on Theory of computing, pages 463–472. ACM, 2003.

Gábor Braun, Sebastian Pokutta, and Aurko Roy. Strong reductions for extended formulations. CoRR,
abs/1512.04932, 2015. URL http://arxiv.org/abs/1512.04932.

Siu On Chan, James Lee, Prasad Raghavendra, and David Steurer. Approximate constraint satisfaction re-
quires large lp relaxations. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Sympo-
sium on, pages 350–359. IEEE, 2013.

Moses Charikar andVaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut and spreading
metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 841–854. SIAM, 2017.

Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median problem. In Automata,
Languages, and Programming, pages 194–205. Springer, 2012.

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approximation algo-
rithm for the k-median problem. In Proceedings of the thirty-first annual ACM symposium on Theory of
computing, pages 1–10. ACM, 1999.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative information. In
Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 524–533.
IEEE, 2003.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 118–127. ACM, 2016. ISBN 978-1-4503-
4132-5. doi: 10.1145/2897518.2897527. URL http://doi.acm.org/10.1145/2897518.
2897527.

33

http://arxiv.org/abs/1512.04932
http://doi.acm.org/10.1145/2897518.2897527
http://doi.acm.org/10.1145/2897518.2897527

Roy and Pokutta

Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. Journal of Com-
puter and System Sciences, 70(4):555–569, 2005.

Marco Di Summa, David Pritchard, and Laura Sanità. Finding the closest ultrametric. Discrete Applied
Mathematics, 180:70–80, 2015.

Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Fast approximate graph partitioning algorithms.
SIAM Journal on Computing, 28(6):2187–2214, 1999.

Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation algo-
rithms via spreading metrics. Journal of the ACM (JACM), 47(4):585–616, 2000.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by
tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages
448–455. ACM, 2003.

Joseph Felsenstein and Joseph Felenstein. Inferring phylogenies, volume 2. Sinauer Associates Sunderland,
2004.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics Springer, Berlin, 2001.

Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified np-complete graph problems.
Theoretical computer science, 1(3):237–267, 1976.

Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi) cut theorems
and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

AnupamGupta. Lecture notes on approximation algorithms. Available at https://www.cs.cmu.edu/
afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf , 2005.

Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015. URL http://www.gurobi.com.

Kamal Jain and Vijay V Vazirani. Approximation algorithms for metric facility location and k-median prob-
lems using the primal-dual schema and lagrangian relaxation. Journal of the ACM (JACM), 48(2):274–296,
2001.

Kamal Jain, MohammadMahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing lp. Journal of the ACM (JACM), 50
(6):795–824, 2003.

Nicholas Jardine and Robin Sibson. The construction of hierarchic and non-hierarchic classifications. The
Computer Journal, 11(2):177–184, 1968.

Nicholas Jardine and Robin Sibson. Mathematical taxonomy. London etc.: John Wiley, 1971.

Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz. Partitioning graphs into balanced components.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 942–949.
Society for Industrial and Applied Mathematics, 2009.

Tom Leighton and Satish Rao. An approximate max-flowmin-cut theorem for uniformmulticommodity flow
problems with applications to approximation algorithms. In Foundations of Computer Science, 1988., 29th
Annual Symposium on, pages 422–431. IEEE, 1988.

34

https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf
http://www.gurobi.com

Hierarchical Clustering via Spreading Metrics

Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.

Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings of the forty-
fifth annual ACM symposium on Theory of computing, pages 901–910. ACM, 2013.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

Marina Meilă and David Heckerman. An experimental comparison of model-based clustering methods.
Machine learning, 42(1-2):9–29, 2001.

Jiming Peng and Yu Wei. Approximating k-means-type clustering via semidefinite programming. SIAM
Journal on Optimization, 18(1):186–205, 2007.

Jiming Peng and Yu Xia. A new theoretical framework for k-means-type clustering. In Foundations and
advances in data mining, pages 79–96. Springer, 2005.

Harald Räcke. Optimal hierarchical decompositions for congestionminimization in networks. InProceedings
of the fortieth annual ACM symposium on Theory of computing, pages 255–264. ACM, 2008.

Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion problems. In
Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on, pages 64–73. IEEE, 2012.

Ben Recht, Christopher Re, Joel Tropp, and Victor Bittorf. Factoring nonnegative matrices with linear
programs. In Advances in Neural Information Processing Systems, pages 1214–1222, 2012.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Peter HA Sneath, Robert R Sokal, et al. Numerical taxonomy. The principles and practice of numerical
classification. 1973.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American statistical
association, 58(301):236–244, 1963.

Reza Bosagh Zadeh and Shai Ben-David. A uniqueness theorem for clustering. In Proceedings of the twenty-
fifth conference on uncertainty in artificial intelligence, pages 639–646. AUAI Press, 2009.

35

http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Contribution

	Preliminaries
	Ultrametrics and Hierarchical Clusterings
	Rounding an LP relaxation
	Generalized Cost Function
	Experiments
	Hardness of finding the optimal hierarchical clustering
	Discussion
	Missing proofs from Section 2
	Missing proofs from Section 3
	Missing proofs from Section 4

