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Abstract

Undirected graphs are often used to describe high dimeaigilistributions. Under sparsity condi-
tions, the graph can be estimated usipgenalization methods. We propose and study the follow-
ing method. We combine a multiple regression approach withs of thresholding and refitting:
first we infer a sparse undirected graphical model struatir¢hresholding of each among many
£1-norm penalized regression functions; we then estimatecthariance matrix and its inverse
using the maximum likelihood estimator. We show that undéable conditions, this approach
yields consistent estimation in terms of graphical strrecand fast convergence rates with respect
to the operator and Frobenius norm for the covariance matrikits inverse. We also derive an
explicit bound for the Kullback Leibler divergence.
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1. Introduction

There have been a lot of recent activities for estimation of high-dimeristomariance and inverse
covariance matrices where the dimenspif the matrix may greatly exceed the sample size
High-dimensional covariance estimation can be classified into two main catggarewhich relies
on a natural ordering among the variables [Wu and Pourahmadi, 200&I|Bind Levina, 2004;
Huang et al., 2006; Furrer and Bengtsson, 2007; Bickel and Le2id@8; Levina et al., 2008]
and one where no natural ordering is given and estimators are permuta@oiant with respect
to indexing the variables [Yuan and Lin, 2007; Friedman et al., 2007; g#sont et al., 2008;
Banerjee et al., 2008; Rothman et al., 2008]. We focus here on the latssrwitn permutation
invariant estimation and we aim for an estimator which is accurate for both tagi@oce matrixz
and its inverse, the precision matiix®. A popular approach for obtaining a permutation invariant
estimator which is sparse in the estimated precision matrixis given by the/;-norm regularized
maximume-likelihood estimation, also known as the GLasso [Yuan and Lin, 20@frRan et al.,
2007; Banerjee et al., 2008]. The GLasso approach is simple to usegsatwben relying on
publicly available software such as tgeasso package inR. Further improvements have been
reported when using some SCAD-type penalized maximum-likelihood estimator firal Fan,
2009] or an adaptive GLasso procedure [Fan et al., 2009], whiclbedahought of as a two-stage
procedure. It is well-known from linear regression that such two- dtiratage methods effectively
address some bias problems which arise flgrpenalization [Zou, 2006; Caed and Tao, 2007,
Meinshausen, 2007; Zou and Li, 2008jBmann and Meier, 2008; Zhou, 2009, 2010a].

In this paper we develop a new method for estimating graphical structungasacheters for multi-
variate Gaussian distributions using a multi-step procedure, which we @atb@Graphestimation
with Lasso and Thregiiding). Based on ai;-norm regularization and thresholding method in a
first stage, we infer a sparse undirected graphical model, that istiaratsd Gaussian conditional
independence graph, and we then perform unpenalized maximum likelisgothgon (MLE) for
the covarianc& and its invers& ! based on the estimated graph. We make the following theoreti-
cal contributions: (i) Our method allows us to select a graphical structbighvis sparse. In some
sense we select only the important edges even though there may be mapgroauges in the
graph. (ii) Secondly, we evaluate the quality of the graph we have selegtgtbwing consistency
and establishing a fast rate of convergence with respect to the opanatéirobenius norm for the
estimated inverse covariance matrix; under sparsity constraints, the lattéowgeo order than the
corresponding results for the GLasso [Rothman et al., 2008] and f&GRdD-type estimator [Lam
and Fan, 2009]. (iii) We show predictive risk consistency and providdeaof convergence of the
estimated covariance matrix. (iv) Lastly, we show general results for tte, Mhere onlyapproxi-
mategraph structures are given as input. Besides these theoretical agb@mnee found empirically
that our graph based method performs better in general, and sometimessalhg better than the
GLasso, while we never found it clearly worse. Moreover, we compavith an adaptation of the
method Space [Peng et al., 2009]. Finally, our algorithm is simple and is cabipdo the GLasso
both in terms of computational time and implementation complexity.
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There are a few key motivations and consequences for proposihgawapproach based on graph-
ical modeling. We will theoretically show that there are cases where ophdrased method can
accurately estimate conditional independencies among variables, that zgréies oz 2, in sit-
uations where GLasso fails. The fact that GLasso easily fails to estimatetbeszof> ! has
been recognized by Meinshausen [2008] and it has been discusseatendetails in Ravikumar
et al. [2011]. Closer relations to existing work are primarily regardingfiostr stage of estimating
the structure of the graph. We follow the nodewise regression appfoathMeinshausen and
Buhlmann [2006] but we make use of recent results for variable selectlmear models assuming
the much weaker restricted eigenvalue condition [Bickel et al., 2009; Z¥#l0a] instead of the
restrictive neighborhood stability condition [Meinshausen aitiBiann, 2006] or the equivalent
irrepresentable condition [Zhao and Yu, 2006]. In some sense, thetyof our theory extending
beyond Zhou [2010a] is the analysis for covariance and inverseiaoea estimation and for risk
consistency based on an estimated sparse graph as we mentioned abraegré€ssion and thresh-
olding results build upon analysis of the thresholded Lasso estimator asdsindiéou [2010a].
Throughout our analysis, the sample complexity is one of the key focus, pdirch builds upon
results in Zhou [2010b]; Rudelson and Zhou [2011]. Once the zesofand, a constrained max-
imum likelihood estimator of the covariance can be computed, which was sho@hdandhuri
et al. [2007]; it was unclear what the properties of such a procedavéd be. Our theory answers
such questions. As a two-stage method, our approach is also related tafiterea Lasso [Zou,
2006] which has been analyzed for high-dimensional scenarios ingHetaal. [2008], Zhou et al.
[2009] and van de Geer et al. [2011]. Another relation can be made tmd¢iieod by Ritimann
and Bihlmann [2009] for covariance and inverse covariance estimation loasadlirected acyclic
graph. This relation has only methodological character: the techniqukslgarithms used in
Rutimann and Bhimann [2009] are very different and from a practical point of vidweir ap-
proach has much higher degree of complexity in terms of computation and impétioensince
estimation of an equivalence class of directed acyclic graphs is difficdlcambersome. There
has also been work that focuses on estimation of sparse directed Gagrsgihical model. Verze-
len [2010] proposes a multiple regularized regression proceduresfionating a precision matrix
with sparse Cholesky factors, which correspond to a sparse direphd.He also computes non-
asymptotic Kullback Leibler risk bound of his procedure for a class dfileggzation functions. It
is important to note that directed graph estimation requires a fixed goodrayaéithe variables a
priori.

1.1 Notation

We use the following notation. Given a gra@h-= (V, Ep), whereV = {1,..., p} is the set of vertices
andEj is the set of undirected edges. we ss® denote the degree for nodehat is, the number
of edges irEy connecting to node For an edge séf, we let|E| denote its size. We us@y = Zgl

and2 to refer to the true precision and covariance matrices respectively fomron. We denote
the number of non-zero elements®@fy suppg©®). For any matridV = (w;j), let |W| denote the
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determinant ofw, tr(W) the trace oW. Let ¢nax(W) and ¢pmin(W) be the largest and smallest
eigenvalues, respectively. We write di§lg) for a diagonal matrix with the same diagonaVésnd

offd(W) =W —diagW). The matrix Frobenius normis given bBW||- = /3 5 wﬁ . The operator

norm HWH% is given bydmax(WWT). We write| - |1 for the £, norm of a matrix vectorized, that is,
for a matrix|W|y = [[vedN||; = 5; 5 j [wij|, and sometimes writgW||, for the number of non-zero
entries in the matrix. For an index setand a matrid\WV = [wj;], write Wy = (w;;1((i,]) € T)),
wherel () is the indicator function.

2. The Model and the Method

We assume a multivariate Gaussian model
X = (Xg,...,Xp) ~ Np(0,Zo), where>gj =1. Q)

The data is generated B¢V, ... XM i.i.d. ~ Ap(0,Z0). Requiring the mean vector and all vari-
ances being equal to zero and one respectively is not a real restaatioin practice, we can easily
center and scale the data. We denote the concentration mai@y bngl.

Since we will use a nodewise regression procedure, as describedibebection 2.1, we consider
a regression formulation of the model. Consider many regressions, wieregress one variable
against all others:

x:;sngw (i=1,...,p), where 2)
J#I
Vi ~ A((0,0%) independent of Xj; j #i} (i=1,...,p). (3)
There are explicit relations between the regression coefficients vamniances and the concentration
matrix ©p = (6oj ):
B} = —60j/Bo,i, Var(Vi) := g = 1/80;i (i,j =1,...,p). 4)

Furthermore, it is well known that for Gaussian distributions, conditiordgpendence is encoded
in ©g, and due to (4), also in the regression coefficients:

X; is conditionally dependent of; given{X; ke {1,...,p}\{i,j}}
< 80jj #0 <= B/ #0andp} £0. (5)
For the second equivalence, we assume thafWae 1/6q; > 0 and VatV;) = 1/6gj; > 0. Con-
ditional (in-)dependencies can be conveniently encoded by an utatirgcaph, the conditional

independence graph which we denote®y- (V,Ep). The set of vertices ¥ = {1,...,p} and the
set of undirected edgés CV x V is defined as follows:

there is an undirected edge between nadesl
< 8jj #0 < Bl #0andp, #0. (6)
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Note that on the right hand side of the second equivalence, we couteefne word "and” by
"or”. For the second equivalence, we assumeVarVar(V;) > 0 following the remark after (5).

We now define the sparsity of the concentration ma@gxor the conditional independence graph.
The definition is different than simply counting the non-zero elementBgpffor which we have
supp(©g) = p+ 2|Ep|. We consider instead the number of elements which are sufficiently large.
For each, define the numbe#.dn as the smallest integer such that the following holds:

p .
> min{63;;.A%60;i} < SyA*60ii, whereX = /2log(p)/n, 7
j=L)#
where essential sparsityio;}, at row i describes the number of “sufficiently large” non-diagonal
elementdy;; relative to a giver(n, p) pair andgji,i = 1,...,p. The valueS, in (8) is summing
essential sparsitgcross all rows 08,

= i%’”' (8)

Due to the expression of, the value ofS, depends orp andn. For example, if all non-zero
non-diagonal elementy;; of theith row are larger in absolute value thag/8ji, the value§;)7n
coincides with the node degree However, if some (many) of the elemen€g;;| are non-zero
but small,s‘b’n is (much) smaller than its node degrée As a consequence, if some (many) of
|80j|,Vi, j,i # j are non-zero but small, the value &, is also (much) smaller thanE|, which

is the “classical” sparsity for the matri®©y — diag(©p)). See Section A for more discussions.

2.1 The Estimation Procedure

The estimation 0®g and>g = G)a1 is pursued in two stages. We first estimate the undirected
graph with edge sdfy as in (6) and we then use the maximum likelihood estimator based on the
estimateE,, that is, the non-zero elements®§ correspond to the estimated edge&in Inferring

the edge seEy can be based on the following approach as proposed and theoreticéfigguis
Meinshausen andiBimann [2006] perfornp regressmns using the Lasso to obtpimectors of
regression coefflcuants1 Bp where for eacl, [3' = {B' ;1 €{1,...,p}\i}; Then estimate the
edge set by the “OR” rule,

estimate an edge between nodesd j <—- E'J #0 orﬁij #0. (9)
2.1.1 NODEWISEREGRESSIONS FORNFERRING THEGRAPH

In the present work, we use the Lasso in combination with thresholdingu[Z2G99, 2010a]. Con-
sider the Lasso for each of the nodewise regressions

Blnit = argmin Zl(Xi(r) — ;Bijxj(r))2+)\n ; By fori=1,...,p, (10)
r= VA 1A
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wherel, > 0 is the same regularization parameter for all regressions. Since thetypisily es-
timates too many components with non-zero estimated regression coefficienisewhresholding
to get rid of variables with small regression coefficients from solutiong @: (

B Ay 0) = B int A (B i )| > 1), (11)

wheret > 0 is a thresholding parameter. We obtain the corresponding estimated eédgelséned
by (9) using the estimator in (11) and we use the notation

~

En(An, T). (12)
We note that the estimator depends on two tuning paramgtensdr.

The use of thresholding has clear benefits from a theoretical point wf \ttee number of false
positive selections may be much larger without thresholding (when tunepgbéat prediction). and
a similar statement would hold when comparing the adaptive Lasso with the stdrateso. We
refer the interested reader to Zhou [2009, 2010a] and van de Galef2211].

2.1.2 MAXIMUM LIKELIHOOD ESTIMATION BASED ON GRAPHS

Given a conditional independence graph with edgeesete estimate the concentration matrix by
maximum likelihood. Denote b, = n~15"_ X(M(X")T the sample covariance matrix (using
that the mean vector is zero) and by

Mn=diag ) Y3(S))diag S,) /2
the sample correlation matrix. The estimator for the concentration matrix in vie®) & (
On(E) = argminyeay, . (tr(@ﬂ,) - Iog\®|> , Where
Mpe ={© € RP*P; @ 0 and®;; =0 forall (i,j) ZE, wherei# j} (13)

defines the constrained set for positive defil@telf n > g* whereq* is the maximal clique size
of a minimal chordal cover of the graph with edge Eetthe MLE exists and is unique, see, for
example Uhler [2011, Corollary 2.3]. We note that our theory guararitegs > q* holds with
high probability forG = (V,E), whereE = I?n()\n,t)), under Assumption (A1) to be introduced in
the next section. The definition in (13) is slightly different from the more ussamator which
uses the sample covarian§erather tharl .. Here, the sample correlation matrix reflects the fact
that we typically work with standardized data where the variables have ealpigdances equal
to one. The estimator in (13) is constrained leading to zero-values condisgy toE® = {(i, j) :

Lj=1,...,p,i#],(,]) £E}.

If the edge seE is sparse having relatively few edges only, the estimator in (13) is alradfly s
ciently regularized by the constraints and hence, no additional penalizatisad at this stage. Our
final estimator for the concentration matrix is the combination of (12) and (13):

On = On(En(An, T)). (14)
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2.1.3 (HOOSING THEREGULARIZATION PARAMETERS

We propose to select the paramekgrvia cross-validation to minimize the squared test set error
among allp regressions:

N P
An = argmin, Z(Cv-scorel\) of ith regressiop,
i=

where CV-scoreX) of ith regression is with respect to the squared error prediction loss. Séilye
proceeding, we then selecby cross-validating the multivariate Gaussian log-likelihood, from (13).
Regarding the type of cross-validation, we usually use the 10-fold schBuome to the sequential
nature of choosing the regularization parameters, the number of candgtatetors is given by
the number of candidate values foplus the number of candidate value forIn Section 4, we
describe the grids of candidate values in more details. We note that foremretltal results, we
do not analyze the implications of our method using estimgmemd?.

3. Theoretical Results

In this section, we present in Theorem 1 convergence rates for estintagipgecision and the co-
variance matrices with respect to the Frobenius norm; in addition, we sheWwa@onsistency result
for an oracle risk to be defined in (16). Moreover, in Proposition 4,vesvghat the model we select
is sufficiently sparse while at the same time, the bias term we introduce viae sgximation is
sufficiently bounded. These results illustrate the classical bias and eati@ueoff. Our analysis is
non-asymptotic in nature; however, we first formulate our results froasgmptotic point of view
for simplicity. To do so, we consider a triangular array of data generatingam variables

XD X iid. ~ Ap(0,Z0), n=1,2,... (15)
whereZy = g, and p = p, change witm. Let Qg := Zal. We make the following assumptions.

(AO) The size of the neighborhood for each nadgV is upper bounded by an integekx p and
the sample size satisfies for some constant

n > Cslog(p/s).

(A1) The dimension and number of sufficiently strong non-zero efiggas in (8) satisfy: dimen-
sion p grows withn following p = o(e*") for some constant & ¢ < 1 and

n = 0(n/logmaxn, p)) (n — co).

(A2) The minimal and maximal eigenvalues of the true covariance magiare bounded: for
some constantsl,pp > Moy > 0, we have

dmin(Z0) > Migw > 0 and ¢pmax(Zo) < Mupp < ©0.
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Moreover, throughout our analysis, we assume the following. Thestsex > 0 such that
for all i, andV; as defined in (3): VaW,) = 1/60;i > V2.

Before we proceed, we need some definitions. Defin®fer0
R(©) = tr(©%0) — log|@), (16)
where minimizing (16) without constraints gives. Given (8), (7), an®y, define

Chiag:= min{ max 65, max (sh,/Son) - |diag(@o) 2. a7)

We now state the main results of this paper. We defer the specification onyv&uriung parameters,
namely,Ap, T to Section 3.2, where we also provide an outline for Theorem 1.

Theorem 1 Consider data generating random variables as in (15) and assumeABat(Al), and
(A2) hold. We assumiy = 1 for all i. Then, with probability at leas1 — d/p?, for some small
constant &> 2, we obtain under appropriately chos&pandt, an edge sef, as in (12), such that

|En| < 2S5, Where |Eq\ Eo| < Sop; (18)

and for®, and%, = (©,) ! as defined if{14), the following holds,

|&n—0|, < 180 —e0le = op<¢so,nlogma><n7 p)/n),

in—zouzguin—zoup = Op<\/80,nlogma>(n,p)/n>,
R(©n) —R(©o) = Op(Snlogmaxn,p)/n),

where the constants hidden in the (@ notation depend o, Migw, Mypp, Cdiag @s in (17), and
constants concerning sparse and restrictive eigenvalugg @ff. Section 3.2 and B).

We note that convergence rates for the estimated covariance matrix godiictive risk depend
on the rate in Frobenius norm of the estimated inverse covariance matrixprétiietive risk can
be interpreted as follows. L&t ~ A((0,%o) with fs, denoting its density. Letin be the density
for A((0,=,) and Dk (o||Zn) denotes the Kullback Leibler (KL) divergence frofig(0,%) to
A(0,%,). Now, we have fo&, 5, - 0,

~

R(G)n) — R(@o) = 2Eo Iog sz(X) — Iog fin(X)} = 2DK|_ (ZOHin) > 0. (19)

Actual conditions and non-asymptotic results that are involved in tdat@estimation appear in
Sections B, C, and D respectively.

Remark 2 Implicitly in (A1), we have specified a lower bound on the sample size toe n
Q(Snlogmaxn, p)). For the interesting case of p n, a sample size of

n= Q(maxSnlogp,slog(p/s)))
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is sufficient in order to achieve the rates in Theorem 1. As to be showrr ianalysis, the lower
bound on n is slightly different for each Frobenius norm bound to hold frevoreasymptotic point
of view (cf. Theorem 19 and 20).

Theorem 1 can be interpreted as follows. First, the cardinality of the estiredtpsl set exceeds
Sn at most by a factor 2, wher& , as in (8) is the number of sufficiently strong edges in the
model, while the number of false positives is boundedSpy. Note that the factors 2 and 1 can
be replaced by some other constants, while achieving the same boundsratethef convergence
(cf. Section D.1). We emphasize that we achieve these two goals by spadet selection, where
only important edges are selected even though there are many morerocedges inEp, under
conditions that are much weaker than (A2). More precisely, (A2) caelaced by conditions on
sparse and restrictive eigenvalues (REX@fMoreover, the bounded neighborhood constraint (A0)
is required only for regression analysis (cf. Theorem 15) and fanbimg the bias due to sparse
approximation as in Proposition 4. This is shown in Sections B and C. Anabjikig/s from Zhou
[2009, 2010a] with earlier references to Caadind Tao [2007], Meinshausen and Yu [2009] and
Bickel et al. [2009] for estimating sparse regression coefficients.

We note that the conditions that we use are indeed similar to those in Rothmaif2€08], with

(A1) being much more relaxed whé&,, < |Eo|. The convergence rate with respect to the Frobenius
norm should be compared to the r&@g(,/|Eo|logmaxn, p)/n) in case dia¢¥o) is known, which

is the rate in Rothman et al. [2008] for the GLasso and for SCAD [Lam am] £009]. In the
scenario wheréEg| > S p, that is, there are many weak edges, the rate in Theorem 1 is better than
the one established for GLasso [Rothman et al., 2008] or for the SCA®dgpmator [Lam and

Fan, 2009]; hence we require a smaller sample size in order to yield arateestimate 0Bg.

Remark 3 For the general case whegji,i = 1,...,p are not assumed to be known, we could
achieve essentially the same rate as stated in Theorem p.éiﬁ)r— Opl|2 and an — 2|2 under
(Ao), (A1) and (A) following analysis in the present work (cf. Theorem 6) and that in Rothman
et al. [2008, Theorem 2]. Presenting full details for such results ar@bdyhe scope of the current
paper. We do provide the key technical lemma which is essential for sihewat bounds based on
estimating the inverse of the correlation matrix in Theorem 6; see also Rehvalnich immediately
follows.

In this case, for the Frobenius norm and the risk to converge to zero, &atge value of p is not
allowed. Indeed, for the Frobenius norm and the risk to converyk) is to be replaced by:

(A3) px=n°for some constafl < c< land p+ Sn=o0(n/logmaxn,p)) as n— co.

In this case, we have

162~ @olle = O (/(p-+ S logmaxn, pin).

[Ea-2ole = On(\/(p+Simlogman.p)/n).

R(©n) —R(®0) = Op((p+Son)logmaxn,p)/n).
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Moreover, in the refitting stage, we could achieve these rates with the maxikelihood estimator
based on the sample covariance maipas defined ir{20):

On(E) = argminpeay (tr(eg) - Iog\@]) , Where
Mpe ={©cRP*P; @0 and6;; =0forall (i,]) £ E, where i j}. (20)

A real high-dimensional scenario where>p n is excluded in order to achieve Frobenius norm
consistency. This restriction comes from the nature of the Frobenius andnvhen considering,
for example, the operator norm, such restrictions can indeed be relexsthted above.

It is also of interest to understand the bias of the estimator caused by usiegtiimated edge set
E, instead of the true edge d84. This is the content of Proposition 4. For a givey denote by

éo = dlag(Oo) + (GO)én = dlaqeo) + eO,EnﬂEo’

where the second equality holds sif@ges = 0. Note that the quantit@o is identical to®y on Ej,
and on the diagonal, and it equals zerosggn={(i,j) :i,] =1,...,p,i # ], (i, ]) € En}. Hence, the
quantity@q p := Oy — ©y measures the bias caused by a potentially wrong edgﬁnsebte that
©o = Oy if En = Eo.

Proposition 4 Consider data generating random variables as in expression (15umeghat (A0),
(A1), and (A2) hold. Then we have for choices\@rt as in Theorem 1 ané, in (12),

1©0,2]|¢ = /@0 — Go||r = Op (\/So_nlogmw(n, p)/n) .

We note that we achieve essentially the same raté] (féb)*l — 3o||r; see Remark 27. We give
an account on how results in Proposition 4 are obtained in Section 3.2, witbritagsymptotic
statement appearing in Corollary 17.

3.1 Discussions and Connections to Previous Work

It is worth mentioning that consistency in terms of operator and Frobenimsshdoes not depend
too strongly on the property to recover the true underlying edgggsetthe refitting stage. Regard-
ing the latter, suppose we obtain with high probability the screening property

EO - E7 (21)

when assuming that all non-zero regression coefficikﬁjllsare sufficiently largeE might be an
estimate and hence random). Although we do not intend to make precise tttecerditions
and choices of tuning parameters in regression and thresholding intordehieve (21), we state
Theorem 5, in case (21) holds with the following condition: the number of fadssitives is bounded
as|E \ Eo| = O(S).
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Theorem 5 Consider data generating random variables as in expression (15) ssuhae that (A1)
and (A2) hold, where we replace Swith S:= |Eg| = $P | s. We assumgg i = 1 for all i. Suppose
on some everi, such thatP (‘£) > 1—d/p? for a small constant d, we obtain an edge set E such
that B C E and|E \ Eg| = O(S). Let @n(E) be the minimizer as defined (@3). Then, we have

|84(E) — ol = Op (/Slogmax(n, p)/n).

It is clear that this bound corresponds to exactly that of Rothman et @8]Z0r the GLasso

estimation under appropriate choice of the penalty parameter for a génef@hwith Z; = 1 for all

i (cf. Remark 3). We omit the proof as it is more or less a modified version ebem 19, which

proves the stronger bounds as stated in Theorem 1. We note that the manodardegree bound
in (A0) is not needed for Theorem 5.

We now make some connections to previous work. First, we note that to obithihigh probability
the exact edge recovetly,= Eg, we need again sufficiently large non-zero edge weights and some
restricted eigenvalue (RE) conditions on the covariance matrix as defirgatiion A even for the
multi-stage procedure. An earlier example is shown in Zhou et al. [2008¥revthe second stage
estimatorﬁ corresponding to (11) is obtained with nodewise regressions usingi\albasso [Zou,
2006] rather than thresholding as in the present work in order to retowedge sefEg with high
probability under an assumption which is stronger than (AO). Clearlyngf'weaccuratén, under
(A1) and (A2) one can then apply Theorem 5 to accurately esti@ateOn the other hand, it is
known that GLasso necessarily needs more restrictive conditiobgthian the nodewise regression
approach with the Lasso, as discussed in Meinshausen [2008] aildiRav et al. [2011] in order
to achieve exact edge recovery.

Furthermore, we believe it is straightforward to show that Gelato workentheé RE conditions on

2 and with a smaller sample size than the analogue without the thresholding opénaiioler to
achievenearly exact recovergf the support in the sense tHa C I?n and max\l?m \ Eo,i| is small,

that is, the number of extra estimated edges at each inisdeounded by a small constant. This

is shown essentially in Zhou [2009, Theorem1.1] for a single regres&imen such properties of

En, We can again apply Theorem 5 to obt&p under (A1) and (A2). Therefore, Gelato requires
relatively weak assumptions @g in order to achieve the best sparsity and bias tradeoff as illustrated
in Theorem 1 and Proposition 4 when many signals are weak, and Th&oxen all signals ity

are strong.

Finally, it would be interesting to derive a tighter bound on the operator harthe Gelato estima-
tor. Examples of such bounds have been recently derived for a tedtdiass of inverse covariance
matrices in Yuan [2010] and Cai et al. [2011].

3.2 An Outline for Theorem 1

Letsg= max:17,4_7p§0’n. We note that although sparse eigenvalpgs(s), Pmax(3) and restricted
eigenvalue fokg (cf. Section A) are parameters that are unknown, we only need thenpéagin
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the lower bounds fody, D4, and hence also that faf, andty that appear below. We simplify our
notation in this section to keep it consistent with our theoretical non-asymptatigsas to appear
toward the end of this paper.

3.2.1 REGRESSION

We choose for some) > 4v/2,0< 8 < 1, and\ = /2log(p)/n,

An = do\, Where dy > co(1+0)%\/Pmax(S)Pmax(3%0)-

Let B}nit,i =1,...,p be the optimal solutions to (10) withk, as chosen above. We first prove an

oracle result on nodewise regressions in Theorem 15.

3.2.2 THRESHOLDING

We choose for some constamig, D4 to be defined in Theorem 15,

to = foA := D4doA whereD4 > Dq

and D, depends on restrictive eigenvalue Xy, Apply (11) with 1 = to and B{nit,i =1,...,pfor
thresholding our initial regression coefficients. Let
D' ={j:j#1, B ne| <to=foA},
where bounds oD',i = 1,..., p are given in Lemma 16. In view of (9), we let
D={(i,j):i#]:(,j) e D'nDI}. (22)

3.2.3 FLECTING EDGE SETE

Recall for a pair(i, j) we take theOR ruleas in (9) to decide if it is to be included in the edge set
E: for D as defined in (22), define

E={@,)):1,i=1,....,p,i #],(i,]) € D}. (23)
to be the subset of pairs of non-identical vertice§&afhich do not appear iD; Let
Qo = diag(@o) + Oo gy (24)

for E as in (23), which is identical t®g on all diagonal entries and entries indexeddy) E, with
the rest being set to zero. As shown in the proof of Corollary 17, bgttoieing, we have identified
a sparse subsetf edgesE of size at most & p, such that the corresponding biﬁ@owHF =
|@0 — Opl|r is relatively small, that is, as bounded in Proposition 4.
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3.2.4 REFITTING

In view of Proposition 4, we aim to recové, given a sparse subskt toward this goal, we
use (13) to obtain the final estimat@a ands, = (@n)—l. We give a more detailed account of this
procedure in Section D, with a focus on elaborating the bias and varisadeoff. We show the
rate of convergence in Frobenius norm for the estiméﬁzandfn in Theorem 6, 19 and 20, and
the bound for Kullback Leibler divergence in Theorem 21 respectively

3.3 Discussion on Covariance Estimation Based on Maximum Likelihood

The maximum likelihood estimate minimizes over@lk- 0,
Ra(0) =1tr(0S,) - log|e), (25)

whereS, is the sample covariance matrix. Minimizifg(©) without constraints gives, = .. We
now would like to minimize (25) under the constraints that some pre-defineg&ilof edges are
set to zero. Then the follow relationships hold regardAng) defined in (20) and its inverss,,
andS.: for E as defined in (23),

~

@mj = 0, V(i,j)G@, and
ZI‘],ij = §1Ijav<|71)€EU{(I7I)7|:1a7p}

Hence the entries in the covariance mafixfor the chosen set of edges khand the diagonal
entries are set to their corresponding valueS,inndeed, we can derive the above relationships via
the Lagrange form, where we add Lagrange constgifsr edges inD,

(c(©) =10g|®|-tr(50)— 5 VikBik. (26)
(i,keD

Now the gradient equation of (26) is:
01-5-r=o,
wherel is a matrix of Lagrange parameters such that# 0 for all (j, k) € D andyj = 0 otherwise.

Similarly, the follow relationships hold regardi@](E) defined in (13) in cas2gj = 1 for all i,
where$, is replaced with , and its invers&,, andr : for E as defined in (23),

Gnij = 0,V(i,j)eD, and
Tnii = Tnij =Sj/GiGj, V(i, ) €E, and
i = LVvi=1,...,p.

Finally, we state Theorem 6, which yields a general bound on estimating #esé@wef the correla-
tion matrix, wherg 11, ..., 2o pp take arbitrary unknown values R = (0, »). The corresponding
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estimator is based on estimating the inverse of the correlation matrix, which weedgmy. We
use the following notations. L&y = (po,j) be the true correlation matrix and @ = Wal. Let
W = diag(Zo)/2. Let us denote the diagonal entriesffwith oy, ..., 0, whereo; := Zé/nz foralli.

Then the following holds:
5o = WWW and®, = W iQow 1.

Given sample covariance matr, we construct sample correlation matfiy as follows. Let
W = diag(S,)Y2 and
r Yy S WA ~ S - X
Mh=WHS)W™, wherelpjj = Sii _ (%X
0i0j ||XiH2HXJ'H2

Whereai2 = §mii. Thusfn is a matrix with diagonal entries being all 1s and non-diagonal entries
being the sample correlation coefficients, which we denofg; by

The maximum likelihood estimate f@q = W,* minimizes over alQ = 0,

~

Rn(Q) = tr(Qr ) —log|Q|. (27)

To facilitate technical discussions, we need to introduce some more notatos, | denote the
set of p x p symmetric positive definite matrices:

SP. ={@cRP*PlO > 0}.
Let us define a subspagg corresponding to an edge €&t- {(i,j):i,j=1,...,p,i # j}:
S ={OcRP*P|0;=0Vi#] st(i,j)¢E} anddenotes, = SP.NSE.  (28)

Minimizing ﬁn(e) without constraints giveETJn = Fn. Subject to the constraints thét € S, as
defined in (28), we write the maximum likelihood estimate @y

~

Qu(E) ;= arg minRy(Q) = arg__ min,, {tr(QFn) —log|Q|}, (29)

which yields the following relationships regardifi(E), its inverse, = (Qn(E))~%, andl,,. For
E as defined in (23),

Qnij = 0,V(i,j) €D,
Wnij = Tnij:=p; V(,j)€E,
and Wp;i = 1Vi=1,...p

GivenQy(E) and its inverséb, = (Qn(E)) %, we obtain
in — W@n\i\\/ and én — V/\\/ilﬁn\i\\/fl
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and therefore the following holds: f& as defined in (23),

G)I’l,ij — 07 v(la J) E @7
in,ij = aiaj(pn,ij = aiaj/r\n,ij = /S\h_,ij v(i,j) € E,
and ¥ = 62=S; Vi=1,....p.

The proof of Theorem 6 appears in Section E.

Theorem 6 Consider data generating random variables as in expression (15) sswhae thatAl)

and(A2) hold. Leta? ., := max Zgji < o andaZ,  :=min Zg; > 0. LetZ be some event such that

P(E) > 1—d/p? for a small constant d. LetyG be as defined if8). Suppose on evert:
1. We obtain an edge set E such that its $ize= lin (S ) is a linear function in gp.

2. And for®q as in(24) and for some constantasto be specified i§59), we have

@00 == Héo— OOHF < Chiasy/ 2Sonlog(p)/n. (30)

Letﬁn(E) be as defined i29) Suppose the sample size satisfies ppC,/5/3,

_ 14400, ( 4y + LMo

M2 1202

low min

2
> max{2|E|logmaxn, p), Cha2Sonlogp} . (31)

Then with probability> 1— (d+1)/p?, we have for M= (907,/ (2k%)) - (4C3 + 13Mypp/(1202,))

Hﬁn(E) — QOHF <(M+1) max{ \/2|E| logmax(n, p)/n, Coias\/2Son Iog(p)/n} ) (32)

Remark 7 We note that the constants in Theorem 6 are by no means the best pdasibi¢32),
we can derive bounds ofB,(E) — G|z and ||Zn(E) — Zo||2 to be in the same order as i(32)
following the analysis in Rothman et al. [2008, Theorem 2]. The cormeding bounds on the

Frobenius norms on covariance estimation would be in the order;o(Q p*ﬁ) as stated in

Remark 3.

4. Numerical Results

We consider the empirical performance for simulated and real data. Weageropr estimation
method with the GLasso, the Space method and a simplified Gelato estimator witkestioiding
for inferring the conditional independence graph. The comparison wattatter should yield some
evidence about the role of thresholding in Gelato. The GLasso is defined a

éGLasso: argmifﬂr(Fn@) —log|©[+p z |eij ),
O >0 i

i<]
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wherel, is the empirical correlation matrix and the minimization is over positive definite matrices
Sparse partial correlation estimation (Space) is an approach for selaotingero partial correla-
tions in the high-dimensional framework. The method assumes an overeitgpaf the partial
correlation matrix and employs sparse regression techniques for model fitbn details see Peng

et al. [2009]. We use Space with weights all equal to one, which refdigetmethod typaspace

in Peng et al. [2009]. For the Space method, estimatid®qf done via maximum likelihood as

in (13) based on the edge ﬁﬁfpace from the estimated sparse partial correlation matrix. For com-
putation of the three different methods, we used the R-paclkglge®t [Friedman et al., 2010],

gl asso [Friedman et al., 2007] amngpace [Peng et al., 2009].

4.1 Simulation Study

In our simulation study, we look at three different models.

e An AR(1)-Block model. In this model the covariance matrix is block-diagavigh equal-
sized AR(1)-blocks of the formigiock = {0.91711}; ;.

e The random concentration matrix model considered in Rothman et al. [208]is model,
the concentration matrix I® = B+ 8l where each off-diagonal entry Biis generated inde-
pendently and equal to 0 or 0.5 with probability-Itor 1, respectively. All diagonal entries
of B are zero, an@ is chosen such that the condition numbefoE p.

e The exponential decay model considered in Fan et al. [2009]. In thiehvesl consider a
case where no element of the concentration matrix is exactly zero. The ¢eaiéy are
given byBp;; = exp(—2|i — j|) equals essentially zero when the differefice j| is large.

We compare the three estimators for each model with300 andn = 40,80, 320. For each model
we sample datX@,.... XM jid. ~ AN (0,%o). We use two different performance measures. The
Frobenius norm of the estimation errpE, — o/ and||®, — Ggl|r, and the Kullback Leibler
divergence betweef\((0, o) andA((0, Z,) as defined in (19).

For the three estimation methods we have various tuning parameters, mfgmedfpr Gelato),p

(for GLasso0) andy (for Space). We denote the regularization parameter of the Space teehniq
by n in contrary to Peng et al. [2009], in order to distinguish it from the otheapaters. Due

to the computational complexity we specify the two parameters of our Gelato mstiqoéntially.
That is, we derive the optimal value of the penalty paramgtby 10-fold cross-validation with
respect to the test set squared error for all the nodewise regresaitber fixingA = Acy we obtain

the optimal threshold again by 10-fold cross-validation but with respect to the negative Gauss
log-likelihood (t{@S'!) — log|©|, where ' is the empirical covariance of the hold-out data).
We could use individual tuning parameters for each of the regresskdmsever, this turned out

to be sub-optimal in some simulation scenarios (and never really better th@nausingle tuning
paramete\, at least in the scenarios we considered). For the penalty parametehe GLasso
estimator and the parameterof the Space method we also use a 10-fold cross-validation with
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respect to the negative Gaussian log-likelihood. The grids of candidhtesvare given as follows:

A= Ac 'c’% k=1,....10 with Tc=0.75 By IO%O,
ok = Ci 'O% k=1,....10,

=156/nd" 1 (1 br =1,...,7
ne = 1.56y/n o) =L

whereAy, By, Ci € {0.01,0.05,0.1,0.3,0.5,1,2,4,8,16} andD, € {0.01,0.05,0.0750.1,0.2,
0.5,1}. The two different performance measures are evaluated for the essnimtsed on the
sampleX® ... XM with optimal CV-estimated tuning parametexst, p andn for each model
from above. All results are based on 50 independent simulation runs.

4.1.1 THE AR(1)-BLoCK MODEL

We consider two different covariance matrices. The first one is a simpderagressive process
of order one with trivial block size equal tp = 300, denoted byi(()l). This is also known as a
Toeplitz matrix. That is, we havE(()?i)_j =0.90-11Vi j e {1,..,p}. The second matrif{’ is a
block-diagonal matrix with AR(1) blocks of equal block sizex380, and hence the block-diagonal
of ZE,Z) equalsZpiockij = 0.9171,i,j € {1,...,30}. The simulation results for the AR(1)-block
models are shown in Figure 1 and 2.

The figures show a substantial performance gain of our method comjmatied GLasso in both
considered covariance models. This result speaks for our methatiabpbecause AR(1)-block
models are very simple. The Space method performs about as well as @rtagpt for the Frobe-

nius norm ofs, — Zo. There we see an performance advantage of the Space method compared to
Gelato. We also exploit the clear advantage of thresholding in Gelato forlassmmgple size.

4.1.2 THE RANDOM PRECISIONMATRIX MODEL

For this model we also consider two different matrices, which differ insparFor the sparser
matrix O(()s) we set the probabilityrto 0.1. That is, we have an off diagonal entry@?® of 0.5 with
probabilityt= 0.1 and an entry of O with probability.9. In the case of the second mat@fg”') we
setttto 0.5 which provides us with a denser concentration matrix. The simulation resultisef

two performance measures are given in Figure 3 and 4.

From Figures 3 and 4 we see that GLasso performs better than Gelato s«vjdrcreaouén — Ool|F

and the Kullback Leibler divergence in both the sparse and the dense simwgatting. If we
consider|Z, — 5o||r, Gelato seems to keep up with GLasso to some degree. For the Space method
we have a similar situation to the one with GLasso. The Space method outpe@aiat® for

1@n — G|l andDiy (So||Zn) but for ||, — Zo||r, Gelato somewhat keeps up with Space.
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Figure 1: Plots for mode“'{gl). The triangles (green) stand for the GLasso and the circles (red) for
our Gelato method with a reasonable valuer ofThe horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametens andn. The
dashed line stands for our Gelato method, the dotted one for the GLass$beaddsh-
dotted line for the Space technique. The additional dashed line with the loagkes
stands for the Gelato without thresholding. Lambda/Rho standsdop, respectively.

2992



HIGH-DIMENSIONAL COVARIANCE ESTIMATION

Frobenius Norm
30
o
'
'
o
/
d
'
\ !
o !
h
1
'
'
'
1
'
'
'
'
'
'
1
'
'
'

\

us Norm

Frobeni

Frobenius Norm

T
0.2 0.4 0.6 0.8 1.0
Lambda/Rho

() =12 with n = 40

T T T
01 02 03 04 05 06 07
Lambda/Rho

(b) =%2 with n =80

T T T T T T T
0.05 0.10 0.15 0.20 0.25 0.30 0.35
Lambda/Rho

(©) =2 with n = 320

o
81 —
. R
g o 3 -
8 8 e 8 2 a
[ o o A [ /
> > < 4 > A
£ = £ /
5 5ol / ......................................... 5 .
13 E N7y E o /
o (=} o o
z Z o z -
(2} w O 1 (%2}
2 2 2 a
= 2 2
[} [} [}
Qo o o | Q
o o © o
2 £ // £ o ,/
o |2 ° O
3
. .ﬁr///////
O P g mm g e e m o
~ T T T T T T T T T T T T T T
0.1 02 03 04 05 06 07 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Lambda/Rho Lambda/Rho Lambda/Rho
d) =12 with n = 40 52 withn=80 5(2) with n = 320
(d) Zpgwithn= (e) ZpgWithn= () ZpgWithn=
2 3.
QY Y o N
o
o o
&1 &7 s
o B 5 31 " g
2 2 2 o
5 yd 5 7
= " = R <o o
2 a - <
A// v //
pd ° A/ o
o e s o /
© QNA/ """"""""""""""""""""""""" Ca L
_____________________ .
o
ettty Yulinlinlinlialindt- ol papui bty o e A o e ey o I SN
© T T T T T T T T T T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.1 02 03 04 05 06 07 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Lambda/Rho

() =%2 with n= 40

Figure 2: Plots for modeIE,z). The triangles (green) stand for the GLasso and the circles (red) for
our Gelato method with a reasonable value .ofThe horizontal lines show the perfor-

Lambda/Rho

(h) =%2 with n =80

Lambda/Rho

() =& with n =320

mances of the three techniques for cross-validated tuning pararmeters andn. The
dashed line stands for our Gelato method, the dotted one for the GLas$lbeaddsh-
dotted line for the Space technique. The additional dashed line with the loagkes
stands for the Gelato without thresholding. Lambda/Rho standsdop, respectively.

2993



ZHOU, RUTIMANN, XU AND BUHLMANN

© | i‘_”
f 1 - a
____________________________ -
2 © | a
G\c © |
o | b=
£~ £ [ A S U P P -l e
T O —a|8 K]
g a ‘g 37._-:— CR R R i gy g
g © £ o =
[T [ [
8 8 e
i \ [ T P PP
N a
< | -
4 o e, Tt T
S\_‘i.‘..A ...... SIS SRS RNt e - ‘A ‘ ‘ ‘ .‘.A ........... U SR
0 1 2 3 4 5 0 1 2 3 0.0 0.5 1.0 15
Lambda/Rho Lambda/Rho Lambda/Rho
3) . 3) . 3) .
@) @é ) with n =40 (b) OE) ) with n =80 (c) @é ) with n= 320
o o
2 |
8 &1 3 &1 3
g g g 84
5 5 8 5
E g E 81
o o S -
z z z
gg [~~~ T T TTTTTTTTTTTTT R e 3
2 R z 81
g 8 Ll N D
g © 8 Co I =
'.A'.B;'/:_/_'.ZT_'._'.'_.'_'.I.'_'._'.'_.'_'.I.'_T_','_.'_'._'
4= B V3 s e e St ST R S K \L/
........ s 8*‘ ‘ ‘ ‘ gi‘A“‘
1 2 3 4 5 0 1 2 3 0.0 0.5 1.0 15
Lambda/Rho Lambda/Rho Lambda/Rho
(3) i (3) i (3) i
(d) ©y” withn=40 (e) ©y” with n=80 (f) ©p " with n= 320
g g 81
) 0 <
8 |
g g =
9] { 0 o 13 %’
284, 2 3 2 s
g g 3 —_
< < <
g rfj-""mm e R e SRR Il I BN A
g | g1 \\
- oA - |t =
e T BT et o e B
o 1 2 3 a4 s 0 i 2 3 10 15
Lambda/Rho Lambda/Rho Lambda/Rho
3 . 3 . . 3 .
@)@ﬂwmn=40 mﬂ%>mmn=80 O)QQWMn:SN
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4.1.3 THE EXPONENTIAL DECAY MODEL

In this simulation setting we only have one version of the concentration n@ﬁxThe entries of
685) are generated tﬁési)j =exp(—2|i — j|). Thus,Zp is a banded and sparse matrix.

Figure 5 shows the results of the simulation. We find that all three methodseshuabperformances

in both the Frobenius norm and the Kullback Leibler divergence. This isgisiiag because even
with a sparse approximation &f (with GLasso or Gelato), we obtain competitive performance for
(inverse) covariance estimation.

4.1.4 SIMMARY

Overall we can say that the performance of the methods depend on thé nkaile¢he models
Zél) and ZE)Z) the Gelato method performs best. In case of the mo@éel)sand 684), Gelato gets
outperformed by GLasso and the Space method and for the r@éﬂeﬁone of the three methods
has a clear advantage. In Figures 1 to 4, we see the advantage of Gigfatbresholding over
the one without thresholding, in particular, for the simulation settmgé Zéz) and Oég). Thus
thresholding is a useful feature of Gelato.

4.2 Application to Real Data

We show two examples in this subsection.

4.2.1 ISOPRENOIDGENE PATHWAY IN ARABIDOBSIS THALIANA

In this example we compare the two estimators on the isoprenoid biosynthesi@apathta given
in Wille et al. [2004]. Isoprenoids play various roles in plant and animgbkjhogical processes
and as intermediates in the biological synthesis of other important moleculpkniis they serve
numerous biochemical functions in processes such as photosyntkgsistion of growth and de-
velopment. The data set consistspf 39 isoprenoid genes for which we hame= 118 gene
expression patterns under various experimental conditions. In ordemntpare the two techniques
we compute the negative log-likelihood via 10-fold cross-validation foediffit values ok, T and

p. In Figure 6 we plot the cross-validated negative log-likelihood agaimstadparithm of the av-
erage number of non-zero entries (logarithm of ég@orm) of the estimated concentration matrix
On. The logarithm of th&p-norm reflects the sparsity of the mat®, and therefore the figures
show the performance of the estimators for different levels of spardity.plots do not allow for a
clear conclusion. The GLasso performs slightly better when allowing fatteer dense fit. On the
other hand, when requiring a sparse fit, the Gelato performs better.
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Figure 5: Plots for mode&)és). The triangles (green) stand for the GLasso and the circles (red) for
our Gelato method with a reasonable valuerofThe horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametens andn. The
dashed line stands for our Gelato method, the dotted one for the GLassbeaddsh-
dotted line for the Space technique. The additional dashed line with the loagkes
stands for the Gelato without thresholding. Lambda/Rho standsdop, respectively.
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Figure 6: Plots for the isoprenoid data from arabidopsis thaliana (a) &nlauttman breast cancer
data (b). 10-fold cross-validation of negative log-likelihood againstagarithm of the
average number of non-zero entries of the estimated concentration @atThe circles
stand for the GLasso and the Gelato is displayed for various values of

4.2.2 QINICAL STATUS OFHUMAN BREAST CANCER

As a second example, we compare the two methods on the breast cancestdeten West et al.
[2001]. The tumor samples were selected from the Duke Breast CaR€HRIS tissue bank. The
data consists gp = 7129 genes witim = 49 breast tumor samples. For the analysis we use the 100
variables with the largest sample variance. As before, we compute thtévedgg-likelihood via
10-fold cross-validation. Figure 6 shows the results. In this real datmpbe the interpretation of
the plots is similar as for the arabidopsis data set. For dense fits, GLasstersAdele Gelato has

an advantage when requiring a sparse fit.

5. Conclusions

We propose and analyze the Gelato estimator. Its advantage is that it autdyngtidds a positive
definite covariance matrix, it enjoys fast convergence rate with respect to the operator and+rob
nius norm ofS, — o and®, — ©,. For estimation 0By, Gelato has in some settings a better rate
of convergence than the GLasso or SCAD type estimators. From a thabpdiot of view, our
method is clearly aimed for bounding the operator and Frobenius norm afiibese covariance
matrix. We also derive bounds on the convergence rate for the estimatadar@we matrix and
on the Kullback Leibler divergence. From a non-asymptotic point of vimw,method has a clear
advantage when the sample size is small relative to the sp&rsitifo|: for a given sample size,

we bound the variance in our re-estimation stage by excluding eddggsmth small weights from
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the selected edge s&t while ensuring that we do not introduce too much bias. Our Gelato method
also addresses the bias problem inherent in the GLasso estimator sinodamger shrink the en-
tries in the covariance matrix corresponding to the selected eddg sethe maximum likelihood
estimate, as shown in Section 3.3.

Our experimental results show that Gelato performs better than GLasse 8p#te method for
AR-models while the situation is reversed for some random precision matrixlspadecase of

an exponential decay model for the precision matrix, all methods exhibit the parformance.

For Gelato, we demonstrate that thresholding is a valuable feature. Wehalsoegperimentally

how one can use cross-validation for choosing the tuning parameterg@ssen and thresholding.
Deriving theoretical results on cross-validation is not within the scopei®ptper.
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Appendix A. Theoretical Analysis and Proofs

In this section, we specify some preliminary definitions. First, note that wigetiscuss estimating
the parametergo and©g = % ! we always assume that

dmax(Zo) :=1/Pmin(G0) < 1/c < o0 and I/ dmax(©o) = Pmin(Zo) > k>0, (33)
where we assumg c<1 sothat<1<1/k. (34)

Itis clear that these conditions are exactly that of (A2) in Section 3 with

where itis clear that foEg = 1,i =1,..., p, we have the sum gf eigenvalues ok, Zipzld)i (Zo) =
tr(Zp) = p. Hence it will make sense to assume that (34) holds, since otherwisam@@)s that
dmin(Zo) = Pmax(Zo) = 1 which is unnecessarily restrictive.

We now define parameters relating to the key notioessfential sparsitypsas explored in Carab
and Tao [2007] and Zhou [2009, 2010a] for regression. Denotentimeber of non-zero non-

.....

in G = (V,Ep). Consider nodewise regressions as in (2), where we are giverrvettparameters
{Bij,j =1...,p,j#i}fori=1,... p. With respect to the degree of nodéor eachi, we define
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§0 < d < sas the smallest integer such that

p
Y min(( )2,A2Var(V;)) < shA2Var(V;), whereh = /2logp/n, (35)
=T

wheres, denotesy, , as defined in (7).

Definition 8 (Bounded degree parameters.Jhe size of the node degrédar each node i is upper
bounded by an integer<s p. For % as in(35), define

S = maxs',0<sand Sn = Z S, (36)
i=1".p

where $ is exactly the same as ({8), although we now drop subscript n fror‘ansin order to
simplify our notation.

We now define the following parameters relatedgo For an integem < p, we define the smallest
and largesin-sparse eigenvaluesf Xy as follows:

1/2 1/2

=%

. H 2 :
—(m = min m) =
pmln( ) t;éO;m—sparse Ht ”2 ) pmaX( ) t#o;mfsparse Ht HZ

=%
2

Definition 9 (Restricted eigenvalue conditiorRE(sy, ko, 20)). For some integell < s < p and a
positive number g the following condition holds for alh # 0,

z1/2
SR ' o
— = min min 7> \
K (s0, ko, Z0) sz{‘lgsg}«HchnlsmnuJHl uall,

whereuv; represents the subvector ok RP confined to a subset J é1,. .., p}.

Whensgy andky become smaller, this condition is easier to satisfy. When we only aim to estimate
the graphical structurgy itself, the global conditions (33) need not hold in general. Hence up till
Section D, we only need to assume thatsatisfies (37) fogy as in (35), and the sparse eigenvalue
Pmin(sS) > 0. In order of estimate the covariance maftix we do assume that (33) holds, which
guarantees that thRE condition always holds oy, andpmax(M), Pmin(mM) are upper and lower
bounded by some constants formlk p. We continue to adopt parameters suckapmax(s), and
Pmax(3%0) for the purpose of defining constants that are reasonable tight uaddition (33). In
general, one can think of

Pmax(Max(3%,s)) < 1/¢c < w0 and K?(sg, ko, Z) < 1/k < o,

for ¢,k as in (33) wherg is small.

Roughly speaking, for two variable§,X; as in (1) such that their corresponding entrydp =
(Bo,ij) satisfiesBgjj < A4/Boji, whereh = y/2log(p)/n, we can not guarantee thafj) € En When
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we aim to keepx §0 edges for nodé i = 1,...,p. For a given@q, as the sample sizeincreases,
we are able to select edges with smaller coefficgnt. In fact it holds that

80jj| < A\/Boi which is equivalent t¢[3ij| < Moy, forall j>d+ 14 Ticd 415 (38)
whereﬂ{_} is the indicator function, if we order the regression coefficients as follows
B4l > Byl > Bial > IBlial- > IBY,
in view of (2), which is the same as if we order for rowf Oy,
|80,i1] > |80, 2|..- > |80,,i—1| > |B0j,i+1].--- > [B0i,p|-

This has been shown by Carsland Tao [2007]; See also Zhou [2010a].

A.1 Concentration Bounds for the Random Design

For the random desigK generated by (15), léfp; = 1 for alli. In preparation for showing the
oracle results of Lasso in Theorem 33, we first state some concentratiol$ onX. Define for
some < 0<1

FO):={X:¥j=1...,p, 1-68<|X|,/vn<1+8}, (39)

whereXy, ..., Xp are the column vectors of threx p design matrixX. When all columns oK have

an Euclidean norm close tgh as in (39) , it makes sense to discuss the RE condition in the form
of (40) as formulated by Bickel et al. [2009]. For the integex & < p as defined in (35) and a
positive numbeko, RE(s, ko, X) requires that the following holds for all £ 0,

1 A . |XV]|,

——F—— X = Miln min _—
K(s0, ko, X) Jc‘ﬁ;-,sg},ouc\|1SkonuJH1 Vvnllugll,

> 0. (40)

The parameteky > 0 is understood to be the same quantity throughout our discussion. The fol-
lowing event® provides an upper bound df(so, ko, X) for a givenky > 0 whenZ, satisfies
RE(so, ko, Z0) condition:

R(6) == {X - RE(So, ko, X) holds with 0< K (o, ko, X) < K(S(»koio)}_

1-6

For some integem < p, we define the smallest and largessparse eigenvalues ¥fto be

Amin(m) = min Xul|2/(n||v]|?) and
min(M) oo e [Xul|3/(nf[u]]3)

. 2 2
Ama(m) = max _[[Xvll3/(nu]3),
V#0;m—sparse

upon which we define the following event:
M (8) :={X: (41) holdsvm < max(s, (ko+ 1)s0) }, for which
0 < (1=8)v/Pmin(M) < v/Amin(M) < v/Amax(M) < (1+8)1/Prmax(m). (41)
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Formally, we consider the set of random designs that satisfy all eved¢dined, for some & 6 < 1.
Theorem 10 shows concentration results that we need for the preséntwhich follows from
Theorem 1.6 in Zhou [2010b] and Theorem 3.2 in Rudelson and Zhdii]20

Theorem 10 Let 0 < 8 < 1. Let pmin(S) > 0, where s< p is the maximum node-degree in G.
Suppose REo,4,Zo) holds for g as in(36), whereZgj =1fori=1,...,p.

Let f(sg) = min(4sopmax(So)log(5ep/sv),Sologp). Let ca,c > 0 be some absolute constants.
Then, for a random design X as generated by (15), we have

P(X):=P(R(0) N F(6)NM(6)) > 1—3exp—cn/a’)

as long as the sample size satisfies

4 4
n> max{gdeg max(36K?(so,4,%0) f (o), logp) , % log (T.f) } . (42)
Remark 11 We note that the constrainksp,/2, which has appeared in Zhou [2010b, Theorem 1.6]
is unnecessary. Under a stronger RE conditiondgna tighter bound on the sample size n, which
is independent gbmax(So), is given in Rudelson and Zhou [2011] in order to guaranfegd). We

do not pursue this optimization here as we assumeghat(s) is a bounded constant throughout
this paper. We emphasize that we only need the first terf2hin order to obtain¥ (6) and X (8);
The second term is used to bound sparse eigenvalues of order s.

A.2 Definitions Of Other Various Events

Under (A1) as in Section 3, excluding eveXit as bounded in Theorem 10 and evegisXy to
be defined in this subsection, we can then proceed toXrea N ; as a deterministic design in
regression and thresholding, for whigx0) N M (8) N F (8) holds with G, We then make use of
eventXp in the MLE refitting stage for bounding the Frobenius norm. We now defineypes of
correlations eventg, and X.

A.2.1 CORRELATION BOUNDS ONXj AND Vj

In this section, we first bound the maximum correlation between pairs obranectors(V;, X;),

for all i, j wherei # j, each of which corresponds to a pair of variab(ésX;) as defined in (2)
and (3). Here we usk; andV,, for all i, j, to denote both random vectors and their corresponding
variables.

Let us defineoy, := /Var(Vj) > v > 0 as a shorthand. L@/li-’ :=Vj/oy,,j =1,...,pbe astandard
normal random variable. Let us now define for gk + j,

1. 10
ij = ﬁ<vjaxk> = Hi;\/j"iXk’i’
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where foralli=1,...,n \/U,xk,i,Vj,k;é j are independent standard normal random variables. For
somea > 6, let event

Cai= {mixzjk| <+V1+ay/(2logp)/nwherea > 6} .
i,

A.2.2 BOUNDS ONPAIRWISE CORRELATIONS IN COLUMNS OF X

Let o := (0Og,j), Where we denotey := 6?. Denote byA = X"X/n—3,. Consider for some
constanCz > 4,/5/3,

Xo = {nj)%xAM < Cz0i0j+/logmax{p,n}/n < 1/2} . (43)

We first state Lemma 12, which is used for bounding a type of correlatiant®aeross all regres-
sions; see proof of Theorem 15. It is also clear that eggiig equivalent to the event to be defined
in (44). Lemma 12 also justifies the choice)gfin nodewise regressions (cf. Theorem 15). We
then bound eventy in Lemma 13. Both proofs appear in Section A.3.

Lemma 12 Suppose that g €4 Then with probability at least — 1/p?, we have

vi#Kk

rj_;<Vj,Xk>‘ < oy;vV1+ay/(2logp)/n, (44)

whereoy, = /Var(Vj) and a> 6. HenceP (G) > 1—1/p%

Lemma 13 For a random design X as in (1) withy j; = 1,Vj € {1,...,p}, and for p< e/4cs,
where G > 4,/5/3, we have

P(Xo) > 1—1/max{n, p}2.

We note that the upper bounds piin Lemma 12 and 13 clearly hold given (Al). For the rest of the
paper, we prove Theorem 15 in Section B for nodewise regressioagrid¢eed to derive bounds
on selecting an edge détin Section C. We then derive various bounds on the maximum likelihood
estimator giverk in Theorem 19- 21 in Section D, where we also prove Theorem 1. Nexirove
Lemma 12 and 13 in Section A.3.

A.3 Proof of Lemma 12 and 13

We first state the following large inequality bound on products of correlatechal random vari-
ables.

Lemma 14 Zhou et al., 2008, Lemma 38iven a set of identical independent random variables
Y1,...,Ya ~ Y, where Y= X%, with x,X; ~ N(0,1) and 012 = p12 with p12 < 1 being their cor-
relation coefficient. Let us now defineQI s Y = 3(Xy, %) = L3N X1 X LetWip =
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(14+0%,)/2. For0 <1 < Wyy,

2
IP’(!QEQI>T)§exp{1O(iTG%Z)}. (45)

Proof of Lemma 12. It is clear that event (44) is the same as eggnClearly we have at
mostp(p — 1) unique entrieZx, V] # k. By the union bound and by taking= Czw/'o% in (45)
with ojx = 0,Vj,k, where/2(1+a) > C, > 2,/10/3 fora > 6.

|
1-P(G) = P(rr}gx|zjk|z\/2(1+a) Oﬁ’p>

logp Zlogp
< P (rr}ckaXIijl >Cpy/ n) <(p*—p) exp<_30210

Hlogp) _ wHp_ 1
10 p?’

where we apply Lemma 14 withyx = 0,Vj,k=1,...,p, ] # kand use the fact th@Z;. = 0. Note
thatp < €% guarantees thzﬁz\/'c’% <l/2.m

< pzexp<—

In order to bound the probability of evesfg, we first state the following bound for the non-diagonal
entries oz, which follows immediately from Lemma 14 by pluggingdf = 0gji =1,Vi=1,...,p
and using the fact thato | = |pjx0j0k| < 1,V # Kk, wherepjk is the correlation coefficient be-
tween variableX; andX. LetWjx = (1+ 03 ;)/2. Then

3nt? 3nt?
P(|Ai| >T1) <exp{ ————5—— p <exps ————  for 0 <1 < Wy 46
(1] > 7) < p{ 10(1+0%7jk)}— p{ 20 } ==k (46)
We now also state a large deviation bound foryfelistribution [Johnstone, 2001]:
X3 —3nt? 1
An < <1< —.
]P><n 1>T> < exp< 6 ,f0r07T72 (47)

Lemma 13 follows from (46) and (47) immediately.

Proof of Lemma 13. Now it is clear that we hay#p — 1)/2 unique non-diagonal entries

Oo,jk, V] # k and p diagonal entries. By the union bound and by taking C3\/w in (47)
and (46) withog jx < 1, we have

P<m?X|Ajk| S e /W)
]

P ((X0)°)

_ 3C3logmax{p,n}\  pP—p_. [ 3Cilogmaxp,n}
< pexp< 16 5 exp 20
2 2
o ( 3C3logmaxpn}) =, 1
S p eXp( 20 > - (max{p, n}) “0 < (max{p, n})z
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for C3 > 4,/5/3, where for the diagonal entries we use (47), and for the non-déh@ortries, we
use (46). Finallyp < €4 guarantees thzﬂm/w <1/2.1m

Appendix B. Bounds for Nodewise Regressions

In Theorem 15 and Lemma 16 we Igf be as in (35) and denote locations of the, largest
coefficients o3 in absolute values. For the vectdrto be defined in Theorem 15, we [Bt denote
the §, largest positions ofi in absolute values outside @f; Let T}, := TJUT,. We suppress the
superscript iff3, T{, and T}, throughout this section for clarity.

Theorem 15 (Oracle inequalities of the nodewise regressionkgt0 < 8 < 1. Letpmin(s) > 0,
where s< p is the maximum node-degree in G. SupposésiRE, o) holds for $ < s as in(36),
whereZg i = 1foralli. SUppOS®max(Maxs, 3s)) < «. The data is generated by X, ..., X" i.i.d. ~
Np(0, Zo), where the sample size n satisf{ég).

Consider the nodewise regressiong10), where for each i, we regress #nto the other variables
{X; k# i} following (2), where Y~ N(0, Var(V;)) is independent of XVj # i as in(3).

Let B!, be an optimal solution t¢10) for each i. LetA, = doA = djAoy, where @ is chosen such

that ¢p > 2(1+6)+/1+a holds for some & 6. Let H = — BiTO. Then simultaneously for all i,
on &N X, whereX := R (8)N F(8) N M (8), we have

IB—Bll, < Ay/Shdoy/2D3+2D3+2, where

HhTm”Z < DodoA 510 and Hh'—l-oc

P
init

A

= ’ Blnit Ts LS D1doAsp, (48)

where [y, D; are defined in82) and (83) respectively.

Suppose we choose for some constant 4v/2 andag = 7,

do = Co(1+ 8)%\/Pmax(S) Pmax(3%),
where we assume thagax(max(s, 3s)) < « is reasonably bounded. Then

K2(s0,4,%.
D0<5 (s0,4,%0)

49K?(s0,4,%0)
- (1-9)2

<
andD1 < 61 )2
The choice oty will be justified in Section F, where we also the upper boundgrD; as above.

Proof Consider each regression function in (10) wxk; being the design matrix ang the re-
sponse vector, whepg,; denotes columns of excludingX;. Itis clear that folA, = doA, we have
fori=1,...,panda> 6,

An = (do/O'\/i)O'\/i)\ = diOO'\/i)\ > C]())\O'\/i > 2(1+ 9)7\\/ 1+ ao = 2(14—9))\073@

such that (81) holds given that, < 1,Vi, where it is understood that:= oy;.
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It is also clear that o, N X, eventZ; N X holds for each regression when we invoke Theorem 33,
with Y := X andX := X,j, fori =1,...,p. By definitiond(i)o\,i = dg. We can then invoke bounds
for each individual regression as in Theorem 33 to conclude. |

Appendix C. Bounds on Thresholding

In this section, we first show Lemma 16, following conditions in Theorem 1% thén show
Corollary 17, which proves Proposition 4 and the first statement of EnedrDg, D1 are the same
constants as in Theorem 15.

Lemma 16 Suppose REy,4,%p) holds for  be as in(36) and pmin(s) > 0, where s< p is the

maximum node-degree in G. Supp@sgx(max(s,3s)) < . Let S={j:j#i, B, #0}. Let

Co > 4V/2 be some absolute constant. Suppose n satiéfids Let B}nit be an optimal solution
to (10) with

An = doA where @ = co(1+6)%/Pmax(S) Pmax(3%);
Suppose for each regression, we apply the same thresholding rule io atsabsetl as follows,
U'={j:j#i, |Bnt| =to=for}, and D' :={1,....i—Li+1,...,p}\I,
where § := D4dp for some constant pto be specified. Then we have on evgn X,
Il < 9)(1+Dy1/Ds) and [I'US| <§ +(D1/Da)s, and (49)
[Boll, < dohy/shy/1+(Do+Da)?
where? is understood to be'.

Recall©y = 251. Let ©g » denote the submatrix d®o indexed byD as in (22) with all other
positions set to be 0. L& be the true edge set.

Corollary 17 Suppose all conditions in Lemma 16 hold. Then on eggntX, for Qg as in(24)
and E as in(23), we have for &, as in(36)and©g = (8g,)

|E| < (1+D1/D4)Sn Where |E\Eg| < (D1/D4)Son, (50)
and
[G0s] = @000,

< \/min{s(),n(i[nlﬁxpeg,n)aso||diag(@0)\lzz}\/(1+(D0+D4)2)d07\ (51)

= \/SO,n (1+ (Do + Da4)?)CiagdoA,

where G := min{max_, ;63 (so/Son)||diag(@o)||? }. For D4 > Dy, we have(18).
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Proof By the OR rule in (9), we could select at mc{q‘le |li| edges. We have by (49)

El < Z (1+D1/Da)sy = (14 D1/Da) Sop,
i=1..p
where(D1/D4)Sn is an upper bound ofie \ Ep| by (52). Thus

[@0s]z

IN

Zletz)n HB'DHz l+ D0+D4 )‘2 Zleo"%

< min{Son(,max 8 1), [ciag(G0) 2 }(1+ (Do-+ D)) 312

Remark 18 Note that if g is small, then the second term igi& will provide a tighter bound.

Proof of Lemma 16. Leflp := T} denote thes, largest coefficients o' in absolute values.
We have by (48),

= < D1dos)/(D4dp) < D15,/Da, (52)

TS| <|
'NTol< L Toh

BEnit,TOC
whereD; is understood to be the same constant that appears in (48). Thus we have
1| = [F'NTE + [1'NTo| < sh(1+D1/Da).
Now the second inequality in (49) clearly holds given (52) and the following
US| <|S|+1I'N(S)°| <8+ [1TN(T4)Y).

We now bounoHBi@Hz following essentially the arguments as in Zhou [2009]. We have
i 12 i 12 | 2
185 = 11Bhol2+ [Brseo][.

. 2 2 .
where for the second term, we haH@TWHZ < HB'TOC ‘2 < s\%a2 by definition ofs) as in (35)
and (38); For the first term, we have by the triangle inequality and (48),

HBiToﬂfDH2 < H(BI - Bgnit)Toﬂ@H2+ H(Bgnit)Toﬂ@HZ
< H(Bl - BEnit)ToH2+t0\/W§ HhTon'i_tO\/%

Dotoh /S + Do /S < (Do +Da)cloh /.

IN
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Appendix D. Bounds on MLE Refitting

Recall the maximum likelihood estima&1 minimizes over alP € §, the empirical risk:
On(E) = argminR,(©) :=arg min {tr(F,) —log|O|}, 53
o(E) = argminky(©) = arg__ min  {tr(9Fs) ~log|@} (53)

which gives the “best” refitted sparse estimator given a sparse s\flesigaxE that we obtain from
the nodewise regressions and thresholding. We note that the estimatoer(&EBhs to be a convex
optimization problem, as the constraint set is the intersection the positive detinig? , and the
linear subspacst. Implicitly, by usingﬂ, rather thars, in (53), we force the diagonal entries in
(én(E))*l to be identically 1. It is not hard to see that the estimator (53) is equivalerdi3) dfter
we replaces, with [p.

Theorem 19 Consider data generating random variables as in expression (15) asdnae that
(Al), (33), and (34) hold. Suppos&; = 1 for all i. Let £ be some event such th&{(£) >
1—d/p? for a small constant d. Leto@ be as defined i§36), Suppose on evert:

1. We obtain an edge set E such that its $ize= lin (S ) is a linear function in gp.

2. And foréo as in(24) and for some constantsfzsto be specified, we have

@00 == Héo - eoHF < Chiasy/2Sonlog(p) /n < ¢/32 (54)

Let @n(E) be as defined i(63). Suppose the sample size satisfies pp@&,/5/3,

32

2
n> @ (4(33+ 31(:2> max{2|E|logmaxn, p), Cla2Sonlog p}. (55)

Then on evenE N Xp, we have for M= (9/(2k?)) - (4C3 + 32/(31c?))

Hé”(E) - GOHF <(M+1) max{ \/2|E| logmax(n, p)/n, Cbias\/ZSQnIog(p)/n} . (56)

We note that although Theorem 19 is meant for proving Theorem 1, weitséast@n independent
result; For example, one can indeed t&k&om Corollary 17, where we haj&| < ¢S, for some
constantc for D4 =< D1. In view of (51), we aim to recove®y by én(E) as defined in (53). In
Section D.2, we will focus in Theorem 19 on boundingWésuitably chosen,

[x(E) - 8], = 0 (W /Soalogmarn.py/n).

By the triangle inequality, we conclude that

Hén(E) —G)OHF < Hén(E) —éOHF + Héo—eoHF —Op (W,/somlog(n)/n) .

We now state bounds for the convergence rate on Frobenius norm afthgance matrix and for
KL divergence. We note that constants have not been optimized. Rybdiseorem 20 and 21
appear in Section D.3 and D.4 respectively.
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Theorem 20 Suppose all conditions, events, and bound#rand ||©g » || in Theorem 19 hold.
Let On( ) be as defined i63). Suppose the sample size satisfies fppP@,/5/3 and Gjias, M as
defined in Theorem 19

_ 106 32 \? )
7 4C3+ 375 | max{2|E|logmaxp,n), Chias?Sonlogp} - (57)

Then on evenE N X, we havadmin(Gn(E)) > ¢/2 > 0 and forE,(E) = (On(E)) L,

58 -xo] < 2D max{\/ZlE!Iogmaxn, P o, ZSO,nIOQ(p)}' (58)

n n
Theorem 21 Suppose all conditions, events, and boundstirand |G » || := Héo—eoHF in

Theorem 19 hold. Le@n(E) be as defined if{53). Suppose the sample size satis{ies) for
Cs > 4,/5/3 and Gyias, M as defined in Theorem 19. Then on evEnt.Xy, we have for R@n(E)) —
R(©o) >0,

R(Gn(E)) — R(@p) < M(Cs + 1/8) max{2|E|logmaxn, p)/n, C,2Snlog(p)/n} .

D.1 Proof of Theorem 1

Clearly the sample requirement as in (42) is satisfied for seme) that is appropriately chosen,
given (55). In view of Corollary 17, we have db:= X N Ca: for Cgiagas in (17)

D
E| < (1+D71)so,ngzso7n for D4 > D; and
4

|@0slle == ||Bo—@u||. < Cuasy/2Sonlog(p)/n < c/32
where
Chas = min ma 88, 22 [diag(@)|? | d§(1-+ o+ De))
— CuB(L+ (Do+Da)?). (59)

Clearly the last inequality in (54) hold so longras 32°C2, 2% n10g(p)/c?, which holds given (55).
Plugging in|E| in (56), we have orE N Xp,

On(E) —Gp||_ < (M+1)max 2(1+D1/D4)Sonlogmaxn, p)  Chias 25nlogp |
n n

Now if we takeD4 > D1, then we have (18) on evefit; and moreover ofE N Xp,

(M+1) max{ \/4SO’n logmax(n, p)/n, Coias\/ 2S,nl0g( p)/n}

W\/S),nlog ma)<n7 p)/n7

foue)-,

IA

IN
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wherew <+v/2(M+1) max{Cgiagdo\/1+ (Do + D4)?,2}. Similarly, we get the bound (ﬂﬁn - ZOHF
with Theorem 20, and the bound on risk following Theorem 21. Thus aérents in Theorem 1
hold. B

Remark 22 Suppose everfi N Xp holds. Now suppose that we take B 1, that is, if we take the
threshold to be exactly the penalty parametgr

Then we have on evefft, |[E| < (14 D1)Sn and |E\ Eg| < D1S s by (50); And on eventE N X,
for G, = Cdiagdo/1+ (Do + 1)2,

e 2(1+D1)Sonlogmax(n, 2Snl0
H@n(E)—GoHFSMmaX{\/( 1)807“n gmax p),Ct/)ias\/W}‘

It is not hard to see that we achieve essential the same rate as stateddrefrh&, with perhaps
slightly more edges included in E.

D.2 Proof of Theorem 19

Suppose event holds throughout this proof. We first obtain the bound on spectruéooﬂt is
clear that by (33) and (54), we have @h

dmin(@0) = Gmin(@0) — [ S0~ G0 > dmin(®0) - ||@0.n||e >31c/32  (60)
Omes(Bo) < max(©0) + B0~ 0| < bmax(@0) + @0l < S5t (6)

Throughout this proof, we lefo = (0g;j) := Oy . In view of (60), define, := (@) 1. We use
O := Oy(E) as a shorthand.

Given® € 5f+ ﬂ.S‘,E as guaranteed in (60), let us define a new convex set:
Un(Bp) := (8P, NSP) —Bp = {B—Oy|B e 5P, NSPY c ¢,

which is a translation of the original convex sgt, N SE. Let 0be a matrix with all entries being
zero. Thus it is clear thal,(©g) > 0 given that®g € 5f+ NSE. Define forR, as in expression (53)

Q(O) = Ry(O)—Ru(Op)=tr(G,) —log|O©| —tr(Sols) +log| S|
— tr((©~80)(Fn—%0)) ~ (log|®| ~log|Sol) +tr ((©~B0)%s)

For an appropriately chosepand a large enoughl > 0, let

Tn = {AecUn(®y),||A]lr =Mr,}, and

My = {A€Un(Oo), |Allg < Mrn}.
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Itis clear that bothl, andT, UM, are convex. Itis also clear that0l,. Throughout this section,

we let
= max{ \/2|E| log I'r?a)(n, P) ;Cbias\/ ZSQnr:ng} . (62)

Define forA € U, (),
G(A) == Q(Gp +4) = tr(A(Th — Zo)) — (Iog|@g + A| — log|Gg|) + tr(AZ).
It is clear thatG(A) is a convex function ohly(6p) andG(0) = Q(Gp) = 0.

Now, ©, minimizesQ(®), or equivalentlyh = On— 69 minimizesG(A). Hence by definition,
G(A) < G(0) =0.

Note thatT, is hon-empty, while clearly & M. Indeed, considds; := (l+a)éo, wheree > 0; it

is clear thaB; — Qg € SP, NSE and) B: — O = le| HéOHF = Mr,, for |e| = Mrp,/ )éoHF. Note

also ifA € Ty, thenAjj = O¥(i, j :i # ]) ¢ E; Thus we haveh € 5f and

18]l = [|diaglA)[|o + [|offd(A)[|o < p+2|E[ where|E[ = lin (Son)-

We now show the following two propositions. Proposition 23 follows from déad results.
Proposition 23 Let B be a p< p matrix. If B 0and B+ D > 0, then B+ vD > Ofor all v € [0, 1].

Proposition 24 Under (33), we have for alA € Ty, such that||A|| = Mr,, for r, as in(62), Oy +
VA > 0,¥v € an open interval D [0, 1] on eventE.

Proof In view of Proposition 23, it is sufficient to show th@ + (1+¢)A, ©p — €A > 0 for some
€ > 0. Indeed, by definition o € T),, we havepmin(©p +A) = 0 on eventE; thus

Omin(Go+ (1+€)A) > dmin(Go+A) —e|A], >0,
and Pmin(©o—€A) > dmin(Go) —€||Al], > 31c/32—¢||Al|, >0
for € > 0 that is sufficiently small. |

Thus we have that lo@g + vA| is infinitely differentiable on the open intervab [0, 1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the follpwin

Lemma 25 On eventE N Xo, G(A) > Ofor all A € T,
Proof Let us uséA as a shorthand for
1 - ~
veah” </ (1—Vv)(0g+VvA) 1 (6 —|—VA)_1dV> vea,
0

where® is the Kronecker product (W = (Wij)mxn, P = (bk¢) pxq, thenW @ P = (Wij P)mpxng), and
vech € RP is App vectorized. Now, the Taylor expansion gives forlt T,

~ ~ d ~ 1 d2 ~
log|®o+4| —log|So| = —Iog\@o+vA||\,:oA+/(1—v)—|og|G)0+vA|dv
dv 0 dv?
= tr(Zoh) —A
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Hence for allA € T},
G(A) =A+tr (A(Fn - 'io)) — Atr (A(Fn - zo)) —tr (A(’io - zo)) : (63)

where we first bound A(Zp — =) as follows: by (54) and (60), we have on evént

r(BGo-%0)| = [(A(o~0))| < 1Bl [Zo%o||
< Jal, ozl
Omin(©0)Pmin(So)
32Chiasy/2Snlogp/n 3
< 8l b'asmqmnpmz- (64)

Conditioned on eventy, by (70) and (55)

nj)%xfn,jk — 0o,jk| < 4C3v/logmax(n, p)/n=: &,.
Thus on evenfE N Xy, we have‘tr(A(Fn - Zo))‘ < &, |offd(A)|,, where

|offd(8)[; < 4/ l[offd() o [[offd(A)[r < v 2[E[[|A]g,

and

tr (AFa—%0)) > —4Cs\/logmax(n, p)/ny/2[E] |Allx > —4Csra|lAllz.  (65)
Finally, we boundA. First we note that foA € T,, we have on evertk,

7
18]z < [1Alle =Mrn < 7o, (66)

2
given (55):n > (18. 22 (4Cg+ 331§22 max{ (2|E|)log(n), CZ,2Snlogp}. Now we have by (61)
and (34) following Rothman et al. [2008] (see Page 502, proof of fiémed. therein): on evert,

A > 0/ (2(0n®) +101))
k2
> J0E/ (2 + 55+ 1) > 18IE %5 67)

Now on eventE N Xp, for all A € Ty, we have by (63),(67), (65), and (64),

~ 2k?
A 2 —

_ 2 (2% 1 32r,
= ”A”F<9 A % T e

(%L (o,
— 10 (% (4 o ) ).
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HIGH-DIMENSIONAL COVARIANCE ESTIMATION

hence we hav&(A) > 0 for M large enough, in particulavl = (9/(2k?)) (4C3+32/(31c?)) suf-
fices. |

We next state Proposition 26, which follows exactly that of Claim 12 of Zhal. §2008].

Proposition 26 Suppose everf holds. IfG(A) > 0,VA e Ty, thenG(A) > O for all Ain
Wy ={A:A€Uy(Sp), ||Allg > Mry}

for r, as in(62); Hence ifG(A) > O for all A € Ty, thenG(A) > O for all A € T,UW,.

Note that for®, € SP, NSE, we haveA = ©, — Oy € Uy(6p). By Proposition 26 and the fact
thatG(A) < G(0) = 0 on eventE, we have the following: on everE, if G(A) > 0,VA € Ty, then
|Alle < Mrp, given thatA € Uy (©o) \ (T UW,). Therefore

P(JBlF =Mr) < P(E%)+P(E)-P(|B] > Mry|Z)
= P(£%)+P(£) (1~ P (B <Mr|E))
< P(£9)+P(E)-(1-P(G(8) > 0,YA € Ty|E))
< P(E9+P(E) - (1-P(X|E))
= P(E)+P(X§NE) < P(ZE°) +P(XS)
_ £+ 1 < c+1
T opr maxnp? T p?

We thus establish that the theorem hollis.

D.3 Frobenius Norm for the Covariance Matrix
We use the bound oH\én(E) — OOHF as developed in Theorem 19; in addition, we strengthen the
bound onMr, in (66) in (68). Before we proceed, we note the following bound on b‘iaé@)‘l

Remark 27 Clearly we have on evert, by (64)

HOO Q)H,: BZCblasV 280 IOQ p/n

¢mlﬂ(90>¢m|n(@0) 31c?

@z, <

Proof of Theorem 20. Suppose evefith Xy holds. Now suppose

16 9

> (3¢ 7c 2k2

32 \?
2 (Ca+ g1z ) max(2IEllogmaxn.p). CiaSonlogp).
which clearly holds given (57). Then in addition to the bound in (66), aneZ N Xy, we have

Mr, < 7¢/16, (68)
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for rp asin (62). Then, by Theorem 19, for the sakh@s therein, on everft N Xy, we have

H@n(E) _OOHF <(M+1) max{ V/2|E|logmax(n, p)/n, Cbias,/ZSovnIog(p)/n},

given that sample bound in (55) is clearly satisfied. We now proceed @ﬁa — ZOHF given (56).
First note that by (68), we have on evein Xp for M > 7

¢min(én(E)) > ¢min(@O) - ‘ én—GOHZ > ¢min(@0) - Hén—GOHF
> ¢c—(M+21r,>c/2

Now clearly on evenf N Xy, (58) holds by (56) and

e,
= <=
¢min(@n(E))¢min(@0) ¢

~

Zn(E)—ZOHF <

foier-o,

D.4 Risk Consistency

We now derive the bound on risk consistency. Before proving Time@re we first state two lemmas
given the following decomposition of our loss in terms of the risk as defineddn (1

0 < R(Gx(E)) —R(©0) = (R(@n(E)) —R(@0)) + (R(®0) — R(€0)), (69)

where clearlyR(G,(E)) > R(Gp) by definition. Itis clear tha®q € S, for 5, as defined in (28), and
thusRy(Bg) > Ry (6 (E)) by definition of©,(E) = argminses, Ra(O).

We now bound the two terms on the RHS of (69), where cle§);) > R(Qp).
Lemma 28 On eventE, we have for Gias, ©0, éo as in Theorem 19,

0< R(éo) —R(0p) < (32/(31c))? 2iaszsa+:)gp

for ry as in(62), where the last inequality holds given that:m9,/2(4C3 + 32/(31¢?)).

< (32/(31c))? 13 /2 < Mr;/8,

Lemma 29 UnderE N Xy, we have for g as in(62) and M,C3 as in Theorem 19

~

R(Gn(E)) — R(©) < MCar?2.

Proof of Theorem 21. We have BN Xy, for ry is as in (62)
R(Gn(E)) — R(@0) = (R(@x(E)) — R(@0)) + (R(®o) — R(®o)) < Mra(Cs+1/8)

as desired, using Lemma 28 and BD.
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Proof of Lemma 28. For simplicity, we usly as a shorthand for the rest of our proof:
Ng = @07@ = éo — @o.
We useB as a shorthand for

1
VECAOT (/ (1— V)(@o —|—VA0)_1 ® (@0 —|—VAO)_ldV> vedy,
0

where® is the Kronecker product. First, we have 95,00 >~ 0

R(@o) ~R(@) = tr(GpZo) —log|O| — tr(QZo) +log|Oy|
— tr((Go— O0)%0) — (log|éo| - Iog|®o|> —B>0,
whereB = 0 holds when||Ao||- = 0, and in the last equation, we bound the difference between

two log| - | terms using the Taylor's formula with integral remainder following that in profof
Theorem 19. Indeed, it is clear that @n we have

Op+VAg >0 for ve (—1,2) O [0,1],

given thatgmin(©g) > ¢ and ||Aol|, < ||Aollg < €/32 by (54). Thus logo + VAo| is infinitely

differentiable on the open intervab [0, 1] of v. Now, the Taylor expansion gives

d 1 d?
|Og|@0+A0|—|Og|@0| = f|Og|@0—|—VA0||V:0A0—|—/ (l—V)7|Og|@0—|—VA0’dV
dv 0 dv2
= tl’(Zvo)—g.

We now obtain an upper bound &> 0. Clearly, we have on evef, Lemma 28 holds given that
B < 0l [/ (1)@ +180) 2 (00 +v80) ).
wherel|Ao||? < CZ,2Snlog(p)/nand
Gmax </01(1 —V)(©o + Vo)t @ (Qp+ VAO)_ldV>

1 1
< /(1—v) 2 (Oo+Vvho) tdv< sup ¢r2nax(@0+vA0)‘l/ (1—v)dv
0 ve[0,1] 0

1 1 1
2e [0,1] ¢Enin(90 +VAg)  2infyepo ) ¢Enin(60 + Vo)
1 1
7= 2
2(dmin(©0) — [1Doll2)” — 2(31c/32)

where clearly for alv € [0,1], we havep2, (O +VAg) > (Smin(Oo) — [|Do]|»)? > (31c/32)?, given
Omin(©0) > cand||Aoll, < ||@o.0||¢ < c/32 by (54).1
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Proofof Lemma 29. SupposR(©,(E)) — R(Op) < 0, then we are done.
Otherwise, assunﬁ(@n(E)) — R(Gp) > 0 throughout the rest of the proof. Define
A = Bn(E) - By,
which by Theorem 19, we have on evehin Xy, and forM as defined therein,

o, = o5, <

We have by definitionR,(©n(E)) < R(6p), and hence

0<R(@n(E))~R(@0) = R(Gn(E))—Ra(Gn(E))+ Rn(Gn(E)) — R(®o)
< R(Gn(E)) —Ry(Bn(E)) + Rn(G0) — R(Go)
= tr(Gn(E)(So—Tn)) —tr(Go(So—Tn))
( )

—©0)(Zo—Tn)) =tr(A(Zo—Tn)).
Now, conditioned on evert N Xy, following the same arguments around (65), we have

)tr(ﬁ(én—zo))] < &|offd@ ‘<6n\/THoffd H
< MryCz/2|E[logmaxn, p)/n < MCar2,

WhereHoffd(E) Ho < 2|E| by definition, and, is as defined in (62)l

Appendix E. Proof of Theorem 6

We first boundP (Xp) in Lemma 30, which follows exactly that of Lemma 13 as the covariance
matrix Wo for variablesx; /oy, ..., X,/0p satisfy the condition tha¥o; = 1,Vi € {1,..., p}.

Lemma 30 For p < &4 where G > 4,/5/3, we have for ¥ as defined ir{43)

P(Xo) > 1—1/max{n, p}2.

On eventXy, the following holds forr = Cgy/'29M{EN - 1/2 \where we assume< &/,

I 1T R
" | 6?n - 7

]
Vi j, H<Xi/0i,xj/01>—po.,ij < T
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Let us first derive the large deviation bound fa’ﬁ,ij — Pojij ‘ First note that on eventy v/1—1 <
1%l /(0iv/N) < /14T and for alli #

Fnlj pOIJ‘ —Pojij| = ‘6” _pO,ii’
X '/Oian/01> POj pou )
+ — Po,ij
([%ll2/(oiv/n HXJHQ (ajvn)  (IXill2/(oiv/n HXJH2 (ajv/N))
- <><i/0ian/01> Po.ij po., )
< + — Po,ij
([1%ll2/ (oiv/n HXJHZ (gjv)) ([l /(aiy/n HXJH /(ajy/n))
21
< ﬁﬂpo,ij\ “—1' 7<% (70)

Proofof Theorem 6. FoBy as in (24), we define

Qo = WOuW =W(diag©p))W +WBOqg,neW
= diagWOW) +WOq g,~reW = diag(Qo) + Qo o,
whereW = diag(Zo)Y/2. Then clearlyQq € S, asOg € Sp. We first bound|@g, || as follows.
K
V14405 o (4C3 + 12c202 )

H@Q@HF < Chias\/2Snlog(p)/n <

ke202, - { corzmn } c
( &:Zo-rznlnc3+13)o-r2nax o 4&:3 maX 1‘?0127'13X o 130—%1ax

Suppose event holds throughout this proof. We first obtain the bound on spectruooﬂt is
clear that by (33) and (30), we have @h

Omin(Q0) > Omin(Qo) — HéO*@oHZ > Omin(©0) — || @00 || > %, (71)
Gmex(©0) < dma(@0) + B0~ G| < bmex(@0) + @0y < paip—+p  (72)

Throughout this proof, we lefg = (0gjj) := @51. In view of (71), defing, 1= (éo)‘l. Then
Qpt =W 1(Gp) WL =W oWt = By,

We useQ,, := Q,(E) as a shorthand. Thus we have g = WO,W,

Qo) < W) hrman(® W) < Omax , C
dmax(Qo) < Omax(W)dmax(@o)Pmax(W) < K —|—l—3
¢min(§0)7 = 1 _1~ — = - 1 =~
¢max(qJ0) ¢max(W IToW1)  dmax(W1)20max(Zo)
_ bmin(W)E 5oy g2, 12 2
¢max(i0) Grmin(W ) $min(So) = Omin 13° (73)
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GivenQo € P, NSE as guaranteed in (73), let us define a new convex set:
Un(Qo) := (5P, NSE) — Qo= {B—Qo[B e SP, NSPY c s,

which is a translation of the original convex s, N.SE. Let 0be a matrix with all entries being
zero. Thus itis clear thal,(Qp) > 0 given thatQq € 5f+ HSE. Define forﬁn as in expression (27),

QQ) = Ry(Q)—Ry(Qo)=1tr(Qry) —log|Q| — tr(Qol n) +log|Qy|
= tr((Q—Q0)(Fn—P0)) — (Iog|2| — log| Qo) +tr (2 — o) ¥o)

For an appropriately chosepand a large enoughl > 0, let

Ty = {AecUn(Qo),||Al =Mry}, and

Mn = {A€Un(Qo),[|Allg <Mrn}.
Both M, andT,, U, are convex. It is clear that@I1,. Define forA Un(ﬁo),
G(8) == Q(Qo+A) = tr(A(Fn — Wo)) — (log|Qo+A| — log|Qo|) + tr(APy).
ThusG(A) is a convex function obl,(Qg) andG(0) = Q(Qo) = 0.
Now, Q, minimizesQ(Q), or equivalentlyA = Q, — Qg minimizesG(A). Hence by definition,
G(8) < G(0) =0.

Note thatT, is non-empty, while clearly & MM,. Indeed, considds; := (l+e)£~20, wheree > 0; it
is clear thaB; — Qg € 5P, NP and‘ B: — Qo = le| HEZOHF = Mr,, for |e| = Mrp,/ ‘ﬁoHF. Note
also ifA € Ty, thenljj = 0v(i, j :i # |) ¢ E; Thus we havel € 52 and

14]lo = lIdiag(8)|lo + [loffd(8) o < p+2[E[ where[E| = lin (Son).
We now show the following proposition.

Proposition 31 Under (33), we have for allA € Ty, such that|A|| = Mr,, for r, as in(62), Qo+
VA > 0,Vv € an open interval D [0, 1] on eventE.

Proof In view of Proposition 23, it is sufficient to show th@p + (1+¢)A, Qo — €A > 0 for some
€ > 0. Indeed, by definition oA € Ty, we havedmin(Qo+A) > 0 on eventE; thus

Omin(Qo+4) —€||Al|, > 0,
Omin(Qo) —€|A]|, > 1207,,¢/13—€||All, > 0

dmin(Qo+ (1+€)A)

>
anddmin(Qo —eA) >

for € > 0 that is sufficiently small. |

Thus we have that 0§+ VA| is infinitely differentiable on the open intervab [0,1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the follpwin
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Lemma 32 On eventE N Xp, G(A) > Ofor all A € T,

Proof Let us uséA as a shorthand for
1 -~ ~
veh" < / (1-V)(Qo+VvA) t® (Qo+vA)1dv> vea,
0

where® is the Kronecker product (W = (Wij )mxn, P = (bk¢) pxq, thenW @ P = (Wi P)mpxng), and
vedh € RP is Apy p vectorized. Now, the Taylor expansion gives for/ak T,

log|Qo+A| —log|Qo| = (;jvlog|£~)0+vA|\,_0A+/01(1—v);\jzlog§0+VA|dv
= tr(Woh) —A.
Hence for allA € Ty,
G(A) = A+tr (A(Fn - %)) — Attr (A(Fn - wo)) —tr (A(% - ‘-Po)) : (74)

where we first bound tA(Wo — Wo)) as follows: by (30) and (60), we have on evéht

(Ao~ wo)| = [(,(Wo—W0)| < 1] | Fo - wo|
13ry
< Alg sz
< Bl 1502

min=~

(75)
where we boun(HLNPo — WOHF as follows:

-], = - sow, <o -5
|

1 HE)QDHF
0-Zmin ¢min(eo)¢min(eo)

CbiaS\/ 2807nlc’g p/n < 13ry

- 1202. c?/13  ~ 1202, c?’

min= min=

Now, conditioned on everity, by (70)
fTJ)’ilX\Fn,jk — Po,jk| < 4Czv/logmax(n, p)/n=: &,

and thus on eventE N Xy, we have ’tr(A(Fn—Wo))‘ < &y|offd(A)],, where |offd(A)]; <

Vlloffd(8)]o [[offd(A)[|r < +/2|E[[|A]

tr (A(Fn—Wo) ) > ~4Cs\/logmax(n, p)/n/2[E ||l > ~4Carn A (76)

£, and

Finally, we boundA. First we note that foA € Th, we have on evert,

2
30-max

All, < ||Alle = Mr
I8z < 18]l = Mrq < =ceex,
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given (31):n> (8- fk)zcﬁqax(4C3+ 1202 P max{2|E|)logmaxn, p),CZ,2%nlogp}. We have
by (72) and (34) following Rothman et : a [2008] (see Page 502, ppbdheorem 1 therein): on
eventg,

A > 02/ (2(bmad0) + 1015)°)

1 ¢ 3 5 2K
> a2/ | 204 < + =4 = > > A2 ==—. (77)
F max\k 13 ' 8k F 904 .

Now on eventE N Xy, for all A € Ty, we have by (74),(77), (76), and (75),

~ 2K? 13
G(a) > |42 — 4C3ry [|A Allp =2
@) > 1817 gog— ~4CaallBlle = 18l 352"
2K? 1 13y
0 (2 (e )
F 904max HAHF " 120-|?n|nc2
2k 1 13
= |lAlI (4—<4C3 22))
Ohax M 1207.i.C
Hence we have G(A) > O for M large enough, in particular M =
(907 ax/ (2k?)) (4C3 + 13/(1202,,c2)) suffices. u

The rest of the proof follows that of Theorem 19, see Proposition g&febounds which follow.
We thus establish that the theorem holliis.

Appendix F. Oracle Inequalities for the Lasso

In this section, we consider recoverifige RP in the following linear model:
Y =XB+E¢,

whereX follows (15) anck ~ N(0,0?l,). Recall giverh,, the Lasso estimator f@ € RP is defined
as:

5 1
B =argminz_ Y = XBl5-+ Al (78)

which corresponds to the regression function in (10) by lefifng- X; and X := X,; whereX,;
denotes columns of withouti. Definesy as the smallest integer such that

Zlmm 2 N\202) < s9A%02, where A = \/2logp/n. (79)

ForX € ¥(0) as defined in (39), define

XT
oo

< (14+8)Agap, WhereX e F(8), for0< 06 < 1}, (80)
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whereg ap = 0v/1+a,/(2logp)/n, wherea > 0. We have (cf. Lemma 34)
P(7Tg) > 1— (y/mlogpp?)t

In fact, for such a bound to hold, we only n X'rUZ <1+6,Vjto holdin ¥ (6).

We now state Theorem 33, which may be of independent interests as thésba/, and/; loss
for the Lasso estimator are stated with respect t@ttteal sparsitys, rather thars= | supp(B)| as
in Bickel et al. [2009, Theorem 7.2]. The proof is omitted as on eZgntXx, it follows exactly that
of Zhou [2010a, Theorem 5.1] for a deterministic design mafrixhich satisfies the RE condition,
with some suitable adjustments on the constants.

Theorem 33 ((Oracle inequalities of the Lasso) Zhou, 2010a)et Y = X + ¢, for € being i.i.d.
N(0,0%) and let X follow(15). Let % be as in(79) and T denote locations of theydargest
coefficients op in absolute values. Suppose that(®R§4,Zp) holds with K(so,4,Zo) andpmin(s) >
0. Fix somel > 8 > 0. LetBinit be an optimal solution t¢78) with

An=doA0 > 2(140)Agap (81)
where a> 1and & > 2(1+0)v/1+a. Let h= Binit — Br,. Define
X:=RO)NF(O)NM(B).
Suppose that n satisfié$2). Then onZ; N X, we have
1Bt Bl < Any/Soy/2D3+2D3 +2:=Ao\/Sdoy/2D3 +2D3 + 2,
|bre]], < Di1AnSo:= D1doAoso,

where Dy and Dy are defined ir{82) and (83) respectively, ant (X N 7;) > 1—3exp —cB2n/a%) —
(v/mogpp?) !

Let T, denote thes largest positions ol in absolute values outside @; Let To1 := ToU Ty. The
proof of Theorem 33 yields the following bounds &m 75 ||hy, ||, < DodoAo,/So where

do’ (1—6)do (1-6)

 3(140)/Pmax(5—%0) . 2(1+8)*Pmax(3%)Pmax(S— o)
(1-0)+/Pmin(2%0) dO(l_e)zpmin(ZSO) ’

Do = maX{ B 2\@(1+ e) K<SOa47 ZO) pmax(s_ &J) + 3\/2K2(50747 ZO) } (82)

and

2
B 4(1+6)*Pmax(S— %) [ (1486)\/Pmax(S—%0) | 3K(S0.4,%0)
D;= max{ @ , ( % + 21-6) ) } : (83)

We note that implicit in these constants, we have used the concentrationsbfmumh,ax(3%),
Amax(S— ) and/Amin(25) as derived in Theorem 10, given that (41) holdsfox max(s, (ko +
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1)sy), where we takdg > 3. In general, these maximum sparse eigenvalues as defined above will
increase withsy ands; Taking this issue into consideration, we fix fy> 4v/2, A\, = doAc where

do = Co(1+0)2\/Pmax(S— So)Pmax(3%0) > 2(1+0)V1+a,
where the second inequality holds o= 7 as desired, givepmax(3%), Pmax(S— So) > 1.

Thus we have fopmax(3%0) > Pmax(250) > Pmin(2%)
3 2
Co(1+ 8)(1— 8)/Pran{350) v/Pran(250)  C3(1— 8)2Prmin(250)
3\/ pmin(ZSo) + 2
co(1—8)2y/Pmax(3%0)Pmin(2%)  C5(1—6)?Pmin(2%0)

2(300 + 2)K?(s0,4,%0) _ 7v/2K*(50,4, %)
c3(1—-9)2 - 8(1-0)2

D/do

which holds given thapmax(3s) > 1, and 1< T < V2K (s0,ko,%0), and thusm <2
as shown in Lemma 35; Hence

(4+ 3\@(30) \/pmax(S— S0)Pmax(3%0) (1 + B)ZKZ(SO, 4,%)) }
do(1—6)2 ’

Dy < max{D/do,
7K2(so,4, ) < 5K2(so,4, o)
T V2102 (1-8p

6 1\? 49K2(sp,4,%0)
= 7)) K% 4.5 < - DAY
(4(1—9) +4) (S0:4.%0) < =767 gz

and

Dy

where for botiD1, we have used the fact that

2(1+6)*Pmax(S— %) _ 2 2
a2 T 21+ep = 201+0)%0m
4K2(50747ZO) < K2(50a4> ZO)
= TZLreg - 8

Appendix G. Misc Bounds

Lemma 34 For fixed design X witmax; ||X;[|> < (14 8),/n, where0 < 8 < 1, we have forZ, as
defined in(80), where a> 0, P (‘Z,f) < (y/mlogpp?) 2.

Proof Define random variable®; = 2 5", &X; ;. Note that maxj<p|Y;| = | X"€/n||. We have
E(Yj) = 0 andVvar((Y))) = ||X; Hgoz/n2 < (148)a?/n. Letc; = 1+ 6. Obviously,Y; has its tail
probability dominated by that & ~ N(O ﬁ):

’on

2c,0 —nt2>
P(lYi|>t) <P(|Z]| >1t) < exp|l —s—= | .
(4120 <P(2l>0 < 2% el 5
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We can now apply the union bound to obtain:
C10 —nt?
P max]|Yj| >t < ex
<1<j<p‘ il = > = Pomt p<2c§02>

nt2 t\/Tn
= exp| — lo —lo .
p( <2c§02 +10g V2c,0 g p> )

By choosing = ¢,0/1+ a\/2 logp/n, the right-hand side is bounded pyTogpp?)~* fora> 0.
[ |

Lemma 35 (Zhou, 2010b) Suppose that R, ko, Zo) holds for kg > 0, then for m= (ko + 1)so,

1
Pmin(M) > . and clearly
\/ 2+ k3K (s0, ko, Zo)
1
if o5 =1,Vi, thenl> in(2 > = forkg>1
0,ii Pmin(2%) ﬁK(S‘o,ko,Zo) ko
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