
Journal of Machine Learning Research 12 (2011) 2975-3026 Submitted 9/10; Revised 6/11; Published 10/11

High-dimensional Covariance Estimation Based On
Gaussian Graphical Models

Shuheng Zhou SHUHENGZ@UMICH .EDU

Department of Statistics
University of Michigan
Ann Arbor, MI 48109-1041, USA
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ETH Zürich
8092 Z̈urich, Switzerland

Min Xu MINX @CS.CMU.EDU

Machine Learning Department
Carnegie Mellon University
Pittsburgh, PA 15213-3815, USA
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Abstract

Undirected graphs are often used to describe high dimensional distributions. Under sparsity condi-
tions, the graph can be estimated usingℓ1-penalization methods. We propose and study the follow-
ing method. We combine a multiple regression approach with ideas of thresholding and refitting:
first we infer a sparse undirected graphical model structurevia thresholding of each among many
ℓ1-norm penalized regression functions; we then estimate thecovariance matrix and its inverse
using the maximum likelihood estimator. We show that under suitable conditions, this approach
yields consistent estimation in terms of graphical structure and fast convergence rates with respect
to the operator and Frobenius norm for the covariance matrixand its inverse. We also derive an
explicit bound for the Kullback Leibler divergence.
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ZHOU, RÜTIMANN , XU AND BÜHLMANN

1. Introduction

There have been a lot of recent activities for estimation of high-dimensional covariance and inverse
covariance matrices where the dimensionp of the matrix may greatly exceed the sample sizen.
High-dimensional covariance estimation can be classified into two main categories, one which relies
on a natural ordering among the variables [Wu and Pourahmadi, 2003; Bickel and Levina, 2004;
Huang et al., 2006; Furrer and Bengtsson, 2007; Bickel and Levina,2008; Levina et al., 2008]
and one where no natural ordering is given and estimators are permutationinvariant with respect
to indexing the variables [Yuan and Lin, 2007; Friedman et al., 2007; d’Aspremont et al., 2008;
Banerjee et al., 2008; Rothman et al., 2008]. We focus here on the latter class with permutation
invariant estimation and we aim for an estimator which is accurate for both the covariance matrixΣ
and its inverse, the precision matrixΣ−1. A popular approach for obtaining a permutation invariant
estimator which is sparse in the estimated precision matrixΣ̂−1 is given by theℓ1-norm regularized
maximum-likelihood estimation, also known as the GLasso [Yuan and Lin, 2007; Friedman et al.,
2007; Banerjee et al., 2008]. The GLasso approach is simple to use, at least when relying on
publicly available software such as theglasso package inR. Further improvements have been
reported when using some SCAD-type penalized maximum-likelihood estimator [Lam and Fan,
2009] or an adaptive GLasso procedure [Fan et al., 2009], which can be thought of as a two-stage
procedure. It is well-known from linear regression that such two- or multi-stage methods effectively
address some bias problems which arise fromℓ1-penalization [Zou, 2006; Candès and Tao, 2007;
Meinshausen, 2007; Zou and Li, 2008; Bühlmann and Meier, 2008; Zhou, 2009, 2010a].

In this paper we develop a new method for estimating graphical structure andparameters for multi-
variate Gaussian distributions using a multi-step procedure, which we call Gelato (Graphestimation
with Lasso and Thresholding). Based on anℓ1-norm regularization and thresholding method in a
first stage, we infer a sparse undirected graphical model, that is, an estimated Gaussian conditional
independence graph, and we then perform unpenalized maximum likelihood estimation (MLE) for
the covarianceΣ and its inverseΣ−1 based on the estimated graph. We make the following theoreti-
cal contributions: (i) Our method allows us to select a graphical structure which is sparse. In some
sense we select only the important edges even though there may be many non-zero edges in the
graph. (ii) Secondly, we evaluate the quality of the graph we have selectedby showing consistency
and establishing a fast rate of convergence with respect to the operatorand Frobenius norm for the
estimated inverse covariance matrix; under sparsity constraints, the latter is of lower order than the
corresponding results for the GLasso [Rothman et al., 2008] and for theSCAD-type estimator [Lam
and Fan, 2009]. (iii) We show predictive risk consistency and provide arate of convergence of the
estimated covariance matrix. (iv) Lastly, we show general results for the MLE, where onlyapproxi-
mategraph structures are given as input. Besides these theoretical advantages, we found empirically
that our graph based method performs better in general, and sometimes substantially better than the
GLasso, while we never found it clearly worse. Moreover, we compareit with an adaptation of the
method Space [Peng et al., 2009]. Finally, our algorithm is simple and is comparable to the GLasso
both in terms of computational time and implementation complexity.
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There are a few key motivations and consequences for proposing such an approach based on graph-
ical modeling. We will theoretically show that there are cases where our graph based method can
accurately estimate conditional independencies among variables, that is, thezeroes ofΣ−1, in sit-
uations where GLasso fails. The fact that GLasso easily fails to estimate the zeroes ofΣ−1 has
been recognized by Meinshausen [2008] and it has been discussed inmore details in Ravikumar
et al. [2011]. Closer relations to existing work are primarily regarding ourfirst stage of estimating
the structure of the graph. We follow the nodewise regression approachfrom Meinshausen and
Bühlmann [2006] but we make use of recent results for variable selection inlinear models assuming
the much weaker restricted eigenvalue condition [Bickel et al., 2009; Zhou, 2010a] instead of the
restrictive neighborhood stability condition [Meinshausen and Bühlmann, 2006] or the equivalent
irrepresentable condition [Zhao and Yu, 2006]. In some sense, the novelty of our theory extending
beyond Zhou [2010a] is the analysis for covariance and inverse covariance estimation and for risk
consistency based on an estimated sparse graph as we mentioned above. Our regression and thresh-
olding results build upon analysis of the thresholded Lasso estimator as studied in Zhou [2010a].
Throughout our analysis, the sample complexity is one of the key focus point, which builds upon
results in Zhou [2010b]; Rudelson and Zhou [2011]. Once the zeros are found, a constrained max-
imum likelihood estimator of the covariance can be computed, which was shown inChaudhuri
et al. [2007]; it was unclear what the properties of such a procedurewould be. Our theory answers
such questions. As a two-stage method, our approach is also related to the adaptive Lasso [Zou,
2006] which has been analyzed for high-dimensional scenarios in Huang et al. [2008], Zhou et al.
[2009] and van de Geer et al. [2011]. Another relation can be made to themethod by R̈utimann
and B̈uhlmann [2009] for covariance and inverse covariance estimation basedon a directed acyclic
graph. This relation has only methodological character: the techniques and algorithms used in
Rütimann and B̈uhlmann [2009] are very different and from a practical point of view,their ap-
proach has much higher degree of complexity in terms of computation and implementation, since
estimation of an equivalence class of directed acyclic graphs is difficult and cumbersome. There
has also been work that focuses on estimation of sparse directed Gaussian graphical model. Verze-
len [2010] proposes a multiple regularized regression procedure for estimating a precision matrix
with sparse Cholesky factors, which correspond to a sparse directed graph. He also computes non-
asymptotic Kullback Leibler risk bound of his procedure for a class of regularization functions. It
is important to note that directed graph estimation requires a fixed good ordering of the variables a
priori.

1.1 Notation

We use the following notation. Given a graphG= (V,E0), whereV = {1, . . . , p} is the set of vertices
andE0 is the set of undirected edges. we usesi to denote the degree for nodei, that is, the number
of edges inE0 connecting to nodei. For an edge setE, we let|E| denote its size. We useΘ0 = Σ−1

0

andΣ0 to refer to the true precision and covariance matrices respectively from now on. We denote
the number of non-zero elements ofΘ by supp(Θ). For any matrixW = (wi j ), let |W| denote the
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determinant ofW, tr(W) the trace ofW. Let ϕmax(W) and ϕmin(W) be the largest and smallest
eigenvalues, respectively. We write diag(W) for a diagonal matrix with the same diagonal asW and

offd(W) =W−diag(W). The matrix Frobenius norm is given by‖W‖F =
√

∑i ∑ j w
2
i j . The operator

norm‖W‖2
2 is given byϕmax(WWT). We write| · |1 for theℓ1 norm of a matrix vectorized, that is,

for a matrix|W|1 = ‖vecW‖1 = ∑i ∑ j |wi j |, and sometimes write‖W‖0 for the number of non-zero
entries in the matrix. For an index setT and a matrixW = [wi j ], write WT ≡ (wi j I((i, j) ∈ T)),
whereI(·) is the indicator function.

2. The Model and the Method

We assume a multivariate Gaussian model

X = (X1, . . . ,Xp)∼Np(0,Σ0), where Σ0,ii = 1. (1)

The data is generated byX(1), . . . ,X(n) i.i.d. ∼ Np(0,Σ0). Requiring the mean vector and all vari-
ances being equal to zero and one respectively is not a real restrictionand in practice, we can easily
center and scale the data. We denote the concentration matrix byΘ0 = Σ−1

0 .

Since we will use a nodewise regression procedure, as described below in Section 2.1, we consider
a regression formulation of the model. Consider many regressions, wherewe regress one variable
against all others:

Xi = ∑
j 6=i

βi
jXj +Vi (i = 1, . . . , p), where (2)

Vi ∼N (0,σ2
Vi
) independent of{Xj ; j 6= i} (i = 1, . . . , p). (3)

There are explicit relations between the regression coefficients, errorvariances and the concentration
matrix Θ0 = (θ0,i j ):

βi
j =−θ0,i j/θ0,ii , Var(Vi) := σ2

Vi
= 1/θ0,ii (i, j = 1, . . . , p). (4)

Furthermore, it is well known that for Gaussian distributions, conditional independence is encoded
in Θ0, and due to (4), also in the regression coefficients:

Xi is conditionally dependent ofXj given{Xk; k∈ {1, . . . , p}\{i, j}}
⇐⇒ θ0,i j 6= 0 ⇐⇒ β j

i 6= 0 andβi
j 6= 0. (5)

For the second equivalence, we assume that Var(Vi) = 1/θ0,ii > 0 and Var(Vj) = 1/θ0, j j > 0. Con-
ditional (in-)dependencies can be conveniently encoded by an undirected graph, the conditional
independence graph which we denote byG= (V,E0). The set of vertices isV = {1, . . . , p} and the
set of undirected edgesE0 ⊆V ×V is defined as follows:

there is an undirected edge between nodesi and j

⇐⇒ θ0,i j 6= 0 ⇐⇒ β j
i 6= 0 andβi

j 6= 0. (6)
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Note that on the right hand side of the second equivalence, we could replace the word ”and” by
”or”. For the second equivalence, we assume Var(Vi),Var(Vj)> 0 following the remark after (5).

We now define the sparsity of the concentration matrixΘ0 or the conditional independence graph.
The definition is different than simply counting the non-zero elements ofΘ0, for which we have
supp(Θ0) = p+ 2|E0|. We consider instead the number of elements which are sufficiently large.
For eachi, define the numbersi

0,n as the smallest integer such that the following holds:

p

∑
j=1, j 6=i

min{θ2
0,i j ,λ

2θ0,ii} ≤ si
0,nλ2θ0,ii , where λ =

√
2log(p)/n, (7)

whereessential sparsity si
0,n at row i describes the number of “sufficiently large” non-diagonal

elementsθ0,i j relative to a given(n, p) pair andθ0,ii , i = 1, . . . , p. The valueS0,n in (8) is summing
essential sparsityacross all rows ofΘ0,

S0,n :=
p

∑
i=1

si
0,n. (8)

Due to the expression ofλ, the value ofS0,n depends onp andn. For example, if all non-zero
non-diagonal elementsθ0,i j of the ith row are larger in absolute value thanλ

√
θ0,ii , the valuesi

0,n

coincides with the node degreesi . However, if some (many) of the elements|θ0,i j | are non-zero
but small,si

0,n is (much) smaller than its node degreesi ; As a consequence, if some (many) of
|θ0,i j |,∀i, j, i 6= j are non-zero but small, the value ofS0,n is also (much) smaller than 2|E0|, which
is the “classical” sparsity for the matrix(Θ0−diag(Θ0)). See Section A for more discussions.

2.1 The Estimation Procedure

The estimation ofΘ0 and Σ0 = Θ−1
0 is pursued in two stages. We first estimate the undirected

graph with edge setE0 as in (6) and we then use the maximum likelihood estimator based on the
estimateÊn, that is, the non-zero elements ofΘ̂n correspond to the estimated edges inÊn. Inferring
the edge setE0 can be based on the following approach as proposed and theoretically justified in
Meinshausen and B̈uhlmann [2006]: performp regressions using the Lasso to obtainp vectors of
regression coefficientŝβ1, . . . , β̂p where for eachi, β̂i = {β̂i

j ; j ∈ {1, . . . , p}\ i}; Then estimate the
edge set by the “OR” rule,

estimate an edge between nodesi and j ⇐⇒ β̂i
j 6= 0 or β̂ j

i 6= 0. (9)

2.1.1 NODEWISEREGRESSIONS FORINFERRING THEGRAPH

In the present work, we use the Lasso in combination with thresholding [Zhou, 2009, 2010a]. Con-
sider the Lasso for each of the nodewise regressions

βi
init = argminβi

n

∑
r=1

(X(r)
i −∑

j 6=i

βi
jX

(r)
j )2+λn ∑

j 6=i

|βi
j | for i = 1, . . . , p, (10)
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whereλn > 0 is the same regularization parameter for all regressions. Since the Lassotypically es-
timates too many components with non-zero estimated regression coefficients, we use thresholding
to get rid of variables with small regression coefficients from solutions of (10):

β̂i
j(λn,τ) = βi

j,init(λn)I(|βi
j,init(λn)|> τ), (11)

whereτ > 0 is a thresholding parameter. We obtain the corresponding estimated edge set as defined
by (9) using the estimator in (11) and we use the notation

Ên(λn,τ). (12)

We note that the estimator depends on two tuning parametersλn andτ.

The use of thresholding has clear benefits from a theoretical point of view: the number of false
positive selections may be much larger without thresholding (when tuned forgood prediction). and
a similar statement would hold when comparing the adaptive Lasso with the standard Lasso. We
refer the interested reader to Zhou [2009, 2010a] and van de Geer etal. [2011].

2.1.2 MAXIMUM L IKELIHOOD ESTIMATION BASED ON GRAPHS

Given a conditional independence graph with edge setE, we estimate the concentration matrix by
maximum likelihood. Denote bŷSn = n−1 ∑n

r=1X(r)(X(r))T the sample covariance matrix (using
that the mean vector is zero) and by

Γ̂n = diag(Ŝn)
−1/2(Ŝn)diag(Ŝn)

−1/2

the sample correlation matrix. The estimator for the concentration matrix in view of (1) is:

Θ̂n(E) = argminΘ∈Mp,E

(
tr(ΘΓ̂n)− log|Θ|

)
, where

Mp,E = {Θ ∈ R
p×p; Θ ≻ 0 andθi j = 0 for all (i, j) 6∈ E, where i 6= j} (13)

defines the constrained set for positive definiteΘ. If n ≥ q∗ whereq∗ is the maximal clique size
of a minimal chordal cover of the graph with edge setE, the MLE exists and is unique, see, for
example Uhler [2011, Corollary 2.3]. We note that our theory guaranteesthat n ≥ q∗ holds with
high probability forG= (V,E), whereE = Ên(λn,τ)), under Assumption (A1) to be introduced in
the next section. The definition in (13) is slightly different from the more usual estimator which
uses the sample covarianceŜn rather than̂Γn. Here, the sample correlation matrix reflects the fact
that we typically work with standardized data where the variables have empirical variances equal
to one. The estimator in (13) is constrained leading to zero-values corresponding toEc = {(i, j) :
i, j = 1, . . . , p, i 6= j,(i, j) 6∈ E}.

If the edge setE is sparse having relatively few edges only, the estimator in (13) is already suffi-
ciently regularized by the constraints and hence, no additional penalizationis used at this stage. Our
final estimator for the concentration matrix is the combination of (12) and (13):

Θ̂n = Θ̂n(Ên(λn,τ)). (14)
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2.1.3 CHOOSING THEREGULARIZATION PARAMETERS

We propose to select the parameterλn via cross-validation to minimize the squared test set error
among allp regressions:

λ̂n = argminλ

p

∑
i=1

(CV-score(λ) of ith regression) ,

where CV-score(λ) of ith regression is with respect to the squared error prediction loss. Sequentially
proceeding, we then selectτ by cross-validating the multivariate Gaussian log-likelihood, from (13).
Regarding the type of cross-validation, we usually use the 10-fold scheme. Due to the sequential
nature of choosing the regularization parameters, the number of candidateestimators is given by
the number of candidate values forλ plus the number of candidate value forτ. In Section 4, we
describe the grids of candidate values in more details. We note that for our theoretical results, we
do not analyze the implications of our method using estimatedλ̂n andτ̂.

3. Theoretical Results

In this section, we present in Theorem 1 convergence rates for estimatingthe precision and the co-
variance matrices with respect to the Frobenius norm; in addition, we show a risk consistency result
for an oracle risk to be defined in (16). Moreover, in Proposition 4, we show that the model we select
is sufficiently sparse while at the same time, the bias term we introduce via sparse approximation is
sufficiently bounded. These results illustrate the classical bias and variance tradeoff. Our analysis is
non-asymptotic in nature; however, we first formulate our results from anasymptotic point of view
for simplicity. To do so, we consider a triangular array of data generating random variables

X(1), . . . ,X(n) i.i.d.∼Np(0,Σ0), n= 1,2, . . . (15)

whereΣ0 = Σ0,n andp= pn change withn. Let Θ0 := Σ−1
0 . We make the following assumptions.

(A0) The size of the neighborhood for each nodei ∈V is upper bounded by an integers< p and
the sample size satisfies for some constantC

n≥Cslog(p/s).

(A1) The dimension and number of sufficiently strong non-zero edgesS0,n as in (8) satisfy: dimen-
sion p grows withn following p= o(ecn) for some constant 0< c< 1 and

S0,n = o(n/ logmax(n, p)) (n→ ∞).

(A2) The minimal and maximal eigenvalues of the true covariance matrixΣ0 are bounded: for
some constantsMupp≥ Mlow > 0, we have

ϕmin(Σ0)≥ Mlow > 0 and ϕmax(Σ0)≤ Mupp< ∞.
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Moreover, throughout our analysis, we assume the following. There existsv2 > 0 such that
for all i, andVi as defined in (3): Var(Vi) = 1/θ0,ii ≥ v2.

Before we proceed, we need some definitions. Define forΘ ≻ 0

R(Θ) = tr(ΘΣ0)− log|Θ|, (16)

where minimizing (16) without constraints givesΘ0. Given (8), (7), andΘ0, define

C2
diag := min{ max

i=1,...p
θ2

0,ii , max
i=1,...,p

(
si
0,n/S0,n

)
· ‖diag(Θ0)‖2

F}. (17)

We now state the main results of this paper. We defer the specification on various tuning parameters,
namely,λn,τ to Section 3.2, where we also provide an outline for Theorem 1.

Theorem 1 Consider data generating random variables as in (15) and assume that (A0), (A1), and
(A2) hold. We assumeΣ0,ii = 1 for all i. Then, with probability at least1−d/p2, for some small
constant d> 2, we obtain under appropriately chosenλn andτ, an edge set̂En as in (12), such that

|Ên| ≤ 2S0,n, where |Ên\E0| ≤ S0,n; (18)

and forΘ̂n andΣ̂n = (Θ̂n)
−1 as defined in(14), the following holds,

∥∥∥Θ̂n−Θ0

∥∥∥
2
≤ ‖Θ̂n−Θ0‖F = OP

(√
S0,n logmax(n, p)/n

)
,

∥∥∥Σ̂n−Σ0

∥∥∥
2
≤ ‖Σ̂n−Σ0‖F = OP

(√
S0,n logmax(n, p)/n

)
,

R(Θ̂n)−R(Θ0) = OP(S0,n logmax(n, p)/n) ,

where the constants hidden in the OP() notation depend onτ, Mlow,Mupp, Cdiag as in (17), and
constants concerning sparse and restrictive eigenvalues ofΣ0 (cf. Section 3.2 and B).

We note that convergence rates for the estimated covariance matrix and forpredictive risk depend
on the rate in Frobenius norm of the estimated inverse covariance matrix. Thepredictive risk can
be interpreted as follows. LetX ∼ N (0,Σ0) with fΣ0 denoting its density. LetfΣ̂n

be the density

for N (0, Σ̂n) and DKL (Σ0‖Σ̂n) denotes the Kullback Leibler (KL) divergence fromN (0,Σ0) to
N (0, Σ̂n). Now, we have forΣ, Σ̂n ≻ 0,

R(Θ̂n)−R(Θ0) := 2E0

[
log fΣ0(X)− log fΣ̂n

(X)
]

:= 2DKL (Σ0‖Σ̂n)≥ 0. (19)

Actual conditions and non-asymptotic results that are involved in the Gelato estimation appear in
Sections B, C, and D respectively.

Remark 2 Implicitly in (A1), we have specified a lower bound on the sample size to be n=

Ω(S0,n logmax(n, p)). For the interesting case of p> n, a sample size of

n= Ω(max(S0,n logp,slog(p/s)))
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is sufficient in order to achieve the rates in Theorem 1. As to be shown in our analysis, the lower
bound on n is slightly different for each Frobenius norm bound to hold from anon-asymptotic point
of view (cf. Theorem 19 and 20).

Theorem 1 can be interpreted as follows. First, the cardinality of the estimatededge set exceeds
S0,n at most by a factor 2, whereS0,n as in (8) is the number of sufficiently strong edges in the
model, while the number of false positives is bounded byS0,n. Note that the factors 2 and 1 can
be replaced by some other constants, while achieving the same bounds on therates of convergence
(cf. Section D.1). We emphasize that we achieve these two goals by sparsemodel selection, where
only important edges are selected even though there are many more non-zero edges inE0, under
conditions that are much weaker than (A2). More precisely, (A2) can bereplaced by conditions on
sparse and restrictive eigenvalues (RE) ofΣ0. Moreover, the bounded neighborhood constraint (A0)
is required only for regression analysis (cf. Theorem 15) and for bounding the bias due to sparse
approximation as in Proposition 4. This is shown in Sections B and C. Analysis follows from Zhou
[2009, 2010a] with earlier references to Candès and Tao [2007], Meinshausen and Yu [2009] and
Bickel et al. [2009] for estimating sparse regression coefficients.

We note that the conditions that we use are indeed similar to those in Rothman et al.[2008], with
(A1) being much more relaxed whenS0,n≪|E0|. The convergence rate with respect to the Frobenius
norm should be compared to the rateOP(

√
|E0| logmax(n, p)/n) in case diag(Σ0) is known, which

is the rate in Rothman et al. [2008] for the GLasso and for SCAD [Lam and Fan, 2009]. In the
scenario where|E0| ≫ S0,n, that is, there are many weak edges, the rate in Theorem 1 is better than
the one established for GLasso [Rothman et al., 2008] or for the SCAD-type estimator [Lam and
Fan, 2009]; hence we require a smaller sample size in order to yield an accurate estimate ofΘ0.

Remark 3 For the general case whereΣ0,ii , i = 1, . . . , p are not assumed to be known, we could
achieve essentially the same rate as stated in Theorem 1 for‖Θ̂n −Θ0‖2 and ‖Σ̂n − Σ0‖2 under
(A0),(A1) and (A2) following analysis in the present work (cf. Theorem 6) and that in Rothman
et al. [2008, Theorem 2]. Presenting full details for such results are beyond the scope of the current
paper. We do provide the key technical lemma which is essential for showing such bounds based on
estimating the inverse of the correlation matrix in Theorem 6; see also Remark 7 which immediately
follows.

In this case, for the Frobenius norm and the risk to converge to zero, a toolarge value of p is not
allowed. Indeed, for the Frobenius norm and the risk to converge,(A1) is to be replaced by:

(A3) p≍ nc for some constant0< c< 1 and p+S0,n = o(n/ logmax(n, p)) as n→ ∞.

In this case, we have

‖Θ̂n−Θ0‖F = OP

(√
(p+S0,n) logmax(n, p)/n

)
,

‖Σ̂n−Σ0‖F = OP

(√
(p+S0,n) logmax(n, p)/n

)
,

R(Θ̂n)−R(Θ0) = OP((p+S0,n) logmax(n, p)/n) .
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Moreover, in the refitting stage, we could achieve these rates with the maximum likelihood estimator
based on the sample covariance matrixŜn as defined in(20):

Θ̂n(E) = argminΘ∈Mp,E

(
tr(ΘŜn)− log|Θ|

)
, where

Mp,E = {Θ ∈ R
p×p; Θ ≻ 0 andθi j = 0 for all (i, j) 6∈ E, where i6= j}. (20)

A real high-dimensional scenario where p≫ n is excluded in order to achieve Frobenius norm
consistency. This restriction comes from the nature of the Frobenius normand when considering,
for example, the operator norm, such restrictions can indeed be relaxedas stated above.

It is also of interest to understand the bias of the estimator caused by using the estimated edge set
Ên instead of the true edge setE0. This is the content of Proposition 4. For a givenÊn, denote by

Θ̃0 = diag(Θ0)+(Θ0)Ên
= diag(Θ0)+Θ0,Ên∩E0

,

where the second equality holds sinceΘ0,Ec
0
= 0. Note that the quantitỹΘ0 is identical toΘ0 on Ên

and on the diagonal, and it equals zero onÊc
n = {(i, j) : i, j = 1, . . . , p, i 6= j,(i, j) 6∈ Ên}. Hence, the

quantityΘ0,D := Θ̃0−Θ0 measures the bias caused by a potentially wrong edge setÊn; note that
Θ̃0 = Θ0 if Ên = E0.

Proposition 4 Consider data generating random variables as in expression (15). Assume that (A0),
(A1), and (A2) hold. Then we have for choices onλn,τ as in Theorem 1 and̂En in (12),

∥∥Θ0,D

∥∥
F := ‖Θ̃0−Θ0‖F = OP

(√
S0,n logmax(n, p)/n

)
.

We note that we achieve essentially the same rate for‖(Θ̃0)
−1−Σ0‖F ; see Remark 27. We give

an account on how results in Proposition 4 are obtained in Section 3.2, with its non-asymptotic
statement appearing in Corollary 17.

3.1 Discussions and Connections to Previous Work

It is worth mentioning that consistency in terms of operator and Frobenius norms does not depend
too strongly on the property to recover the true underlying edge setE0 in the refitting stage. Regard-
ing the latter, suppose we obtain with high probability the screening property

E0 ⊆ E, (21)

when assuming that all non-zero regression coefficients|βi
j | are sufficiently large (E might be an

estimate and hence random). Although we do not intend to make precise the exact conditions
and choices of tuning parameters in regression and thresholding in orderto achieve (21), we state
Theorem 5, in case (21) holds with the following condition: the number of false positives is bounded
as|E \E0|= O(S).
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Theorem 5 Consider data generating random variables as in expression (15) and assume that (A1)
and (A2) hold, where we replace S0,n with S:= |E0|= ∑p

i=1si . We assumeΣ0,ii = 1 for all i. Suppose
on some eventE , such thatP(E)≥ 1−d/p2 for a small constant d, we obtain an edge set E such
that E0 ⊆ E and |E \E0| = O(S). Let Θ̂n(E) be the minimizer as defined in(13). Then, we have

‖Θ̂n(E)−Θ0‖F = OP

(√
Slogmax(n, p)/n

)
.

It is clear that this bound corresponds to exactly that of Rothman et al. [2008] for the GLasso
estimation under appropriate choice of the penalty parameter for a generalΣ ≻ 0 with Σii = 1 for all
i (cf. Remark 3). We omit the proof as it is more or less a modified version of Theorem 19, which
proves the stronger bounds as stated in Theorem 1. We note that the maximumnode-degree bound
in (A0) is not needed for Theorem 5.

We now make some connections to previous work. First, we note that to obtain with high probability
the exact edge recovery,E = E0, we need again sufficiently large non-zero edge weights and some
restricted eigenvalue (RE) conditions on the covariance matrix as defined inSection A even for the
multi-stage procedure. An earlier example is shown in Zhou et al. [2009], where the second stage
estimator̂β corresponding to (11) is obtained with nodewise regressions using adaptive Lasso [Zou,
2006] rather than thresholding as in the present work in order to recover the edge setE0 with high
probability under an assumption which is stronger than (A0). Clearly, given an accuratêEn, under
(A1) and (A2) one can then apply Theorem 5 to accurately estimateΘ̂n. On the other hand, it is
known that GLasso necessarily needs more restrictive conditions onΣ0 than the nodewise regression
approach with the Lasso, as discussed in Meinshausen [2008] and Ravikumar et al. [2011] in order
to achieve exact edge recovery.

Furthermore, we believe it is straightforward to show that Gelato works under the RE conditions on
Σ0 and with a smaller sample size than the analogue without the thresholding operation in order to
achievenearly exact recoveryof the support in the sense thatE0 ⊆ Ên and maxi |Ên,i \E0,i | is small,
that is, the number of extra estimated edges at each nodei is bounded by a small constant. This
is shown essentially in Zhou [2009, Theorem1.1] for a single regression.Given such properties of
Ên, we can again apply Theorem 5 to obtainΘ̂n under (A1) and (A2). Therefore, Gelato requires
relatively weak assumptions onΣ0 in order to achieve the best sparsity and bias tradeoff as illustrated
in Theorem 1 and Proposition 4 when many signals are weak, and Theorem5 when all signals inE0

are strong.

Finally, it would be interesting to derive a tighter bound on the operator normfor the Gelato estima-
tor. Examples of such bounds have been recently derived for a restricted class of inverse covariance
matrices in Yuan [2010] and Cai et al. [2011].

3.2 An Outline for Theorem 1

Let s0 = maxi=1,...,psi
0,n. We note that although sparse eigenvaluesρmax(s),ρmax(3s0) and restricted

eigenvalue forΣ0 (cf. Section A) are parameters that are unknown, we only need them to appear in
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the lower bounds ford0, D4, and hence also that forλn andt0 that appear below. We simplify our
notation in this section to keep it consistent with our theoretical non-asymptotic analysis to appear
toward the end of this paper.

3.2.1 REGRESSION

We choose for somec0 ≥ 4
√

2, 0< θ < 1, andλ =
√

2log(p)/n,

λn = d0λ, where d0 ≥ c0(1+θ)2
√

ρmax(s)ρmax(3s0).

Let βi
init , i = 1, . . . , p be the optimal solutions to (10) withλn as chosen above. We first prove an

oracle result on nodewise regressions in Theorem 15.

3.2.2 THRESHOLDING

We choose for some constantsD1,D4 to be defined in Theorem 15,

t0 = f0λ := D4d0λ whereD4 ≥ D1

andD1 depends on restrictive eigenvalue ofΣ0; Apply (11) with τ = t0 andβi
init , i = 1, . . . , p for

thresholding our initial regression coefficients. Let

D i = { j : j 6= i,
∣∣βi

j,init

∣∣< t0 = f0λ},

where bounds onD i , i = 1, . . . , p are given in Lemma 16. In view of (9), we let

D = {(i, j) : i 6= j : (i, j) ∈D i ∩D j}. (22)

3.2.3 SELECTING EDGE SET E

Recall for a pair(i, j) we take theOR ruleas in (9) to decide if it is to be included in the edge set
E: for D as defined in (22), define

E := {(i, j) : i, j = 1, . . . , p, i 6= j,(i, j) 6∈D}. (23)

to be the subset of pairs of non-identical vertices ofG which do not appear inD; Let

Θ̃0 = diag(Θ0)+Θ0,E0∩E (24)

for E as in (23), which is identical toΘ0 on all diagonal entries and entries indexed byE0∩E, with
the rest being set to zero. As shown in the proof of Corollary 17, by thresholding, we have identified
a sparse subsetof edgesE of size at most 4S0,n, such that the corresponding bias

∥∥Θ0,D

∥∥
F :=

‖Θ̃0−Θ0‖F is relatively small, that is, as bounded in Proposition 4.
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3.2.4 REFITTING

In view of Proposition 4, we aim to recover̃Θ0 given a sparse subsetE; toward this goal, we
use (13) to obtain the final estimatorΘ̂n andΣ̂n = (Θ̂n)

−1. We give a more detailed account of this
procedure in Section D, with a focus on elaborating the bias and variance tradeoff. We show the
rate of convergence in Frobenius norm for the estimatedΘ̂n andΣ̂n in Theorem 6, 19 and 20, and
the bound for Kullback Leibler divergence in Theorem 21 respectively.

3.3 Discussion on Covariance Estimation Based on Maximum Likelihood

The maximum likelihood estimate minimizes over allΘ ≻ 0,

R̂n(Θ) = tr(ΘŜn)− log|Θ|, (25)

whereŜn is the sample covariance matrix. MinimizinĝRn(Θ) without constraints giveŝΣn = Ŝn. We
now would like to minimize (25) under the constraints that some pre-defined subsetD of edges are
set to zero. Then the follow relationships hold regardingΘ̂n(E) defined in (20) and its inversêΣn,
andŜn: for E as defined in (23),

Θ̂n,i j = 0, ∀(i, j) ∈D, and

Σ̂n,i j = Ŝn,i j , ∀(i, j) ∈ E∪{(i, i), i = 1, . . . , p}.

Hence the entries in the covariance matrixΣ̂n for the chosen set of edges inE and the diagonal
entries are set to their corresponding values inŜn. Indeed, we can derive the above relationships via
the Lagrange form, where we add Lagrange constantsγ jk for edges inD,

ℓC(Θ) = log|Θ|− tr(ŜnΘ)− ∑
( j,k)∈D

γ jkθ jk. (26)

Now the gradient equation of (26) is:

Θ−1− Ŝn−Γ = 0,

whereΓ is a matrix of Lagrange parameters such thatγ jk 6= 0 for all ( j,k)∈D andγ jk = 0 otherwise.

Similarly, the follow relationships hold regardinĝΘn(E) defined in (13) in caseΣ0,ii = 1 for all i,
whereŜn is replaced witĥΓn, and its inversêΣn, andΓ̂n: for E as defined in (23),

Θ̂n,i j = 0, ∀(i, j) ∈D, and

Σ̂n,i j = Γ̂n,i j = Ŝn,i j/σ̂iσ̂ j , ∀(i, j) ∈ E, and

Σ̂n,ii = 1, ∀i = 1, . . . , p.

Finally, we state Theorem 6, which yields a general bound on estimating the inverse of the correla-
tion matrix, whenΣ0,11, . . . ,Σ0,pp take arbitrary unknown values inR+ = (0,∞). The corresponding
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estimator is based on estimating the inverse of the correlation matrix, which we denote byΩ0. We
use the following notations. LetΨ0 = (ρ0,i j ) be the true correlation matrix and letΩ0 = Ψ−1

0 . Let

W = diag(Σ0)
1/2. Let us denote the diagonal entries ofW with σ1, . . . ,σp whereσi := Σ1/2

0,ii for all i.
Then the following holds:

Σ0 = WΨ0W andΘ0 = W−1Ω0W
−1.

Given sample covariance matrix̂Sn, we construct sample correlation matrix̂Γn as follows. Let
Ŵ = diag(Ŝn)

1/2 and

Γ̂n = Ŵ−1(Ŝn)Ŵ
−1, where Γ̂n,i j =

Ŝn,i j

σ̂iσ̂ j
=

〈Xi ,Xj 〉
‖Xi‖2

∥∥Xj
∥∥

2

whereσ̂2
i := Ŝn,ii . ThusΓ̂n is a matrix with diagonal entries being all 1s and non-diagonal entries

being the sample correlation coefficients, which we denote byρ̂i j .

The maximum likelihood estimate forΩ0 = Ψ−1
0 minimizes over allΩ ≻ 0,

R̂n(Ω) = tr(ΩΓ̂n)− log|Ω|. (27)

To facilitate technical discussions, we need to introduce some more notation. Let S p
++ denote the

set ofp× p symmetric positive definite matrices:

S
p
++ = {Θ ∈ R

p×p|Θ ≻ 0}.

Let us define a subspaceS p
E corresponding to an edge setE ⊂ {(i, j) : i, j = 1, . . . , p, i 6= j}:

S
p
E := {Θ ∈ R

p×p | θi j = 0∀ i 6= j s.t.(i, j) 6∈ E} and denoteSn = S
p
++∩S p

E . (28)

Minimizing R̂n(Θ) without constraints giveŝΨn = Γ̂n. Subject to the constraints thatΩ ∈ Sn as
defined in (28), we write the maximum likelihood estimate forΩ0:

Ω̂n(E) := arg min
Ω∈Sn

R̂n(Ω) = arg min
Ω∈S p

++∩S p
E

{
tr(ΩΓ̂n)− log|Ω|

}
, (29)

which yields the following relationships regardinĝΩn(E), its inverseΨ̂n = (Ω̂n(E))−1, andΓ̂n. For
E as defined in (23),

Ω̂n,i j = 0, ∀(i, j) ∈D,

Ψ̂n,i j = Γ̂n,i j := ρ̂i j ∀(i, j) ∈ E,

and Ψ̂n,ii = 1 ∀i = 1, . . . , p.

GivenΩ̂n(E) and its inversêΨn = (Ω̂n(E))−1, we obtain

Σ̂n = ŴΨ̂nŴ and Θ̂n = Ŵ−1Ω̂nŴ
−1
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and therefore the following holds: forE as defined in (23),

Θ̂n,i j = 0, ∀(i, j) ∈D,

Σ̂n,i j = σ̂iσ̂ jΨ̂n,i j = σ̂iσ̂ j Γ̂n,i j = Ŝn,i j ∀(i, j) ∈ E,

and Ψ̂n,ii = σ̂2
i = Ŝn,ii ∀i = 1, . . . , p.

The proof of Theorem 6 appears in Section E.

Theorem 6 Consider data generating random variables as in expression (15) and assume that(A1)
and(A2) hold. Letσ2

max := maxi Σ0,ii < ∞ andσ2
min := mini Σ0,ii > 0. LetE be some event such that

P(E)≥ 1−d/p2 for a small constant d. Let S0,n be as defined in(8). Suppose on eventE :

1. We obtain an edge set E such that its size|E|= lin (S0,n) is a linear function in S0,n.

2. And forΘ̃0 as in(24)and for some constant Cbias to be specified in(59), we have

∥∥Θ0,D

∥∥
F :=

∥∥∥Θ̃0−Θ0

∥∥∥
F
≤Cbias

√
2S0,n log(p)/n. (30)

Let Ω̂n(E) be as defined in(29)Suppose the sample size satisfies for C3 ≥ 4
√

5/3,

n>
144σ4

max

M2
low

(
4C3+

13Mupp

12σ2
min

)2

max
{

2|E| logmax(n, p), C2
bias2S0,n logp

}
. (31)

Then with probability≥ 1−(d+1)/p2, we have for M= (9σ4
max/(2k2)) ·

(
4C3+13Mupp/(12σ2

min)
)

∥∥∥Ω̂n(E)−Ω0

∥∥∥
F
≤ (M+1)max

{√
2|E| logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
. (32)

Remark 7 We note that the constants in Theorem 6 are by no means the best possible.From (32),
we can derive bounds on‖Θ̂n(E)−Θ0‖2 and ‖Σ̂n(E)−Σ0‖2 to be in the same order as in(32)
following the analysis in Rothman et al. [2008, Theorem 2]. The corresponding bounds on the

Frobenius norms on covariance estimation would be in the order of OP

(√
p+S0

n

)
as stated in

Remark 3.

4. Numerical Results

We consider the empirical performance for simulated and real data. We compare our estimation
method with the GLasso, the Space method and a simplified Gelato estimator without thresholding
for inferring the conditional independence graph. The comparison with the latter should yield some
evidence about the role of thresholding in Gelato. The GLasso is defined as:

Θ̂GLasso= argmin
Θ ≻0

(tr(Γ̂nΘ)− log|Θ|+ρ∑
i< j

|θi j |),
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whereΓ̂n is the empirical correlation matrix and the minimization is over positive definite matrices.
Sparse partial correlation estimation (Space) is an approach for selectingnon-zero partial correla-
tions in the high-dimensional framework. The method assumes an overall sparsity of the partial
correlation matrix and employs sparse regression techniques for model fitting. For details see Peng
et al. [2009]. We use Space with weights all equal to one, which refers tothe method typespace
in Peng et al. [2009]. For the Space method, estimation ofΘ0 is done via maximum likelihood as
in (13) based on the edge setÊ(Space)

n from the estimated sparse partial correlation matrix. For com-
putation of the three different methods, we used the R-packagesglmnet [Friedman et al., 2010],
glasso [Friedman et al., 2007] andspace [Peng et al., 2009].

4.1 Simulation Study

In our simulation study, we look at three different models.

• An AR(1)-Block model. In this model the covariance matrix is block-diagonalwith equal-
sized AR(1)-blocks of the formΣBlock= {0.9|i− j|}i, j .

• The random concentration matrix model considered in Rothman et al. [2008]. In this model,
the concentration matrix isΘ = B+δI where each off-diagonal entry inB is generated inde-
pendently and equal to 0 or 0.5 with probability 1−π or π, respectively. All diagonal entries
of B are zero, andδ is chosen such that the condition number ofΘ is p.

• The exponential decay model considered in Fan et al. [2009]. In this model we consider a
case where no element of the concentration matrix is exactly zero. The elements of Θ0 are
given byθ0,i j = exp(−2|i− j|) equals essentially zero when the difference|i− j| is large.

We compare the three estimators for each model withp= 300 andn= 40,80,320. For each model
we sample dataX(1), . . . ,X(n) i.i.d. ∼ N (0,Σ0). We use two different performance measures. The
Frobenius norm of the estimation error‖Σ̂n − Σ0‖F and ‖Θ̂n − Θ0‖F , and the Kullback Leibler
divergence betweenN (0,Σ0) andN (0, Σ̂n) as defined in (19).

For the three estimation methods we have various tuning parameters, namelyλ, τ (for Gelato),ρ
(for GLasso) andη (for Space). We denote the regularization parameter of the Space technique
by η in contrary to Peng et al. [2009], in order to distinguish it from the other parameters. Due
to the computational complexity we specify the two parameters of our Gelato methodsequentially.
That is, we derive the optimal value of the penalty parameterλ by 10-fold cross-validation with
respect to the test set squared error for all the nodewise regressions. After fixingλ = λCV we obtain
the optimal thresholdτ again by 10-fold cross-validation but with respect to the negative Gaussian
log-likelihood (tr(Θ̂Ŝout)− log|Θ̂|, whereŜout is the empirical covariance of the hold-out data).
We could use individual tuning parameters for each of the regressions.However, this turned out
to be sub-optimal in some simulation scenarios (and never really better than using a single tuning
parameterλ, at least in the scenarios we considered). For the penalty parameterρ of the GLasso
estimator and the parameterη of the Space method we also use a 10-fold cross-validation with
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respect to the negative Gaussian log-likelihood. The grids of candidate values are given as follows:

λk = Ak

√
logp

n
k= 1, . . . ,10 with τk = 0.75·Bk

√
logp

n
,

ρk =Ck

√
logp

n
k= 1, . . . ,10,

ηr = 1.56
√

nΦ−1
(

1− Dr

2p2

)
r = 1, . . . ,7,

whereAk,Bk,Ck ∈ {0.01,0.05,0.1,0.3,0.5,1,2,4,8,16} andDr ∈ {0.01,0.05,0.075,0.1,0.2,
0.5,1}. The two different performance measures are evaluated for the estimators based on the
sampleX(1), . . . ,X(n) with optimal CV-estimated tuning parametersλ, τ, ρ andη for each model
from above. All results are based on 50 independent simulation runs.

4.1.1 THE AR(1)-BLOCK MODEL

We consider two different covariance matrices. The first one is a simple auto-regressive process
of order one with trivial block size equal top = 300, denoted byΣ(1)

0 . This is also known as a

Toeplitz matrix. That is, we haveΣ(1)
0;i, j = 0.9|i− j| ∀ i, j ∈ {1, ..., p}. The second matrixΣ(2)

0 is a
block-diagonal matrix with AR(1) blocks of equal block size 30×30, and hence the block-diagonal
of Σ(2)

0 equalsΣBlock;i, j = 0.9|i− j|, i, j ∈ {1, . . . ,30}. The simulation results for the AR(1)-block
models are shown in Figure 1 and 2.

The figures show a substantial performance gain of our method comparedto the GLasso in both
considered covariance models. This result speaks for our method, especially because AR(1)-block
models are very simple. The Space method performs about as well as Gelato,except for the Frobe-
nius norm ofΣ̂n−Σ0. There we see an performance advantage of the Space method compared to
Gelato. We also exploit the clear advantage of thresholding in Gelato for a small sample size.

4.1.2 THE RANDOM PRECISIONMATRIX MODEL

For this model we also consider two different matrices, which differ in sparsity. For the sparser
matrixΘ(3)

0 we set the probabilityπ to 0.1. That is, we have an off diagonal entry inΘ(3) of 0.5 with

probabilityπ = 0.1 and an entry of 0 with probability 0.9. In the case of the second matrixΘ(4)
0 we

setπ to 0.5 which provides us with a denser concentration matrix. The simulation results for the
two performance measures are given in Figure 3 and 4.

From Figures 3 and 4 we see that GLasso performs better than Gelato with respect to‖Θ̂n−Θ0‖F

and the Kullback Leibler divergence in both the sparse and the dense simulation setting. If we
consider‖Σ̂n−Σ0‖F , Gelato seems to keep up with GLasso to some degree. For the Space method
we have a similar situation to the one with GLasso. The Space method outperformsGelato for
‖Θ̂n−Θ0‖F andDKL (Σ0‖Σ̂n) but for‖Σ̂n−Σ0‖F , Gelato somewhat keeps up with Space.
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(a) Σ(1)
0 with n= 40 (b) Σ(1)

0 with n= 80 (c) Σ(1)
0 with n= 320

(d) Σ(1)
0 with n= 40 (e) Σ(1)

0 with n= 80 (f) Σ(1)
0 with n= 320

(g) Σ(1)
0 with n= 40 (h) Σ(1)

0 with n= 80 (i) Σ(1)
0 with n= 320

Figure 1: Plots for modelΣ(1)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value ofτ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametersλ, τ, ρ andη. The
dashed line stands for our Gelato method, the dotted one for the GLasso andthe dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands forλ or ρ, respectively.
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(a) Σ(2)
AR with n= 40 (b) Σ(2)

AR with n= 80 (c) Σ(2)
AR with n= 320

(d) Σ(2)
AR with n= 40 (e) Σ(2)

AR with n= 80 (f) Σ(2)
AR with n= 320

(g) Σ(2)
AR with n= 40 (h) Σ(2)

AR with n= 80 (i) Σ(2)
AR with n= 320

Figure 2: Plots for modelΣ(2)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value ofτ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametersλ, τ, ρ andη. The
dashed line stands for our Gelato method, the dotted one for the GLasso andthe dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands forλ or ρ, respectively.
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(a) Θ(3)
0 with n= 40 (b) Θ(3)

0 with n= 80 (c) Θ(3)
0 with n= 320

(d) Θ(3)
0 with n= 40 (e) Θ(3)

0 with n= 80 (f) Θ(3)
0 with n= 320

(g) Θ(3)
0 with n= 40 (h) Θ(3)

0 with n= 80 (i) Θ(3)
0 with n= 320

Figure 3: Plots for modelΘ(3)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value ofτ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametersλ, τ, ρ andη. The
dashed line stands for our Gelato method, the dotted one for the GLasso andthe dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands forλ or ρ, respectively.
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(a) Θ(4)
0 with n= 40 (b) Θ(4)

0 with n= 80 (c) Θ(4)
0 with n= 320

(d) Θ(4)
0 with n= 40 (e) Θ(4)

0 with n= 80 (f) Θ(4)
0 with n= 320

(g) Θ(4)
0 with n= 40 (h) Θ(4)

0 with n= 80 (i) Θ(4)
0 with n= 320

Figure 4: Plots for modelΘ(4)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value ofτ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametersλ, τ, ρ andη. The
dashed line stands for our Gelato method, the dotted one for the GLasso andthe dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands forλ or ρ, respectively.
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4.1.3 THE EXPONENTIAL DECAY MODEL

In this simulation setting we only have one version of the concentration matrixΘ(5)
0 . The entries of

Θ(5)
0 are generated byθ(5)

0,i j = exp(−2|i− j|). Thus,Σ0 is a banded and sparse matrix.

Figure 5 shows the results of the simulation. We find that all three methods showequal performances
in both the Frobenius norm and the Kullback Leibler divergence. This is interesting because even
with a sparse approximation ofΘ0 (with GLasso or Gelato), we obtain competitive performance for
(inverse) covariance estimation.

4.1.4 SUMMARY

Overall we can say that the performance of the methods depend on the model. For the models
Σ(1)

0 andΣ(2)
0 the Gelato method performs best. In case of the modelsΘ(3)

0 andΘ(4)
0 , Gelato gets

outperformed by GLasso and the Space method and for the modelΘ(5)
0 none of the three methods

has a clear advantage. In Figures 1 to 4, we see the advantage of Gelato with thresholding over
the one without thresholding, in particular, for the simulation settingsΣ(1)

0 , Σ(2)
0 andΘ(3)

0 . Thus
thresholding is a useful feature of Gelato.

4.2 Application to Real Data

We show two examples in this subsection.

4.2.1 ISOPRENOIDGENE PATHWAY IN ARABIDOBSIS THALIANA

In this example we compare the two estimators on the isoprenoid biosynthesis pathway data given
in Wille et al. [2004]. Isoprenoids play various roles in plant and animal physiological processes
and as intermediates in the biological synthesis of other important molecules. Inplants they serve
numerous biochemical functions in processes such as photosynthesis, regulation of growth and de-
velopment. The data set consists ofp = 39 isoprenoid genes for which we haven = 118 gene
expression patterns under various experimental conditions. In order tocompare the two techniques
we compute the negative log-likelihood via 10-fold cross-validation for different values ofλ, τ and
ρ. In Figure 6 we plot the cross-validated negative log-likelihood against the logarithm of the av-
erage number of non-zero entries (logarithm of theℓ0-norm) of the estimated concentration matrix
Θ̂n. The logarithm of theℓ0-norm reflects the sparsity of the matrix̂Θn and therefore the figures
show the performance of the estimators for different levels of sparsity. The plots do not allow for a
clear conclusion. The GLasso performs slightly better when allowing for a rather dense fit. On the
other hand, when requiring a sparse fit, the Gelato performs better.
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(a) Θ(5)
0 with n= 40 (b) Θ(5)

0 with n= 80 (c) Θ(5)
0 with n= 320

(d) Θ(5)
0 with n= 40 (e) Θ(5)

0 with n= 80 (f) Θ(5)
0 with n= 320

(g) Θ(5)
0 with n= 40 (h) Θ(5)

0 with n= 80 (i) Θ(5)
0 with n= 320

Figure 5: Plots for modelΘ(5)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value ofτ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parametersλ, τ, ρ andη. The
dashed line stands for our Gelato method, the dotted one for the GLasso andthe dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands forλ or ρ, respectively.
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(a) isoprenoid data (b) breast cancer data

Figure 6: Plots for the isoprenoid data from arabidopsis thaliana (a) and the human breast cancer
data (b). 10-fold cross-validation of negative log-likelihood against thelogarithm of the
average number of non-zero entries of the estimated concentration matrixΘ̂n. The circles
stand for the GLasso and the Gelato is displayed for various values ofτ.

4.2.2 CLINICAL STATUS OF HUMAN BREAST CANCER

As a second example, we compare the two methods on the breast cancer dataset from West et al.
[2001]. The tumor samples were selected from the Duke Breast Cancer SPORE tissue bank. The
data consists ofp= 7129 genes withn= 49 breast tumor samples. For the analysis we use the 100
variables with the largest sample variance. As before, we compute the negative log-likelihood via
10-fold cross-validation. Figure 6 shows the results. In this real data example the interpretation of
the plots is similar as for the arabidopsis data set. For dense fits, GLasso is better while Gelato has
an advantage when requiring a sparse fit.

5. Conclusions

We propose and analyze the Gelato estimator. Its advantage is that it automatically yields a positive
definite covariance matrix̂Σn, it enjoys fast convergence rate with respect to the operator and Frobe-
nius norm ofΣ̂n−Σ0 andΘ̂n−Θ0. For estimation ofΘ0, Gelato has in some settings a better rate
of convergence than the GLasso or SCAD type estimators. From a theoretical point of view, our
method is clearly aimed for bounding the operator and Frobenius norm of theinverse covariance
matrix. We also derive bounds on the convergence rate for the estimated covariance matrix and
on the Kullback Leibler divergence. From a non-asymptotic point of view,our method has a clear
advantage when the sample size is small relative to the sparsityS= |E0|: for a given sample sizen,
we bound the variance in our re-estimation stage by excluding edges ofE0 with small weights from
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the selected edge setÊn while ensuring that we do not introduce too much bias. Our Gelato method
also addresses the bias problem inherent in the GLasso estimator since we no longer shrink the en-
tries in the covariance matrix corresponding to the selected edge setÊn in the maximum likelihood
estimate, as shown in Section 3.3.

Our experimental results show that Gelato performs better than GLasso or the Space method for
AR-models while the situation is reversed for some random precision matrix models; in case of
an exponential decay model for the precision matrix, all methods exhibit the same performance.
For Gelato, we demonstrate that thresholding is a valuable feature. We also show experimentally
how one can use cross-validation for choosing the tuning parameters in regression and thresholding.
Deriving theoretical results on cross-validation is not within the scope of this paper.
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Appendix A. Theoretical Analysis and Proofs

In this section, we specify some preliminary definitions. First, note that when we discuss estimating
the parametersΣ0 andΘ0 = Σ−1

0 , we always assume that

ϕmax(Σ0) := 1/ϕmin(Θ0)≤ 1/c< ∞ and 1/ϕmax(Θ0) = ϕmin(Σ0)≥ k> 0, (33)

where we assumek,c≤ 1 so thatc≤ 1≤ 1/k. (34)

It is clear that these conditions are exactly that of (A2) in Section 3 with

Mupp := 1/c and Mlow := k,

where it is clear that forΣ0,ii = 1, i = 1, . . . , p, we have the sum ofp eigenvalues ofΣ0, ∑p
i=1 ϕi(Σ0) =

tr(Σ0) = p. Hence it will make sense to assume that (34) holds, since otherwise, (33)implies that
ϕmin(Σ0) = ϕmax(Σ0) = 1 which is unnecessarily restrictive.

We now define parameters relating to the key notion ofessential sparsity s0 as explored in Cand̀es
and Tao [2007] and Zhou [2009, 2010a] for regression. Denote thenumber of non-zero non-
diagonal entries in each row ofΘ0 by si . Let s= maxi=1,...,psi denote the highest node degree
in G= (V,E0). Consider nodewise regressions as in (2), where we are given vectors of parameters
{βi

j , j = 1, . . . , p, j 6= i} for i = 1, . . . , p. With respect to the degree of nodei for eachi, we define
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si
0 ≤ si ≤ sas the smallest integer such that

p

∑
j=1, j 6=i

min((βi
j)

2,λ2Var(Vi))≤ si
0λ2Var(Vi), whereλ =

√
2logp/n, (35)

wheresi
0 denotessi

0,n as defined in (7).

Definition 8 (Bounded degree parameters.)The size of the node degree si for each node i is upper
bounded by an integer s< p. For si0 as in(35), define

s0 := max
i=1,...,p

si
0 ≤ s and S0,n := ∑

i=1,...,p

si
0, (36)

where S0,n is exactly the same as in(8), although we now drop subscript n from si
0,n in order to

simplify our notation.

We now define the following parameters related toΣ0. For an integerm≤ p, we define the smallest
and largestm-sparse eigenvaluesof Σ0 as follows:

√
ρmin(m) := min

t 6=0;m−sparse

∥∥∥Σ1/2
0 t
∥∥∥

2

‖t‖2
,
√

ρmax(m) := max
t 6=0;m−sparse

∥∥∥Σ1/2
0 t
∥∥∥

2

‖t‖2
.

Definition 9 (Restricted eigenvalue conditionRE(s0,k0,Σ0)). For some integer1≤ s0 < p and a
positive number k0, the following condition holds for allυ 6= 0,

1
K(s0,k0,Σ0)

:= min
J⊆{1,...,p},
|J|≤s0

min
‖υJc‖1≤k0‖υJ‖1

∥∥∥Σ1/2
0 υ

∥∥∥
2

‖υJ‖2
> 0, (37)

whereυJ represents the subvector ofυ ∈ R
p confined to a subset J of{1, . . . , p}.

Whens0 andk0 become smaller, this condition is easier to satisfy. When we only aim to estimate
the graphical structureE0 itself, the global conditions (33) need not hold in general. Hence up till
Section D, we only need to assume thatΣ0 satisfies (37) fors0 as in (35), and the sparse eigenvalue
ρmin(s) > 0. In order of estimate the covariance matrixΣ0, we do assume that (33) holds, which
guarantees that theRE condition always holds onΣ0, andρmax(m),ρmin(m) are upper and lower
bounded by some constants for allm≤ p. We continue to adopt parameters such asK, ρmax(s), and
ρmax(3s0) for the purpose of defining constants that are reasonable tight under condition (33). In
general, one can think of

ρmax(max(3s0,s))≪ 1/c< ∞ and K2(s0,k0,Σ0)≪ 1/k< ∞,

for c,k as in (33) whens0 is small.

Roughly speaking, for two variablesXi ,Xj as in (1) such that their corresponding entry inΘ0 =

(θ0,i j ) satisfies:θ0,i j < λ
√

θ0,ii , whereλ =
√

2log(p)/n, we can not guarantee that(i, j)∈ Ên when
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we aim to keep≍ si
0 edges for nodei, i = 1, . . . , p. For a givenΘ0, as the sample sizen increases,

we are able to select edges with smaller coefficientθ0,i j . In fact it holds that

|θ0,i j |< λ
√

θ0,ii which is equivalent to|βi
j |< λσVi , for all j ≥ si

0+1+ Ii≤si
0+1, (38)

whereI{·} is the indicator function, if we order the regression coefficients as follows:

|βi
1| ≥ |βi

2|...≥ |βi
i−1| ≥ |βi

i+1|....≥ |βi
p|,

in view of (2), which is the same as if we order for rowi of Θ0,

|θ0,i1| ≥ |θ0,i,2|...≥ |θ0,i,i−1| ≥ |θ0,i,i+1|....≥ |θ0,i,p|.

This has been shown by Candès and Tao [2007]; See also Zhou [2010a].

A.1 Concentration Bounds for the Random Design

For the random designX generated by (15), letΣ0,ii = 1 for all i. In preparation for showing the
oracle results of Lasso in Theorem 33, we first state some concentration bounds onX. Define for
some 0< θ < 1

F (θ) :=
{

X : ∀ j = 1, . . . , p, 1−θ ≤
∥∥Xj
∥∥

2/
√

n≤ 1+θ
}
, (39)

whereX1, . . . ,Xp are the column vectors of then× p design matrixX. When all columns ofX have
an Euclidean norm close to

√
n as in (39) , it makes sense to discuss the RE condition in the form

of (40) as formulated by Bickel et al. [2009]. For the integer 1≤ s0 < p as defined in (35) and a
positive numberk0, RE(s0,k0,X) requires that the following holds for allυ 6= 0,

1
K(s0,k0,X)

△
= min

J⊂{1,...,p},
|J|≤s0

min
‖υJc‖1≤k0‖υJ‖1

‖Xυ‖2√
n‖υJ‖2

> 0. (40)

The parameterk0 > 0 is understood to be the same quantity throughout our discussion. The fol-
lowing eventR provides an upper bound onK(s0,k0,X) for a givenk0 > 0 whenΣ0 satisfies
RE(s0,k0,Σ0) condition:

R (θ) :=

{
X : RE(s0,k0,X) holds with 0< K(s0,k0,X)≤ K(s0,k0,Σ0)

1−θ

}
.

For some integerm≤ p, we define the smallest and largestm-sparse eigenvalues ofX to be

Λmin(m) := min
υ6=0;m−sparse

‖Xυ‖2
2/(n‖υ‖2

2) and

Λmax(m) := max
υ6=0;m−sparse

‖Xυ‖2
2/(n‖υ‖2

2),

upon which we define the following event:

M (θ) := {X : (41) holds∀m≤ max(s,(k0+1)s0)} , for which

0< (1−θ)
√

ρmin(m)≤
√

Λmin(m)≤
√

Λmax(m)≤ (1+θ)
√

ρmax(m). (41)
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Formally, we consider the set of random designs that satisfy all events asdefined, for some 0< θ<1.
Theorem 10 shows concentration results that we need for the present work, which follows from
Theorem 1.6 in Zhou [2010b] and Theorem 3.2 in Rudelson and Zhou [2011].

Theorem 10 Let 0 < θ < 1. Let ρmin(s) > 0, where s< p is the maximum node-degree in G.
Suppose RE(s0,4,Σ0) holds for s0 as in(36), whereΣ0,ii = 1 for i = 1, . . . , p.

Let f(s0) = min(4s0ρmax(s0) log(5ep/s0),s0 logp). Let c,α,c′ > 0 be some absolute constants.
Then, for a random design X as generated by (15), we have

P(X ) := P(R (θ)∩F (θ)∩M (θ))≥ 1−3exp(−cθ2n/α4)

as long as the sample size satisfies

n> max

{
9c′α4

θ2 max
(
36K2(s0,4,Σ0) f (s0), logp

)
,
80sα4

θ2 log

(
5ep
sθ

)}
. (42)

Remark 11 We note that the constraint s< p/2, which has appeared in Zhou [2010b, Theorem 1.6]
is unnecessary. Under a stronger RE condition onΣ0, a tighter bound on the sample size n, which
is independent ofρmax(s0), is given in Rudelson and Zhou [2011] in order to guaranteeR (θ). We
do not pursue this optimization here as we assume thatρmax(s0) is a bounded constant throughout
this paper. We emphasize that we only need the first term in(42) in order to obtainF (θ) andR (θ);
The second term is used to bound sparse eigenvalues of order s.

A.2 Definitions Of Other Various Events

Under (A1) as in Section 3, excluding eventX c as bounded in Theorem 10 and eventsCa,X0 to
be defined in this subsection, we can then proceed to treatX ∈ X ∩Ca as a deterministic design in
regression and thresholding, for whichR (θ)∩M (θ)∩F (θ) holds withCa, We then make use of
eventX0 in the MLE refitting stage for bounding the Frobenius norm. We now define twotypes of
correlations eventsCa andX0.

A.2.1 CORRELATION BOUNDS ONXj AND Vi

In this section, we first bound the maximum correlation between pairs of random vectors(Vi ,Xj),
for all i, j wherei 6= j, each of which corresponds to a pair of variables(Vi ,Xj) as defined in (2)
and (3). Here we useXj andVi , for all i, j, to denote both random vectors and their corresponding
variables.

Let us defineσVj :=
√

Var(Vj)≥ v> 0 as a shorthand. LetV ′
j :=Vj/σVj , j = 1, . . . , p be a standard

normal random variable. Let us now define for allj,k 6= j,

Z jk =
1
n
〈V ′

j ,Xk 〉=
1
n

n

∑
i=1

v′j,ixk,i ,
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where for alli = 1, . . . ,n v′j,i ,xk,i ,∀ j,k 6= j are independent standard normal random variables. For
somea≥ 6, let event

Ca :=

{
max

j,k
|Z jk|<

√
1+a

√
(2logp)/n wherea≥ 6

}
.

A.2.2 BOUNDS ONPAIRWISE CORRELATIONS IN COLUMNS OF X

Let Σ0 := (σ0,i j ), where we denoteσ0,ii := σ2
i . Denote by∆ = XTX/n−Σ0. Consider for some

constantC3 > 4
√

5/3,

X0 :=

{
max

j,k
|∆ jk|<C3σiσ j

√
logmax{p,n}/n< 1/2

}
. (43)

We first state Lemma 12, which is used for bounding a type of correlation events across all regres-
sions; see proof of Theorem 15. It is also clear that eventCa is equivalent to the event to be defined
in (44). Lemma 12 also justifies the choice ofλn in nodewise regressions (cf. Theorem 15). We
then bound eventX0 in Lemma 13. Both proofs appear in Section A.3.

Lemma 12 Suppose that p< en/4C2
2 . Then with probability at least1−1/p2, we have

∀ j 6= k,

∣∣∣∣
1
n
〈Vj ,Xk 〉

∣∣∣∣≤ σVj

√
1+a

√
(2logp)/n, (44)

whereσVj =
√

Var(Vj) and a≥ 6. HenceP(Ca)≥ 1−1/p2.

Lemma 13 For a random design X as in (1) withΣ0, j j = 1,∀ j ∈ {1, . . . , p}, and for p< en/4C2
3 ,

where C3 > 4
√

5/3, we have

P(X0)≥ 1−1/max{n, p}2.

We note that the upper bounds onp in Lemma 12 and 13 clearly hold given (A1). For the rest of the
paper, we prove Theorem 15 in Section B for nodewise regressions. We proceed to derive bounds
on selecting an edge setE in Section C. We then derive various bounds on the maximum likelihood
estimator givenE in Theorem 19- 21 in Section D, where we also prove Theorem 1. Next, weprove
Lemma 12 and 13 in Section A.3.

A.3 Proof of Lemma 12 and 13

We first state the following large inequality bound on products of correlatednormal random vari-
ables.

Lemma 14 Zhou et al., 2008, Lemma 38Given a set of identical independent random variables
Y1, . . . ,Yn ∼ Y, where Y= x1x2, with x1,x2 ∼ N(0,1) and σ12 = ρ12 with ρ12 ≤ 1 being their cor-
relation coefficient. Let us now define Q= 1

n ∑n
i=1Yi =: 1

n〈X1,X2〉 = 1
n ∑n

i=1x1,ix2,i . Let Ψ12 =
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(1+σ2
12)/2. For 0≤ τ ≤ Ψ12,

P(|Q−EQ|> τ)≤ exp

{
− 3nτ2

10(1+σ2
12)

}
. (45)

Proof of Lemma 12. It is clear that event (44) is the same as eventCa. Clearly we have at

most p(p−1) unique entriesZ jk,∀ j 6= k. By the union bound and by takingτ =C2

√
logp

n in (45)

with σ jk = 0,∀ j,k, where
√

2(1+a)≥C2 > 2
√

10/3 for a≥ 6.

1−P(Ca) = P

(
max

jk
|Z jk| ≥

√
2(1+a)

√
logp

n

)

≤ P

(
max

jk
|Z jk| ≥C2

√
logp

n

)
≤ (p2− p)exp

(
−3C2

2 logp
10

)

≤ p2exp

(
−3C2

2 logp
10

)
= p−

3C2
2

10 +2 <
1
p2 ,

where we apply Lemma 14 withρ jk = 0,∀ j,k= 1, . . . , p, j 6= k and use the fact thatEZ jk = 0. Note

that p< en/4C2
2 guarantees thatC2

√
logp

n < 1/2. �

In order to bound the probability of eventX0, we first state the following bound for the non-diagonal
entries ofΣ0, which follows immediately from Lemma 14 by plugging inσ2

i =σ0,ii = 1,∀i = 1, . . . , p
and using the fact that|σ0, jk| = |ρ jkσ jσk| ≤ 1,∀ j 6= k, whereρ jk is the correlation coefficient be-
tween variablesXj andXk. Let Ψ jk = (1+σ2

0, jk)/2. Then

P
(
|∆ jk|> τ

)
≤ exp

{
− 3nτ2

10(1+σ2
0, jk)

}
≤ exp

{
−3nτ2

20

}
for 0≤ τ ≤ Ψ jk. (46)

We now also state a large deviation bound for theχ2
n distribution [Johnstone, 2001]:

P

(
χ2

n

n
−1> τ

)
≤ exp

(−3nτ2

16

)
, for 0≤ τ ≤ 1

2
. (47)

Lemma 13 follows from (46) and (47) immediately.

Proof of Lemma 13. Now it is clear that we havep(p− 1)/2 unique non-diagonal entries

σ0, jk,∀ j 6= k andp diagonal entries. By the union bound and by takingτ =C3

√
logmax{p,n}

n in (47)
and (46) withσ0, jk ≤ 1, we have

P((X0)
c) = P

(
max

jk
|∆ jk| ≥C3

√
logmax{p,n}

n

)

≤ pexp

(
−3C2

3 logmax{p,n}
16

)
+

p2− p
2

exp

(
−3C2

3 logmax{p,n}
20

)

≤ p2exp

(
−3C2

3 logmax{p,n}
20

)
= (max{p,n})−

3C2
3

20 +2 <
1

(max{p,n})2

3004



HIGH-DIMENSIONAL COVARIANCE ESTIMATION

for C3 > 4
√

5/3, where for the diagonal entries we use (47), and for the non-diagonal entries, we

use (46). Finally,p< en/4C2
3 guarantees thatC3

√
logmax{p,n}

n < 1/2. �

Appendix B. Bounds for Nodewise Regressions

In Theorem 15 and Lemma 16 we letsi
0 be as in (35) andT i

0 denote locations of thesi
0 largest

coefficients ofβi in absolute values. For the vectorhi to be defined in Theorem 15, we letT i
1 denote

thesi
0 largest positions ofhi in absolute values outside ofT i

0; Let T i
01 := T i

0 ∪T i
1. We suppress the

superscript inT i
0,T

i
1, andT i

01 throughout this section for clarity.

Theorem 15 (Oracle inequalities of the nodewise regressions)Let 0 < θ < 1. Let ρmin(s) > 0,
where s< p is the maximum node-degree in G. Suppose RE(s0,4,Σ0) holds for s0 ≤ s as in(36),
whereΣ0,ii = 1 forall i. Supposeρmax(max(s,3s0))<∞. The data is generated by X(1), . . . ,X(n) i.i.d.∼
Np(0,Σ0), where the sample size n satisfies(42).

Consider the nodewise regressions in(10), where for each i, we regress Xi onto the other variables
{Xk; k 6= i} following (2), where Vi ∼ N(0,Var(Vi)) is independent of Xj ,∀ j 6= i as in (3).

Let βi
init be an optimal solution to(10) for each i. Letλn = d0λ = di

0λσVi where d0 is chosen such
that d0 ≥ 2(1+θ)

√
1+a holds for some a≥ 6. Let hi = βi

init −βi
T0

. Then simultaneously for all i,
onCa∩X , whereX := R (θ)∩F (θ)∩M (θ), we have

∥∥βi
init −βi

∥∥
2 ≤ λ

√
si
0d0

√
2D2

0+2D2
1+2, where

‖hT01‖2 ≤ D0d0λ
√

si
0 and

∥∥∥hi
Tc

0

∥∥∥
1
=
∥∥∥βi

init,Tc
0

∥∥∥
1
≤ D1d0λsi

0, (48)

where D0,D1 are defined in(82)and (83) respectively.

Suppose we choose for some constantc0 ≥ 4
√

2 anda0 = 7,

d0 = c0(1+θ)2
√

ρmax(s)ρmax(3s0),

where we assume thatρmax(max(s,3s0))< ∞ is reasonably bounded. Then

D0 ≤ 5K2(s0,4,Σ0)

(1−θ)2 andD1 ≤ 49K2(s0,4,Σ0)

16(1−θ)2 .

The choice ofd0 will be justified in Section F, where we also the upper bound onD0,D1 as above.

Proof Consider each regression function in (10) withX·\i being the design matrix andXi the re-
sponse vector, whereX·\i denotes columns ofX excludingXi . It is clear that forλn = d0λ, we have
for i = 1, . . . , p anda≥ 6,

λn = (d0/σVi )σVi λ := di
0σVi λ ≥ d0λσVi ≥ 2(1+θ)λ

√
1+aσVi = 2(1+θ)λσ,a,p

such that (81) holds given thatσVi ≤ 1,∀i, where it is understood thatσ := σVi .
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It is also clear that onCa∩X , eventTa∩X holds for each regression when we invoke Theorem 33,
with Y := Xi andX := X·\i , for i = 1, . . . , p. By definitiondi

0σVi = d0. We can then invoke bounds
for each individual regression as in Theorem 33 to conclude.

Appendix C. Bounds on Thresholding

In this section, we first show Lemma 16, following conditions in Theorem 15. We then show
Corollary 17, which proves Proposition 4 and the first statement of Theorem 1.D0,D1 are the same
constants as in Theorem 15.

Lemma 16 Suppose RE(s0,4,Σ0) holds for s0 be as in(36) and ρmin(s) > 0, where s< p is the
maximum node-degree in G. Supposeρmax(max(s,3s0)) < ∞. Let Si = { j : j 6= i, βi

j 6= 0}. Let
c0 ≥ 4

√
2 be some absolute constant. Suppose n satisfies(42). Let βi

init be an optimal solution
to (10)with

λn = d0λ where d0 = c0(1+θ)2
√

ρmax(s)ρmax(3s0);

Suppose for each regression, we apply the same thresholding rule to obtain a subset Ii as follows,

I i = { j : j 6= i,
∣∣βi

j,init

∣∣≥ t0 = f0λ}, and D i := {1, . . . , i−1, i+1, . . . , p}\ I i ,

where f0 := D4d0 for some constant D4 to be specified. Then we have on eventCa∩X ,

|I i | ≤ si
0(1+D1/D4) and |I i ∪Si | ≤ si +(D1/D4)s

i
0, and (49)

∥∥βi
D

∥∥
2 ≤ d0λ

√
si
0

√
1+(D0+D4)2,

whereD is understood to beD i .

Recall Θ0 = Σ−1
0 . Let Θ0,D denote the submatrix ofΘ0 indexed byD as in (22) with all other

positions set to be 0. LetE0 be the true edge set.

Corollary 17 Suppose all conditions in Lemma 16 hold. Then on eventCa∩X , for Θ̃0 as in (24)
and E as in(23), we have for S0,n as in(36)andΘ0 = (θ0,i j )

|E| ≤ (1+D1/D4)S0,n where |E \E0| ≤ (D1/D4)S0,n, (50)

and
∥∥Θ0,D

∥∥
F :=

∥∥∥Θ̃0−Θ0

∥∥∥
F

≤
√

min{S0,n( max
i=1,...p

θ2
0,ii ),s0‖diag(Θ0)‖2

F}
√
(1+(D0+D4)2)d0λ (51)

:=
√

S0,n(1+(D0+D4)2)Cdiagd0λ,

where C2
diag := min{maxi=1,...p θ2

0,ii ,(s0/S0,n)‖diag(Θ0)‖2
F}. For D4 ≥ D1, we have(18).
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Proof By the OR rule in (9), we could select at most∑p
i=1 |Ii | edges. We have by (49)

|E| ≤ ∑
i=1,...p

(1+D1/D4)s
i
0 = (1+D1/D4)S0,n,

where(D1/D4)S0,n is an upper bound on|E \E0| by (52). Thus

∥∥Θ0,D

∥∥2
F ≤

p

∑
i=1

θ2
0,ii

∥∥βi
D

∥∥2
2 ≤ (1+(D0+D4)

2)d2
0λ2

p

∑
i=1

θ2
0,ii s

i
0

≤ min{S0,n( max
i=1,...p

θ2
0,ii ),s0‖diag(Θ0)‖2

F}(1+(D0+D4)
2)d2

0λ2.

Remark 18 Note that if s0 is small, then the second term in Cdiag will provide a tighter bound.

Proof of Lemma 16. LetT0 := T i
0 denote thesi

0 largest coefficients ofβi in absolute values.
We have by (48),

|I i ∩Tc
0 | ≤

∥∥∥βi
init,Tc

0

∥∥∥
1

1
f0λ

≤ D1d0si
0/(D4d0)≤ D1si

0/D4, (52)

whereD1 is understood to be the same constant that appears in (48). Thus we have

∣∣I i
∣∣= |I i ∩Tc

0 |+ |I i ∩T0| ≤ si
0(1+D1/D4).

Now the second inequality in (49) clearly holds given (52) and the following:

|I i ∪Si | ≤ |Si |+ |I i ∩ (Si)c| ≤ si + |I i ∩ (T i
0)

c|.

We now bound
∥∥βi

D

∥∥2
2 following essentially the arguments as in Zhou [2009]. We have

∥∥βi
D

∥∥2
2 =

∥∥βi
T0∩D

∥∥2

2
+
∥∥∥βi

Tc
0 ∩D

∥∥∥
2

2
,

where for the second term, we have
∥∥∥βi

Tc
0 ∩D

∥∥∥
2

2
≤
∥∥∥βi

Tc
0

∥∥∥
2

2
≤ si

0λ2σ2
Vi

by definition ofsi
0 as in (35)

and (38); For the first term, we have by the triangle inequality and (48),

∥∥βi
T0∩D

∥∥
2

≤
∥∥(βi −βi

init)T0∩D
∥∥

2+
∥∥(βi

init)T0∩D
∥∥

2

≤
∥∥(βi −βi

init)T0

∥∥
2+ t0

√
|T0∩D| ≤ ‖hT0‖2+ t0

√
si
0

≤ D0d0λ
√

si
0+D4d0λ

√
si
0 ≤ (D0+D4)d0λ

√
si
0.

�
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Appendix D. Bounds on MLE Refitting

Recall the maximum likelihood estimatêΘn minimizes over allΘ ∈ Sn the empirical risk:

Θ̂n(E) = arg min
Θ∈Sn

R̂n(Θ) := arg min
Θ∈S p

++∩S p
E

{
tr(ΘΓ̂n)− log|Θ|

}
, (53)

which gives the “best” refitted sparse estimator given a sparse subset of edgesE that we obtain from
the nodewise regressions and thresholding. We note that the estimator (53)remains to be a convex
optimization problem, as the constraint set is the intersection the positive definiteconeS p

++ and the
linear subspaceS p

E . Implicitly, by usingΓ̂n rather than̂Sn in (53), we force the diagonal entries in
(Θ̂n(E))−1 to be identically 1. It is not hard to see that the estimator (53) is equivalent to (13), after
we replacêSn with Γ̂n.

Theorem 19 Consider data generating random variables as in expression (15) and assume that
(A1), (33), and (34) hold. SupposeΣ0,ii = 1 for all i. Let E be some event such thatP(E) ≥
1−d/p2 for a small constant d. Let S0,n be as defined in(36); Suppose on eventE :

1. We obtain an edge set E such that its size|E|= lin (S0,n) is a linear function in S0,n.

2. And forΘ̃0 as in(24)and for some constant Cbias to be specified, we have
∥∥Θ0,D

∥∥
F :=

∥∥∥Θ̃0−Θ0

∥∥∥
F
≤Cbias

√
2S0,n log(p)/n< c/32. (54)

Let Θ̂n(E) be as defined in(53). Suppose the sample size satisfies for C3 ≥ 4
√

5/3,

n>
106

k2

(
4C3+

32
31c2

)2

max
{

2|E| logmax(n, p), C2
bias2S0,n logp

}
. (55)

Then on eventE ∩X0, we have for M= (9/(2k2)) ·
(
4C3+32/(31c2)

)

∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
≤ (M+1)max

{√
2|E| logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
. (56)

We note that although Theorem 19 is meant for proving Theorem 1, we stateit as an independent
result; For example, one can indeed takeE from Corollary 17, where we have|E| ≤ cS0,n for some
constantc for D4 ≍ D1. In view of (51), we aim to recover̃Θ0 by Θ̂n(E) as defined in (53). In
Section D.2, we will focus in Theorem 19 on bounding forW suitably chosen,

∥∥∥Θ̂n(E)− Θ̃0

∥∥∥
F
= OP

(
W
√

S0,n logmax(n, p)/n

)
.

By the triangle inequality, we conclude that
∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
≤
∥∥∥Θ̂n(E)− Θ̃0

∥∥∥
F
+
∥∥∥Θ̃0−Θ0

∥∥∥
F
= OP

(
W
√

S0,n log(n)/n

)
.

We now state bounds for the convergence rate on Frobenius norm of thecovariance matrix and for
KL divergence. We note that constants have not been optimized. Proofsof Theorem 20 and 21
appear in Section D.3 and D.4 respectively.
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Theorem 20 Suppose all conditions, events, and bounds on|E| and
∥∥Θ0,D

∥∥
F in Theorem 19 hold.

Let Θ̂n(E) be as defined in(53). Suppose the sample size satisfies for C3 ≥ 4
√

5/3 and Cbias,M as
defined in Theorem 19

n>
106

c2k4

(
4C3+

32
31c2

)2

max
{

2|E| logmax(p,n), C2
bias2S0,n logp

}
. (57)

Then on eventE ∩X0, we haveϕmin(Θ̂n(E))> c/2> 0 and forΣ̂n(E) = (Θ̂n(E))−1,

∥∥∥Σ̂n(E)−Σ0

∥∥∥
F
≤ 2(M+1)

c2 max

{√
2|E| logmax(n, p)

n
, Cbias

√
2S0,n log(p)

n

}
. (58)

Theorem 21 Suppose all conditions, events, and bounds on|E| and
∥∥Θ0,D

∥∥
F :=

∥∥∥Θ̃0−Θ0

∥∥∥
F

in

Theorem 19 hold. Let̂Θn(E) be as defined in(53). Suppose the sample size satisfies(55) for
C3 ≥ 4

√
5/3 and Cbias,M as defined in Theorem 19. Then on eventE ∩X0, we have for R(Θ̂n(E))−

R(Θ0)≥ 0,

R(Θ̂n(E))−R(Θ0)≤ M(C3+1/8)max
{

2|E| logmax(n, p)/n, C2
bias2S0,n log(p)/n

}
.

D.1 Proof of Theorem 1

Clearly the sample requirement as in (42) is satisfied for someθ > 0 that is appropriately chosen,
given (55). In view of Corollary 17, we have onE := X ∩Ca: for Cdiag as in (17)

|E| ≤ (1+
D1

D4
)S0,n ≤ 2S0,n for D4 ≥ D1 and

∥∥Θ0,D

∥∥
F :=

∥∥∥Θ̃0−Θ0

∥∥∥
F
≤Cbias

√
2S0,n log(p)/n≤ c/32,

where

C2
bias := min

{
max

i=1,...p
θ2

0,ii ,
s0

S0,n
‖diag(Θ0)‖2

F

}
d2

0(1+(D0+D4)
2)

= C2
diagd

2
0(1+(D0+D4)

2). (59)

Clearly the last inequality in (54) hold so long asn> 322C2
bias2S0,n log(p)/c2,which holds given (55).

Plugging in|E| in (56), we have onE ∩X0,

∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
≤ (M+1)max

{√
2(1+D1/D4)S0,n logmax(n, p)

n
, Cbias

√
2S0,n logp

n

}
.

Now if we takeD4 ≥ D1, then we have (18) on eventE ; and moreover onE ∩X0,
∥∥∥Θ̂n(E)−Θ0

∥∥∥
F

≤ (M+1)max

{√
4S0,n logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}

≤ W
√

S0,n logmax(n, p)/n,
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whereW≤
√

2(M+1)max{Cdiagd0
√

1+(D0+D4)2,2}. Similarly, we get the bound on
∥∥∥Σ̂n−Σ0

∥∥∥
F

with Theorem 20, and the bound on risk following Theorem 21. Thus all statements in Theorem 1
hold.�

Remark 22 Suppose eventE ∩X0 holds. Now suppose that we take D4 = 1, that is, if we take the
threshold to be exactly the penalty parameterλn:

t0 = d0λ := λn.

Then we have on eventE , |E| ≤ (1+D1)S0,n and |E \E0| ≤ D1S0,n by (50); And on eventE ∩X0,
for C′

bias :=Cdiagd0

√
1+(D0+1)2,

∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
≤ M max

{√
2(1+D1)S0,n logmax(n, p)

n
, C′

bias

√
2S0,n logp

n

}
.

It is not hard to see that we achieve essential the same rate as stated in Theorem 1, with perhaps
slightly more edges included in E.

D.2 Proof of Theorem 19

Suppose eventE holds throughout this proof. We first obtain the bound on spectrum ofΘ̃0: It is
clear that by (33) and (54), we have onE ,

ϕmin(Θ̃0) ≥ ϕmin(Θ0)−
∥∥∥Θ̃0−Θ0

∥∥∥
2
≥ ϕmin(Θ0)−

∥∥Θ0,D

∥∥
F > 31c/32, (60)

ϕmax(Θ̃0) < ϕmax(Θ0)+
∥∥∥Θ̃0−Θ0

∥∥∥
2
≤ ϕmax(Θ0)+

∥∥Θ0,D

∥∥
F <

c
32

+
1
k
. (61)

Throughout this proof, we letΣ0 = (σ0,i j ) := Θ−1
0 . In view of (60), definẽΣ0 := (Θ̃0)

−1. We use
Θ̂n := Θ̂n(E) as a shorthand.

GivenΘ̃0 ∈ S
p
++∩S p

E as guaranteed in (60), let us define a new convex set:

Un(Θ̃0) := (S p
++∩S p

E)− Θ̃0 = {B− Θ̃0|B∈ S
p
++∩S p

E} ⊂ S
p
E ,

which is a translation of the original convex setS
p
++∩S p

E . Let 0 be a matrix with all entries being
zero. Thus it is clear thatUn(Θ̃0) ∋ 0 given thatΘ̃0 ∈ S

p
++∩S p

E . Define forR̂n as in expression (53)

Q̃(Θ) := R̂n(Θ)− R̂n(Θ̃0) = tr(ΘΓ̂n)− log|Θ|− tr(Θ̃0Γ̂n)+ log|Θ̃0|
= tr

(
(Θ− Θ̃0)(Γ̂n− Σ̃0)

)
− (log|Θ|− log|Θ̃0|)+ tr

(
(Θ− Θ̃0)Σ̃0

)
.

For an appropriately chosenrn and a large enoughM > 0, let

Tn = {∆ ∈Un(Θ̃0),‖∆‖F = Mrn}, and

Πn = {∆ ∈Un(Θ̃0),‖∆‖F < Mrn}.
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It is clear that bothΠn andTn∪Πn are convex. It is also clear that 0∈ Πn. Throughout this section,
we let

rn = max

{√
2|E| logmax(n, p)

n
,Cbias

√
2S0,n logp

n

}
. (62)

Define for∆ ∈Un(Θ̃0),

G̃(∆) := Q̃(Θ̃0+∆) = tr(∆(Γ̂n− Σ̃0))− (log|Θ̃0+∆|− log|Θ̃0|)+ tr(∆Σ̃0).

It is clear thatG̃(∆) is a convex function onUn(Θ̃0) andG̃(0) = Q̃(Θ̃0) = 0.

Now, Θ̂n minimizesQ̃(Θ), or equivalentlŷ∆ = Θ̂n− Θ̃0 minimizesG̃(∆). Hence by definition,

G̃(∆̂)≤ G̃(0) = 0.

Note thatTn is non-empty, while clearly 0∈ Πn. Indeed, considerBε := (1+ ε)Θ̃0, whereε > 0; it

is clear thatBε − Θ̃0 ∈ S
p
++∩S p

E and
∥∥∥Bε − Θ̃0

∥∥∥
F
= |ε|

∥∥∥Θ̃0

∥∥∥
F
= Mrn for |ε| = Mrn/

∥∥∥Θ̃0

∥∥∥
F
. Note

also if ∆ ∈ Tn, then∆i j = 0∀(i, j : i 6= j) /∈ E; Thus we have∆ ∈ S
p
E and

‖∆‖0 = ‖diag(∆)‖0+‖offd(∆)‖0 ≤ p+2|E| where|E|= lin (S0,n).

We now show the following two propositions. Proposition 23 follows from standard results.

Proposition 23 Let B be a p× p matrix. If B≻ 0 and B+D ≻ 0, then B+vD≻ 0 for all v ∈ [0,1].

Proposition 24 Under (33), we have for all∆ ∈ Tn such that‖∆‖F = Mrn for rn as in (62), Θ̃0+

v∆ ≻ 0,∀v∈ an open interval I⊃ [0,1] on eventE .

Proof In view of Proposition 23, it is sufficient to show thatΘ̃0+(1+ ε)∆, Θ̃0− ε∆ ≻ 0 for some
ε > 0. Indeed, by definition of∆ ∈ Tn, we haveϕmin(Θ̃0+∆)≻ 0 on eventE ; thus

ϕmin(Θ̃0+(1+ ε)∆) ≥ ϕmin(Θ̃0+∆)− ε‖∆‖2 > 0,

and ϕmin(Θ̃0− ε∆) ≥ ϕmin(Θ̃0)− ε‖∆‖2 > 31c/32− ε‖∆‖2 > 0

for ε > 0 that is sufficiently small.

Thus we have that log|Θ̃0+v∆| is infinitely differentiable on the open intervalI ⊃ [0,1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the following:

Lemma 25 On eventE ∩X0, G̃(∆)> 0 for all ∆ ∈ Tn.

Proof Let us usẽA as a shorthand for

vec∆T
(∫ 1

0
(1−v)(Θ̃0+v∆)−1⊗ (Θ̃0+v∆)−1dv

)
vec∆,

where⊗ is the Kronecker product (ifW = (wi j )m×n, P= (bkℓ)p×q, thenW⊗P= (wi j P)mp×nq), and
vec∆ ∈ R

p2
is ∆p×p vectorized. Now, the Taylor expansion gives for all∆ ∈ Tn,

log|Θ̃0+∆|− log|Θ̃0| =
d
dv

log|Θ̃0+v∆||v=0∆+
∫ 1

0
(1−v)

d2

dv2 log|Θ̃0+v∆|dv

= tr(Σ̃0∆)− Ã.
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Hence for all∆ ∈ Tn,

G̃(∆) = Ã+ tr
(

∆(Γ̂n− Σ̃0)
)
= Ã+ tr

(
∆(Γ̂n−Σ0)

)
− tr

(
∆(Σ̃0−Σ0)

)
, (63)

where we first bound tr(∆(Σ̃0−Σ0)) as follows: by (54) and (60), we have on eventE

∣∣∣tr(∆(Σ̃0−Σ0))
∣∣∣ =

∣∣∣〈∆,(Σ̃0−Σ0)〉
∣∣∣≤ ‖∆‖F

∥∥∥Σ̃0−Σ0

∥∥∥
F

≤ ‖∆‖F

∥∥Θ0,D

∥∥
F

ϕmin(Θ̃0)ϕmin(Θ0)

< ‖∆‖F
32Cbias

√
2S0,n logp/n

31c2 ≤ ‖∆‖F
32rn

31c2 . (64)

Conditioned on eventX0, by (70) and (55)

max
j,k

|Γ̂n, jk −σ0, jk| ≤ 4C3

√
logmax(n, p)/n=: δn.

Thus on eventE ∩X0, we have
∣∣∣tr
(
∆(Γ̂n−Σ0)

)∣∣∣≤ δn |offd(∆)|1 , where

|offd(∆)|1 ≤
√
‖offd(∆)‖0‖offd(∆)‖F ≤

√
2|E|‖∆‖F ,

and

tr
(

∆(Γ̂n−Σ0)
)

≥ −4C3

√
logmax(n, p)/n

√
2|E|‖∆‖F ≥−4C3rn‖∆‖F . (65)

Finally, we bound̃A. First we note that for∆ ∈ Tn, we have on eventE ,

‖∆‖2 ≤ ‖∆‖F = Mrn <
7

16k
, (66)

given (55):n> (16
7 · 9

2k)
2
(

4C3+
32

31c2

)2
max

{
(2|E|) log(n), C2

bias2S0,n logp
}

. Now we have by (61)
and (34) following Rothman et al. [2008] (see Page 502, proof of Theorem 1 therein): on eventE ,

Ã ≥ ‖∆‖2
F /

(
2
(

ϕmax(Θ̃0)+‖∆‖2

)2
)

≥ ‖∆‖2
F /

(
2(

1
k
+

c
32

+
7

16k
)2
)
> ‖∆‖2

F
2k2

9
. (67)

Now on eventE ∩X0, for all ∆ ∈ Tn, we have by (63),(67), (65), and (64),

G̃(∆) > ‖∆‖2
F

2k2

9
−4C3rn‖∆‖F −‖∆‖F

32rn

31c2

= ‖∆‖2
F

(
2k2

9
− 1

‖∆‖F

(
4C3rn+

32rn

31c2

))

= ‖∆‖2
F

(
2k2

9
− 1

M

(
4C3+

32
31c2

))
,
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hence we havẽG(∆) > 0 for M large enough, in particularM = (9/(2k2))
(
4C3+32/(31c2)

)
suf-

fices.

We next state Proposition 26, which follows exactly that of Claim 12 of Zhou et al. [2008].

Proposition 26 Suppose eventE holds. IfG̃(∆)> 0,∀∆ ∈ Tn, thenG̃(∆)> 0 for all ∆ in

Wn = {∆ : ∆ ∈Un(Θ̃0),‖∆‖F > Mrn}

for rn as in(62); Hence ifG̃(∆)> 0 for all ∆ ∈ Tn, thenG̃(∆)> 0 for all ∆ ∈ Tn∪Wn.

Note that forΘ̂n ∈ S
p
++ ∩ S

p
E , we have∆̂ = Θ̂n − Θ̃0 ∈ Un(Θ̃0). By Proposition 26 and the fact

that G̃(∆̂) ≤ G̃(0) = 0 on eventE , we have the following: on eventE , if G̃(∆) > 0,∀∆ ∈ Tn then
‖∆̂‖F < Mrn, given that̂∆ ∈Un(Θ̃0)\ (Tn∪Wn). Therefore

P

(
‖∆̂‖F ≥ Mrn

)
≤ P(Ec)+P(E) ·P

(
‖∆̂‖F ≥ Mrn|E

)

= P(Ec)+P(E) · (1−P

(
‖∆̂‖F < Mrn|E

)
)

≤ P(Ec)+P(E) · (1−P

(
G̃(∆)> 0,∀∆ ∈ Tn|E

)
)

≤ P(Ec)+P(E) · (1−P(X0|E))

= P(Ec)+P(X c
0 ∩E)≤ P(Ec)+P(X c

0 )

≤ c
p2 +

1
max(n, p)2 ≤ c+1

p2 .

We thus establish that the theorem holds.�

D.3 Frobenius Norm for the Covariance Matrix

We use the bound on
∥∥∥Θ̂n(E)−Θ0

∥∥∥
F

as developed in Theorem 19; in addition, we strengthen the

bound onMrn in (66) in (68). Before we proceed, we note the following bound on bias of (Θ̃0)
−1.

Remark 27 Clearly we have on eventE , by (64)

∥∥∥(Θ̃0)
−1−Σ0

∥∥∥
F

≤
∥∥Θ0,D

∥∥
F

ϕmin(Θ̃0)ϕmin(Θ0)
≤ 32Cbias

√
2S0,n logp/n

31c2 .

Proofof Theorem 20. Suppose eventE ∩X0 holds. Now suppose

n> (
16
7c

· 9

2k2)
2
(

C3+
32

31c2

)2

max
{

2|E| logmax(n, p), C2
bias2S0,n logp

}
,

which clearly holds given (57). Then in addition to the bound in (66), on eventE ∩X0, we have

Mrn < 7c/16, (68)
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ZHOU, RÜTIMANN , XU AND BÜHLMANN

for rn as in (62). Then, by Theorem 19, for the sameM as therein, on eventE ∩X0, we have

∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
≤ (M+1)max

{√
2|E| logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
,

given that sample bound in (55) is clearly satisfied. We now proceed to bound
∥∥∥Σ̂n−Σ0

∥∥∥
F

given (56).

First note that by (68), we have on eventE ∩X0 for M > 7

ϕmin(Θ̂n(E)) ≥ ϕmin(Θ0)−
∥∥∥Θ̂n−Θ0

∥∥∥
2
≥ ϕmin(Θ0)−

∥∥∥Θ̂n−Θ0

∥∥∥
F

≥ c− (M+1)rn > c/2.

Now clearly on eventE ∩X0, (58) holds by (56) and

∥∥∥Σ̂n(E)−Σ0

∥∥∥
F

≤

∥∥∥Θ̂n(E)−Θ0

∥∥∥
F

ϕmin(Θ̂n(E))ϕmin(Θ0)
<

2
c2

∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
.

�

D.4 Risk Consistency

We now derive the bound on risk consistency. Before proving Theorem 21, we first state two lemmas
given the following decomposition of our loss in terms of the risk as defined in (16):

0≤ R(Θ̂n(E))−R(Θ0) = (R(Θ̂n(E))−R(Θ̃0))+(R(Θ̃0)−R(Θ0)), (69)

where clearlyR(Θ̂n(E))≥ R(Θ0) by definition. It is clear that̃Θ0 ∈ Sn for Sn as defined in (28), and
thusR̂n(Θ̃0)≥ R̂n(Θ̂n(E)) by definition ofΘ̂n(E) = argminΘ∈Sn R̂n(Θ).

We now bound the two terms on the RHS of (69), where clearlyR(Θ̃0)≥ R(Θ0).

Lemma 28 On eventE , we have for Cbias,Θ0, Θ̃0 as in Theorem 19,

0≤ R(Θ̃0)−R(Θ0)≤ (32/(31c))2C2
bias

2S0,n logp
2n

≤ (32/(31c))2 · r2
n/2≤ Mr2

n/8,

for rn as in(62), where the last inequality holds given that M≥ 9/2(4C3+32/(31c2)).

Lemma 29 UnderE ∩X0, we have for rn as in(62)and M,C3 as in Theorem 19

R(Θ̂n(E))−R(Θ̃0)≤ MC3r2
n.

Proofof Theorem 21. We have onE ∩X0, for rn is as in (62)

R(Θ̂n(E))−R(Θ0) = (R(Θ̂n(E))−R(Θ̃0))+(R(Θ̃0)−R(Θ0))≤ Mr2
n(C3+1/8)

as desired, using Lemma 28 and 29.�

3014



HIGH-DIMENSIONAL COVARIANCE ESTIMATION

Proofof Lemma 28. For simplicity, we use∆0 as a shorthand for the rest of our proof:

∆0 := Θ0,D = Θ̃0−Θ0.

We useB̃ as a shorthand for

vec∆0
T
(∫ 1

0
(1−v)(Θ0+v∆0)

−1⊗ (Θ0+v∆0)
−1dv

)
vec∆0,

where⊗ is the Kronecker product. First, we have forΘ̃0,Θ0 ≻ 0

R(Θ̃0)−R(Θ0) = tr(Θ̃0Σ0)− log|Θ̃0|− tr(Θ0Σ0)+ log|Θ0|
= tr((Θ̃0−Θ0)Σ0)−

(
log|Θ̃0|− log|Θ0|

)
:= B̃≥ 0,

whereB̃ = 0 holds when‖∆0‖F = 0, and in the last equation, we bound the difference between
two log| · | terms using the Taylor’s formula with integral remainder following that in proofof
Theorem 19. Indeed, it is clear that onE , we have

Θ0+v∆0 ≻ 0 for v∈ (−1,2)⊃ [0,1],

given thatϕmin(Θ0) ≥ c and ‖∆0‖2 ≤ ‖∆0‖F ≤ c/32 by (54). Thus log|Θ0 + v∆0| is infinitely
differentiable on the open intervalI ⊃ [0,1] of v. Now, the Taylor expansion gives

log|Θ0+∆0|− log|Θ0| =
d
dv

log|Θ0+v∆0||v=0∆0+
∫ 1

0
(1−v)

d2

dv2 log|Θ0+v∆0|dv

= tr(Σ0∆0)− B̃.

We now obtain an upper bound oñB≥ 0. Clearly, we have on eventE , Lemma 28 holds given that

B̃≤ ‖∆0‖2
F ·ϕmax

(∫ 1

0
(1−v)(Θ0+v∆0)

−1⊗ (Θ0+v∆0)
−1dv

)
,

where‖∆0‖2
F ≤C2

bias2S0,n log(p)/n and

ϕmax

(∫ 1

0
(1−v)(Θ0+v∆0)

−1⊗ (Θ0+v∆0)
−1dv

)

≤
∫ 1

0
(1−v)ϕ2

max(Θ0+v∆0)
−1dv≤ sup

v∈[0,1]
ϕ2

max(Θ0+v∆0)
−1

∫ 1

0
(1−v)dv

=
1
2

sup
v∈[0,1]

1

ϕ2
min(Θ0+v∆0)

=
1

2infv∈[0,1] ϕ2
min(Θ0+v∆0)

≤ 1

2(ϕmin(Θ0)−‖∆0‖2)
2 ≤ 1

2(31c/32)2 ,

where clearly for allv∈ [0,1], we haveϕ2
min(Θ0+v∆0)≥ (ϕmin(Θ0)−‖∆0‖2)

2 ≥ (31c/32)2, given
ϕmin(Θ0)≥ c and‖∆0‖2 ≤

∥∥Θ0,D

∥∥
F ≤ c/32 by (54).�
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ZHOU, RÜTIMANN , XU AND BÜHLMANN

Proofof Lemma 29. SupposeR(Θ̂n(E))−R(Θ̃0)< 0, then we are done.

Otherwise, assumeR(Θ̂n(E))−R(Θ̃0)≥ 0 throughout the rest of the proof. Define

∆̂ := Θ̂n(E)− Θ̃0,

which by Theorem 19, we have on eventE ∩X0, and forM as defined therein,

∥∥∥∆̂
∥∥∥

F
:=
∥∥∥Θ̂n(E)− Θ̃0

∥∥∥
F
≤ Mrn.

We have by definition̂Rn(Θ̂n(E))≤ R̂n(Θ̃0), and hence

0≤ R(Θ̂n(E))−R(Θ̃0) = R(Θ̂n(E))− R̂n(Θ̂n(E))+ R̂n(Θ̂n(E))−R(Θ̃0)

≤ R(Θ̂n(E))− R̂n(Θ̂n(E))+ R̂n(Θ̃0)−R(Θ̃0)

= tr(Θ̂n(E)(Σ0− Γ̂n))− tr(Θ̃0(Σ0− Γ̂n))

= tr((Θ̂n(E)− Θ̃0)(Σ0− Γ̂n)) = tr(∆̂(Σ0− Γ̂n)).

Now, conditioned on eventE ∩X0, following the same arguments around (65), we have

∣∣∣tr
(

∆̂(Ŝn−Σ0)
)∣∣∣ ≤ δn

∣∣∣offd(∆̂)
∣∣∣
1
≤ δn

√
2|E|

∥∥∥offd(∆̂)
∥∥∥

F

≤ MrnC3

√
2|E| logmax(n, p)/n≤ MC3r2

n,

where
∥∥∥offd(∆̂)

∥∥∥
0
≤ 2|E| by definition, andrn is as defined in (62).�

Appendix E. Proof of Theorem 6

We first boundP(X0) in Lemma 30, which follows exactly that of Lemma 13 as the covariance
matrix Ψ0 for variablesX1/σ1, . . . ,Xp/σp satisfy the condition thatΨ0,ii = 1,∀i ∈ {1, . . . , p}.

Lemma 30 For p< en/4C2
3 , where C3 > 4

√
5/3, we have for X0 as defined in(43)

P(X0)≥ 1−1/max{n, p}2.

On eventX0, the following holds forτ =C3

√
logmax{p,n}

n < 1/2, where we assumep< en/4C2
3 ,

∀i,

∣∣∣∣∣
‖Xi‖2

2

σ2
i n

−1

∣∣∣∣∣ ≤ τ,

∀i 6= j,

∣∣∣∣
1
n
〈Xi/σi ,Xj/σ j 〉−ρ0,i j

∣∣∣∣ ≤ τ.
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Let us first derive the large deviation bound for
∣∣∣Γ̂n,i j −ρ0,i j

∣∣∣. First note that on eventX0
√

1− τ ≤
‖Xi‖2/(σi

√
n)≤

√
1+ τ and for alli 6= j

∣∣∣Γ̂n,i j −ρ0,i j

∣∣∣=
∣∣∣∣∣
Ŝn,i j

σ̂iσ̂ j
−ρ0,i j

∣∣∣∣∣ :=
∣∣ρ̂i j −ρ0,i j

∣∣

=

∣∣∣∣∣
1
n〈Xi/σi ,Xj/σ j 〉−ρ0,i j

(‖Xi‖2/(σi
√

n)) · (
∥∥Xj
∥∥

2/(σ j
√

n))
+

ρ0,i j

(‖Xi‖2/(σi
√

n)) · (
∥∥Xj
∥∥

2/(σ j
√

n))
−ρ0,i j

∣∣∣∣∣

≤
∣∣∣∣∣

1
n〈Xi/σi ,Xj/σ j 〉−ρ0,i j

(‖Xi‖2/(σi
√

n)) · (
∥∥Xj
∥∥

2/(σ j
√

n))

∣∣∣∣∣+
∣∣∣∣∣

ρ0,i j

(‖Xi‖2/(σi
√

n)) · (
∥∥Xj
∥∥

2/(σ j
√

n))
−ρ0,i j

∣∣∣∣∣

≤ τ
1− τ

+ |ρ0,i j |
∣∣∣∣

1
1− τ

−1

∣∣∣∣≤
2τ

1− τ
< 4τ. (70)

Proofof Theorem 6. For̃Θ0 as in (24), we define

Ω̃0 = WΘ̃0W =W(diag(Θ0))W+WΘ0,E0∩EW

= diag(WΘ0W)+WΘ0,E0∩EW = diag(Ω0)+Ω0,E0∩E,

whereW = diag(Σ0)
1/2. Then clearlyΩ̃0 ∈ Sn asΘ̃0 ∈ Sn. We first bound

∥∥Θ0,D

∥∥
F as follows.

∥∥Θ0,D

∥∥
F ≤ Cbias

√
2S0,n log(p)/n<

k
√

144σ2
max

(
4C3+

13
12c2σ2

min

)

≤ kc2σ2
min

(48c2σ2
minC3+13)σ2

max
≤ min

{
k

48C3σ2
max

,
cσ2

min

13σ2
max

}
≤ c

13σ2
max

.

Suppose eventE holds throughout this proof. We first obtain the bound on spectrum ofΘ̃0: It is
clear that by (33) and (30), we have onE ,

ϕmin(Θ̃0) ≥ ϕmin(Θ0)−
∥∥∥Θ̃0−Θ0

∥∥∥
2
≥ ϕmin(Θ0)−

∥∥Θ0,D

∥∥
F >

12c
13

, (71)

ϕmax(Θ̃0) < ϕmax(Θ0)+
∥∥∥Θ̃0−Θ0

∥∥∥
2
≤ ϕmax(Θ0)+

∥∥Θ0,D

∥∥
F <

c
13σ2

max
+

1
k
. (72)

Throughout this proof, we letΣ0 = (σ0,i j ) := Θ−1
0 . In view of (71), definẽΣ0 := (Θ̃0)

−1. Then

Ω̃−1
0 =W−1(Θ̃0)

−1W−1 =W−1Σ̃0W
−1 := Ψ̃0.

We useΩ̂n := Ω̂n(E) as a shorthand. Thus we have forΩ̃0 =WΘ̃0W,

ϕmax(Ω̃0) ≤ ϕmax(W)ϕmax(Θ̃0)ϕmax(W)≤ σ2
max

k
+

c
13

ϕmin(Ω̃0), =
1

ϕmax(Ψ̃0)
=

1

ϕmax(W−1Σ̃0W−1)
=

1

ϕmax(W−1)2ϕmax(Σ̃0)

=
ϕmin(W)2

ϕmax(Σ̃0)
= ϕmin(W)2ϕmin(Θ̃0)≥ σ2

min
12c
13

. (73)
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GivenΩ̃0 ∈ S
p
++∩S p

E as guaranteed in (73), let us define a new convex set:

Un(Ω̃0) := (S p
++∩S p

E)− Ω̃0 = {B− Ω̃0|B∈ S
p
++∩S p

E} ⊂ S
p
E ,

which is a translation of the original convex setS
p
++∩S p

E . Let 0 be a matrix with all entries being
zero. Thus it is clear thatUn(Ω̃0) ∋ 0 given thatΩ̃0 ∈ S

p
++∩S p

E . Define forR̂n as in expression (27),

Q̃(Ω) := R̂n(Ω)− R̂n(Ω̃0) = tr(ΩΓ̂n)− log|Ω|− tr(Ω̃0Γ̂n)+ log|Ω̃0|
= tr

(
(Ω− Ω̃0)(Γ̂n− Ψ̃0)

)
− (log|Ω|− log|Ω̃0|)+ tr

(
(Ω− Ω̃0)Ψ̃0

)
.

For an appropriately chosenrn and a large enoughM > 0, let

Tn = {∆ ∈Un(Ω̃0),‖∆‖F = Mrn}, and

Πn = {∆ ∈Un(Ω̃0),‖∆‖F < Mrn}.

Both Πn andTn∪Πn are convex. It is clear that 0∈ Πn. Define for∆ ∈Un(Ω̃0),

G̃(∆) := Q̃(Ω̃0+∆) = tr(∆(Γ̂n− Ψ̃0))− (log|Ω̃0+∆|− log|Ω̃0|)+ tr(∆Ψ̃0).

ThusG̃(∆) is a convex function onUn(Ω̃0) andG̃(0) = Q̃(Ω̃0) = 0.

Now, Ω̂n minimizesQ̃(Ω), or equivalentlŷ∆ = Ω̂n− Ω̃0 minimizesG̃(∆). Hence by definition,

G̃(∆̂)≤ G̃(0) = 0.

Note thatTn is non-empty, while clearly 0∈ Πn. Indeed, considerBε := (1+ ε)Ω̃0, whereε > 0; it

is clear thatBε − Ω̃0 ∈ S
p
++∩S p

E and
∥∥∥Bε − Ω̃0

∥∥∥
F
= |ε|

∥∥∥Ω̃0

∥∥∥
F
= Mrn for |ε|= Mrn/

∥∥∥Ω̃0

∥∥∥
F
. Note

also if ∆ ∈ Tn, then∆i j = 0∀(i, j : i 6= j) /∈ E; Thus we have∆ ∈ S
p
E and

‖∆‖0 = ‖diag(∆)‖0+‖offd(∆)‖0 ≤ p+2|E| where|E|= lin (S0,n).

We now show the following proposition.

Proposition 31 Under (33), we have for all∆ ∈ Tn such that‖∆‖F = Mrn for rn as in (62), Ω̃0+

v∆ ≻ 0,∀v∈ an open interval I⊃ [0,1] on eventE .

Proof In view of Proposition 23, it is sufficient to show thatΩ̃0+(1+ ε)∆,Ω̃0− ε∆ ≻ 0 for some
ε > 0. Indeed, by definition of∆ ∈ Tn, we haveϕmin(Ω̃0+∆)≻ 0 on eventE ; thus

ϕmin(Ω̃0+(1+ ε)∆) ≥ ϕmin(Ω̃0+∆)− ε‖∆‖2 > 0,

andϕmin(Ω̃0− ε∆) ≥ ϕmin(Ω̃0)− ε‖∆‖2 > 12σ2
minc/13− ε‖∆‖2 > 0

for ε > 0 that is sufficiently small.

Thus we have that log|Ω̃0+v∆| is infinitely differentiable on the open intervalI ⊃ [0,1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the following:
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Lemma 32 On eventE ∩X0, G̃(∆)> 0 for all ∆ ∈ Tn.

Proof Let us usẽA as a shorthand for

vec∆T
(∫ 1

0
(1−v)(Ω̃0+v∆)−1⊗ (Ω̃0+v∆)−1dv

)
vec∆,

where⊗ is the Kronecker product (ifW = (wi j )m×n, P= (bkℓ)p×q, thenW⊗P= (wi j P)mp×nq), and
vec∆ ∈ R

p2
is ∆p×p vectorized. Now, the Taylor expansion gives for all∆ ∈ Tn,

log|Ω̃0+∆|− log|Ω̃0| =
d
dv

log|Ω̃0+v∆||v=0∆+
∫ 1

0
(1−v)

d2

dv2 log|Ω̃0+v∆|dv

= tr(Ψ̃0∆)− Ã.

Hence for all∆ ∈ Tn,

G̃(∆) = Ã+ tr
(

∆(Γ̂n− Ψ̃0)
)
= Ã+ tr

(
∆(Γ̂n−Ψ0)

)
− tr

(
∆(Ψ̃0−Ψ0)

)
, (74)

where we first bound tr(∆(Ψ̃0−Ψ0)) as follows: by (30) and (60), we have on eventE

∣∣∣tr(∆(Ψ̃0−Ψ0))
∣∣∣ =

∣∣∣〈∆,(Ψ̃0−Ψ0)〉
∣∣∣≤ ‖∆‖F

∥∥∥Ψ̃0−Ψ0

∥∥∥
F

≤ ‖∆‖F
13rn

12σ2
minc2

, (75)

where we bound
∥∥∥Ψ̃0−Ψ0

∥∥∥
F

as follows:

∥∥∥Ψ̃0−Ψ0

∥∥∥
F

=
∥∥∥W−1(Σ̃0−Σ0)W

−1
∥∥∥

F
≤ max

i
W−2

i

∥∥∥Σ̃0−Σ0

∥∥∥
F

≤ 1

σ2
min

∥∥Θ0,D

∥∥
F

ϕmin(Θ̃0)ϕmin(Θ0)

≤ Cbias
√

2S0,n logp/n

12σ2
minc2/13

≤ 13rn

12σ2
minc2

.

Now, conditioned on eventX0, by (70)

max
j,k

|Γ̂n, jk −ρ0, jk| ≤ 4C3

√
logmax(n, p)/n=: δn

and thus on eventE ∩ X0, we have
∣∣∣tr
(
∆(Γ̂n−Ψ0)

)∣∣∣ ≤ δn |offd(∆)|1, where |offd(∆)|1 ≤
√
‖offd(∆)‖0‖offd(∆)‖F ≤

√
2|E|‖∆‖F , and

tr
(

∆(Γ̂n−Ψ0)
)
≥−4C3

√
logmax(n, p)/n

√
2|E|‖∆‖F ≥−4C3rn‖∆‖F . (76)

Finally, we bound̃A. First we note that for∆ ∈ Tn, we have on eventE ,

‖∆‖2 ≤ ‖∆‖F = Mrn <
3σ2

max

8k
,
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given (31):n> (8
3 · 9

2k)
2σ4

max

(
4C3+

13
12σ2

minc2

)2
max

{
2|E|) logmax(n, p),C2

bias2S0,n logp
}

. We have
by (72) and (34) following Rothman et al. [2008] (see Page 502, proofof Theorem 1 therein): on
eventE ,

Ã ≥ ‖∆‖2
F /

(
2
(

ϕmax(Ω̃0)+‖∆‖2

)2
)

> ‖∆‖2
F /

(
2σ4

max

(
1
k
+

c
13

+
3
8k

)2
)

> ‖∆‖2
F

2k2

9σ4
max

. (77)

Now on eventE ∩X0, for all ∆ ∈ Tn, we have by (74),(77), (76), and (75),

G̃(∆) > ‖∆‖2
F

2k2

9σ4
max

−4C3rn‖∆‖F −‖∆‖F
13rn

12σ2
minc2

= ‖∆‖2
F

(
2k2

9σ4
max

− 1
‖∆‖F

(
4C3rn+

13rn

12σ2
minc2

))

= ‖∆‖2
F

(
2k2

9σ4
max

− 1
M

(
4C3+

13

12σ2
minc2

))
.

Hence we have G̃(∆) > 0 for M large enough, in particular M =

(9σ4
max/(2k2))

(
4C3+13/(12σ2

minc2)
)

suffices.

The rest of the proof follows that of Theorem 19, see Proposition 26 and the bounds which follow.
We thus establish that the theorem holds.�

Appendix F. Oracle Inequalities for the Lasso

In this section, we consider recoveringβ ∈ R
p in the following linear model:

Y = Xβ+ ε,

whereX follows (15) andε ∼ N(0,σ2In). Recall givenλn, the Lasso estimator forβ ∈R
p is defined

as:

β̂ = argmin
β

1
2n

‖Y−Xβ‖2
2+λn‖β‖1, (78)

which corresponds to the regression function in (10) by lettingY := Xi andX := X·\i whereX·\i

denotes columns ofX without i. Defines0 as the smallest integer such that

p

∑
i=1

min(β2
i ,λ

2σ2)≤ s0λ2σ2, where λ =
√

2logp/n. (79)

ForX ∈ F (θ) as defined in (39), define

Ta =

{
ε :

∥∥∥∥
XTε

n

∥∥∥∥
∞
≤ (1+θ)λσ,a,p, where X ∈ F (θ), for 0< θ < 1

}
, (80)
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whereλσ,a,p = σ
√

1+a
√
(2logp)/n, wherea≥ 0. We have (cf. Lemma 34)

P(Ta)≥ 1− (
√

π logppa)−1;

In fact, for such a bound to hold, we only need
‖Xj‖2√

n ≤ 1+θ,∀ j to hold inF (θ).

We now state Theorem 33, which may be of independent interests as the bounds onℓ2 andℓ1 loss
for the Lasso estimator are stated with respect to theactualsparsitys0 rather thans= |supp(β)| as
in Bickel et al. [2009, Theorem 7.2]. The proof is omitted as on eventTa∩X , it follows exactly that
of Zhou [2010a, Theorem 5.1] for a deterministic design matrixX which satisfies the RE condition,
with some suitable adjustments on the constants.

Theorem 33 ((Oracle inequalities of the Lasso) Zhou, 2010a)Let Y= Xβ+ ε, for ε being i.i.d.
N(0,σ2) and let X follow(15). Let s0 be as in(79) and T0 denote locations of the s0 largest
coefficients ofβ in absolute values. Suppose that RE(s0,4,Σ0) holds with K(s0,4,Σ0) andρmin(s)>
0. Fix some1> θ > 0. Letβinit be an optimal solution to(78)with

λn = d0λσ ≥ 2(1+θ)λσ,a,p (81)

where a≥ 1 and d0 ≥ 2(1+θ)
√

1+a. Let h= βinit −βT0. Define

X := R (θ)∩F (θ)∩M (θ).

Suppose that n satisfies(42). Then onTa∩X , we have

‖βinit −β‖2 ≤ λn
√

s0

√
2D2

0+2D2
1+2 := λσ

√
s0d0

√
2D2

0+2D2
1+2,

∥∥hTc
0

∥∥
1

≤ D1λns0 := D1d0λσs0,

where D0 and D1 are defined in(82)and(83)respectively, andP(X ∩Ta)≥ 1−3exp(−c̄θ2n/α4)−
(
√

π logppa)−1.

Let T1 denote thes0 largest positions ofh in absolute values outside ofT0; Let T01 := T0∪T1. The
proof of Theorem 33 yields the following bounds onX ∩Ta: ‖hT01‖2 ≤ D0d0λσ√s0 where

D0 = max

{
D
d0

, 2
√

2(1+θ)
K(s0,4,Σ0)

√
ρmax(s−s0)

(1−θ)d0
+

3
√

2K2(s0,4,Σ0)

(1−θ)2

}
, (82)

whereD =
3(1+θ)

√
ρmax(s−s0)

(1−θ)
√

ρmin(2s0)
+

2(1+θ)4ρmax(3s0)ρmax(s−s0)

d0(1−θ)2ρmin(2s0)
,

and

D1 = max





4(1+θ)2ρmax(s−s0)

d2
0

,

(
(1+θ)

√
ρmax(s−s0)

d0
+

3K(s0,4,Σ0)

2(1−θ)

)2


 . (83)

We note that implicit in these constants, we have used the concentration bounds for Λmax(3s0),
Λmax(s− s0) andΛmin(2s0) as derived in Theorem 10, given that (41) holds form≤ max(s,(k0+
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1)s0), where we takek0 > 3. In general, these maximum sparse eigenvalues as defined above will
increase withs0 ands; Taking this issue into consideration, we fix forc0 ≥ 4

√
2, λn = d0λσ where

d0 = c0(1+θ)2
√

ρmax(s−s0)ρmax(3s0)≥ 2(1+θ)
√

1+a,

where the second inequality holds fora= 7 as desired, givenρmax(3s0),ρmax(s−s0)≥ 1.

Thus we have forρmax(3s0)≥ ρmax(2s0)≥ ρmin(2s0)

D/d0 ≤ 3

c0(1+θ)(1−θ)
√

ρmax(3s0)
√

ρmin(2s0)
+

2

c2
0(1−θ)2ρmin(2s0)

≤ 3
√

ρmin(2s0)

c0(1−θ)2
√

ρmax(3s0)ρmin(2s0)
+

2

c2
0(1−θ)2ρmin(2s0)

≤ 2(3c0+2)K2(s0,4,Σ0)

c2
0(1−θ)2

≤ 7
√

2K2(s0,4,Σ0)

8(1−θ)2

which holds given thatρmax(3s0)≥ 1, and 1≤ 1√
ρmin(2s0)

≤
√

2K(s0,k0,Σ0), and thus 1
K2(s0,k0,Σ0)

≤ 2

as shown in Lemma 35; Hence

D0 ≤ max

{
D/d0,

(4+3
√

2c0)
√

ρmax(s−s0)ρmax(3s0)(1+θ)2K2(s0,4,Σ0)

d0(1−θ)2

}
,

≤ 7K2(s0,4,Σ0)√
2(1−θ)2

<
5K2(s0,4,Σ0)

(1−θ)2 and

D1 ≤
(

6
4(1−θ)

+
1
4

)2

K2(s0,4,Σ0)≤
49K2(s0,4,Σ0)

16(1−θ)2 ,

where for bothD1, we have used the fact that

2(1+θ)2ρmax(s−s0)

d2
0

=
2

c2
0(1+θ)2ρmax(3s0)

≤ 2

c2
0(1+θ)2ρmin(2s0)

≤ 4K2(s0,4,Σ0)

c2
0(1+θ)2

≤ K2(s0,4,Σ0)

8
.

Appendix G. Misc Bounds

Lemma 34 For fixed design X withmaxj ‖Xj‖2 ≤ (1+θ)
√

n, where0< θ < 1, we have forTa as
defined in(80), where a> 0, P(T c

a )≤ (
√

π logppa)−1.

Proof Define random variables:Yj =
1
n ∑n

i=1 εiXi, j . Note that max1≤ j≤p |Yj |= ‖XTε/n‖∞. We have

E(Yj) = 0 andVar((Yj)) =
∥∥Xj
∥∥2

2 σ2/n2 ≤ (1+ θ)σ2/n. Let c1 = 1+ θ. Obviously,Yj has its tail

probability dominated by that ofZ ∼ N(0, c2
1σ2

n ):

P(|Yj | ≥ t)≤ P(|Z| ≥ t)≤ 2c1σ√
2πnt

exp

( −nt2

2c2
1σ2

ε

)
.
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We can now apply the union bound to obtain:

P

(
max

1≤ j≤p
|Yj | ≥ t

)
≤ p

c1σ√
nt

exp

( −nt2

2c2
1σ2

)

= exp

(
−
(

nt2

2c2
1σ2

+ log
t
√

πn√
2c1σ

− logp

))
.

By choosingt = c1σ
√

1+a
√

2logp/n, the right-hand side is bounded by(
√

π logppa)−1 for a≥ 0.

Lemma 35 (Zhou, 2010b)Suppose that RE(s0,k0,Σ0) holds for k0 > 0, then for m= (k0+1)s0,

√
ρmin(m) ≥ 1√

2+k2
0K(s0,k0,Σ0)

; and clearly

if Σ0,ii = 1,∀i, then1≥
√

ρmin(2s0) ≥ 1√
2K(s0,k0,Σ0)

for k0 ≥ 1.
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ZHOU, RÜTIMANN , XU AND BÜHLMANN
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