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Abstract

This paper points out that many search relevance modelfoimiation retrieval, such as the Vector
Space Model, BM25 and Language Models for Information Re#tli, can be viewed as a similarity
function between pairs of objects of different types, nefdito as an S-function. An S-function is
specifically defined as the dot product between the imagegdbjects in a Hilbert space mapped
from two different input spaces. One advantage of taking\taw is that one can take a unified and
principled approach to address the issues with regard tolseglevance. The paper then proposes
employing a kernel method to learn a robust relevance madeit &-function, which can effectively
deal with the term mismatch problem, one of the biggest ehghs in search. The kernel method
exploits a positive semi-definite kernel referred to as aedel. The paper shows that when
using an S-kernel the model learned by the kernel methodasagteed to be an S-function. The
paper then gives more general principles for constructikgr@els. A specific implementation of
the kernel method is proposed using the Ranking SVM teclesigund click-through data. The
proposed approach is employed to learn a relevance model estension of BM25, referred to
as Robust BM25. Experimental results on web search andpeisieisearch data show that Robust
BM25 significantly outperforms baseline methods and cacessfully tackle the term mismatch
problem.

Keywords: search, term mismatch, kernel machines, similarity legyné-function, s-kernel

1. Introduction

There are many applications such as search, collaborative filteringmage annotation, that can
be viewed as a task employing a similarity function defined on pairs of instémoreswo different
spaces. For example, search is a task as follows. Given a query,diiemnssetrieves documents
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relevant to the query and ranks the documents based on the degrésvahce. The relevance of
a document with respect to a query can be viewed as a kind of similarity, angetirch task is
essentially one based on a similarity function between query and documentvgizere query and
document are instances from two spaces: query space and docyraest s

In this paper, we formally define the similarity function as the dot productefrttages of two
objects in a Hilbert space mapped from two different spaces. For simpligtgall the similarity
function S-function. In fact, the state-of-the-art relevance models amrimdition retrieval (IR), such
as the Vector Space Model (VSM) (Salton and McGill, 1986), BM25 (Risba et al., 1994) and
Language Models for Information Retrieval (LMIR) (Ponte and Crof98; Zhai and Lafferty,
2004), are all S-functions. We prove some properties of the S-funatidrshow that it becomes a
positive semi-definite kernel under certain conditions. One advantag&ing this view to search
is that it provides us with a unified and principled approach to using andihgarelevance models.

In this paper, we focus on the learning of a robust relevance modal&gunction, to deal with
term mismatch, one of the critical challenges for search. We show thatnweefime a new type
of positive semi-definite kernel function called S-kernel and learn astotelevance model using a
kernel method based on S-kernel. Recently, the learning of similarity fumlstie emerged as a hot
research topic in machine learning (cf., Abernethy et al., 2009; GraagBengio, 2008). Our
work is novel and unique in that it learns a similarity function for searchguaikernel method .

The conventional relevance models are all based on term matching. Thiadydook at the
matched words in a query and document, and calculate the similarity (relg¢vaaeed on the
degree of matching. A good match at term level does not necessarily ngtamrelevance, however,
and vice versa. For example, if the query is “NY” and the document ontyagas “New York”,
then the BM25 score of the query and document pair will be low (i.e., the twdeilliewed less
relevant), although the query and document are relevant. Similar probkeuos with LMIR and
other relevance models. This is the so-called term mismatch problem, whichssithgxelevance
models suffer from. In other words, the scores from the relevance lsodg not be reliable and
the question of how to learn a more robust similarity function for searchsarisis is exactly the
problem we want to address in this paper.

In this paper, we tackle the term mismatch problem with a kernel method basee otithn of
S-function. Intuitively, we calculate a more reliable score between a glenyment pair by using
the scores between the pairs of similar query and similar document. Out kegtieod exploits a
special positive semi-definite kernel, referred to as S-kernel, defiased upon the S-function.

An S-kernel is formally defined as a positive semi-definite kernel sudhttigareproducing
kernel Hilbert space (RKHS) generated by the kernel is also a sgasdumctions. Therefore,
the model learned by a kernel method is guaranteed to be an S-functiofurter give general
principles for constructing S-kernels, and thus offer a formulation famieg similarity functions
with S-kernels. An S-kernel can be viewed as an extension of the kgpeel proposed by Ong
et al. (2005).

We provide a method for implementing the kernel method using the Ranking S\Uivlitees
and click-through data. The method is used to train a relevance model n&uoledst BM25’ to
deal with term mismatch, as an extension of BM25. The learned Robust BM2®| determines
the relevance score of a query document pair on the basis of not orlBMB8 score of the query
document pair, but also the BM25 scores of similar query and similar doduypa@s. All calcu-
lations are naturally incorporated in the kernel method. Experimental resultiwo large scale
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data sets show that Robust BM25 can indeed solve term mismatch and siglyifozgperform the
baselines.

This paper has the following contributions: 1) proposal of a kernel naditradealing with term
mismatch in search, 2) proposal of a unified view to search using S-fun8jiproposal of a family
of kernel functions, S-kernel.

The rest of the paper is organized as follows. A survey of related isa&nducted in Section
2, and then the definition of S-function and interpretation of traditional agles models as S-
functions are given in Section 3. Section 4 first introduces the term mismedblem in search,
and then proposes a kernel method for learning a robust relevanad toatkal with the problem,
such as Robust BM25. Section 5 defines S-kernel and proposastearsimilarity function with
S-kernel. Section 6 describes how to implement the learning Robust BM2®dheBection 7
reports experimental results and Section 8 concludes this paper.

2. Related Work

Kernel methods, including the famous Support Vector Machines (SVMpiik, 1995), refer to
a class of algorithms in machine learning which can be employed in a varietyksf sash as
classification, regression, ranking, correlation analysis, and prinaphgonent analysis (Hofmann
et al., 2008; Scblkopf and Smola, 2002). Kernel methods make use of kernel functibihwvnap
a pair of data in the input space (Euclidean space or discrete set) intoatiieefspace (Hilbert
space) and compute the dot product between the images in the featuee Bfaty kernels have
been proposed for different applications (Zhou, 2004; Vishwama#mal Smola, 2004; Haussler,
1999; Watkins, 1999; Gartner et al., 2003; Kashima et al., 2004). @tiomal kernels are defined
over one single input space and are symmetric and positive semi-definikeketihel function is
called Mercer kernel when it is continuous. The similarity function, S4ien¢ which we define in
this paper, is related to the conventional kernel function. An S-functidafised as the dot product
in a Hilbert space between the images of inputs from two spaces, andentiomal kernel function
is defined as the dot product in a Hilbert space between the images of fmputthe same input
space. If the two spaces in an S-function are the same, the S-functioméga kernel function.

Koide and Yamashita (2006) defined a similarity function called asymmetric kemdeapplied
it to Fisher’s linear discriminant. The asymmetric kernel defined by KoideYamdashita (2006)
is similar to S-function. We use the term S-function instead of asymmetric kirrikis paper,
because further investigation of the properties of S-function (or asynwketnel), particularly the
necessary and sufficient condition, is still necessary.

The learning of a similarity function between pairs of objects has been studiedn the pair
of objects are from the same space, the similarity function becomes a positielsfinite kernel;
a typical approach is kernel learning (cf., Lanckriet et al., 2002;hBetcal., 2004; Ong et al.,
2005; Micchelli and Pontil, 2005; Bach, 2008; Cortes, 2009; VarmaRaduli, 2009). Lanckriet
et al. (2002) as well as Bach et al. (2004) have proposed methodsuitiple kernel learning,
in which the optimal kernel (similarity function) is selected from a class of lireenbinations
of kernels. Besides this, Ong et al. (2005) have proposed learnimgnelkfunction (similarity
function) by using kernel methods, in which the optimal kernel is chosen RKHS generated by
the ‘hyperkernel’. Our method can be viewed as an extension of Origsehathod. Recently, the
learning of a similarity function between pairs of objects from two differgaces has also emerged
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as a hot research topic (cf., Abernethy et al., 2009; Grangier angi®&e2008). In this paper, we
propose a kernel approach for performing the learning task.

Term mismatch is one of the major challenges for search, because mosttctditienal rel-
evance models, including VSM (Salton and McGill, 1986), BM25 (Robertdaad.£1994), and
LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004), are baseterm matching and the rank-
ing result will be inaccurate when term mismatch occurs. To solve the problmistic methods
of query expansion or (pseudo) relevance feedback (cf., SalwmBackley, 1997; Xu and Croft,
1996; Salton and McGill, 1986; Baeza-Yates and Ribeiro-Neto, 1999aMitral., 1998; Broder
et al., 2009; Zhuang and Cucerzan, 2006) and Latent Semantic lgdg&h) (Deerwester et al.,
1990) or Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1989¢ theen proposed and
certain improvements have been made. The former approach tackles btenped the term level
and the latter at the topic level. In this paper, we demonstrate that we caraleglevance model
Robust BM25 to address the term mismatch challenge at the term level. Theddzobust BM25
is also an S-function.

Click-through data, which records the URLs clicked by users after thesrygsubmissions
at a search engine, has been widely used in web search (Agichtein 20G8;, Joachims, 2002;
Craswell and Szummer, 2007). For example, click-through data hasuseehnin the training of
a Ranking SVM model, in which preference pairs on documents giverieguare derived from
click-through data (Joachims, 2002). Click-through data has also keshfar calculating query
similarity, because queries which link to the same URLSs in click-through data emagsent the
same search intent (Beeferman and Berger, 2000; Cui et al., 2008V, 2002). In this paper,
we use click-through data for training a Robust BM25 as well as calculgtiegy similarity.

Learning to rank refers to supervised learning techniques for catisigiranking models using
training data (cf., Liu, 2009). Several approaches to learning to raa& heen proposed and it
has become one of the important technologies in the development of moderh segines (e.g.,
Herbrich et al., 1999; Joachims, 2002; Crammer and Singer, 2001wagand Niyogi, 2005;
Freund et al., 2003; Rudin et al., 2005; Burges et al., 2006; Cao et0fi§; Xu and Li, 2007;
Cao et al., 2007). The method for learning Robust BM25 in this paper lsanba viewed as a
learning to rank method. Robust BM25 runs on the top of conventionaliteato rank methods.
Specifically, it trains a ‘re-ranking’ model online to deal with term mismatchijeMtonventional
learning to rank methods train a ranking model offline for basic ranking rmathod of learning
Robust BM25 is similar to Ranking SVM proposed by Herbrich et al. (18®@)Joachims (2002),
a popular learning to rank algorithm. However, there are some diffese ko example, the Robust
BM25 method uses a different kernel function.

3. Similarity Function

This section describes the definition and properties of S-function, the signilanction between
pairs of objects of different types.

3.1 Definition

An S-function measures the similarity between two objects from two diffemantes. It is in fact
the dot product between the images in the feature space mapped fromjegtsab the two input
spaces.
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Definition 1 (S-function) Let X and 9" be two input spaces, an@l be a feature space (Hilbert
space). S-function is a function K x 9" — R, satisfying Kx,y) = (¢x(X),dy(y))4 forall x € X
and ye 9, wherepx anddy are mapping functions fromX and 9’ to #, respectively.

A positive semi-definite kernel is defined as a functkof,-) : X x X — R, which satisfies
that there is a mapping(-) from X to a Hilbert space# with inner product< -,- >, such that
VX, X € X, K(x,X) =< @(x),p(X') >,. A positive semi-definite kernel measures the similarity of
pairs of objects in a single space by using the dot product of their images ilberttspace. In
contrast, S-function measures the similarity between pairs of objects in twoatiffspaces. If the
two input spaces (also the two mapping functions) are identical in Definitidheh S-function
becomes a positive semi-definite kernel. Moreover, S-function alsodmas properties similar to
those of positive semi-definite kernels, as shown below.

3.2 Properties

S-function has properties as shown below; they are similar to those inrdtmval positive semi-
definite kernels, but there are also differences. Note that for a nbowel kernela must be non-
negative in property (1) of Lemma 2. The properties will enable us to agststnore complicated
S-functions from simple S-functions.

Lemma 2 (Properties of S-function) Let ki (x,y) and k(x,y) be S-functions otk x 9, then the
following functions k X x 9" — R are also S-functions: (1 - k; (for all a € R), (2) ki + ko, (3)
ki - ko.

Proof Sincek(x,y) and kp(x,y) are S-functions, suppose thiat(x,y) = (¢%(x),d(y))1 and
ka(x,y) = (9%(X),02(y))2, where(-,-)1 is the dot product irN;-dimensional Hilbert space and
(-,-)2 is the dot product ifNo-dimensional Hilbert spacé; andN, can be finite or infinite.
Letdy;(-) anddy;(-) be theh elements of vectory (-) anddd (-), respectivelyi(= 1,2, ..., Ny),
and¢%;(-) and?;(-) be theit" elements of vectorg? (-) andd3(-), respectivelyi(= 1,2,...,Ny).

(1) Letdl (x) =a-d%(x), we obtaina - kg (x,y) = (d%'(x), 0 (y))1, which proves that - k; is an
S-function,va € R.

(2) Let dx(x) = (0% (x),$%(xX)), and dy(y) = (d3(y),93(y)), we obtain (dpx(X),dv(y)) =
(0% (%), 05 (¥))1 + (0% (%), 05 (y))2 = ka(X,y) + k(X y), which proves thak; + k; is an S-
function.

(3) Letdx(X) = ok (X) ® 0% (X) anddy (y) = b (y) @92 (y). dx(X) is a vector whose elements are
{0%i(¥)0%;(¥)}, 1<i <N, 1< j <N2anddy (y) is a vector whose elements &iy;(y) 07 (y)},
1<i<Ng, 1<j <N, We obtain

N N

D 3 Bkl0%, 098710 ()
1I=1)=

(0x(, v (¥)
Nl N2

= 3 B0I0H() 3 05097,
i= =

I\
= _Z‘¢>l<i(x)¢\l(i(y)k2(xv y)
= k1 (X, Y)ka(X,Y),
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which proves thak; - ks is an S-function.

3.3 Relevance Models as Similarity Functions

Traditional relevance models, including VSM (Salton and McGill, 1986), BNRobertson et al.,
1994) and LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 20@4)) be viewed as S-functiofs.
In fact, all these models measure the similarity of a query and document fueny gpace and
document space. In VSM, query space and document space ard tedbhe same space, while in
the other two models, query space and document space are two difpasets.

3.3.1 VSM

Let Q and D denote query and document spaces. Each dimension in the two spaesponds
to a term, and query and document are respectively representedtass\vedhe two spaces. Let
H denote a Hilbert space endowed with dot produgh (it is in fact ann-dimensional Euclidean
space whera is the number of unique terms).

Given queryg € Q and documend € 9, VSM is calculated as

VSM(q,d) = (6> (a), 95>V (d)),
where¢*M(q) and¢ySM(d) are mappings tdf from Q andD, respectively.
0&M (@) =id f(t)-tf(t,q)
and
po(d) =idf(t)-tf(t,d),

wheret is a termtf(t,q) is the frequency of terrhin queryq, tf(t,d) is the frequency of terrh
in documend, id f (t) is the inverse document frequency of ternThat is to say, VSM is a linear
positive semi-definite kernel, and is an S-function as well.

3.3.2 BM25
Given queryg € Q and documend € D, BM25 is calculated as

BM25(q,d) = (68"2°(d), $5">>(d)), ¢y
where¢d“#>(q) and¢g¥'?(d) are mappings td/ from Q and D, respectively.

(ks+1) xtf(t,q)

BM25, .\ _
¢Q Q= ket ()

and
(k1+1) xtf(t,d)

ke (1—b+b- leni(d) ) Ftf(t,d)

avgDocLen

¢5"*°(d)e = id f(t)

wherek; > 0, ks > 0, andb > 0 are parameters. Moreover, (e is the length of documert and
avgDocLen is the average length of documents in the collection.

1. “ The matching function between a query and document should beededis an asymmetric function.” - Stephen
Robertson, personal communication.
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3.3.3 LMIR

We use Dirichlet smoothing as an example. Other smoothing methods such ak-b&dircer (JM)
can also be used. Given quar¥ Q and documend € D, the LMIR with Dirichlet smoothing is
calculated as

LMIR (q,d) = (" (), 5" (d)),

wheregg"'® (q) andgs"'R (d) are(n+ 1)-dimensional mappings t& from Q andD, respectively.
Fort=1,2,...,n, @g""" (q): and@"'R (d); are defined as

dg""R (q) =tf(t,q)

B tf(t,d)
5 @) =tog (1+ 1),

wherep > 0 is a smoothing parameté(t) is the probability of ternt in the whole collectionP(t)
plays a similar role as inverse document frequeddyt) in VSM and BM25. The(n+ 1)!" entries
of $5"'% (q) anddp"'R (d) are defined as

and

08" (a)n+1 = len(q)

and u
LMIR
5 (d)nt1=1log len(d) + 1’
where leriq) and lerfd) are the lengths of queryand documend, respectively.

There are several advantages of applying the similarity function view tolseRirst, it gives a
general and unified framework to relevance models. Although BM25 afidRlare derived from
different probability models, they work equally well in practice. It was diffi to understand the
phenomenon. The S-function interpretation of the relevance modelsvea better explanation of
it. BM25 and LMIR are nothing but similarity functions representing quey@cument matching
with different formulations. Second, it is easy to make an extension of theational relevance
models based on the S-function definition. In (Xu et al., 2010), we showthkaconventional
relevance models can be naturally extended from unigram based modeaisamrbased models to
improve search relevance, with the S-function interpretation. In this papetemonstrate that we
can deal with the term mismatch problem in a principled way on the basis ofcidan

An S-function measures the similarity of pairs of objects from two differpates. It is an es-
sential model not only for search, but also for many other applicatiartsasicollaborative filtering
(Abernethy et al., 2009) and image retrieval (Grangier and Bengi®)200 the tasks, there exist
two spaces and given an object in one space the goal is to find the most ¢melgéaant) objects
in the other space. The spaces are defined over query and docuserand item, and image and
text, respectively. In all these problems, the model can be represenéedSfunction.

4. Learning a Robust Relevance Model

In this section, we first describe term mismatch, then propose using R8lI2& to deal with term
mismatch, and finally propose employing a kernel method to learn Robust BM25
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yutube yuotube yuo tube

ytube youtubr yu tube

youtubo youtuber youtubecom
youtube om youtube music videos| youtube videos
youtube youtube com youtube co

youtub com you tube music videos yout tube

youtub you tube com yourtube your tube

you tube you tub you tube video clips
you tube videos | www you tube com WWwWw youtube com
www youtube www youtube com www youtube co
yotube www you tube www utube com
ww youtube com| www utube www U tube

utube videos our tube utube

u tube my tube toutube

Table 1: Example queries representing search intent “finding YouTelsite”.

4.1 Term Mismatch in Search

Search is basically based on term match. For example, if the query is fSaocghe term “soccer”
occurs several times in the document, then the document is regardedesarite The relevance
models of VSM, BM25 and LMIR will give high scores to the document anddbeument will
be ranked highly. This term matching paradigm works quite well. Howeverséhcalled term
mismatch problem also inevitably occurs. That is, even if the document angi¢hg are relevant,
but they do not match at term level, in other words, they do not share attemthey will not be
viewed as relevant. For example, if the query is “New York” and the docacentains “NY”, then
the document will not be regarded relevant. Similarly, “aircraft” and ‘lainp” refer to the same
concept; but if one of them is used in the query and the other in the docuthentthe document
will be considered irrelevant. Term mismatch due to the differences in ssipres including typos,
acronyms, and synonyms can easily happen and deteriorate the perderaisearch.

In web search, users are more diverse and so are the web contemterm mismatch problem
becomes more severe than traditional search. Although modern segioksaxploit more so-
phisticated models for retrieval and ranking, they still heavily rely on the teatthing paradigm.
Therefore, term mismatch is still one of the most critical challenges for watzlse For example,
we have observed over 200 different forms for representing the saaneh intent “finding YouTube
website” from the query log of a commercial web search engine. Table kdiste examples.

The relevance models of VSM, BM25, LMIR are all based on term freqgies oft f (t,d) and
tf(t,q). If the query and document share a terrthen the term frequencies will be non-zero values
and the relevance score between the query and document will becomeThighis, the value of
the S-function between the query and document will be large. When term tolsimecurs, either
tf(t,d) ortf(t,q) will be zero, and the relevance score will be low, although it should nobbins
that case, the value of S-function will be unnecessarily small.

More generally, term mismatch corresponds to the fact that some S-funetices are reliable
while the others are not. The question is whether it is possible to ‘smooth’ fhaclen values
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based on some training data and to do it in a theoretically sound way. Thel k@proach that we
propose in this paper can exactly solve the problem.

4.2 Robust BM25 Model

We try to learn a more reliable relevance model (S-function) from datarmiddel is an extension
of BM25 but more robust to term mismatch. We call the model ‘Robust BM¥#thout loss of
generality, we use BM25 as the basic relevance model; one can easilg éx¢égiechniques here to
other relevance models.

We give the definition of Robust BM25 and then explain why it has the dlifyaio cope with
term mismatch.

Robust BM25 (RBM25) is defined as follows

N

krewes(0,d) = 'Zldi -kemzs(0, d)ko(g, 6 ) ko (d, di ) kemzs(di, di), 2

wherekgmzs(0, d) is the BM25 modelkg : Q x Q — R andkp : D x D — R are positive semi-
definite kernels in query space and document space, which repoesagtsimilarity and document
similarity, respectively.N is the number of training instances{.on}i’\':1 are weights and can be
learned from training data. In fact, Robust BM25 is also an S-functiomtieasures the similarity

of querygand documerd through a dot product in a Hilbert space, as will be explained in Section 5.

Here we assume théiguzs(g,d) > 0,Vg € Q,d € D, otherwise, we can add a small positive
valuee to Equation (1). Furthermore, we assume thatkh(-,-) <1 and 0< kp(-,-) < 1.

Robust BM25 is actually a linear combination of BM25 scores of similar quaressimilar
documents. Because it is based on smoothing, it can be more robust,|pdstiatnen the weights
are learned from data.

Figure 1 gives an intuitive explanation on why Robust BM25 can effelgtideal with term
mismatch. Suppose that the query space contains queries as elements trellsanel function
ko as a similarity function. Given queny, one can find its similar querie based orkg(q, ;)

(its neighbors). Similarly, the document space contains documents as el@ndritas the kernel
functionkp as a similarity function. Given documethtone can find its similar documerdsbased
onkp(d,d;) (its neighbors). The relevance model BM25 is defined as an S-funatiovelen query
and document over the two spaces. Term mismatch means that the BM2¥kgsgai(e, d) is not
reliable.

One possible way to deal with the problem is to use the neighboring qugéesl documents
di to smooth the BM25 score @f andd, as in the k-nearest neighbor algorithm (Cover and Hart,
1967; Dudani, 1976). In other words, we employ Kaeearest neighbor method in both the query
and document spaces to calculate the final relevance score (cf., Biguikhis is exactly what
Robust BM25 does. More specifically, Robust BM25 determines théngrsicore of queryg and
documentd, not only based on the relevance score betweandd themselves (i.ekgmzs(q, d)),
but also based on the relevance scores between similar qaeaes similar documentd; (i.e.,
ksm2s(0i, di)), and it makes a weighted linear combination of the relevance scores (2).

To help further understand why Robust BM25 can tackle the term mismabttepn, we give
an example. Ifgis “NY”, and d is about “New York”, therkgmzs(q,d) will fail to match them
because andd do not share any term. On the other handy is “New York”, and we know that
g andq are similar ko(q,q') is high), andkgmzs(d',d) should have a high matching score, then

1437



query space document space

kBMZS(‘]a d)

ko(4, q;) kp(d, d;)

ksns(; d))

Figure 1: Robust BM25 deals with term mismatch by using the neighbors iy gpace and doc-
ument space.

we can uségmzs(d,d) to boostkguzs(q,d). Note here that we assunde= d’ andkp(d,d’) = 1.
Therefore, Robust BM25 can overcome the term mismatch problem anerfoutp conventional
IR models.

4.3 Learning Robust BM25

We learn the weight$o(i}i’\‘:l in Robust BM25 by using training data and a kernel method. In the
kernel method, we use the following kernel Qnx D:

knemzs((0,d), (¢, d")) = kemzs(d, d)ko(a, d ko (d, dkemas(d, d), 3)

wherekgmzs(q, d) is the BM25 modelkg andkp are the query and document similarity kernels.
Suppose that the reproducing kernel Hilbert space (RKHS) gedebgt&gmzs is H,, .-
Given some training dat(q;, d;,r;) iN:1 wherer; represents the relevance degree between guery

and documendi;, the learning problem is then as follows

1
argmin —

N
A
L(K(a, dh),r) + S KI5 (4)
kE%HBMzsNZl R 2 Heremzs

wherel(-,-) is a loss function and - || 5 is the norm defined it ..
HBM

According to the representer theoreﬁ] of kernel methods (Hofmann 208B; Scklkopf and
Smola, 2002), the optimal relevance mokglqg, d) has exactly the same form as Robust BM25 in
Equation (2). _

Robust BM25 (2) is also an S-function, becaliggmzs (3) belongs to a specific kernel class
referred to as S-kernel in this paper.

5. S-kernel

In this section, we give the definition of S-kernel and also explain theckemathod of learning an
S-function using an S-kernel.
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Suppose that we are given training date: {(x,yi),ti }}.;, wherex € X andy; € 9 are a pair
of objects, and; € 7T is their response. The training data can be that for classification, sagmnes
or ranking. Suppose that the hypothesis spacis a space of S-functions. Our goal is to learn
the optimal S-function from the hypothesis space given the training datacow&der employing
a kernel method to perform the learning task. That is, we specificallyrasshat the hypothesis
space is also an RKHS generated by a positive semi-definite kernel.

The learning problem then becomes the following optimization problem:

13 A2
argming 2 1(k(x. ). 1) + 5 Ikl (5)
whereA > 0 is a coefficient,X is a subspace of S-functions endowed with ndfm|4, and
||k||x denotes regularization on spaggé Here X is also an RKHS generated by a positive semi-
definite kernelk : (X x 9") x (X x9") — R, that is, for each S-functiok(x,y) € X, k(x,y) =
<k(7 )7 k((, )7 (va))>7C
According to the representer theorem of kernel methods, the optimal sobftjmoblem (5) is

in the form
N

K*(X,y) = ZlOliE((Xi,yi)a(XaY)),

wherea; € R,1 <i <N, andN denotes the number of training instances.

The question then is whether there exists sp&ger equivalently kernek. We show below
that it is the case and refer to the kerkels S-kernel.

We formally define S-kernel and give two families of S-kernels.

Definition 3 (S-kernel) Letx and 9" be two input spacedz((x,y), (X,Y)) is called S-kernel, if it
has the following properties. (K: (X x 9) x (X x 9") — R is a positive semi-definite kernel. (2)
All the elements in the RKHS generatedkigre S-functions oX and?’.

If the two input spaced’ and9)” are identical in Definition 3, then S-kernel degenerates to the
hyperkernel proposed by Ong et al. (2005).
We give two families of S-kernels based on power series and multiple kernels

Theorem 4 (Power Series Construction)Given two Mercer kernels X x X — R and k : 9" x
9 — R, for any S-function ,y) and{ci}{>, C R*, ke defined below is an S-kernel.

ke ( (x,Y)) ; g(%,y) (kx (%X )k ( y,)/) (x,Y), (6)

where the convergence radiusof o Gi&' is R, [kx (x,X)| < VR, |ky(y,¥)| < VR, for any xx,y,y.
Theorem5(MuItlpIe Kernel Constructlon) Given two finite sets of Mercer kernelsx K=

{K(x,x)}", and K, = {KY(y,y) }_,. For any S-function (x.y) and {;}, C R*, ky defined
below is an S kernel.

ka ((x.Y), (X)) = Zx g(x, YK (x, XK' (%, Y)g(X.Y). (7)
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rank URL click
1 www.walmart.com Yes
2 en.wikipedia.org/wiki/Wal*Mart No
3 www.walmartstores.com Yes
4 instoresnow.walmart.com No
5 mp3.walmart.com No

Table 2: A record of click-through data for query “walmart”. Only the togBLs are shown.

Proofs of Theorem 4 and Theorem 5 are given in Appendix A and AgipeB, respectively.

Note that if spaceX and spacée)” are identicalkx andky are identicalkiX andk,-Y are identical
for any 1<i < n, andg(x,y) = 1, thenkp andky are exactly the hyperkernels given in Section 4.1
and Section 4.3 respectively by Ong et al. (2005).

With the theorems one can easily verify that the following kernel is an Sekern

9%, y)kx (%, X )ky (v,y)9(X,Y), (8)

whereg(x,y) is an S-function, anllx (x,x") andky (y,y') are positive semi-definite kernels on spaces
X andy’, respectively. In fact, the S-kernel in Equation (8) is a member of the fawifi&-kernels
in both Equation (6) and Equation (7).

It is obvious that in the learning of Robust BM25 (4), we spedify,y) as BM25 (an S-
function), andkx andky as query similarity kernetg and document similarity kernéb, respec-
tively. Therefore, the learning problem (4) is a specific case of legmiith S-kernel (5), and
Robust BM25 (2) is an S-function.

Basilico and Hofmann (2004) propose a pairwise kernel for collalveréitiering. The pairwise
kernel is defined akc((u,i), (U,i")) = ky (u,u’) -k (i,i"), whereky andk; are kernels defined on the
spaces of users and items, respectively. Obviolglys an S-kernel and their learning problem is
another specific case of learning with S-kernel (5).

6. Implementation

In this section, we describe a specific implementation to learn Robust BM25 (4)

To learn Robust BM25, we need to decide the query simildgityg, '), document similarity
kp(d,d’), training data, and optimization technique. We explain one way of implementing them.

Click-through data has been proven to be useful for improving seatetance (cf., Cui et al.,
2003; Joachims, 2002). An instance of click-through data consistsuerg,cp ranked list of URLS,
and a user’s clicks. Table 2 shows a click-through instance. In this taseiser submitted the
qguery “walmart” and received the ranked list of URLs, and the useratdiakn the URLSs at ranks
1 and 3 but skipped the URLs at ranks 2, 4, and 5. Every time when ehsisazonducted using a
search engine, this kind of data is recorded. The amount of click-thrdata is usually extremely
large. Obviously users do not click on URLs at random, but based anrédtevance judgments.
Though click-through data is noisy, it still conveys users’ implicit feetltiacsearch results.

To calculate query similarity, we represent query and URL click-throedgitionships in a bi-
partite graph in which queries and URLs are nodes in two sets and clickslges between nodes
in the two sets. A weight is associated with each edge representing the tothénof times that
the URL is clicked after the query is issued. Figure 2 illustrates a click-thrbigartite graph.
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______ W
R

URLs

Queries
8

Figure 2: Click-through bipartite graph.

We specifically define query similarity using co-clicked URLs in the click-tiglobipartite
graph. Intuitively, if two queries share many clicked URLSs, then they wiltdgarded as similar.
Since queries with the same search intent tend to be linked to the same URbs somiarity
defined in this way actually represents the degree of being the same sd#arth We calculate
the query similarity functiorko (g, ') as a Pearson Correlation Coefficient between the co-clicked

URLSs of two queries:
Tt (Ui—u)(vi —V)
ko(a,q) = , (9)
VI (U —0)2 /3 (v —V)?
whereu; andv; denote the numbers of clicks on URLby queriesg andq’ respectivelyuandv
denote the average numbers of clicksqadindq’ respectively, anch denotes the total number of
clicked URLs byg andd'. Note that query similaritkg (g, q') defined in Equation (9) is a positive

semi-definite kernel, because it is the dot product of two vedqtersta=% .  —_‘th-U
v vV p qe\m zi“:l(ui,g)z
and o A Yo Y in Rn.
NPT YTer

Our experimental results also show that by using the similarity function, oneeadly find sim-
ilar queries with high quality. Table 3 shows some examples of similar queries found by using our
method. In fact, with the use of click-through bipartite and query similarity nreasglifferent types
of similar queries can be found, including spelling error (e.g., “wallmart” twegalmart”), word
segmentation (“ironman” v.s. “iron man”), stemming (e.g., “knives” v.s. “&sifand “knife”), syn-
onym (e.g., “aircraft for sale” v.s. “airplanes for sale”), and agrar(e.g., “ucsd” v.s. “university
of california san diego”).

Document similaritykp (d,d’) is simply defined as the cosine similarity between the titles and
URLs of two documents, which is certainly a kernel (cosine similarity is the dodyct in an
Euclidean space).

Following the proposal given by Joachims (2002), we generate paimaiséng data from click-
through data. More precisely, for each qugryve derive preference paitg;",d.”), whered.” and
d~ mean that document’ is more preferred thad~ with respect to query; (e.g.,d; is skipped
even though it is ranked higher thd).

Finally, we take the pairwise training data as input and learn the optimal Sidan&obust
BM25. We use hinge loss as the loss function, the learning problem (4pdwmes

M A
argmin Zl [1_ (k(qiadi+) - k(qivdi_))] + + EHk”gﬁHBMZS’ (10)

kE%H BM25'

2. We evaluated the precision of several similar measures. the P&os@tation Coefficient and the Jensen-Shannon
Divergence work the best, followed by the Jaccard Coefficient.
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original query \ similar queries

wallmart wall mart, walmart, wal mart, walmarts

ironman iron man, ironman movie, irnman,
WWW.iron man.com

knives knifes, knives.com, knife outlet, knife

aircraft for sale| aircraft sales, airplanes for sale,

used airplanes for sale, used planes for sale
ucsd ucsd.edu, uc san diego, uscd,

university of california san diego

Table 3: Similar queries extracted from web search click-through data.

whereM is the number of preference pairs in the training data. Note that this is similamtariga
SVM (Herbrich et al., 1999). The major difference is that in our case dnedt function used is an
S-kernel.

According to the representer theorem and Equation (2), when usingigaitraining data, the
optimal solution is given as follows

kremes(d,d) = kemzs(g,d ZQ (9,6i) [kemas(ai, o ko (di", d) — kamzs(ai, d ko (di ™, d)],

(11)
where6; is a parameter to learn.
Reformulating the non-constrained optimization in Equation (10) as a coreiraptimization
by using Equation (11) and slack variablgs}, we obtain the following primal problem:

&+5 ) 88 W(i 12
a:{rg Tnlle |le ) ( )

kremes(Gi, 6i") — krenves(ai,d ) > 1—&;, & >0V,
where calculating//(i, j) using the reproducing kernel property is given by

Wi, ) = ka(ai, a;)- [kD(dﬁrvdr)kBMZS(qiadi+)kBM25(qj7dj+)_kD(diradJ )kemzs(Gi, " ) kemas(dj, dj )
ko (0, d;")kemzs(i, o )kemzs(0;, ;") + ko (d™, dj" )kemas(ai, ) kemzs(aj, d})].

With Lagrange multiplierdi}M, and{y;}M,, the objective function becomes

M
L:'ZEi Z 8i8; M(i, ] +ZI3| [1— & — (kremes(ai, d") — krewves(i, d; ZV@

Ij:l
M A M M
2,532,290 2 Z 2%
DifferentiatingL by & and6;, we have

oL
afzizl—Bi—Vi:Oa (13)
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and
o M .
% = Z(Aej_gj)‘wo,n:o. (14)

=
Thus, according to Equation (13), we have

yi=1-0;.

Sincef; = 0 andy; > 0, we have & 3; < 1. According to Equation (14), we have
M . - M . .
> AW, j) = BjW(i, ).
=1 =1

Substituting the above two formulas intpwe obtain the dual problem:

M 1 MM
argmax’y B — - BiBjW(i,j) st. 0<B <1 (15)
B, 2P 2 J; P .

By solving the dual problem (15) we obtain the optimal vall@6$}i"il. We can further get the
optimal valueg 8 }M ; by solving equation (14), and usi®g = +B*. Note that whef % (i, j))y.m

is not strictly positive, the solution of (14) is not unique. In such a case;am still taked: = l|3i*
as a solution for simplicity, because all solutions will make the objective funetibireve the same
minimum (12).

In online search, given a query, we first retrieve the queries similar todt) thdividually
retrieve documents with the original query and similar queries, combine thevestrdocuments,
train a Robust BM25 model using click-through data, and rank the dodismeéth their Robust
BM25 scores (note that a Robust BM25 model is trained for each quewien training Robust
BM25, we solve the dual problem (15) using a standard QP solver LODI@& time complexity
is of orderO(M?), whereM is the number of preference pairs. Since the number of retrieved
documents is small, a search with Robust BM25 can be carried out efficiemtyr experiments,
we observe that on average it takes abobtskconds per query to train a model on a workstation
with Quad-Core Intel Xeon E5410 2.33GHz CPU and 16GB RAM.

7. Experiments

We conducted experiments to test the performances of Robust BM25.

7.1 Experimental Data

In our experiments, we used two large scale data sets from a commerciageasdh engine and
an enterprise search engine running in an IT company. The two dataosesistoof query-URL
pairs and their relevance judgments. The relevance judgments can fextRdExcellent’, ‘Good’,
‘Fair’, or ‘Bad’. Besides this, we also collected large scale click-thfodgta from both search
engines. Table 4 shows the statistics on the two data sets. The click-thratagim thoth data sets
was split into two parts, one for learning query similarity and the other foniegrRobust BM25.

3. LOQO can be found dattp://www.princeton.edu/ ~ rvdb/logo/LOQO.html
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Web search Enterprise search
# of judged queries 8,294 2,864
# of judged query-URL pairs 1,715,844 282,130
# of search impressions in click-through 490,085,192 17,383,935
# of unique queries in click-through 14,977,647 2,368,640
# of unigue URLs in click-through 30,166,304 2,419,866
# of clicks in click-through 2,605,404,156 4,996,027

Table 4: Statistics on web search and enterprise search data sets.

7.2 Baselines

BM25 was selected as a baseline, whose parameters were tuned by esiafjdhtion set. Query
expansion (Xu and Croft, 1996) was also chosen as a baseline. Epamysion is a state-of-the-art
technique to tackle term mismatch in search. The key idea in query expansmads into the
original query terms extracted from relevant queries or documentss, Bwan though the original
guery and document do not share a term, after expansion, the quenjcisesl and it is likely to
be matched with relevant documents. On the other hand, query expansyoalsoasuffer from
the so-called topic drift problem. That is, irrelevant terms can be addee toritinal query. As a
result, the accuracy of search may drop, rather than improve. In sgrdta method can effectively
address the problem. First, similar queries mined from click-through datssatkin search, which
represent the same or similar intent. Thus, the documents retrieved are netyedibe relevant.
Second, the final ranking of results is based on Robust BM25 whichiiettapecifically for the
query using click-through data. Therefore, the accuracy of therming will be high.

In our experiment, we tried several different ways to conduct quepgiesion and chose the one
performing the best as the baseline. In our method, we first use the title mitsteclicked URL in
the retrieved result to do expansion. If there is no such a URL, we ugerthe of the most similar
guery to do expansion.

The pairwise kernel, which is initially proposed for collaborative filteringigico and Hof-
mann, 2004), was also chosen as a baseline. The difference beturemethod and the pairwise
kernel is that the pairwise kernel does not use a traditional relevandel ka25(q, d).

7.3 Evaluation Measures

As evaluation measures, we used Mean Average Precision (MAP)4Bé&ses and Ribeiro-Neto,
1999) and Normalized Discounted Cumulative Gain (NDCG) (Jarvelin arkcleimen, 2000) at
positions 1, 3, and 5, which are standard measures in IR.

MAP assesses the accuracy of a ranking algorithm by looking at hovitwaatlks relevant docu-
ments against irrelevant documents. MAP denotes mean average préaRjoAverage precision
is defined as

309 P(r) xrel(r)
AP = 75N el
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whereNy is the number of documents retrievae)(r) € {0,1}, and if the document ranked at
positionr is relevantyel (r) = 1, otherwiserel(r) = 0. P(r) is precision at position:

P(r) — Z[—l:el(l) )
Finally, MAP is defined as
> qAP(q)

#g
where # is the number of queries. If relevant documents are ranked higher tiedgvant docu-
ments, the value of MAP will be high.

NDCG is usually used to assess a ranking algorithm when documents havdemelivance
grades (e.g., “Bad”, “Good”, “Fair”, “Excellent”, and “Perfect'ziven a queryy, NDCG at posi-
tion nis defined as

DCG@n(q)

IDCG@n(q)’

MAP =

NDCG@n(q) =

where DCG@(q) is defined as

Ng orel(i)

DCG
@n(a ZI log,(i + 1

whererel(i) is the relevance grade of a document ranked at positiorhe DCG@n(q) score is
normalized by IDCG@(q), which is an ideal DCG@q) score when documents are ranked
decreasing order of their relevance grades.

Finally, NDCG is averaged over queries.

in

3 qNDCG@n(q)
#q

A high NDCG score means that relevant documents are ranked higherramtkiag list than irrel-
evant documents.

In our experiment, when calculating MAP, we view the documents with judgmBet$ect’ and
‘Excellent’ as relevant and the documents with the other three judgmentglasdmt.

NDCG@n =

7.4 Experimental Results

We trained a model for each query, as described in Section 6. On ayetagut 206 and 1747
training pairs were used for each query in web search data and ésgetpta, respectively. The
only parameteh in Equation (15) was heuristically set as 1. In fact, we found Xhddes not affect

the results so much. Table 5 reports the results on the web search dataemdise data. We can
see that Robust BM25 outperforms the baselines, in terms of all measutegttodata sets. We
conducted significant testsfest) on the improvements. The results show that the improvements
are all statistically significant (p-value 0.05). We conducted analysis on the cases in which Robust
BM25 performs better and found that the reason is that Robust BM2idaad effectively address
the term mismatch problem. The pairwise kernel outperforms BM25 and gxegnsion, which
indicates that it is better to learn a relevance model in search. Howevaatfilspance is still lower
than Robust BM25, suggesting that it is better to include BM25 in the finalaetgymodel, as in
Robust BM25.
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\ MAP NDCG@1 NDCG@3 NDCG@5
Robust BM25 0.1192 0.2480 0.2587 0.2716

Web search Pairwise Kernel 0.1123 0.2241 0.2418 0.2560
Query Expansion 0.0963 0.1797 0.2061 0.2237
BM25 0.0908 0.1728 0.2019 0.2180

Robust BM25 0.3122  0.4780 0.5065 0.5295
Enterprise search Pairwise Kernel ~ 0.2766 0.4465 0.4769 0.4971
Query Expansion 0.2755 0.4076 0.4712 0.4958
BM25 0.2745  0.4246 0.4531 0.4741

Table 5: Ranking accuracies on web search and enterprise setach da

Query wallmart

Similar queries| wall mart, walmart, wal mart, walmarts
Page http://iwww.walmart.com

Title Walmart.com: Save money. Live better
Rate Perfect

Table 6: Example 1 from web search.

7.5 Discussions

We investigated the reasons that Robust BM25 can outperform the lesselging the experiments
on web search data as examples. It seems that Robust BM25 carveffedtial with term mismatch
with its mechanisms: using query similarity and document similarity.

Our approach can effectively deal with term mismatch with similar queriesle Tagives an
example. The query, web page, and label are respectively “wallmanithnais a typo, hitp:
Iwww.walmart.com " with title “Walmart.com: Save money. Live better”, and “Perfect”, which
means that the page should be ranked in first position. There is a mismatatehefqwery and
page, the basic relevance model BM25 cannot give a high score to glee(ipate that there is a
difference between the query term “wallmart” and the document term “wélmapuery expansion
cannot rank the page high, either. The web pautp:fiwww.walmartstores.com " with title
“Walmartstores.com” is the most clicked web page with respect to the origieay gu the click-
through data. Query expansion uses the title to conduct term expansibis, tises the words in the
title. Because it does not have sufficient knowledge to break “Walmaetstarto “walmart” and
“stores”, query expansion cannot add good terms to the original guérgn query expansion adds
more terms to the original query, “walmart” will appear, but at the same time terises will also
be included. In contrast, our approach can effectively leverage siquketies such as “walmart”,
“wal mart”, and “walmarts” and rank the web page to first position.

Table 7 gives another example. The query is “mensmagazines”, which ik quéay and
does not have a similar query found in the click-through data. The weé satttp:/en.
wikipedia.org/wiki/List/_of/_men’s/_magazines " (referred to as Pagel) and the relevance
label is “Excellent”. There is a mismatch, because there is not sufficientledge to break query
“mensmagazines” into “mens” and “magazines”. As a result, BM25 caramt Pagel high. In
contrast, Robust BM25 uses similar documents to calculate the relevaresfi@ly, it uses a sim-
ilar web page http://lwww.askmen.com/links/sections/mensmagazines. html " (referred to
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Query | mensmagazines

Pagel| http:/len.wikipedia.org/wiki/List/_of/_men’'s/_magaz ines
Titlel | List of men’s magazines - Wikipedia, the free encyclopedia
Ratel | Excellent

Page2| http:/lwww.askmen.com/links/sections/mensmagazines. html
Title2 | AskMen.com - Men’s magazines

Table 7: Example 2 from web search.

Query | southwest airlines

Pagel| http://iwww.southwest-airlines.net

Titlel | Southwest Airlines

Ratel | Perfect

Page?2| http://lwww.southwestvacations.com/index.asp

Title2 | Southwest Vacations - Vacation Packages - Cheap Airline
Tickets, Hotels, Rental Cars, Activities & Attractions
Rate2 | Fair

Table 8: Example 3 from web search.

as Page?2), which contains the term “mensmagazines” in its URL. The origieay can match well
with Page2. Besides, Pagel and Page?2 are also similar because thegrhanen terms “men” and
“magazines” in titles. Therefore, Robust BM25 can assign a high scdétagel.

Compared with the pairwise kernel, Robust BM25 successfully leverthgedaditional match-
ing model BM25 when its score is reliable to reflect relevance betweely quelrdocument. We
show an example in Table 8. The query is “southwest airlines”. The twopagles arelttp:
Ilwww.southwest-airlines.net " (referred to as Pagel) with label “Perfect” ardtf)://www.
southwestvacations.com/index.asp " (referred to as Page?2) with label “Fair”. In the pairwise
kernel, the ranking score of Page2 is larger than Pagel. In RobugsBhbwever, the ranking
score of Pagel is larger. This is because the pairwise kernel doesmsitier the match between
guery and documents using BM25, while Robust BM25 does.

8. Conclusion and Future Work

We have formally defined a similarity function between pairs of objects fromdifferent spaces
and named it S-function. We have shown that traditional relevance modedsiichsproposed in
information retrieval can be viewed as S-functions. We have proposeivakernel method for
learning a robust relevance model as an S-function for search. @heelk model can deal with
the term mismatch problem which traditional relevance models suffer from. k&imel method

employs a new kernel called S-kernel. An S-kernel is a kernel thageaarate an RKHS which
is also a space of S-functions. We have provided a theoretical basteristructing S-kernels.
Finally, we have shown that we can apply our method to learn a Robust Bi2®I to deal with

term mismatch in search.

There are several directions for future research from the cuverkt
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1. S-function as generalization of kernelin this paper, we give a formal definition of S-function
and show that it is related to a positive semi-definite kernel. S-function issatstar to the
asymmetric kernel defined by Koide and Yamashita (2006). To make $idore general-
ization of a positive semi-definite kernel, there are still some open questianwéneed to
answer. For example, what is a necessary and sufficient conditientfen-argument func-
tion over two spaces to be an S-function? Is there a theorem like the Maesmem for
S-function?

2. S-kernel: We define two families of S-kernels in this paper, that is, to give two sufficiendi-
tions for a positive semi-definite kernel to be an S-kernel. It is still an opestion: what is
a necessary and sufficient condition for a positive semi-definite kel an S-kernel?

3. Similarity function learning: We employ a kernel method to learn a similarity function for
search. An interesting research direction is to study the general pratflsmilarity func-
tion learning, particularly, the learning of a similarity function for pairs of clge€rom two
different spaces. The learning task can be applied to a wide rangepbiéajpns and is
becoming a popular research topic.

4. Learning of S-Kernel: Our kernel method employs S-kernel which contains free parameters.
How to automatically learn the parameters from data, and thus a better S-fuiscéilso an
interesting issue.
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Appendix A. Proof of Theorem 4

Theorem 4 Given two Mercer kernelsxk X x X — R and k : 9 x 9" — R, for any S-function
g(x.y) and{c}i>, C RT, ke defined below is an S-kernel.

00

e((x.y): (X)) = 3 & gxy) (sx(x Xk (1) 9049

where the convergence radiusf (&' is R, [kx (X, X)| < VR, |ky(y,¥)| < VR, for any xx,y,y'.

According to Definition 3, to prove Theorem 4, we first need to proveﬁlsl@(b(, y),(X,y)) is
a positive semi-definite kernel. Note thgk, y)g(X,y') is a positive semi-definite kernel, since it is

symmetric and/{a} g, {(6,yi) Ly, 31j-1 00906, ¥)9(xj,¥j) = (FL1aig(x,¥i))? > 0. More-
over, for anyi € Z*, ¢ € R, ¢ (kx(x,X)ky(y,y'))" is also a positive semi-definite kernel. Hence,
cig(x,y) (kx(x,X)ky (y,y))' g(X,y) is a positive semi-definite kernel. Since the summation of posi-
tive semi-definite kernels is also a positive semi-definite kernel, we contthatlie-((x,y), (X,Y))

is a positive semi-definite kernel.
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Second, we need to prove that all elements in the reproducing kernettitizeeXp generated
by ke are S-functions. We need two lemmas:

Lemma 6 Suppose that (,y) is an S-function, andxkand k are Mercer kernels. Given any
finite example Se{(Xj,yj)}E\I:l C X xY9, and any{O(j}’j\‘:l CR, zﬂ-\'zlo(jkp((x,y),(xj,yj)) is an
S-function.

Proof

N

y), (X},})) = Zalg(x ) S 6 (ke xky (Y1) 9%}, ¥5)
£

M=
2
|
oMs

N o~
Z kP leyj))u

where

00

ke((%.Y), (X;,Y;)) = > G (kx (XK (%, Y1) 9%, j)-

i=
Sinceg(x,y) is an S-function, according to Lemma 2, to prcgi%glo(jip((x,y), (Xj,yj)) is an

S-function, we only need to show thgf‘zlajip((x, Y), (Xj,yj)) is an S-function.
For anyi > 0,i € Z*, since /Gy (x,X') and /GiK, (y,y') are both Mercer kernels, we obtain

VK (%, X) = (W (), Pk (X)) 55

and
ﬁkﬁ(yv)/) = (WY (), WY (V) s
wherel (-) : X — Hx and @i (-) : 9" — 7 are feature mappings, anty and # are Hilbert
spaces with respect tpl, andy,, respectlvely
Let # = 74, 0 () = Wi (x), andeln(y) = 33 ajg04,y;) Wk (X)W (v)Wh (¥). Note that
ol = TN, wherell, = z’j\‘:lo(jg(xj,yj)Lp&(xj)Lp{(T(yj) is a linear operator from to 4, = 4.

Thus, we have
N

Zlajci(kX(vaj)kY(yayj))ig(Xj7yj) = <¢IX(X)7¢IYN(y)>,H
=
LetH = Hox Hy X ... H x ...,

Ox X = H

X (%00, 0% (%), .., X (X)),

and

byn:Y — H
y—= (¢$N(y)7¢$N(y)’ e 7¢$N(y)7‘ . ')7
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we have

XJ>yJ Zl Z}CI kX X Xj kY yayj))lg(xhyj)

M=
%\‘F

— % S ajci(kx (%% kv (¥:¥7))'9(%.¥)
i=0j=1

= 5 (800 )

= (0x (%), dyn(Y)) 9

where the inner product it/ is naturally defined a§;> o(-,-) 5. Note thaty{”(-,-)s can be de-
fined only when(z, ..., %,...) € H, 5" o(z,2) 4 < . Obviously, for any € X andy € &, dx(x)
and¢y n(y) satisfy this condition. [ ]

Lemma 7 Given any two positive semi-definite kernels:kX x X - R and k : 9 x 9 — R.
Supposey : ) — H is the feature mapping of/k:,-). # is a Hilbert space endowed with inner
product(-,-) . Given any set$x }; C X and{y}}\, C 7, for an arbitrary ze 74, the following
matrix inequality holds:

(kx(Xi,Xj)(lij(yi),Z>}&<llJy(yj),Z> )N><N (kx(X| XJ)kY(ylayJ)<Z Z>}&)N><N .

Proof Sincekx(-,-) is a positive semi-definite kernel, following the conclusion given in Propasitio
4 by Hofmann et al. (2008), we only need to prove

(kv (¥, Y1) (2.2 55, — (Wy (%), D) 5, (WY (Y1), D 36 ) o

is positive semi-definite, which means given gy} | C R, we need to prove

) i (ky (Vi,Yi)(Z,2) a5, — (W (i), 2) o, (WY (Y)), 2 5 ) = O.

™=

Since
N N
z aiojky (¥i,Y))(2,2) 5, = z oo (Wy (Y1), Wy (Y))) 2 (Z.2) a5,
i,]=1 =1
N
= <Zlu Wy (i), 210( LIJY(y|)> (2,2) 4,
7
and
N N 2
> oWy (Vi),2) s (Wy (Y)), 2 5 = ((ZlaiUJY(yi)’Z)m) ;
i,]=1 i=
according to the Cauchy inequality, we reach the conclusion. |
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With Lemma 6 and Lemma 7, we can complete the proof of Theorem 4.
Proof Given a functiork(x,y) in %p, there is a sequendéy(X,y)} in %p such that

N
kn(x,y) = Z ajke((XY), (X},¥}))

8

_Z i9(x,y) % (ko (%, kv (1)) 9% ¥)

I‘

N
Z ojke((%,Y), (X},Yj));
(X,

K(x,y) = I|m Kn(X,Y),

wherekp((x,Y), (X}, ¥})) = 520G (kx (%X} kv (¥.¥7))' 9(X;,Yj)-
We try to prove thak(>i, y) is an S-func}ion. Leky (X,y) = ZF:J_GJ‘E—P((X, y), (xJ-,yj)), K(x,y) =
IMNSe KN (X Y) = IMNSe Kn (X Y)O(X,Y) = K(X,Y)O(X,Y), wherek(X,Y) = limn_.e kn (X, Y).
According to Lemma 2, we only need to prove tlﬁéx,y) is an S-function. From the proof

of Lemma 6, we knowky (X,y) = (dx (X), byn(Y)) s, Where# is a Hilbert space determined by
{ VEki o

Ovn(Y) = (OINY), OYN(Y), -, DY N(Y), ),

and we definety = HP x ... HE x ..., Hy = HI x ... HE x ..., and

N H — H
z2=(20,...,%,...) = Tn(2) = (M0, ..., TKZ, ...),

where #, and #( are the Hilbert spaces with respect to feature mappiplgs) and g, (-) de-
fined by Mercer kernels/Gik, and \/GK), respectively{-,-) 5 is the inner product defined tA,
andrz« = 3111 0G9(Xj, Vi)W (%)) (WS (Y1), Z) 46 The inner products foff = 740 x ... 4

and Hy = HP x ... HS x ... are naturally defined a5iZo("s-)sg and FiZo(:,-) 4, respectively.
Note that to make the inner products well defined, we require that ifgut ., z,...) satisfies
Yi—0(Z,2) s < . From the following proof, we will see that this condition will guarantee that
S 20(TNZ,TNZ) s < . Thus,My is well defined.

Then the key point we need to prove is thak } is a Cauchy sequenceéz € 7, ||z|| 4, < o,

ITn(2) ||§{x=_i3 > oG Y)X), Vi) vk (4 X)) (W (V) 2) gy (WY (Y1), 2) -

k,J=1
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Using the conclusion given by Lemma 7, we have
00t 9%, YR G(XG Y3 /Gik (X, X5 ) (WY (Vi) Z) 0 (WY (Y1), 1) 5

00t 9%, YR)G(XG V)G (ko (%, Xi Yk (Vi V) (2052 o

00
2
i=0k,]=1

3 N 0
( z ok 9%k, Vi) 9% ¥ ) Gi (K (%, X ) K (i YJ))> (_;<Zi7zi>}[yi> :

=1

Il
Y

Thus,
I TN (2) (15 < % Z Ot 9 0% YK)9(X}, Y1) G (kx (% X))k (Vi Yi)' [l 25, -

k,J=1
Therefore,

o N

TN ||2<20 S ot 9%, Vi) g (X 7 (kx (0 %) kv (Yic, V)
k,J=1
N
=3 aajke( (oY), (X3, Y5)).
k=1

Note thatz’@szlakajip((xk,yk), (Xj,Yj)) is just the square of the norm kf(x,y) in %p. From
the fact that{kn (X, y)} is a Cauchy sequence &kp, we know that{I"y } is also a Cauchy sequence.
Then there is a linear operatbrwhich satisfied” = limy_,'n. The  convergence is in the norm.

Thus, for every(x,y) € X x 9, limy_ew kn(X,Y) = (dx(X), by (¥)) 5 = K(X,y), Wheredy is given by

(oS, ... rkgk, ).

Appendix B. Proof of Theorem 5

n

Theorem 5 Given two finite sets of Mercer kernels K {k*(x,x)}" , and K = {K/ (y,y)} ;.

For any S-function (,y) and{c¢}]' ; CR™, kM defined below is an S-kernel.
EM((X7 y)’ (X/7y,)) = 'ZlCi ' g(X7 y)kix (X7 X/)kiY(y7y/)g(X,ay,>

First, sincevi, cig(x,y)k*(x,x)kY (y,y)g(X,y') is a positive semi-definite kernel, and the sum-
mation of positive semi-definite kernels is also a positive semi-definite kerreelknow that
km((%,Y), (X,Y)) is a positive semi-definite kernel @it x ") x (X x ).

Second, we need one more lemma to prove that all elements in the reprodenied Kilbert
spaceXy generated by are S-functions:

1452



LEARNING A ROBUST RELEVANCE MODEL FORSEARCH USING KERNEL METHODS

Lemma 8 Suppose that (&,y) is an S-function, andxkand k- are Mercer kernels. Given any
{(xj,y) g € X x o, and any{a;}iL; CR, 35 ajkm((xy), (%, ¥)) is an S-function.

Proof

_ N n
ajku((x,y), (x;,¥))) = Zng(xay)_Zlcikix(xaxj)kiy(y,yj)g(xj,yj)

Trv1z

N -
25 kM thﬂ)-

Sinceg(x,y) is an S-function, according to Lemma 2, to proz/ﬁlo(jEM((x,y), (Xj,Yj)) is an S-

function, we only have to prove thgt'j\':lo(jnIZM((x, y),(Xj,y;)) is an S-function.
For any O<i < n,i € Z, since ,/Cik*(x,X) and ,/GkY (y,y) are both Mercer kernels, we obtain

VaK (% X) = (LU&(X)AU&(X’)M» VEK (%.Y) = (WY (), WY (V) 2

whered (-) : X — Hx and @i (-) : 9" — #; are feature mappings, ant and # are Hilbert
spaces with respect tpl, andyy,, respectlvely

Let # = 74, 0 () = Wi (x), andoln(y) = )1 ajg0,y;) W )W (v)wh,(¥). Note that
Ol = T, wherery = SNy ojg(x;, yj)W (x)W, ' (y;) is a linear operator fromt to 74, = #4.
Thus, we have

Z oG 06 X))K (%Y, Y1) = (0% (), By n(Y)) 54

Let H = Hy x Ho x ... Hp,
dx (X)X = H
X (0% (X), 0% (X); -, % (X)),

and
dyn(y) " — H
y— (q)%N(y)a ¢$N(y)v e ’¢$N(y))7
we have
N - N n
ajku((x,y), (x},¥5)) = 3 @ Zlclkix(x XK (. Y1)9(x), ;)
=1 =1 i=
n N
= ;Z X (%K (%, y1)9(%,5)
= Z<¢x( X), Y n(Y)) 54
= (0x(X), dvN(Y)) 31
where the inner product i/ is naturally defined a§{' (-, -) 5. [ |
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We prove thaky is an S-kernel on the basis of Lemma 8 and Lemma 7:
Proof Given a functiork(x,y) in Ky, there is a sequendéy(X,y)} in %u such that

N
y) = ZlajkM((XJ)v(Xj,}’j))
J:
N n
= Z a;g(xy) _;Cikix(x>xj)kiY(yayj)g(Xj7yj)

N o~
25 kM tho);
(,

k(x,y) = I|m Kn(X,Y).

We try to prove thak(x,y) is an S-function. Leky(x,y) = z'j\':lo(jEM((x,y),(xj,yj)), K(x,y) =
IMN—e kn (X, Y) = lIMNSe K (X, Y)G(XY) = K(X,Y)9(X,Y), wherek(X, y) = limn_e kn (X, Y).

According to Lemma 2, we only have to prove tké&t,y) is an S-function. From Lemma 8, we
know kn (X,Y) = (§x(X), pyn(Y)) s, WhereH = Hy x Ho x ... Hy is a Hilbert space andf is the
Hilbert space of the feature mapping qﬁkix(', )

Ovn(Y) = (DRy (), 0Zy (Y), -, Oy (V).
and we defingtty = HG x ... H, Hy = HE x ... HP, and
In :Hy — Hy
z2=(z1,....,z0) ~ Tn(2) = Tz, ..., Rzn),

where #; and 7 are the Hilbert spaces with respect to feature mappipigs) and g, (-) of
Mercer kernels,/ck* and \/Gk', respectively,(-,-) ;¢ is the inner product defined ifg, and

Mh(@) = 30 0a0x5, Y)W () (W (Y1), 2) ¢
Then the key point we need to prove is thaf } is a Cauchy sequencez € 44,

ITn(Z) Hﬁfxzzl Z k09X, Vi) IX 1) v/ETK (X, X)) (W (Vi) 2) g (WY (Y1), 2) g

k=1

Using the conclusion given by Lemma 7, we have

Q0% YK)G(X], Y1) v/GRE O, X5) (W (k) 2 5 (W (Y1), 28)

[

DWD
=~

A

a9 0% Yi) 9%, Vi )G (%, X)) (Vi V) (252 g

™Mz M z

Il
S x
-

1

Gkajg(xk,yk)g(xja)’])clk; (X<, xj)k,-Y(yk,yj)> <—§1<ZHZ|>}Q> .

N

R
[

~

™Mz
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Thus,

n

N
I TN (D) (15 < Zl > o9 (% Y G(XG, Y1) ek (O XK' (Vi Yi) [ 215, -
i=1k,J=1

Therefore,

n

N N _
| T [IP< Zl > 0kt (X, Yi)I(Xj 5 GRS (X, X1 K (Vi i) = > o0k (X Yk) (%, Y)-

i=1k]=1 k=1

Note thatzl’zszlakajEM (%, Y), (Xj,Yj)) is just the square of the norm k§(x,y) in K. From
the fact that{kn(x,y) } is a Cauchy sequence iy, we know that{I"y } is also a Cauchy sequence.
Then there is a linear operatbrwhich satisfied” = limy_, 'n. The convergence is in the norm.

Thus, for every(x,y) € X x 9, k(x,y) = imn_w kn (X, Y) = (dx(X), by (Y)) 5, Wheredy is given by
(Feg,...,r"yy).
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