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Abstract

Bayesian learning methods have recently been shown todaawi elegant solution to the exploration-
exploitation trade-off in reinforcement learning. Howeweost investigations of Bayesian rein-
forcement learning to date focus on the standard Markovdi@tiProcesses (MDPs). The primary
focus of this paper is to extend these ideas to the case d@dipadbservable domains, by introduc-
ing the Bayes-Adaptive Partially Observable Markov DexidProcesses. This new framework can
be used to simultaneously (1) learn a model of the POMDP dothadugh interaction with the en-
vironment, (2) track the state of the system under partiakolkability, and (3) plan (hear-)optimal
sequences of actions. An important contribution of thisgpégpto provide theoretical results show-
ing how the model can be finitely approximated while presengood learning performance. We
present approximate algorithms for belief tracking andhpiag in this model, as well as empirical
results that illustrate how the model estimate and agesttsm improve as a function of experience.

Keywords: reinforcement learning, Bayesian inference, partiallgeskable Markov decision
processes

1. Introduction

Robust decision-making is a core component of many autonomous agérggienerally requires
that an agent evaluate a set of possible actions, and choose the déé&st ibs1 current situation. In
many problems, actions have long-term consequences that must beeteddig the agent; it is not
useful to simply choose the action that looks the best in the immediate situatiteadnthe agent
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must choose its actions by carefully trading off their short-term and lomg-tests and benefits.
To do so, the agent must be able to predict the consequences of its aictiemgar as it is useful to
determine future actions. In applications where it is not possible to predictlg the outcomes of
an action, the agent must also consider the uncertainty over possible évemts.

Probabilistic models of sequential decision-making take into account swehtaimty by spec-
ifying the chance (probability) that any future outcome will occur, givey eurrent configuration
(state) of the system, and action taken by the agent. However, if the modedlose not perfectly
fit the real problem, the agent risks making poor decisions. This is dly@mnimportant limitation
in practical deployment of autonomous decision-making agents, sinceldgaitedels are often
crude and incomplete approximations of reality. Clearly, learning methodslagrap important
role in improving the model as experience is acquired, such that the afygatis decisions are also
improved.

In the past few decades, Reinforcement Learning (RL) has emesgaad @legant and popular
technique to handle sequential decision problems when the model is unkSottan and Barto,
1998). Reinforcement learning is a general technique that allows ant tagkearn the best way to
behave, that is, such as to maximize expected return, from repeatedtiotesan the environment.
A fundamental problem in RL is that of exploration-exploitation: namely, hbautd the agent
chooses actions during the learning phase, in order to both maximize its kiggwdéthe model as
needed to better achieve the objective later (@eplore, and maximize current achievement of the
objective based on what is already known about the domaindkploi). Under some (reasonably
general) conditions on the exploratory behavior, it has been showrRthaventually learns the
optimal action-select behavior. However, these conditions do not gpeaif to choose actions
such as to maximize utilities throughout the life of the agent, including during theitgaphase,
as well as beyond.

Model-based Bayesian RL is an extension of RL that has gained significarest from the
Al community recently as it provides a principled approach to tackle the probfeexploration-
exploitation during learning and beyond, within the standard Bayesiareimderparadigm. In this
framework, prior information about the problem (including uncertainty@gesented in parametric
form, and Bayesian inference is used to incorporate any new informédtimm ¢he model. Thus
the exploration-exploitation problem can be handled as an explicit sequéeatigion problem,
where the agent seeks to maximize future expected return with respect tordgstcuncertainty
on the model. An important limitation of this approach is that the decision-makingegsois
significantly more complex since it involves reasoning about all possible Isvadd courses of
action. In addition, most work to date on this framework has been limited to edses full
knowledge of the agent’s state is available at every time step (DeardenXE99;, Strens, 2000;
Duff, 2002; Wang et al., 2005; Poupatrt et al., 2006; Castro andupr@907; Delage and Mannor,
2007).

The primary contribution of this paper is an extension of the model-baseelsiayreinforce-
ment learning to partially observable domains with discrete representatlarsipport of this, we
introduce a new mathematical model, called Beyes-Adaptive POMDEBAPOMDP). This is a
model-based Bayesian RL approach, meaning that the framework maingaieteaor over the pa-

1. A preliminary version of this model was described by Ross et al.§200The current paper provides an in-depth
development of this model, as well as novel theoretical analysis an@mgivical results.
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rameters of the underlying POMDP domaiiVe derive optimal algorithms for belief tracking and
finite-horizon planning in this model. However, because the size of the giate :n a BAPOMD
can be countably infinite, these are, for all practical purposes, inblactaVe therefore dedicate
substantial attention to the problem of approximating the BAPOMDP model. Wadertheo-
retical results for bounding the state space while preserving the valegdnn These results are
leveraged to derive a novel belief monitoring algorithm, which is used to maiatposterior over
both model parameters, and state of the system. Finally, we describe anmatineng algorithm
which provides the core sequential decision-making component of the niRmthlthe belief track-
ing and planning algorithms are parameterized so as to allow a trade-offdset@enputational
time and accuracy, such that the algorithms can be applied in real-time settings.

An in-depth empirical validation of the algorithms on challenging real-worlehaiges is out-
side the scope of this paper, since our focus here is on the theoretiparfies of the exact and
approximative approaches. Nonetheless we elaborate a tractableappral characterize its per-
formance in three contrasting problem domains. Empirical results show thBRROMDP agent
is able to learn good POMDP models and improve its return as it learns bettel estidetes. Ex-
periments on the two smaller domains illustrate performance of the novel betikiinmealgorithm,
in comparison to the well-known Monte-Carlo approximation methods. Expetamenthe third
domain confirm good planning and learning performance on a larger dpmeialso analyze the
impact of the choice of prior on the results.

The paper is organized as follows. Section 2 presents the models and satduabsary for
Bayesian reinforcement learning in the fully observable case. SectigteBds these ideas to the
case of partially observable domains, focusing on the definition of the BAP®model and exact
algorithms. Section 4 defines a finite approximation of the BAPOMDP model thédl be used
to be solved by finite offine POMDP solvers. Section 5 presents a moreltacpproach to
solving the BAPOMDP model based on online POMDP solvers. Section 6 iltesttlae empirical
performance of the latter approach on sample domains. Finally, Sectiornugsisaelated Bayesian
approaches for simultaneous planning and learning in partially obsenaiiains.

2. Background and Notation

In this section we discuss the problem of model-based Bayesian reimfentéearning in the fully

observable case, in preparation for the extension of these ideas torttadlypabservable case
which is presented in Section 3. We begin with a quick review of Markov DmtiBrocesses.
We then present the models and methods necessary for Bayesian RL is. MIDR literature has
been developing over the last decade, and we aim to provide a briebimgrehensive survey of
the models and algorithms in this area. Readers interested in a more detaikutaties of the

material should seek additional references (Sutton and Barto, 19982D02).

2.1 Markov Decision Processes
We consider finite MDPs as defined by the following n-tu{@eA, T, R y):

States:Sis a finite set of states, which represents all possible configurations sfskem. A state
is essentially a sufficient statistic of what occurred in the past, such thetwith occur in

2. This is in contrast to model-free Bayesian RL approaches, whichtairaia posterior over the value function, for
example, Engel et al. (2003, 2005); Ghavamzadeh and EngeTi§200
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the future only depends on the current state. For example, in a navigailqrtha state is
usually the current position of the agent, since its next position usually epgmis on the
current position, and not on previous positions.

Actions: Ais a finite set of actions the agent can make in the system. These actions marydeflu
the next state of the system and have different costs/payoffs.

Transition Probabilities: T : Sx Ax S— [0,1] is called the transition function. It models the
uncertainty on the future state of the system. Given the currentsstatel an actiora exe-
cuted by the agenT, s specifies the probability P§/|s,a) of moving to states’. For a fixed
current states and actiona, T2 defines a probability distribution over the next stsltesuch
that zgesTsaé =1, for all (s,a). The definition ofT is based on thélarkov assumption
which states that the transition probabilities only depend on the current stheeton, that
is, Pr(s1 =9a&,s,-..,80,%) = Pr(s+1 = S|a, %), wherea; ands denote respectively the
action and state at time It is also assumed thatis time-homogenous, that is, the transition
probabilities do not depend on the currenttime(sRr =S|a; =a,5 =) =Pr(s =S|ai_1 =
a,5-1=29) forallt.

Rewards: R: Sx A — R is the function which specifies the rewdR(ds, a) obtained by the agent
for doing a particular actiom in current states. This models the immediate costs (nega-
tive rewards) and payoffs (positive rewards) incurred by perfog different actions in the
system.

Discount Factor: y € [0,1) is a discount rate which allows a trade-off between short-term and
long-term rewards. A reward obtain¢eteps in the future is discounted by the facfor
Intuitively, this indicates that it is better to obtain a given reward now, ratteer later in the
future.

Initially, the agent starts in some initial statg,c S. Then at any time, the agent chooses an
actiong; € A, performs it in the current statg, receives the rewar(s;, &) and moves to the next
states ;1 with probability TS2S+1 This process is iterated until termination; the task horizon can
be specified priori, or determined by the discount factor.

We define gpolicy, 1: S— A, to be a mapping from states to actions. The optimal policy,
denotedt", corresponds to the mapping which maximizes the expected sum of discoewtads
over a trajectory. Thegalue of the optimal policy is defined by Bellman’s equation:

* _ sagy s
V*(s) _r;gx[R(s,a)+ysgsT V*(d)

The optimal policy at a given statg;(s), is defined to be the action that maximizes the value at that
state,V*(s). Thus the main objective of the MDP framework is to accurately estimate this value
function, so as to then obtain the optimal policy. There is a large literature orothputational
techniques that can be leveraged to solve this problem. A good startingptietrecent text by
Szepesvari (2010).

A key aspect of reinforcement learning is the issueexpploration This corresponds to the
guestion of determining how the agent should choose actions while leatviog the task. This is
in contrast to the phase calledploitation through which actions are selected so as to maximize
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expected reward with respect to the current value function estimate. Jinesisf value function
estimation and exploration are assumed to be orthogonal in much of the MDRulieerelowever
in many applications, where data is expensive or difficult to acquire, it isritapbto consider the
rewards accumulated during the learning phase, and to try to take thisfdeatiting into account
in the optimization of the policy.

In RL, most practical work uses a variety of heuristics to balance the etgo and exploita-
tion, including for example the well-knowsigreedy and Boltzmann strategies. The main problem
with such heuristic methods is that the exploration occurs randomly and i»aagdd on what
needs to be learned.

More recently, it has been shown that it is possible for an agent to regahoptimal perfor-
mance with high probability using only a polynomial number of steps (KeardsSamgh, 1998;
Brafman and Tennenholtz, 2003; Strehl and Littman, 2005), or alterrtatblgve small regret with
respect to the optimal policy (Auer and Ortner, 2006; Tewari and Bar2@@8; Auer et al., 2009).
Such theoretical results are highly encouraging, and in some cases bgdrithms which exhibit
reasonably good empirical performance.

2.2 Bayesian Learning

Bayesian Learning (or Bayesian Inference) is a general techniguesning the unknown param-
eters of a probability model from observations generated by this modelayedtan learning, a
probability distribution is maintained over all possible values of the unknowanpeters. As ob-
servations are made, this probability distribution is updated via Bayes’ ndgyrbability density
increases around the most likely parameter values.

Formally, consider a random variabtewith probability densityfy e over its domainX param-
eterized by the unknown vector of paramet@rén some parameter spade Let X1, Xp,---, %X
be a random i.i.d. sample frorfye. Then by Bayes' rule, the posterior probability density
90|X1,%,... % (B]X1, X2, . . ., Xn) Of the parameter® = 6, after the observations of = x3, Xo =X, -,
Xn = X, IS:

90(0) L1 fxje(%i[6)
g@|X1,X2.,...,Xn(e‘X17X27 s 7Xn) = ff_P g@(e/) I—Iirl1_1 fX|®(XI ’e/)de/’

wheregg(0) is the prior probability density o® = 0, that is,ge over the parameter spadis
a distribution that represents the initial belief (or uncertainty) on the valti€ d\Note that the
posterior can be defined recursively as follows:

9o X1 (BXL X2, - Xn-1) FXjo (%n[©)
S 901 Xo,... X0 1 (&[X1, X2, . .., Xn—1) T |0 (Xn|€/) DO’

90/X1,Xo,... % (O1X1, X2, - - -, Xn)

so that whenever we get ti¥ observation ofX, denotedx,, we can compute the new posterior
distributiongg)x, x,....,

In general, updating the posterior distributgg)x, x,,... x, is difficult due to the need to compute
the normalization constarf}, ge(8) [iL; x| (x|8)d6. However, for conjugate family distributions,
updating the posterior can be achieved very efficiently with a simple upd#te parameters defin-
ing the posterior distribution (Casella and Berger, 2001).
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Formally, consider a particular clagsof prior distributions over the parameter spaeand a
class¥ of likelihood functionsfy g over.X parameterized by paramet&s: 2, then¥ andg are
said to be conjugate if for any choice of prigg € G, likelihood fx ;g € ¥ and observatioiX = x,
the posterior distributioggx after observation ok = xis also ingG.

For example, the Beta distributidiis conjugate to the Binomial distributioh.ConsiderX ~
Binomial(n, p) with unknown probability parametgy, and consider a priddetaa, 3) over the un-
known value ofp. Then following an observatiod = x, the posterior ovep is also Beta distributed
and is defined bBetaa +x,+n—Xx).

Another important issue with Bayesian methods is the need to specify a prioiie e in-
fluence of the prior tends to be negligible when provided with a large amduwlatta, its choice is
particularly important for any inference and decision-making performeehvwonly a small amount
of data has been observed. In many practical problems, informatives @am be obtained from
domain knowledge. For example many sensors and actuators used inegimgjragplications have
specified confidence intervals on their accuracy provided by the mztntga In other applications,
such as medical treatment design or portfolio management, data about bfenproay have been
collected for other tasks, which can guide the construction of the prior.

In the absence of any knowledge, uninformative priors can be sgkdifieder such priors, any
inference dona posterioriis dominated by the data, that is, the influence of the prior is minimal.
common uninformative prior consists of using a distribution that is constamttbe whole param-
eter space, such that every possible parameter has equal probabibtiydé&rom an information
theoretic point of view, such priors have maximum entropy and thus coniealst amount of in-
formation about the true parameter (Jaynes, 1968). However, ohkepravith such uniform priors
is that typically, under different re-parameterization, one has differmounts of information about
the unknown parameters. A preferred uninformative prior, which isiamgunder reparameteriza-
tion, is Jeffreys’ prior (Jeffreys, 1961).

The third issue of concern with Bayesian methods concerns the coneergé the posterior
towards the true parameter of the system. In general, the posterior demsigntrates around
the parameters that have highest likelihood of generating the obserizethdhe limit. For finite
parameter spaces, and for smooth families with continuous finite dimensioaaig@r spaces, the
posterior converges towards the true parameter as long as the priorsassigzero probability to
every neighborhood of the true parameter. Hence in practice, it is ofgrathle to assign non-zero
prior density over the full parameter space.

It should also be noted that if multiple parameters within the parameter spagewarate the
observed data with equal likelihood, then the posterior distribution will usbalipultimodal, with
one mode surrounding each equally likely parameter. In such cases, litenii@possible to identify
the true underlying parameter. However for practical purposes, asohaking predictions about
future observations, it is sufficient to identify any of the equally likely pasters.

Lastly, another concern is how fast the posterior converges towaedsut parameters. This
is mostly influenced by how far the prior is from the true parameter. If the @ipoor, that is, it
assigns most probability density to parameters far from the true parantbtarst will take much
more data to learn the correct parameter than if the prior assigns mosbitglagensity around the

3. Betda, B) is defined by the density functioi(p|a, ) O p*~1(1— p)B*l for p € [0,1] and parameters, 3 > 0.
4. Binomial(n, p) is defined by the density functiof(kn, p) 0 pX(1— p)" X for k € {0,1,...,n} and parameterp €
[0,1],neN.
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true parameter. For such reasons, a safe choice is to use an uninferpradf, unless some data is
already available for the problem at hand.

2.3 Bayesian Reinforcement Learning in Markov Decision Processes

Work on model-based Bayesian reinforcement learning dates back tayseodl Bellman, who
studied this problem under the name of Adaptive control processes (Bellifi&1). An excellent
review of the literature on model-based Bayesian RL is provided in DuffZR0r his paper outlines,
where appropriate, more recent contributions in this area.

As a side note, model-free BRL methods also exist (Engel et al., 2003, Zltavamzadeh
and Engel, 2007a,b). Instead of representing the uncertainty on the, tiede methods explicitly
model the uncertainty on the value function or optimal policy. These methodsaftes rely on
heuristics to handle the exploration-exploitation trade-off, but may beuusetases where it is
easier to express prior knowledge about initial uncertainty on the vahaifm or policy, rather
than on the model.

The main idea behind model-based BRL is to use Bayesian learning methodmtthiean-
known model parameters of the system, based on what is observed lgetiterathe environment.
Starting from a prior distribution over the unknown model parameters, et agpdates a posterior
distribution over these parameters as it performs actions and gets dlse\feom the environ-
ment. Under such a Bayesian approach, the agent can compute thetioestalection strategy by
finding the one that maximizes its future expected return under the cuosterjor distribution, but
also considering how this distribution will evolve in the future under diffepassible sequences of
actions and observations.

To formalize these ideas, consider an M(BA, T, R y), whereS, A andR are known, and" is
unknown. Furthermore, assume tisatndA are finite. The unknown parameters in this case are the
transition probabilitiesTs2%, for all s, € S, a A. The model-based BRL approach to this problem
is to start off with a priorg, over the space of transition functiors, Now lets = (s,S1,---,%)
anda_1 = (ag,a,...,&_1) denote the agent’s history of visited states and actions up tottime
Then the posterior over transition functions after this sequence is ddfyned

o(TI&,&-1) O g(T)[iZgToas+
N2, (&4
O g(T) HSESaGAngS(Tsaé) WO 1)’

whereNZ, (§,a-1) = z};&l{(s,as)}(s,a;,sﬂ) is the number of timésthe transition(s,a,s) oc-
curred in the history (§,&-1). As we can see from this equation, the likelihood
Mecsacases(T2) 5 831 s a product of S |A| independent Multinomidldistributions over

S Hence, if we define the priag as a product ofS|A| independent priors over each distribution
over next state$°?, that is,g(T) = [NscsacaOsa(T®?), then the posterior is also defined as a prod-
uct of |§|A| independent posterior distributiong({T |, 1) = [scsacaOsa(T?|S,&-1), Where
Osa(T%?|s,a-1) is defined as:

Gaa(T7[§.8-2) O gaalT*%) [ (T2
€S

5. We usd () to denote the indicator function.
6. Multinomiak(p, N) is defined by the density functioi{n|p,N) O |‘|ik:1 pi" for nj € {0,1,...,N} such thatzik:1 nj =
N, parameterdl € N, andp is a discrete distribution ovdroutcomes.
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Furthermore, since the Dirichlet distribution is the conjugate of the Multinomiad|ldv/s that
if the priorsgs a(T3?) are Dirichlet distributions for a, a, then the posteriomgs a(T52|s, &_1) will
also be Dirichlet distributions for al, a. The Dirichlet distribution is the multivariate extension of
the Beta distribution and defines a probability distribution over discrete digbrisu It is parameter-
ized by a count vectog= (@, ..., ), where(g > 0, such that the density of probability distribution
p=(p1,...,Px) is defined ad (p|@) O 1, p? . LiEX ~ Multinomiak(p,N) is a random variable
with unknown probability distributiorp = (ps, ..., pk), andDirichlet(qy, ..., @) is a prior overp,
then after the observation &f = n, the posterior ovep is Dirichlet(@; + ny, ..., o+ nk). Hence,
if the prior gsa(T*?) is Dirichlet(¢g, - .. (pé‘s‘ ), then after the observation of histofg,a_1),

the posteriogsa(T°%|s;,a 1) is Dirichlet(@€g +N&g (S, a-1), (pg%a +Ng% &,a-1)). It fol-
lows that if @ = {¢f4]a € A/s,s' € S} represents the set of aII Dirichlet parameters defining the
current prior/posterior oveF, then if the agent performs a transiti(sa, s'), the posterior Dirichlet
parameterg after this transition are simply defined as:

([fs‘?}?sm - (pg/s//,V(S”,a/,S”/) 7é (S, a,s’).

We denote this update by the functi@h where U(@,s,a,s) returns the se¢’ as updated in the
previous equation.

Because of this convenience, most authors assume that the prior ovearthigion function
T follows the previous independence and Dirichlet assumptions (Duff;2D8arden et al., 1999;
Wang et al., 2005; Castro and Precup, 2007). We also make such asswgtigroughout this paper.

2.3.1 BAYES-ADAPTIVE MDP MODEL

The core sequential decision-making problem of model-based Bayekiearfbe cast as the prob-
lem of finding a policy that maps extended states of the f¢gnp) to actionsa € A, such as to
maximize the long-term rewards of the agent. If this decision problem can teletbas an MDP
over extended statds, @), then by solving this new MDP, we would find such an optimal policy.
We now explain how to construct this MDP.

Consider a new MDP defined by the tudl®,A T',R,y). We define the new set of states
S = Sx T, whereT = {@p e NS’M|y(s a) € Sx A Tycs@ > 0}, andA is the original action
space. Here, the constraints on the‘Baif possible count parametepsare only needed to ensure
that the transition probabilities are well defined. To avoid confusion, Vier te the extended
states(s,@) € S as hyperstates. Also note that the next information spatly depends on the
previous information state and the transitior{s,a,s) that occurred in the physical system, so
that transitions between hyperstates also exhibit the Markov propertye $ie want the agent to
maximize the rewards it obtains in the physical system, the reward funtishould return the
same reward as in the physical system, as definddl iihus we defindR (s, ¢, a) = R(s,a). The
only remaining issue is to define the transition probabilities between hyperstagaew transition
function T’ must specify the transition probabilitids(s, @ a,s, @) = Pr(s, @|s,a,¢). By the chain
rule, P(s,@|s,a @) = Pr(s|s,a ¢)Pr(@|s,a,s,9). Since the update of the information stgt¢o
¢ is deterministic, then Pg|s,a,s,¢) is either 0 or 1, depending on whethgr= U(@,s,a,s)
or not. Hence RiY|[s,a,s, @) = l;¢,(U(@,s,a,5)). By the law of total probability, Rs'|s, a, @) =
[Pr(8|s,a T, f(T|@dT = [ TS f(T|p)dT, where the integral is carried over transition function
T, and f(T|g) is the probability density of transition functioh under the posterior defined by
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@. The term[ TS2f(T|@)dT is the expectation of 52 for the Dirichlet posterior defined by the
: Ky : :
parameterqgsl,...,qg%, which corresponds tm Thus it follows that:

T'(s,9,a58,¢)= Ll{qj}( U(p,s,a,9)).
2ses s,s’

We now have a new MDP with a known model. By solving this MDP, we can finatenal
action-selection strategy, givarposterioriknowledge of the environment. This new MDP has been
called the Bayes-Adaptive MDP (Duff, 2002) or the HyperMDP (Castrd Precup, 2007).

Notice that while we have assumed that the reward fund@@known, this BRL framework
can easily be extended to the case whitigunknown. In such a case, one can proceed similarly by
using a Bayesian learning method to learn the reward fun&emd add the posterior parameters for
Rin the hyperstate. The new reward functi®rthen becomes the expected reward under the current
posterior oveR, and the transition functioh’ would also model how to update the posterior der
upon observation of any rewardFor brevity of presentation, it is assumed that the reward function
is known throughout this paper. However, the frameworks we prés¢iné following sections can
also be extended to handle cases where the rewards are unknowipyig a similar reasoning.

2.3.2 OPTIMALITY AND VALUE FUNCTION

The Bayes-Adaptive MDP (BAMDP) is just a conventional MDP with a dabty infinite number
of states. Fortunately, many theoretical results derived for standafésMBrry over to the Bayes-
Adaptive MDP model (Duff, 2002). Hence, we know there exists an optiteerministic policy
™ : S — A, and that its value function is defined by:

Vi(s,@) = maxgea [R(5,0.8)+YY (s¢)es T (59.a,5,¢)V(s,¢)]

MaXacA {R(s a)+YYges zd/(pasq,ag/v*(s’ U(p,s,a s’))] 1)

This value function is defined over an infinite number of hyperstates, ftneren practice,
computingV* exactly for all hyperstates is unfeasible. However, since the summationSase
finite, we observe that from one given hyperstate, the agent carit toahgs to a finite number of
hyperstates in one step. It follows that for any finite planning horizame can compute exactly
the optimal value function for a particular starting hyperstate. However uhgbar of reachable
hyperstates grows exponentially with the planning horizon.

2.3.3 R ANNING ALGORITHMS

We now review existing approximate algorithms for estimating the value functioreiB&MDP.
Dearden et al. (1999) proposed one of the first Bayesian modetteapéoration methods for RL.
Instead of solving the BAMDP directly via Equation 1, the Dirichlet distributiaresused to com-
pute a distribution over the state-action val@ggs, a), in order to select the action that has the
highest expected return and value of information (Dearden et al., 199@) distribution over Q-
values is estimated by sampling MDPs from the posterior Dirichlet distributicth ttzen solving
each sampled MDP to obtain different sampled Q-values. Re-sampling andamg® sampling
techniques are proposed to update the estimated Q-value distribution asithdéeDjrosteriors are
updated.
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Rather than using a maximum likelihood estimate for the underlying processs32@00)
proposes to fully represent the posterior distribution over processaers. He then uses a greedy
behavior with respect to a sample from this posterior. By doing so, he segaith hypothesis over
a period of time, ensuring goal-directed exploratory behavior without ¢eel to use approximate
measures or heuristic exploration as other approaches did. The nuindtep® for which each
hypothesis is retained limits the length of exploration sequences. The refdihis method is then
an automatic way of obtaining behavior which moves gradually from explor&ie@xploitation,
without using heuristics.

Duff (2001) suggests using Finite-State Controllers (FSC) to represempactly the optimal
policy 1 of the BAMDP and then finding the best FSC in the space of FSCs of sonmeledu
size. A gradient descent algorithm is presented to optimize the FSC and te¥2arlo gradient
estimation is proposed to make it more tractable. This approach presuppesesstence of a
good FSC representation for the policy.

For their part, Wang et al. (2005) present an online planning algorithinestianates the optimal
value function of the BAMDP (Equation 1) using Monte-Carlo sampling. Thysrithm is essen-
tially an adaptation of the Sparse Sampling algorithm (Kearns et al., 1999) talB*MHowever
instead of growing the tree evenly by looking at all actions at each leibedfee, the tree is grown
stochastically. Actions are sampled according to their likelihood of being optawabrding to
their Q-value distributions (as defined by the Dirichlet posteriors); nexes are sampled accord-
ing to the Dirichlet posterior on the model. This approach requires multiple sagrgolic solving
of MDPs from the Dirichlet distributions to find which action has highest (at each state node
in the tree. This can be very time consuming, and so far the approachlizdseen applied to small
MDPs.

Castro and Precup (2007) present a similar approach to Wang et alevidotheir approach
differs on two main points. First, instead of maintaining only the posterior ovelefapthey also
maintain Q-value estimates using a standard Q-Learning method. Planningeibylgmowing a
stochastic tree as in Wang et al. (but sampling actions uniformly insteadpéargsfor the value
estimates in that tree using Linear Programming (LP), instead of dynamicapnaging. In this
case, the stochastic tree represents sampled constraints, which thestimhades in the tree must
satisfy. The Q-value estimates maintained by Q-Learning are used as stiaates for the fringe
nodes (thus as value constraints on the fringe nodes in the LP).

Finally, Poupart et al. (2006) proposed an approximate offline algotithsolve the BAMDP.
Their algorithm, called Beetle, is an extension of the Perseus algorithmr(@paaVlassis, 2005)
to the BAMDP model. Essentially, at the beginning, hyperstédgg) are sampled from random
interactions with the BAMDP model. An equivalent continuous POMDP (overstiace of states
and transition functions) is solved instead of the BAMDP (assunféng) is a belief state in that
POMDP). The value function is represented by a sai-@finctionsover the continuous space of
transition functions. Each-function is constructed as a linear combination of basis functions;
the sampled hyperstates can serve as the set of basis functions. Dymagnanpming is used to
incrementally construct the set offunctions. At each iteration, updates are only performed at the
sampled hyperstates, similarly to Perseus (Spaan and Vlassis, 2005henBaint-Based POMDP
algorithms (Pineau et al., 2003).
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3. Bayes-Adaptive POMDPs

Despite the sustained interest in model-based BRL, the deployment to rddlapplications is
limited both by scalability and representation issues. In terms of representationportant chal-
lenge for many practical problems is in handling cases where the state gbteends only partially
observable. Our goal here is to show that the model-based BRL fratkeanibe extended to han-
dle partially observable domains. Section 3.1 provides a brief overviewed®litially Observable
Markov Decision Process framework. In order to apply Bayesian RL odstin this context, we
draw inspiration from the Bayes-Adaptive MDP framework presenteceatié 2.3, and propose
an extension of this model, called the Bayes-Adaptive POMDP (BAPOMDARg of the main
challenges that arises when considering such an extension is how tte updaDirichlet count
parameters when the state is a hidden variable. As will be explained in Seciothi3 can be
achieved by including the Dirichlet parameters in the state space, and maigtaitielief state
over these parameters. The BAPOMDP model thus allows an agent to initréwmewledge of an
unknown POMDP domain through interaction with the environment, but also sitlogvdecision-
making aspect to be contingent on uncertainty over the model parameseas.e8ult, it is possible
to define an action-selection strategy which can directly trade-off bet¢{@dnarning the model
of the POMDP, (2) identifying the unknown state, and (3) gathering msyaruch as to maximize
its future expected return. This model offers an alternative framevewniefnforcement learning in
POMDPs, compared to previous history-based approaches (McCalb@; littman et al., 2002).

3.1 Background on POMDPs

While an MDP is able to capture uncertainty on future outcomes, and the BAK&®e to capture
uncertainty over the model parameters, both fail to capture uncertaintyahaxist on the current
state of the system at a given time step. For example, consider a medicalgisagroblem where
the doctor must prescribe the best treatment to an ill patient. In this problestatfee(illness) of
the patient is unknown, and only its symptoms can be observed. Givengbeveld symptoms the
doctor may believe that some illnesses are more likely, however he may stillbme=uncertainty
about the exact illness of the patient. The doctor must take this uncertaintgdotmnt when
deciding which treatment is best for the patient. When the uncertainty is highgtt action may
be to order additional medical tests in order to get a better diagnosis oftibatfsallness.

To address such problems, the Partially Observable Markov Decisiae$a¥¢POMDP) was
proposed as a generalization of the standard MDP model. POMDPs arte abbelel and reason
about the uncertainty on the current state of the system in sequentiabdeamisblems (Sondik,
1971).

A POMDRP is defined by a finite set of stat8sa finite set of action#, as well as a finite set
of observation&. These observations capture the aspects of the state which can bgquelne
the agent. The POMDP is also defined by transition probabil{fie8®}s¢csaca, WhereTs2® =
Pr(s+1 = S|s = s,& = a), as well as observation probabiliti§€©°*}scgaca ez Where 05 =
Pr(z = zls = s,a&_1 = a). The reward functionR: Sx A — R, and discount factoy, are as in the
MDP model.

Since the state is not directly observed, the agent must rely on the ofi@ervad action at each
time step to maintain a belief stabe= AS, whereAS s the space of probability distributions over
S The belief state specifies the probability of being in each state given theyhigtaction and
observation experienced so far, starting from an initial békelt can be updated at each time step
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using the following Bayes rule:

_ Oz T
Y ores OF A% ZseSTSag/bt (s

A policy t: AS— Aindicates how the agent should select actions as a function of the current
belief. Solving a POMDP involves finding the optimal polmy that maximizes the expected dis-
counted return over the infinite horizon. The return obtained by followihdrom a beliefb is
defined by Bellman’s equation:

br+1(S)

acA

V*(b) = max lzsb(s)R(s, a)+y ZPr(z\b, avV*(1(b,a,2)|,

wheret(b,a,z) is the new belief after performing acti@and observatioz,andy € [0,1) is the
discount factor.

A key result by Smallwood and Sondik (1973) shows that the optimal vahutibn for a finite-
horizon POMDP is piecewise-linear and convex. It means that the vahatidn\; at any finite
horizont can be represented by a finite set§fdimensional hyperplane§; = {ao,a1,...,0m}.
These hyperplanes are often caltedectors. Each defines a linear value function over the belief
state space, associated with some actionA. The value of a belief state is the maximum value
returned by one of tha-vectors for this belief state:

Vi(b) = maxzsa(s)b(s).

acl &

The best action is the one associated withahesctor that returns the best value.

The Enumeration algorithm by Sondik (1971) shows how the finite setwéctors,l;, can
be built incrementally via dynamic programming. The idea is thattastgp contingency plan can
be expressed by an immediate action and a mapping associatifij-atép contingency plan to
every observation the agent could get after this immediate action. The Jatbhe b-step plans
corresponds directly to the immediate rewards:

i = {o®o’(s)=R(sa)},
M = UaeAril'

Then to build thex-vectors at timd, we consider all possible immediate actions the agent could
take, every observation that could follow, and every combinatiot-bj-6tep plans to pursue sub-
sequently:
Mt = {a®%0®%(s) = y3ses TS0 0/(8), 0 € M1},
e = rRelrfelrt2e.. .ef ™,
My = UaeA r?:

where® is the cross-sum operatbr.

Exactly solving the POMDP is usually intractable, except on small domains withaofew
states, actions and observations (Kaelbling et al., 1998). Variousap@ate algorithms, both
offline (Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simma@4y,&t online (Paquet

7. LetA andB be sets of vectors, thehp B = {a+blac A /b e B}.
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et al., 2005; Ross et al., 2008c), have been proposed to tackle iinglgdarge domains. However,
all these methods require full knowledge of the POMDP model, which is agassumption in
practice. Some approaches do not require knowledge of the model, aster Bnd Bartlett (2001),
but these approaches generally require some knowledge of a gabgdré&farably compact) policy
class, as well as needing substantial amounts of data.

3.2 Bayesian Learning of a POMDP model

Before we introduce the full BAPOMDP model for sequential decisioningakinder model uncer-

tainty in a POMDP, we first show how a POMDP model can be learned via edgayapproach.
Consider an agentina POMOB A, Z, T,O,Ry), where the transition functioh and observa-

tion functionO are the only unknown components of the POMDP model.zZLet(z,2,...,z) be

the history of observations of the agent up to tim&ecall also that we denote= (,S1,...,%)

anda;_; = (ag,as,...,a&-1) the history of visited states and actions respectively. The Bayesian ap-

proach to learning andO involves starting with a prior distribution ovérandO, and maintaining

the posterior distribution ovel andO after observing the histor§g; _1,%). Since the current state

s of the agent at timeis unknown in the POMDP, we consider a joint posteg, T,O|a;-1,%)

overg, T, andO. By the laws of probability and Markovian assumption of the POMDP, we:have

o(s.T.0& 1.%) 0 Pri#s/T,0,& 1)9(T,0& 1)
D Z§—1€S Pr(ZU&’T,O,at_l)g(T,O)
a Z§,1€3 g(%? Ta O) n}:l Ts’lai*:LS Osai—lzi
0 Y5.59(%,T,0) |:|_|S’a7S/(Tsaé)N:g(Shat—l) o
[Msar(0PNHS A 12)]

whereg(s, T, O) is the joint prior over the initial state, transition functionT, and observation
functionO; N&(s,a-1) = 2};3I{(S7a7g)}(s,ai,s+l) is the number of times the transitigg, a,s')
appears in the history of state-actios,a;1); and N&(s,&-1,z) = z}zll{(sa7z)}(s,a;,1,a) is
the number of times the observatidg a,z) appears in the history of state-action-observations
(%,a-1,%). We use proportionality rather than equality in the expressions abovedeews have
not included the normalization constant.

Under the assumption that the prigiso, T, O) is defined by a product of independent priors of
the form:

9(s0, T, 0) = g(so) [ ] GsaT>*)8sa(O>*),

and thasy(T52) andgsa(O°?) are Dirichlet priors definedls, a, then we observe that the posterior
is a mixture of joint Dirichlets, where each joint Dirichlet component is pararzeid by the counts
corresponding to one specific possible state sequence:

g(&,T, O|a_tflvz_t) D Zslles g(%)c(§’:a_t:l,z_t) y
[ns.a,g (TSaé)NSag(St,at,l)ﬂp:(l y o
“—ls.az(OSaz)st,iz(s_ha_thz_()erngl} .

Here, ¢& are the prior Dirichlet count parameters fgya(T5%), Y2 are the prior Dirichlet count
parameters fogsa(O%?), andc(s,&-1,%) is a constant which corresponds to the normalization
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constant of the joint Dirichlet component for the state-action-observaigtary (s,a;—1,%). Intu-
itively, Bayes’ rule tells us that given a particular state sequence, it @hgedo compute the proper
posterior counts of the Dirichlets, but since the state sequence that actcalisred is unknown,
all state sequences (and their corresponding Dirichlet posteriors)baustnsidered, with some
weight proportional to the likelihood of each state sequence.

In order to update the posterior online, each time the agent performs an actibgets an
observation, it is more useful to express the posterior in recursiug for

9(s,T.0la-1,2)0 ) T30 g(s_1,T,0/a-2,z-1).
§-1€S

Hence if g(s-1,T,0a&-2,2-1) = 3 gu)ecs ) W(S-1,0,W) f(T,Olg,P) is a mixture of
|C(s—1)| joint Dirichlet components, where each compon@ptp) is parameterized by the set
of transition countsp = {¢f, € N|s,s' € S a < A} and the set observation couris= {2, € N|s
SacA,ze Z}, theng(s, T,O|a1,z) is a mixture off]scs| C(S)| joint Dirichlet components, given

by:

(s, T,0&-1,z2) O Y5 ,esd(@uecs ) W(S-1,@W)C(S-1,8-1,%,%-1,, )
f(T,0]U(@,8-1,2-1,%), U, s, &-1,%)),

where(@,s,a,s) increments the coung, by one in the set of countg U(y,s,a,z) increments
the countp, by one in the set of countg, andc(s—1,a-1,%,z-1, @ ) is a constant corresponding
to the ratio of the normalization constants of the joint Dirichlet compo(enp) before and after
the update with{s_1,a-1,5,z-1). This last equation gives us an online algorithm to maintain the
posterior ovels, T,0), and thus allows the agent to learn about the unkndvandO via Bayesian
inference.

Now that we have a simple method of maintaining the uncertainty over both the stitecael
parameters, we would like to address the more interesting question of howitiwathp behave
in the environment under such uncertainty, in order to maximize future segeeturn. Here we
proceed similarly to the Bayes-Adaptive MDP framework defined in Sectign 2

First, notice that the posterigfs, T,O|a;—1,z ) can be seen as a probability distribution (belief)
b over tuples(s, @, 1), where each tuple represents a particular joint Dirichlet componentgara
terized by the count&p, g) for a state sequence ending in stat@e., the current state &, and
the probabilities in the belidb correspond to the mixture weights. Now we would like to find a
policy 1t for the agent which maps such beliefs oygnp, ) to actionsa € A. This suggests that
the sequential decision problem of optimally behaving under state and mockitainty can be
modeled as a POMDP over hyperstates of the f(smp, ).

Consider a new POMDPS A, Z, PR y), where the set of states (hyperstates) is formally de-
fined asS = Sx T x O, with T = {¢p € NS |y(s a) € Sx A, Tyes@fy >0} and 0 = {Y €
NISIAIZIY(s a) € Sx A, T,ezW3 > 0}. As in the definition of the BAMDP, the constraints on
the count parameterg and ) are only to ensure that the transition-observation probabilities, as
defined below, are well defined. The action and observation sets asathe as in the origi-
nal POMDP. The rewards depend only on the stadeS and actiona € A (but not the count®
andy), thus we haveR (s, @, y,a) = R(s,a). The transition and observations probabilities in the
BAPOMDP are defined by a joint transition-observation funcnS x Ax S x Z — [0,1], such
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that P'(s,@,W,a,s,¢@,0',z) = Pr(s,¢@,y/,Zs,@ W,a). This joint probability can be factorized by
using the laws of probability and standard independence assumptions:

Pr<sl7 d? l'|J/7 Z|s7 (p7 Lp? a)
= Pr(sl|s7 (p’ l‘IJ’ a‘) Pr(Z|S7 (p7 l'|J’ a'7 Sl) Pr((ﬂ|s7 (p’ l'IJ) a'7 SI7 Z) Pr(l'IJ/|S7 (p’ l‘IJ7 a7 Sl? d? Z)
= Pr(s|sa,@)Pr(za s, y)Pr(¢|gs as)Pry|y,as,2).

As in the Bayes-Adaptive MDP case,(Bfs,a, @) corresponds to the expectation of #is,a)
under the joint Dirichlet posterior defined lyy and P(@|@ s,a,s) is either 0 or 1, depending
on whethenp corresponds to the posterior after observing transit®a, s') from prior ¢. Hence

Pr(S|s,a,0) = &Ei&/, and P(@|@,s,a,8) = Iy, (U(ps,a,s)). Similarly, Pr(zas, ) =

[0O%2zf (O|y)dO, which is the expectation of the Dirichlet posterior for (#%,a), and
Pr(y/|w,a,s,2), is either 0 or 1, depending on whethgr corresponds to the posterior after ob-

serving observatioiis, a,z) from prior §. Thus Pfzla,s, ) = Zzwzdtﬁiq’ and P(y/'|y,a,5,2) =
Iy} (U(,S,a,2)). To simplify notation, we denot&s™ = z;f% andOj = Zz’wZSIUZJZZ/' It fol-
esPsu €

lows that the joint transition-observation probabilities in the BAPOMDP areeefby:

Pr(s, ¢, ¥, 2s,@,y,8) = Ts?05 (¢ (U(@.5.2.9)) gy (UW,S,a,2)).

Hence, the BAPOMDP defined by the POMD®, A, Z, P R |y) has a known model and char-
acterizes the problem of optimal sequential decision-making in the originaViIF
(SA,Z,T,0,Ry) with uncertainty on the transitiom and observation function® described by
Dirichlet distributions.

An alternative interpretation of the BAPOMDP is as follows: given the umknstate sequence
that occurred since the beginning, one can compute exactly the postarias@ andy. Thus there
exists a uniqued ) reflecting the correct posterior counts according to the state seqtisatce
occurred, but these correct posterior counts are only partially wdislerthrough the observations
z € Z obtained by the agent. Thye, ) can simply be thought of as other hidden state variables
that the agent tracks via the belief state, based on its observations. H@NBBP formulates the
decision problem of optimal sequential decision-making under partiaheddsiéty of both the state
se S and posterior countsp, ).

The belief state in the BAPOMDP corresponds exactly to the posterior défirtbe previous
section (Equation 2). By maintaining this belief, the agent maintains its uncertairthe POMDP
model and learns about the unknown transition and observations fusictinitially, if ¢y andg
represent the prior Dirichlet count parameters (i.e., the agent’s priwlkdge ofT andO), and
bo the initial state distribution of the unknown POMDP, then the initial bddjdf the BAPOMDP
is defined ady(s,@ W) = bo(S)l{g} (@)l g} (¥). Since the BAPOMDP is just a POMDP with an
infinite number of states, the belief update and value function equationsnpeesin Section 3.1
can be applied directly to the BAPOMDP model. However, since there is anténfinmber of
hyperstates, these calculations can be performed exactly in practice tmyriimber of possible
hyperstates in the belief is finite. The following theorem shows that this is Seeatany finite time
t:

Theorem 1 Let(S,A,Z,P',R,y) be a BAPOMDP constructed from the POMDP
(SA,Z,T,O,RYy). If Sis finite, then at any time t, the sé&[ S {o € S|b{(0) > 0} has size}Sdt| <

‘S|t+l_
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function 1(b,a,2)
Initialize b’ as a 0 vector.
forall (s,@,¢) € § do
forall s € Sdo
@+ U(ps,as)
W+~ U(P,s,a,2)
b(3, ¢, W) « b/(S, ¢, W) +b(s, @, W) TS OF
end for
end for
return normalizedd’

Algorithm 1: Exact Belief Update in BAPOMDP.
Proof Proof available in Appendix A. |

The proof of Theorem 1 suggests that it is sufficient to iterate &and %;71 in order to

compute the belief statg when an action and observation are taken in the environment. Hence, we
can update the belief state in closed-form, as outlined in Algorithm 1. Of edhisalgorithm is not
tractable for large domains with long action-observation sequences. Segionides a number of
approximate tracking algorithms which tackle this problem.

3.3 Exact Solution for the BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be represedmyealfinite sef” of func-
tionsa : S — R, as in standard POMDPs. This is shown formally in the following theorem:

Theorem 2 For any horizon t, there exists a finite datof functions S— R, such that Y (b) =
MaXer Y oes a(o)b(o).

Proof Proof available in the appendix. |
The proof of this theorem shows that as in any POMDP, an exact soldutithe BAPOMDP

can be computed using dynamic programming, by incrementally constructingttbiasfunctions
that defines the value function as follows:

i = {afo’(sep)=R(sa)},

Mt = {a*0(s,0.W) = V3sesTo 05’ (S, U@ s,a8), UW:S,a,2),
o' eli1},

2 = rRerer?®e...o rta’z‘z‘, (where @ is the cross sum operator)

It = UaeA rta-

However in practice, it will be impossible to compu:téz(s, o, ) for all (s, W) € S, unless
a particular finite parametric form for theefunctions is used. Poupart and Vlassis (2008) showed
that theseax-functions can be represented as a linear combination of product oh@ilscand can
thus be represented by a finite number of parameters. Further discossiair work is included
in Section 7. We present an alternate approach in Section 5.
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4. Approximating the BAPOMDP by a Finite POMDP

Solving the BAPOMDP exactly for all belief states is often impossible due to therdiimeality
of the state space, in particular because the count vectors can growndgdsda. The first proposed
method to address this problem is to reduce this infinite state space to a finitepstage while
preserving the value function of the BAPOMDP to arbitrary precision. @hisws us to compute
ane-optimal value function over the resulting finite-dimensional belief spacegusgandard finite
POMDP solvers. This can then be used to obtaie-aptimal policy to the BAPOMDP.

The main intuition behind the compression of the state space presented heag isstithe
Dirichlet counts grow larger and larger, the transition and observatimvapilities defined by these
counts do not change much when the counts are incremented by onee, Hegre should exist
a point where if we simply stop incrementing the counts, the value function bag@oximate
BAPOMDP (where the counts are bounded) approximates the value faraftihe BAPOMDP
within somee > 0. If we can bound above the counts in such a way, this ensures théthegace
will be finite.

In order to find such a bound on the counts, we begin by deriving aerdggund on the value
difference between two hyperstates that differ only by their model estinpeiad ). This bound

uses the following definitions: givep¢f € T, andy, ' € O, defineDF(@, ¢f) = Tges | T2 — T57|,
DAY, W) = ¥ ez |OF*— Oy wa Yses@®y, andAGE = 3,7 WS,

LIJ/
Theorem 3 Given anyp, ¢ € 7, Y,y € O, andy € (0,1), then for all t:
sup Jan(s.0 ) —cu(s.¢.w)l < Yy sup [D¥(@.¢)+DE (W)
JecSac

aiely,seS

e ijM
In(y™®) \ G+ DAGHL) T (AGF2+1)(A+D)

Proof Proof available in the appendix. |

We now use this bound on tlievector values to approximate the space of Dirichlet parameters

within a finite subspace. We use the following definitions: given any0, defineg’ = S%R“")m
" = S LY Ng = ma( S 2 — 1) andNg = max( B 2 1),

Theorem 4 Given anye > 0and(s,@ W) € S such thatlae A, 35 € S,Mfa > N§ or Mfa > N§,
then3(s, ¢/, y) € S such thatrac A, vs € S, 7§ < NE, A52 < N and|ai (s, ¢, W) —ae (s, ¢, U)| <
€ holds for all t ando; € I'y.

Proof Proof available in the appendix. |

Theorem 4 suggests that if we want a precisioaaf the value function, we just need to restrict
the space of Dirichlet parameters to count vectpesT; = {@ € NIS® ‘A||Va €ASES0< AL
NE}, andy € O; = {p € NISAIZIlvac A'sec S0 < NG < N5} SinceT; and O are finite, we can

define a finite approximate BAPOMDP as the tu(ﬂ?@,A,Z, Pg,Rg,y), where§ = Sx Q;; x O is
the finite state space, afd is the joint transition-observation function over this finite state space.
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To define this function, we need to ensure that whenever the countses®incremented, they
stay within the finite space. To achieve this, we define a projection opefat& — S that simply
projects every state i to their closest state i§:.

Definition 1 Letd: S x S — R be defined such that:

AR sup |DF(9.¢)+DF(W,W)
sseSacA

ifs=¢s
d(s 00,8, ¢, 0) = 4 2gresl®By -yl | TazlWimUG|
(S@W.5.¢.4) TRy \ GG T E g+ ) |
8YlIR|| 4 2Rl i
AR <1+ . (\re)) e otherwise.

Definition 2 Let®. : S — & be defined ag%(s) = argmind(s,s).
ge§

The functiond uses the bound defined in Theorem 3 as a distance between states thiifenly
in their @ and vectors, and uses an upper bound on that value when the states dltites2;
always maps statds, @ ) € S to some statés, ¢/, /) € S. Note that ifc € &, then?.(0) = 0.
Using 7, the joint transition-observation function can then be defined as follows:

I:N)S(Sa o, lIJ,a,S/,([f, lIJ,, Z) = T(Eaéoal,lazl{(s’,qf,lp/)}(fPS(S/a u((p’ S, aasl)a ‘u(llJ,Sl,a, Z)))

This definition is the same as the one in the BAPOMDP, except that now anperjetion
is added to make sure that the incremented count vectors stdy ifinally, the reward func-
tion Re : & x A— R is defined afi:((s,¢,),a) = R(s,a). This defines a proper finite POMDP
(&,A,Z,P;,Re,y), which can be used to approximate the original BAPOMDP model.

Next, we are interested in characterizing the quality of solutions that cabth&ed with this
finite model. Theorem 5 bounds the value difference betveegactors computed with this finite
model and thex-vector computed with the original model.

Theorem 5 Given any >0, (s,@,y) € S anda; € 't computed from the infinite BAPOMDP. Lgat
be thea-vector representing the same conditional plariabut computed with the finite POMDP

(é'e’AaZ;fs,ée,ﬁs,V), then’at(TE<57(p7LlJ)) _at<37(Pa'~|J)’ < 1%V

Proof Proof available in the appendix. To summarize, it solves a recurrencéhevé-step approx-
imation in Theorem 4. |

Such bounded approximation over thidunctions of the BAPOMDP implies that the optimal
policy obtained from the finite POMDP approximation has an expected valge thahe value of
the optimal policy of the full (non-projected) BAPOMDP:

Theorem 6 Given anye > 0, and any horizon t, lef be the optimal t-step policy computed from
the finite POMDP(S;, A, Z, T¢, O¢, Re, Y), then for any initial belief b the value of executing policy

fig in the BAPOMDP ¥ (b) > V*(b) — 245,

Proof Proof available in the appendix, and follows from Theorem 5. |

We note that the last two theorems hold even if we construct the finite POMDRheifollow-
ing approximate state projectic, which is more easy to use in practice:
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Definition 3 Let . : S — & be defined ag; (s, ¢, ) = (s, ¢, §) where:

o @ o if A2 < N§
ST INETSE ] if AS2 > NE

05, =) Wiz TAGRN;
sz INEOSR?| if AS2 > NE

This follows from the proof of Theorem 5, which only relies on such gqmtion, and not on the
projection that minimized (as done by?;).

Given that the state space is now finite, offline solution methods from the literatufinite
POMDPs could potentially be applied to obtainsaptimal policy to the BAPOMDP. Note how-
ever that even though the state space is finite, it will generally be very fargenall €, such that
the resulting finite POMDP may still be intractable to solve offline, even for snoatladns.

An alternative approach is to solve the BAPOMDP online, by focusing atinfinthe best
immediate action to perform in the current belief of the agent, as in online POd¢Eon meth-
ods (Ross et al., 2008c). In fact, provided we have an efficient wapdating the belief, online
POMDP solvers can be applied directly in the infinite BAPOMDP without requiarfanite ap-
proximation of the state space. In practice, maintaining the exact belief in tROBIOP quickly
becomes intractable (exponential in the history length, as shown in Thelgrefitne next section
proposes several practical efficient approximations for both beligdtipg and online planning in
the BAPOMDP.

5. Towards a Tractable Approach to BAPOMDPs

Having fully specified the BAPOMDP framework and its finite approximation,nee turn our

attention to the problem of scalable belief tracking and planning in this frankewWdiis section is

intentionally briefer, as many of the results in the probabilistic reasoning literatun be applied to
the BAPOMDP framework. We outline those methods which have provectiefen our empirical

evaluations.

5.1 Approximate Belief Monitoring

As shown in Theorem 1, the number of states with non-zero probabilityspesywonentially in the
planning horizon, thus exact belief monitoring can quickly become intractalités problem is
not unique to the Bayes-optimal POMDP framework, and was observed aotiiext of Bayes nets
with missing data (Heckerman et al., 1995). We now discuss differentgalbidsed approximations
that allow polynomial-time belief tracking.

Monte-Carlo Filtering : Monte-Carlo filtering algorithms have been widely used for sequential
state estimation (Doucet et al., 2001). Given a prior béliébllowed by actiora and observatioa,
the new beliety is obtained by first samplini§ states from the distributiom, then for each sampled
sa new state is sampled fronTs2. Finally, the probabilityOS2Zis added tdv/(s') and the belief
b’ is re-normalized. This will capture at mdststates with non-zero probabilities. In the context of
BAPOMDPs, we use a slight variation of this method, whese, ) are first sampled frorb, and
then a next state € Sis sampled from the normalized distributidi* Oy The probability YK is
added directly td' (s, U(@,s,a,9), U(P,s,a,9)).
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function WD(b,a,z K)

b <« 1(b,a,2)

Initialize b” as a 0 vector.

(S0 Y) < argmaxy g y)cs, (S0, W)

b’(s, oY) < (s, y)

fori=2toK do
(S, Q, lIJ) < argma@?(d’w/)e% b,(S’, ([f, lIJ/) min(§17¢/7w//)e%/ d(s’7 qj? llJ/, S”, ([f/, llJ”)
b’ (s,.) < b'(s, @)

end for

return normalizedb”

Algorithm 2: Weighted Distance Belief Update in BAPOMDP.

Most Probable: Another possibility is to perform the exact belief update at a given time step,
but then only keep th& most probable states in the new bel#f and re-normalizéy’. This
minimizes thd_; distance between the exact beliéaind the approximate belief maintained with
particles® While keeping only théK most probable particles biases the belief of the agent, this can
still be a good approach in practice, as minimizing thedistance bounds the difference between
the values of the exact and approximate belief: thagwis(b) —V*(b')| < %\ |b—b||1.

Weighted Distance Minimization: Finally, we consider an belief approximation technique
which aims to directly minimize the difference in value function between the appad& and exact
belief state by exploiting the upper bound on the value difference defin8ddtion 4. Hence, in
order to keep th& particles which best approximate the exact belief’s value, an exact bpliete
is performed and then théparticles which minimize the weighted sum of distance measures, where
distance is defined as in Definition 1, are kept to approximate the exact. belief procedure is
described in Algorithm 2.

5.2 Online Planning

As discussed above, standard offline or online POMDP solvers casdaketo optimize the choice
of action in the BAPOMDP model. Online POMDP solvers (Paquet et al., Z008s et al., 2008c)
have a clear advantage over offline finite POMDP solvers (Pineau e0aB; Spaan and Vlassis,
2005; Smith and Simmons, 2004) in the context of the BAPOMDP as they caopliecadirectly
in infinite POMDPs, provided we have an efficient way to compute beliefacélenline POMDP
solvers can be applied directly to solve the BAPOMDP without using the finitd[P®representa-
tion presented in Section 4. Another advantage of the online approach s/thanning from the
current belief, for any finite planning horizanone can compute exactly the optimal value func-
tion, as only a finite number of beliefs can be reached over that finite plgumoinzon. While the
number of reachable beliefs is exponential in the horizon, often only a sotaket is most relevant
for obtaining a good estimate of the value function. Recent online algorithimss(&t al., 2008c¢)
have leveraged this by developing several heuristics for focusing watigns on only the most
important reachable beliefs to obtain a good estimate quickly.

Since our focus is not on developing new online planning algorithms, vebhieimply present
a simple online lookahead search algorithm that performs dynamic prograroxgngll the beliefs

8. TheL; distance between two beligisandb’, denoted|b—b'||1, is defined ag 45 |b(o) —b'(0)].
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reachable within some fixed finite planning horizon from the current béftes. action with highest
return over that finite horizon is executed and then planning is condugésd en the next belief.

To further limit the complexity of the online planning algorithm, we used the apprate be-
lief monitoring methods detailed above. The detailed procedure is providetharithm 3. This
algorithm takes as inpub is the current belief of the agerid, the desired depth of the search, and
K the number of particles to use to compute the next belief states. At the end pfdbedure, the
agent executes actidrestAin the environment and restarts this procedure with its next belief. Note
here that an approximate value functdman be used to approximate the long term return obtained
by the optimal policy from the fringe beliefs. For efficiency reasons, wply defined\?(b) to be
the maximum immediate reward in beliethroughout our experiments. The overall complexity of
this planning approach ®((|A||Z|)PCy), whereCy is the complexity of updating the belief.

: function V(b,d,K)
if d=0then
return V(b)
end if
maxQ+«— —oo
: forall ae Ado
q<« Z(S¢¢,¢)€% b(S, @ UJ)R(S7 a)
forall ze Zdo
b+ 1(b,a,zK)
10: g+« q+YyPr(zb,a)V(b',d — 1,K)
11:  end for
12:  if g> maxQthen
13: maxQ+«q
14: maxA«+ a
15:  endif
16: end for
17: if d =D then
18:  bestA« maxA
19: end if
20: return maxQ

CoNoaRrWNRE

Algorithm 3: Online Planning in the BAPOMDP.

In general, planning via forward search can be improved by using eurae simulator, a
good exploration policy, and a good heuristic function. For example, fliyeoPOMDP solution
can be used at the leaves of the lookahead search to improve sealith (Rass et al., 2008c).
Additionally, more efficient online planning algorithms presented in Ross €2@08c) could be
used provided one can compute an informative upper bound and lowed lom the value function
of the BAPOMDP.

6. Empirical Evaluation

The main focus of this paper is on the definition of the Bayes-Adaptive PBMiDdel, and ex-
amination of its theoretical properties. Nonetheless it is useful to consigeriments on a few
sample domains to verify that the algorithms outlined in Section 5 produce maeaesults. We
begin by comparing the three different belief approximations introducedeablo do so, we use
a simple onlined-step lookahead search, and compare the overall expected retumaoaiad ac-
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curacy in three different problems: the well-known Tiger domain (Kaelbéingl., 1998), a new
domain called Follow which simulates simple human-robot interactions and finalypdasd robot
planning domain known as RockSample (Smith and Simmons, 2004).

GivenTs2% andO%@2 the exact probabilities of the (unknown) POMDP, the model accuracy is
measured in terms of the weighted sum of L1-distance, dengield between the exact model and
the probable models in a belief stdte

WLL(b) = F(seues,b(s @ W)LL(@.W)
LL{@W) = YacaJses [Zses‘Tgaé — T +5,., \Oﬁl,az— Oslaz\]

6.1 Tiger

The Tiger problem (Kaelbling et al., 1998) is a 2-state POM®R, {tiger_le ft,tiger_right}, de-
scribing the position of the tiger. The tiger is assumed to be behind a door; d@t$ologs inferred
through a noisy observatiod,= { hear right,hear left}. The agent has to select whether to open a
door (preferably such as to avoid the tiger), or listen for further infdiona
A= {openleft,openright,listen}. We consider the case where the transition and reward parame-
ters are known, but the observation probabilities are not. Hence, tiesi@us unknown parameters:
OLl, Our, Ori, Orr (O stands for Riz= hear right|s=tiger_left,a= listen)). We define the ob-
servation count vectoy = (Wi, Wir, Yri, Yrr), and consider a prior oo = (5,3,3,5), which
specifies an expected sensor accuracy ob%2(instead of the correct 85%) in both states. Each
simulation consists of 100 episodes. Episodes terminate when the agesibajisor, at which point
the POMDP state (i.e., tiger’s position) is reset, but the distribution over eegtadrs is carried over

to the next episode.

Figure 1 shows how the average return and model accuracy evolvthevEOO episodes (results
are averaged over 1000 simulations), using an online 3-step lookabaath svith varying belief
approximations and parameters. Returns obtained by planning directly witbrittheand exact
model (without learning) are shown for comparison. Model accuraecgeasured on the initial
belief of each episode. Figure 1 also compares the average planning tinaetjpe taken by
each approach. We observe from these figures that the results fdiogtd’robable and Weighted
Distance approximations are similar and perform well even with few parti@esthe other hand,
the performance of the Monte-Carlo belief tracking is much weaker, esiag mmany more particles
(64). The Most Probable approach yields slightly more efficient plantiings than the Weighted
Distance approximation.

6.2 Follow

We also consider a new POMDP domain, called Follow, inspired by an intezdtiman-robot task.
Itis often the case that such domains are particularly subject to parameggtainty (due to the dif-
ficulty in modeling human behavior), thus this environment motivates the utility pe8#&daptive
POMDRP in a very practical way. The goal of the Follow task is for a robaiiatinuously follow
one of two individuals in a 2D open area. The two subjects have differetibn behavior, requiring
the robot to use a different policy for each. At every episode, thetagyson is selected randomly
with Pr = 0.5 (and the other is not present). The person’s identity is not obserigtuept through
their motion). The state space has two features: a binary variable indicétiog person is being
followed, and a position variable indicating the person’s position relativegtoahot (5x 5 square
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Figure 1: Tiger: Empirical return (top left), belief estimation error (top right)d planning time
(bottom), for different belief tracking approximation.

grid with the robot always at the center). Initially, the robot and perseatthe same position. Both
the robot and the person can perform five motion act{dhsAction North, East SouthWest. The
person follows a fixed stochastic policy (stationary over space and tinethd parameters of this
behavior are unknown. The robot perceives observations indicdiingerson’s position relative to
the robot: {SameNorth East SouthWestUnseer}. The robot perceives the correct observation
Pr = 0.8 andUnseenwith Pr = 0.2. The rewardR = +1 if the robot and person are at the same
position (central grid cell)R = 0 if the person is one cell away from the robot, &e —1 if the
person is two cells away. The task terminates if the person reaches a disféhcells away from
the robot, also causing a reward of -20. We use a discount factor.of 0.9

When formulating the BAPOMDP, the robot's motion model (deterministic), thembsion
probabilities, and the rewards are all assumed to be known. Howeveongger the case where
each person’s motion model is unknown. We maintain a separate count f@ctach person,
representing the number of times they move in each direction, thet is, (g% , @, &, @, @),
@ = (@5 G, G, @3, @5,). We assume a priagh = (2,3,1,2,2) for person 1 andg = (2,1,3,2,2)
for person 2, while in reality person 1 moves with probabilifRrs= (0.3,0.4,0.2,0.05,0.05) and
person 2 withPr = (0.1,0.05,0.8,0.03,0.02). We run 200 simulations, each consisting of 100
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episodes (of at most 10 time steps). The count vectors’ distributionsseeafter every simulation,
and the target person is reset after every episode. We use a 2-dtapdad search for planning in
the BAPOMDP.

Figure 2 shows how the average return and model accuracy evolvéhev@00 episodes (av-
eraged over the 200 simulations) with different belief approximations. E€&igualso compares
the planning time taken by each approach. We observe from these fthatdbe results for the
Weighted Distance approximations are much better both in terms of return ami @asodracy, even
with fewer particles (16). Monte-Carlo fails at providing any improvemesgr dhe prior model,
which indicates it would require much more particles. Running Weighted Distaith 16 particles
require less time than both Monte-Carlo and Most Probable with 64 partitiewjrgy that it can
be more time efficient for the performance it provides in complex environment.

Exact model /

1.5¢

—— Most Probable (64)
- - —Monte Carlo (64)
Weighted Distance (16) |-

WL1
[

Return

—— Most Probable (64)
—4 - - -~Monte Carlo (64)
Weighted Distance (16)

0.5r

| Prior model

\
I\ .
VAN . /
v~ ~ Vi (AN oY \ '
v \’\,A /‘/\’ oMM \/ M
i ! I

0 20 40 60 80 100 0 20 40 60 80 100
Episode Episode

200
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100r

501

Planning Time/Action (ms)

MP (64) MC (64) WD (16)

Figure 2: Follow: Empirical return (top left), belief estimation error (top right)d planning time
(bottom), for different belief tracking approximation.

6.3 RockSample

To test our algorithm against problems with a larger number of states, vg&eothe RockSample
problem (Smith and Simmons, 2004). In this domain, a robot is armamsquare board, with rocks
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on some of the cells. Each rock has an unknown binary quality (gooddr bhae goal of the robot

is to gather samples of the good rocks. Sampling a good rock yields highdrén&D), in contrast

to sampling a bad rock (-10). However a sample can only be acquiredtwbeobot is in the same
cell as the rock. The number of rocks and their respective positioriisxadeand known, while their
qualities are fixed but unknown. A state is defined by the position of the mbthe board and the
quality of all the rocks. With am x n board andk rocks, the number of states is thetk. Most
results below assume= 3 andk = 2, which makes 36 states. The robot can choose between 4
(deterministic) motion actions to move to neighboring cells, the Sample action, amsar&ction

for each rock, so there aket 5 actions in general. The robot is able to acquire information on the
quality of each rock by using the corresponding sensor action. Thesegturns eithecoob or
BAD, according to the quality of the rock. The sensor can be used whenlibeiscaway from the
rock, but the accuracy depends on the distahbetween the robot and the rock. As in the original
problem, the accuraay of the sensor is given by = 2-9/d.

6.3.1 INFLUENCE OFLARGE NUMBER OF STATES

We consider the case where transition probabilities are known, and theragst learn its obser-
vation function. The prior knowledge over the structure of the observétioction is as follows:

e the probability distribution over observations after performing actieECk; in states de-
pends only on the distance between the robot and theirock

e at a given distancd, the probability of observingoobwhen the rock is a good one is equal
to the probability of observingAaD when the rock is a bad one. This means that for each
distanced, the robot’s sensor has a probability to give incorrect observatiomsjvdoesn’t
depend of the quality of the rock.

These two assumptions seem reasonable in practice, and allow the rolzohta fFaodel efficiently
without having to try allicHECK actions in all states.

We begin by comparing performance of the BAPOMDP framework with difiebelief ap-
proximations. For the belief tracking, we focus on the Most Probable agightéd Distance Min-
imization approximations, knowing that the Monte Carlo has given poor raauhe two smaller
domains. Each simulation consists of 100 episodes, and the results aagealerver 100 simula-
tions.

As we can see in Figure 3(left), the Most Probable approximation outpesféVeighted Dis-
tance Minimization; in fact, after only 50 iterations, it reaches the same ley@rédrmance as a
robot that knows the true model. Figure 3(right) sheds further light onsbise, by showing, for
each episode, the maximum distance between the estimated belie) = Yueb(s,9 W), and the
correct belietb(s) (assuming the model is knovenpriori). We see that this distance decreases for
both approximations, and that it reaches values close to 0 after 50 epfeotiee Most Probable ap-
proximation. This suggests that the robot has reached a point whemiskts model well enough
to have the same belief over the physical states as a robot who would kadwaéhmodel. Note
that the error in belief estimate is calculated over the trajectories; it is possi#tléhthestimated
model is wrong in parts of the beliefs which are not visited under the dufiearned) policy.

To further verify the scalability of our approach, we consider largesives of the RockSample
domain in Figure 4. Recall that fderocks and am x n board, the domain has state sp&8e=
n?2¢ and action spacpd| = 5+ k. For this experiment, and all subsequent ones, belief tracking
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Figure 3: RockSample: Empirical return (left) and belief estimation erraniyfor different belief
tracking approximation.

in the BAPOMDP is done with the Most Probable approximation (with- 16). As expected,
the computational time for planning grows quickly wittandk. Better solutions could likely be
obtained with appropriate use of heuristics in the forward search pléRoss et al., 2008c).
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Figure 4: RockSample: Computational time for different valudsaofdn. All results are computed
with K = 16 and a depth=3 planning horizon.

6.3.2 INFLUENCE OF THEPRIORS

The choice of prior plays an important role in Bayesian Learning. As axgadeabove, in the Rock-
Sample domain we have constrained the structure of the observation itglmabdel structural
assumptions in the prior. For all results presented above, we used anaer of 4¢-vectors with
probability%1 each. Each of those vectapgsis made of coefficient&p; ), where@; is the probability
that the sensor will give a correct observation at distgndeor each of the 4 vectorg, we sample
the coefficientsp; from an uniform distribution between 0.45 and 0.95. We adopt this approac
for a number of reasons. First, this prior is very general, in assuminghaensor’s probability
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to make a mistake is uniformly distributed between 0.05 and 0.55, at every distar®econd,
by sampling a new prior for every simulation, we ensure that the resultstddepend closely on
inadvertent similarities between our prior and the correct model.

We now consider two other forms of prior. First, we consider the caseenthe coefficients
@; are not sampled uniformly fromj 4505, but rather fromﬂmﬁ], whereqj is the value of
the true model (that is, the probability that the true sensor gives a truevabisa at distancg).
We consider performance for various levels of noise; < 0.25. This experiment allows us to
measure the influence of prior uncertainty on the performances of oorthly. The results in
Figure 5 show that the BAPOMDP agent performs well for various leviglsittal uncertainty over
the model. As expected, the fact that all the priors hayeoefficients centered around the true
valueg; carries in itself substantial information, in many cases enough for the topetform very
well from the first episode (note that tireaxis in Fig. 5 is different than that in Fig. 3). Furthermore,
we observe that the noise has very little influence on the performances mittbt: for all values of
€, the empirical return is above 6.3 after only 30 episodes.
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Figure 5: Performance of BAPOMDP with centered uniform priors in Farkple domain, using
the Most Probably (K=16) belief tracking approximation. Empirical retleft); Belief
state tracking error (right).

Second, we consider the case where there is onlypareztor, which has probability one. This
vector has coefficientg;, such that for allj, ¢; = ";kl for different values ok. This represents a
beta distribution of paramete($,k), where 1 is the count of wrong observations, &ritle count
of correct observations. The results presented in Figure 6 showothall /alues ok, the rewards
converge towards the optimal value within 100 episodes. We see that fovhiges ofk, the
robot needs more time to converge towards optimal rewards. Indeed,hoss have a large total
count k+1), which means their variance is small. Thus, they need more time to coreatseives
towards the true model. In particular, tiig 16) is very optimistic (it considers that the sensor
only makes an error with probabilit%), which causes the robot to make mistakes during the first
experiments, thus earning poor rewards at the beginning, and nedxing&0 episodes to learn a
sufficiently good model to achieve near-optimal performance. The rigbteggaph clearly shows
how the magnitude of the initi&limpacts the error in the belief over physical states (indicating that
the robot doesn’t know the quality of the rocks as well as if it knew theeobimodel). The error in
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Figure 6: Performance of BAPOMDP with Beta priors in RockSample domaimguhe Most

Probable (K=16) belief tracking approximation. Empirical return (left)idetate track-
ing error (right).

belief state tracking is significantly reduced after about 80 iterations,rounfj that our algorithm
is able to overcome poor priors, even those with high initial confidence.

Finally, we consider the case where the true underlying POMDP modelngetauch that the
sensor has a constant probabiltgf making mistakes for all distances; the prior is sampled as for
the results of Figure 3. This makes the situation harder for the robot, fetancreases its sensor’s
overall probability of making mistakes, including at distance zero (i.e., wherothot is on the same
cell as the rock). The empirical results presented in Figure 7 show aaterin the empirical return
ase increases. Similarly, as shown in the right graph, the learning perforraufters with higher
values ofe. This is not surprising since a highemdicates that the robotsHECKS are more prone
to error, which makes it more difficult for the robot to improve its knowledbeua its physical
states, and thus about its model. In fact, it is easy to verify that the optimah (@ssuming a fully
known maodel) is lower for the noisier model. In general, in domains wherelikergations are
noisy or aliased, it is difficult for the agent to learn a good model, as wegled®rm well (unless
the observations are not necessary for good performance).

7. Related Work

A few recent approaches have tackled the problem of joint planninteanting under partial (state
and model) observability using a Bayesian framework. The work of Rbapd Vlassis (2008) is
probably closest to the BAPOMDP outlined here. Using a similar Bayesiaegeptation of model
uncertainty, they proposed an extension of the Beetle algorithm (Poepatt, 2006) (original
designed for fully observable domains) to compute an approximate solutiddAlBOMDP-type
problems. Their work is presented in the context of factored reprds®srgabut the model learning
is done using similar Bayesian mechanisms, namely by updating a posteriesenfad by a mix-
ture of Dirichlet distributions. They outline approximation methods to maintain a aotigelief
set that are similar to the Most Probably and Monte-Carlo methods outlinecttios®.1 above.
Presumably our Weighted Distance minimization technique could be extended fathared rep-
resentation, assuming one can compute the distance metric. Finally, theg@eopoffline planning
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Figure 7: Performance of BAPOMDP with varying observation models inkRample domain.
Empirical return (left). Belief error (right).

algorithm, similar to the literature on point-based POMDP solvers, to find a polioyweMer we
are not aware of any empirical validation with this approach, thus scalabildyeapressivity in
experimental domains remains to be determined.

Jaulmes et al. (2005) have for their part considered active learningriialy observable do-
mains where information gathering actions are provided by oracles theslriéne underlying state.
The key assumption of this approach, which is not used in other modedyiyg®aches, concerns
the existence of this oracle (or human) which is able to correctly identify the f&i#owing each
transition. This makes it much easier to know how to update the prior. In the gaimehan
Jaulmes and colleagues, Doshi et al. (2008) developed an appoaddiive learning in POMDPs
that can robustly determine a near-optimal policy. To achieve that, they utieddmeta-queries
(questions about action) and a risk-averse action selection criterioallihas agents to behave ro-
bustly even with uncertain knowledge of the POMDP model. Finally, Doshiz@e10) proposed
a Bayesian learning framework for the case of POMDPs where the nuwhbktes is not knowa
priori, thus allowing the number of states to grow gradually as the agent explerasthd, while
simultaneously updating a posterior over the parameters.

The work on Universal Artificial Intelligence (Hutter, 2005) presentsrderesting alternative
to the framework of BAPOMDPs. It tackles a similar problem, namely sequetg@sion-making
under (general) uncertainty. But Hutter's AIXI framework is more gahean that it allows the
model to be sampled from any computable distribution. The learning probleongrained by
placing an Occam’s razor prior (measured by Kolmogorov complexity) thheespace of models.
The main drawback is that inference in this framework is incomputable, thangiligorithm is
presented for computing time/space-bounded solutions. Further develbpfreegeneral purpose
AlIXI learning/planning algorithm would be necessary to allow a direct caimpa between AlXI
and BAPOMDPs on practical problems. Recent results in Monte-CarloRPiguprovide a good
basis for this (Silver and Veness, 2010; Veness et al., 2011).

A number of useful theoretical results have also been published recEntlyhe specific case
of exploration in reinforcement learning, Asmuth et al. (2009) presemfietly Bayesian analysis
of the performance of a sampling approach. Subsequently, Kolter arid@09) clarified the rela-
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tion between Bayesian and PAC-MDP approaches and presented a digopithan for efficiently
achieving near-Bayesian exploration.

Finally, it is worth emphasizing that Bayesian approaches have also besstigated in the
control literature. The problem of optimal control under uncertain modelmeters was originally
introduced by Feldbaum (1961), as the theory of dual control, alsotsos®ereferred to as adap-
tive dual control. Extensions of this theory have been developed forvangng systems (Filatov
and Unbehauen, 2000). Several authors have studied this prohietifféoent kinds of dynamical
systems : linear time invariant systems under partial observability (Rust@k),linear time vary-
ing Gaussian models under partial observability (Ravikanth et al., 196R)inear systems with
full observability (Zane, 1992), and more recently a non linear systemsriypartial observability
(Greenfield and Brockwell, 2003). All this work is targeted towards Hjgeclasses of continu-
ous systems, and we are not aware of similar work in the control literatuiderete (or hybrid)
systems.

8. Conclusion

The problem of sequential decision-making under model uncertaintysdarigeany practical ap-
plications of Al and decision systems. Developing effective models andithlgs to handle these
problems under realistic conditions—including stochasticity, partial stateaiiskty, and model
inaccuracy—is imperative if we hope to deploy robots and other autonoagmrgs in real-world
situations.

This paper focuses in particular on the problem of simultaneous learningeaiision-making in
dynamic environments under partial model and state uncertainty. We anmuted-based Bayesian
reinforcement learning framework, which allows us to explicitly target th@agation-exploitation
problem in a coherent mathematical framework. Our work is a direct arten$ previous results
on model-based Bayesian reinforcement learning in fully observableidema

The main contributions of the paper pertains to the development of the Bajsstive POMDP
model, and analysis of its theoretical properties. This work addressgslaen of interesting ques-
tions, including:

1. defining an appropriate model for POMDP parameter uncertainty,
2. approximating this model while maintaining performance guarantees,
3. performing tractable belief updating, and

4. optimizing action sequences given a posterior over state and modefainiye

From the theoretical analysis, we are able to derive simple algorithms fof trali&ing and
(near-)optimal decision-making in this model. We illustrate performance oéthlg®rithms in a
collection of synthetic POMDP domains. Results in the Follow problem show¢dtin@pproach
is able to learn the motion patterns of two (simulated) individuals. This suggestesting ap-
plications in human-robot interaction, where we often lack good models mmahubehavior and
where it is imperative that an agent be able to learn quickly, lest the huneahose interest (this
is in contrast to robot navigation tasks, for which we often have accaesste precise dynamical
models and/or high-fidelity simulators). For their part, results of RockSanmmpl#gm shows how
one should take into account prior knowledge on agent’s sensorsthisdmowledge is available.
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While the BAPOMDP model provides a rich model for sequential decisionimgalnder uncer-
tainty, it has a number of important limitations. First, the model and theoretichisimare limited
to discrete domains. It is worth noting however that the approximate algoritkt@scequite eas-
ily to the continuous case (Ross et al., 2008b), at least for some familiggafridcal systems.
Other related references for the continuous case are available in ttnel diberature, as described
in Section 7.

Another limitation is the fact that the model requires specification of a prids i$istandard in
the Bayesian RL framework. The main concern is to ensure that the psignassome weight to
the correct model. Our empirical evaluation shows good performan@erorge of priors; though
the issue of choosing good priors in large domains remains a challengedrae®ur empirical
results also confirm standard Bayesian intuition, whereby the influenite girior is particularly
important for any inference and decision-making performed when ontyall amount of data has
been observed, but the influence becomes negligible as large amouata afel acquired.

As a word of caution, problems may arise in cases where Bayesian RLdisaisder both tran-
sition and observation probabilities simultaneously, while the rewards arexpttitly perceived
through the observations (even if the rewards are knaynori). In this challenging setting, the
Bayes-Adaptive POMDP framework as outlined above might converge itacarrect model if the
initial priors on the transition and observation model are non-informatives i mainly due to
the fact that many possible parameters may correctly explain the obsatieal-abservation se-
guences. While the agent is able to predict observations correctly, this tegoor prediction
of rewards and thus possibly sub-optimal long-term rewards. HowEtlee rewards are observ-
able, and their probabilities taken into account in the belief update, sutiepre do not arise,
in the sense that the agent learns an equivalent model that correcigynsxihe observed action-
observation-reward sequence and recovers a good policy for #tmwn POMDP model. In the
latter case, where rewards are observable, the framework preseritesi paper can be used with
only minor modifications to also learn the reward function.

Finally, it is worth pointing out that Bayesian RL methods in general havbeet deployed in
real-world domains yet. We hope that the work presented here will motivettesf investigation of
practical issues pertaining to the application and deployment of this classroirlg approaches.
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Appendix A. Theorems and Proofs

This appendix presents the proofs of the theorems presented thratigisquaper. Theorems 1 and
2 are presented first, then some useful lemmas, followed by the proofs @rttaining Theorems.
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Theorem 1 Let (S,A,Z,T,O,R,y) be a BAPOMDP constructed from the POMDP
(SA,Z,T,O,RY). If Sis finite, then at any time t, the se‘& S {o € S|b{(0) > 0} has size

Sl < ISt

Proof Proof by induction. Wheh= 0, b (s, @, ) > 0 only if = @ andy = yo. Hence|SD6\ <|S.
For the general case, assume ﬂ@'u < |St. From the definitions of the belief update function,
bi(s,¢@, W) > 0iff 3(s,@ W) such thaty_,(s,¢, ) >0, ¢ = ¢+, andy’ = P+ F,. Hence, a
particular(s, @, ) such that_,(s, @, ) > 0 yields non-zero probabilities to at mdst different
states irb[. Since\SDLl\ < |S! by assumption, then if we genera& different probable states I,

for each probable state & _ it follows that\S’D:] < |9+, [ |

Theorem 2 For any horizon t, there exists a finite datof functions S— R, such that Y (b) =
MaXyer, Y ges 0(0)b(0).

Proof Proof by induction. This holds true for horizér= 1, sinceV;' (b) =

MaXaca Y (sou) P(S, O, W)R(S a). Hence by defining; = {0a|aa(s, @, W) = R(s,a),ac A}, Vi (b) =
MaXqer; Y geg b(0)a (o). By induction, we assume that there exists alsesuch thatv;*(b) =
MaXger, ¥ oes b(0)a(0).

Now Vi, 1 (b) = MaXaca [T s o) (S, @, W)R(S, @) + T .z Pr(zlb, a)V;* (b7%)]. Hence:

Viia(b) = maxaca [ seu) b(S @ W)R(S,a) + T ez Pr(zb,a) maxcr, Y geg b*(0)a(0)]
maxgea [Z(s;p ) b(s, @, W)R(S,a) + ¥ ez Ma¥er, Y ges Pr(Zb, a)baz(c)a(o)}
sa)+
(

MaXaca [Z(s,(pw b(s, @, W)R(s,
ZZGZ rna.)Qxe['t 2(57([,7 GS' ZS'ESb S (P, )Tgaéoaaza(sla u((p’ S7 avs,)v ‘Zl(llJ,Sl,a, Z))i| ‘

Thus if we define:

rt+l = {Ga,f |Ga,f (57 ®, lIJ) = R(Sa a)+
ZZGZ zS’ESTq?aéoiazf (Z) (Slv ru((p’ Sa a’sl)v ‘U(llJa5/>a7 Z))va € Aa f € [Z — rt]}v

thenV;" ; (b) = Ma%ser,,, Y oes b(0)a(0) andly. 1 is finite since|l,.1| = [A||T¢|?l, which is finite
by assumptions tha, Z andl; are all finite. |

For some of the following theorems, lemmas and proofs, we will sometime denot@iribb-
let count update operatdi, as defined for the BAPOMDP, as a vector additigh= @+ &%, =
U(g,s,a,9), that is,d%, is a vector full of zeros, with a 1 for the elemeg,.

Lemma 1 For any t> 2, any a-vectora; € Iy can be expressed as® (s, @) = R(s,a) +
Y3 2ez Yses TSR O30 (2)(S, 0+ &y, W+ 83,) for some a= A, anda’ defining a mapping Z» I'y_3.

Proof Follows from proof of theorem 2. |

Lemma 2 Given any ab,c,d € R, ab—cd = (a_c)(ber)JZ’(a*C)(b_d).
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Proof Follows from direct computation.

Lemma 3 Given anyp, ¢ € T, Y,y € O, then for all s€ S, ac A, we have that
Vs, | Ve,
Nl | < D¥10.0) + sunsDE W W)

Proof Using lemma 2, we have that:

des ZZEZ

PV, E W2,

9\@39\@5’,3 7\@3%?/3
(«@_(@g><w§z+wzz>+<sg @)(wi_w@)
wa 9\@&1 Nfa Nﬁ/a % 7\@3 _{7\@751 Mﬁla

zs’eSZzeZ

1
- 2 Zs’eSZzeZ

@5 w3, w3, qf Wz, WE,
< 225’65 nga _%sa ZZEZ :7\5%3 Ni;a 2ZSeS %’sa ZZEZ S;a_ N%a‘
< Wy |1 vy, vy,
S 2ses % N;a +3 SURyes? zez m@;a 9\@:/51 2ses % 7\6053

S (pa "IJ,aZ lIJaZ
= 2¢cS 9\453 %ga +SURes) zez ré/a— Miga

= DE(J,9) +supsDSAW, ).

Lemma 4 Given anyp, ¢f,A € T, then for all s€ S, ac A,

20R®Y ges| By — 05|
DE(@+A,¢ +4) <DFo,¢) + MW

Proof We have that:

D(@+A,¢ +4)
_— EytByy  FytAy

ses Nfa'*‘?\@a ﬂ@a+9\[asa
(008, ) (™) — (0% 02, ) (A G

= ZS’GS (7\@6"‘7\@51)(7\@34‘9\[55‘
_ By NG T B A H AL NG 0 N~ W NS AG AG°
= ZS’ES 9\4')5‘3‘+9\[Asa)(9\4;a+9\[§a

LN~ Oy No” Ny — g A5 (NG 7

S ZS'ES (7\@5\_‘_9\&551 9\@@_9@% +ZS’ES m@a_l_?\[asa ma_'_g\&sa)
- BTG | (Sl o[+ 6
>~ ZS'ES fmgawa ma+9\[asa waJrfN’Asa)

ool o] GG
= Dga((ﬂ (ﬁ) : %&jg\@: Wa+%£;\§j %

sa, 205y g es| By 03|
S DS ((p,(ﬁ) m@sa_,'_y\[asa 9\4?&_,’_9\@,31 .

ZdesAgg
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Lemma 5 Given anyp, /., A € O, then for all s€ S, ac A,

2NE?Y ez |WE— W)
D%a(ll,] + Aa lIJ/ =+ A) é D%a(llj’ lIJ/) + (g\ﬁaJrg\Qsai(?\Q?/aJrg\[Asa) .

Proof Same proof as for lemma 4, except that we sum @we¥ in this case. |

2

Lemma 6 Given anyy € (0,1), thensup,y/?x = oy

Proof We observe that whexn= 0, y¥/2x = 0 and lim_;y/2x = 0. Furthermorey*/2 is mono-
tonically decreasing exponentially #éncreases, whil& is monotonically increasing linearly &s
increases. Thus it is clear thgt?x will have a unique global maximum if0, «). We can find this
maximum by taking the derivative:

> (y/2x)
_ Iny V*/2x VX/Z
PR ).

Hence by solving when this is equal 0, we have:

|
(nz\l)x +1=0
x= 2 = —2log,(e)
Hence we have that:
¥/2x
< —2y “%®log,(e)
= —2etlog,(e)
_ 2
— In(y®)
|
Lemma 7 Supy,cr, ssl01(S Q) —as(s, ¢, )| = 0forany, ¢, g, §'.
Proof Foranyaec A, se S |ad(s, @) —ai(s ¢, V)| =|R(s,a) —R(s,a)| = 0. [ |

Theorem 3 Given anyp, ¢ € T, §, € O andy e (0,1), thenVvt:

sup |ae(s @) — (s @.W) < 2B sup |DE(e.¢) +DF(W,W)+

o€l seS sgeSacA

4 M+M
GG (G +D (g +1) ) |
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Proof Using lemma 1, we have that:

0E (5,0.W) — a2 (5,¢, W)
E 03,
= ‘R(Sv a) +VZS'ESZZ€Z 9\4,;7\21%6\

e /
_R(57 a) _VZS'ESZZEZ wig\zgaa ( )(Sla([{—i_égg?l-p +62’z)
E¥e,

— V| SscoTer | ()0 + S+ ) - )8, S+ 5|
Y2,

=Y ZS’ESZZ€Z|: san(s s’a(a/( )(S, (p+6 7w+62’z)7 ( )(S,’d+6g§7w/+62’z))
_< Sagwls?z _ (fﬁwdz)a Sl (d_|_6g’lp _|_6 ):|
(

o' (2)(8, 0+ &g, W+,

%@aﬂg’ a mCPsag\@s’ a

< YysesYrez mimgga 2)(S, 0+ 8, W+88,) — o (2)(S, ¢ + &%, W +83,)|
+YYsesdzez ‘ %i;afa - ;\fsijé’za' |o(2)(S, ¢ + 88, W + 88|

< vgessuzgz\a’(z)(d,w+62g,w+6§z) o' (2)(8, ¢ + 8%, W' +8,)|
+VHR”°° YseS)zez ﬂéj\%a - ;Ei;%a

<y sup |o/(2)(S, 0+ 8%, W+8%,) —o'(2)(S, ¢ + &, W' +83,)|

seSzez

JryHRIIoo (Dsa((p( ®) + supy DAY, lIJ))

The last inequality follows from lemma 3. Hence by taking the sup we get:

Sunxtert,SES“]t (87 (p7 l'p) - at (S7(ﬁ7 lIJ/)|
< Y sup ’Gt—l(5,7(9+6ggaw+5g) Ot l(sl (d+6 gan +6§’z)}
sseSacAzeZ,0i_1€M1

+155 sup (DE(G.0)+DEW.W)).

sseSacA

We notice that this inequality defines a recurrence. By unfolding it uptd we get that:

Sunxtert,ses‘at (37 (p7 lIJ) — O (Sv d? Lp/)‘
< ¥y sup s (S, @+ A, P+4A) —ay(S, @ +A,Y +4)]
ar€l 1 S€SACT N 0| [|A]|1=||A][1=(t—1)
+1E sup DE(§/ +0,¢+0) + DI + 4+ 4)
sS€SacAAET NeO| ||A||1=||A||1=i
+Y8 sup (DE(Y.9)+DW.W)).
sseSacA
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Applying lemmas 7, 4 and 5 to the last term, we get that:

Sup}[Erl seS |(]t (S (p7 l'p) - at <S7 qf’ lIJ/)|
< YWRksidy sup (DE(¢,0)+DFA(W, )
sseSacA AT NeO| ||Al|1=]|L||1=i
2T gcsl Wy 0yl 2N52 S ez (W3, WS,
(MGG (A -+ (A7)
+Y% sup (DEF(.@)+DFW. W)
sgeSacA
— AR 5i2ye sup (V/2D%(.0)+ V205
sS€SacAACT NeO| ||A||1=||&||1=i
+2W2N§az§/es|<p:§/—¢@,\ 2GRy e W3, W3
GRG0 (A 7G
+UE sup (DE(.9)+DEW.W)).

Sg€S,

+

_'_

Now we notice that//2 < y"&%/2 since||Al|; = i, and similarlyy/2 < y"&"/2. Hence by applying
lemma 6, we get that:

SURI[GF[ SGS’at S (p7 >_at(s7d7"p/)’

< sy sup (o%(¢.9+ DWW
sseSacA AT NeO| ||Al|1=]|L||1=i
4 425”63‘@5/ (dsgl‘ + 4ZZGZ|w:/Z*qJ§Z‘
In(y~ 9\@a+9\(’asa Nﬁa‘i‘?\@a) n(y’e)(W;ﬁla-l‘?\(s,la)(?\(;:;a+7\§;a)
+4% sup (DE(.0)+DIW.W)
sseSacA
< WRlgt2g2 g (Dsa @)+ DS b Ryt
— ZI lyl SS’GSEGA S(qj (P) (lIJ lIJ) In(y~ %+1 %+1
432z | V3, VG, VIRl sa sa/y/
+|n(T9)(7\ﬁa+1)(7\@a+1)) Ty Sgigg@ (DS (¢,9) + D (W ’qJ))
< (3i3Y) YRy sup [Dsa«d,cp)wga(w' w)
sseSacA
+ ZS”eSWag/ (dsg/| + ZZGZNJS/Z lIJ?Z
In (AG+1) 9\@""4—1 Mﬁ‘”—l s’a+1
< (zizom% sup [DE(. ¢>+D§a<w',w>
sgeSacA
+ 4 ZS”GSWag/ (dsg/| + ZZeZNJS/Z LIJ?Z‘
v\ DD T (A +)(A+)

_ Wy HRHw sa sa 4 Sores| By — 0| Sz W3,V
= 1_y y SgiggeA |:D ((ﬂ (p)+D (LIJ L|‘J)+|n y»e (9\@34_1 Wa-’rl + Mﬁla+1 9\4{?;6‘4»1)
2[Rl sa, S’a Yores| By — 0| Yoz WG, — W5,
< TE S [Ds (¢, 9) + D2, 0) + <%sa+1 0 T g ) |

S oes| @y — (98 +A3,)| < 1

Lemma 8 Givenge 7,se€ S, ac A, thenforallA € 7, (D) (G LA D) = AT
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Proof
Soesl ¥y — (B +4%,)]
(A3+1) 9\@%9\@%1
_ ZS’ESASg
(A2+1) (AG*+AR+1)
. 1 sa
7\4956_,’_1 9\[Asa+9\@sa+1
The termm@%wm is monotonically increasing and converge to 173§ — . Thus the lemma
follows. |
Corollary 1 Givene >0, pe 7,s€ S, ac A, if 9\595"" — 1 then for allA € 7 we have that

Soes| @y — (g +A%,)
(A1) (AGHAR*+1)

Proof According to lemma 8, we know that for @le 7, we have tha mzﬁiifgé%;gsﬂ) < ﬁ

< E.

sa
Hence |f% > =1, theng\@,a+l <E. [ ]
i XZGZ |'~|"ng (L|J22+Agz) | 1
Lemma 9 Giveny € O, s€ S, ac A, then for allA € O, ) (G A 1) < G
Proof Same proof as lemma 8. |
Corollary 2 Givene >0, Y € O, s€ S, ac A, if AF@> ¢ — 1 then for allA € O we have that
ZZEZNJSZ (wsz+Aaz)‘ <€
(AGHL) (AGHANR2+1)
Proof Same proof as corollary 1, but using lemma 9 instead. |

Theorem 4 Given anye > 0and(s,¢, ) € S such thadae A 35 € S,?\éfa > N§ or 9\53 > N§,

then3(s, ¢/, 1) € S such thatrac A, vs € S, 7§ < NE, A52 < N and|ai (s, ¢, W) —ae (s, ¢, U)| <
€ holds for all t ando; € I'y.

Proof Consider an arbitrary > 0. We first find a bound on(;® andA¢;? such that any vector with

higher counts is withir distance of another vector with lower counts. Let's define 8vHRH) and
g = % According to corollary 1, we have that for apye 7 such that\[>2 > ei -1,
Es”es‘q}as'/ (P(Sgl‘

then for all¢/ € T such that there existsfac T whereq = @+ A, thenm < ¢”. Hence

we want to find arN such that giverp € 7" with A2 > N, there exists & € 7 such that\(z* <N,
DZ(g.¢) < ¢ and exists & € 7 such thatp= ¢ +A. Let's consider an arbitrary such that

Ng? > N. We can construct a new vectgfas follows, for alls’ defineq§ = {%J and for all

9\@3
othera’ #a,s" #s5, deflne(p(s,/g = (pg,g foralls. Clearly,¢ € T, suchthaN — |§ < Ny < N. More-
over, we have thag%t, < @&, for all §,&,s", and thus there existste 7 such thatp= ¢ + A.
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Furthermore, from its construction, we know th/at, < L Henceitis clear from this

| <
thatDE(¢,¢) < 'S’fs Thus, if we wanDZ(@, ¢f) < €/, we just need to takid > ‘3(1%) . Since we
also wantN > 8,, —1, let’s just definedNs = max(‘a(i,*s), 7 1) Ns = Ng, as defined in Section

4, will be our bound om\[;a such that, as we have just showed, for any 7 such thatmpsa> Ns,

we can find ap’ € T such thath\(z? < Ns, D¥(@.¢f) < ¢ and%ﬂf%i\@ﬁ < €. Similarly, since

we have a similar corollary (corollary 1) for the observation counte/e can proceed in the same

way and defindN; = max(‘ZKi,*s') - 1), such that for anyp € O such thatA(;* > Nz, we can

find ay’ € O such that\(§? < Nz, DS(y, /) < ¢/ andg\%pﬁﬁis;g;j‘l) <€”. Nz = N¢ as we have

defined in Section 4.
Now letS={(s, @) € S|vs' € Sac A NS <Ns & N§? < Nz} and consider an arbitrarg, ¢, ) €

S. Foranys € S a€ A, such that\(s2 > Ns, there exists g € 7 such that\(52 < Ns, DE*(¢, ¢f) <
4 andW < ¢” (as we have just showed above). Thus let's defifie = ¢, for all
s’ €S Foranys € S ac A, such that?\épga < Ng, just set(pgg, = @y, Vs’ € S Similarly, for any
s €S ac A, such that\(§@ > Nz, there exists &/ € O such that\(52 < Nz, DS*(y, ) < ¢’ and
Y2z WS, W3,
(G2 +D)(AG+1)
For anys € § a€ A, such thaitﬂ\ﬁa < Nz, just setdgy, =Ygy Vs" € S Now it is clear from
this construction thas, ¢, ) € S By Theorem 3, for any, Sup, cr, scs|0t(S, @, @) — 0t (s, @, {)| <

2y|[R]|eo ZS”QS‘(pag/ (]1:4/\ 22€Z|'-|J2/Z*¢'2/Z‘
uyysé??@[ "@®+ Dz (W, D)+ <7\C§a+1 N;a+l)+(9\£ﬁ'a+1)(7\(53+1) <

2[Rl 4 1" ZAN
1y? [s +E + e (€7 +¢€ )] =¢. u

< ¢" (as we have just showed above). Thus let’s defidg = Y2, foralls’ € S

Theorem 5 Given anye > 0, (s,@,0) € S and a; € 't computed from the infinite BAPOMDP.
Leta; be thea-vector representing the same conditional plancasbut computed with the finite
BAPOMDP(&7A7Z7T&O€7 R??y)! then‘at(TE(& (pa l'IJ)) - Gt(s7 (p7 qJ)’ < 1%y

Proof Let (s, ¢,U) = Z(s,Q V).

0t (e(s, . W) — ar(s, @ Y)|

< |Gi(s, @, W) —ai(s, ¢, @) +ai(s, @, W) —ai(s @ )|

< |ai(s, @, W) —ai(s,@, )| +€ (by Theorem 4)

V3 2z SoesTo O [0 (2) (Be(S, @ + 82, W +83,)) — ' (D)(S, ¢ + &, W/ +88,)] [ +¢
yzzezzgesTsaéogaﬂa 2)(B(s, @ + 8, W +82,) — o' (2)(S, ¢ + B, ¢/ +33,)| +¢
ysuQeZ,s’eS‘d/(z)(Tﬁ(slv(d+6237w +6§’z)) ( )(3,7([{ sS?l‘p +6§’z)‘+8
YSURy, ser, 1,(s.9" w)es |Ot—1(Ze(S, @7, 1")) — a1 (S, @', @) + &

Thus, we have that;

VANVANRVAN

SUthert,oes ’at(?ﬁ(o))N_ at(0)|
< YSURy ser, yores [0t-1(Fe(0')) — 0-1(0")| + &
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This defines a recurrence. By unfolding it uptte: 1, wherevo € S, G1(%:(0)) = a1(0), we get
that sSuR, cr, ges |0t(P:(0)) — at(0)| < £y!-5y. Hence for alk, this is lower thanlf—y. [

Theorem 6 Given anye > 0, and any horizon t, lef be the optimal t-step policy computed from
the finite POMDP(§., A, Z, T, O, R, y), then for any initial belief b the value of executing policy
fi in the BAPOMDP ¥ (b) > V*(b) — 2%,
Proof Pick any starting belieb in the BAPOMDP. Leta* denote the optimal t-step condition
plan in the BAPOMDP folb: a* = argmaXcr, ¥ sew) (S @, W)a(s,@ g), such that the value of
this optimal conditional plan i§ (s ) b(s, @ W)a*(s,@ ) = V*(b). Denoted* the corresponding
o-vector representing the sarmstep conditional plan in the finite POMDP approximation.

Now letd’ = argmaxcr, 3 (squ) (S, @, W)G(P:(S,¢,¥)) be the optimat-step conditional plan
in the finite POMDP approximation if we start in belief This conditional plan represents exactly
what the policyit would do ovet-steps starting ibh. Denotea’ the corresponding-function in the
BAPOMDP representing the sarhetep conditional plan. Then the value of executipgtarting
in bin the BAPOMDP i8V5 (b) = 3 (s g, B(S, @, W)’ (s, ¢, Y). Using Theorem 5, this value is lower
bounded as follows:

Vi (b)

= Z(S,(p,lIJ) b(S, () L|J)(X/(S, () L|J)

> Sieaw b QUE (5 W) — 1,
> Ysewb(s OY)a* (Pe(s QW) — Ty
> Z(S,(p,lIJ) b(S, ) Lp)a*(fz)ﬁ(sv (¥ LI")) - Zl%y
— Vi(b)—2:E
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