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Abstract

A logistic stick-breaking process (LSBP) is proposed fon4parametric clustering of general
spatially- or temporally-dependent data, imposing théebéhat proximate data are more likely
to be clustered together. The sticks in the LSBP are realiigethultiple logistic regression func-

tions, with shrinkage priors employed to favor contiguoud apatially localized segments. The
LSBP is also extended for the simultaneous processing dfpteutiata sets, yielding a hierarchical
logistic stick-breaking process (H-LSBP). The model patars (atoms) within the H-LSBP are
shared across the multiple learning tasks. Efficient vianat Bayesian inference is derived, and
comparisons are made to related techniques in the literaixperimental analysis is performed for
audio waveforms and images, and it is demonstrated thaefpnsntation applications the LSBP
yields generally homogeneous segments with sharp bowsdari

Keywords: Bayesian, nonparametric, dependent, hierarchical moskdgnentation

1. Introduction

One is often interested in clustering data that have associated spatial oraéogmrdinates. This
problem is relevant in a diverse set of applications, such as climatologiogy, environmental
health, real estate marketing, and image analysis (Banerjee et al., 20@8available spatial or
temporal information may be exploited to help infer patterns, clusters or s¢gtnethe data. To
simplify the exposition, in the following discussion we focus on exploitapgtial information,
although when presenting results we also condielmporaldata (Fox et al., 2008).

There have been numerous technigues developed to cluster data, lalthosgof these do
not explicitly exploit appended spatial information. One class of stateeshthmethods employs
graphical techniques, such as normalized cuts (Shi and Malik, 2002eriszwalb and Hutten-
locher, 2004) and extensions (Zabih and Kolmogorov, 2004). Theseaches regard the two-
dimensional (2D) data as an undirected weighted graph, and the segmeigtatiivalent to find-
ing the minimum cut of the graph, minimizing the between-group disassociation nvhik@mizing
the within-group association (Shi and Malik, 2000). Such graph-tiieareethods have attractive
computational speed, but do not provide a statistical inference (meakomnfidence), and of-
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ten one must pre-define the total number of segments/clusters. Furttieigrayghical techniques
are not readily extended to the joint analysis of multiple spatially dependémnsdts, with this of
interest for the simultaneous analysis of multiple images.

To consider clustering in a nonparametric Bayesian manner, the Diricle¢ss (DP) (Black-
well and MacQueen, 1973) has been employed widely (Antoniak, 195ehldar and West, 1995;
Rasmussen, 2000; Beal et al., 2002). Assume we are §lvdsia points{yn}r’\,'zl, with y,, repre-
senting a feature vector; each feature vector is assumed drawn frararagtric distributior (6y).
For eachy,, the DP mixture model is represented as

YO~ F(8n), 6,GRG, Glag,Go~ DP(aoGo),
whereo is a non-negative precision parameter &gds the base probability measure. Sethuraman
(1994) developed an explicit method for constructing a dagfsom a DP:

o k-1 . .
G=3 Mo, M=V [](1-Vi), W " Beta(1,a0), 6} ' Go. 1)
k=1 K=1

The precision parametery controls the number of sticks that have appreciable weights, with these
weights defining the probability that differefi, share the same “atom#y. Sinceag plays an
important role in defining the number of significant stick weightswe typically place a gamma
prior onag to allow the data to inform about its value.

The assumption within the DP that the data are exchangeable is generallyojpiégie when
one wishes to impose knowledge of spatial information (in which gadtas an associated spatial
location). For example, the data may be representdgias,}\_;, in whichyy, is again the feature
vector ands, represents the spatial locationygf Provided with such spatial information, one may
wish to explicitly impose the belief that proximate data are more likely to be clustegethter.

The spatial locatios, may be readily considered as appendedeature, and the modified fea-
ture vectors (data) may then be analyzed via traditional clustering algoriltkenghose discussed
above. For example, the spatial coordinate has been considered expliciigent topic models
(Cao and Li, 2007; Wang and Grimson, 2007; Gomes et al., 2008) wiptiecjn image analysis.
These previous studies seek to cluster visual words, with such cluseroogiraged if the features
are spatially proximate. However, these methods may produce spuriotesslit are introduced
to better characterize the spatial data likelihood instead of the likelihood oé#terés condition-
ally on spatial location (Park and Dunson, 2009). In addition, suchoagpes require a model
for the spatial locations, which is not statistically coherent as these locatiertgpically fixed by
design, and there may be additional computational burden for this extreocemip

To address these challenges, and impose spatial information more explastgarchers have
recently modified the DP construction to manifest spatial-location depentigntsights. The
work of Duan et al. (2007) recently introduced a framework in terms akeeatchy of Gaussian
processes, in which the spatially dependent construction is obtaineddsittadingk latent Gaus-
sian processes (GPs); while this is a powerful construction, the usP®pesents computational
challenges (Sudderth and Jordan, 2008). To simplify the model strucheeirichlet labeling
process (Petrone et al., 2009) has been proposed, in which onkdidesnly one latent Gaus-
sian process to regulate spatial dependence. However, the modehitdeperformed with Markov
chain Monte Carlo (MCMC), is inefficient for many large-scale applicati@isilar issues are also
true for work that has combined the Dirichlet process with a Markov ramiikeld (MRF) constraint
(Orbanz and Buhmann, 2008).
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As an alternative to the above approaches, a kernel stick-breakicggs (KSBP) has been
proposed (Dunson and Park, 2007), imposing that clustering is mdpalpeoif two feature vectors
are close in a prescribed (general) space, which may be associaliedlgxyith spatial position for
image processing applications (An et al., 2008). With the KSBP, rather #samang exchangeable
data, theG in (1) becomes a function of spatial location:

Gs= ) Tk(SVk: Tk, W)y
=]

k—1 2
Th(S Vi, T, B) = VKK (s, T @) ﬂ [1—VieK(s,Ti; W), @
K=1

Vi ~ Betg1,ap), 6 ~Gop, [k~ Ho,

whereK (s, I'k; W) represents a kernel distance between the feature-vector spatidinades and a
local basis locatiof x associated with thkth stick. As demonstrated when presenting results, the
KSBP generally does not yield smooth segments with sharp boundaries.

Instead of thresholdinkf latent Gaussian processes (Duan et al., 2007) to assign a featune vecto
to a particular parameter, we introduce a novel non-parametric spatiakydept prior, called the
logistic stick-breaking process (LSBP), to impose that it is probable tloximpate feature vectors
are assigned to the same parameter. The new model is constructed basétmarchy of spa-
tial logistic regressions, with sparseness-promoting priors on the sigmesoefficients. With this
relatively simple model form, inference is performed efficiently with variati@syesian analysis
(Beal, 2003), allowing consideration of large-scale problems. Fuffihvereasons discussed below,
this model favors contiguous segments with sharp boundaries, of intereany applications. The
model developed in the paper (Chung and Dunson, 2009), basegrohitstick-breaking process,
is most closely related to the proposed framework; the relationships betv®# and the model
(Chung and Dunson, 2009) are discussed in detail below.

In addition to exploiting spatial information when performing clustering, there dso been
recent research on the simultaneous analysimufiple tasks. This is motivated by the idea that
multiple related tasks are likely to share the same or similar attributes (Caru@vg,A® et al.,
2008; Pantofaru et al., 2008). Exploiting the information contained in multiplesi$a(“tasks”),
model-parameter estimation may be improved (Teh et al., 2005; Pantofar 2608, Sudderth and
Jordan, 2008). Therefore, it is desirable to employ multi-task learninghywhecessing multiple
spatially-dependent data (e.g., images), this representing a secosfdhis paper.

Motivated by previous multi-task research (Teh et al., 2005; An et al8)20@ consider the
problem of simultaneously processing multiple spatially-dependent data Aetsparate LSBP
prior is employed for each of the tasks, and all LSBPs share the sameameaseire, which is
drawn from a DP. Hence, a “library” of model parameters—atoms—iseshatross all tasks. This
construction is related to the hierarchical Dirichlet process (HDP) (Tah,&005), and is referred
to here as a hierarchical logistic stick-breaking process (H-LSBP).

We present example results on two distinct problem classes, undegstiwgigeneral utility of
the proposed approach. In the first example we consider segmentatiwitoperson spoken audio
data. In the second application we employ the H-LSBP to simultaneously segmkipie images.
In addition to inferring a segmentation of each image, the framework allowisg@nd searching
among the images.
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The remainder of the paper is organized as follows. In Section 2 we irdedtie logistic stick-
breaking process (LSBP) and discuss its connections with other modeksxtdhd the model to the
hierarchical LSBP (H-LSBP) in Section 3. For both the LSBP and H-L$B€rence is performed
via variational Bayesian analysis, as discussed in Section 4. Experimesiiits are presented in
Section 5, with conclusions and future work discussed in Section 6.

2. Logistic Stick-breaking Process (LSBP)

We first consider spatially constrained clustering for a single data s&).(tAssumeN sample
points {Dn }n=1N, WhereDy = (yn,Sn), With y, representing theth feature vector ang, its as-
sociated spatial location. We draw a set of candidate model parametdrijeaprobability that
a particular space-dependent data sample employs a particular modekeparss defined by a
spatially-dependent stick-breaking process, represented by el4esed logistic-regression.

2.1 Model Specifications

Assume an infinite set of model parametééy } ;. Each observatiog, is drawn from a para-
metric distributionF (6y,), with 8, € {6; };°_;. To indicate which parameter i@y}, is associated
with the nth sample, a set of indicator variabl&s = {z1,Zq,...,Zw} are introduced for each
Dy, and all the indicator variables are equal to zero or one. GijgrdataD,, is associated with
parameted if z,c =1 andz; = 0 for k < k.

TheZ, are drawn from a spatially dependent density function, encouragingith&imateD,,
will have similarZ,,, thereby encouraging spatial contiguity. This may be viewed in terms of a
spatially dependent stick-breaking process. Specificallydes,) define the probability thag,, =
1, with 1— py(s,) representing the probability that = 0; the spatial dependence of these density
functions is made explicit vian The probability that théth parameter is selected in the above
model isTk(Sh) = Pk(S )|‘| [1 Pr(Sn)], which is of the same form as a stick-breaking process
(Ishwaran and James, 2001) but extends to a spatially dependent nmxddes, represented as

k—1
Gs, = D Tk(%)3g;;  Th(shn s) [ - pi(s
k=1 k=1

Here eachpk(sn) is defined in terms of a logistic link function (other link functions may also be
employed, such as a probit). Specifically, we consMediscrete spatial locationss }iN:Cl within
the domain of the data (e.g., the locations of the samplBg)inTo allow the weights of the different
mixture components to vary flexibly with spatial location, we propose a kéogédtic regression
for each break of the stick, with

|09<1_p|1()j2;)> = Ok(sn Zka| (5,55 W) + Wios 3)
wheregk(sy) is the linear predictor in the logistic regression model for kttebreak and position
Sy, and .
Isn—5 IIZ}
P
is a Gaussian kernel measuring closeness of locagipasd$§, as in a radial basis function model
(alternative kernel functions may be defined). The kernel basificieets are represented A4 =

K(n,5;Wk) =exp[—
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[Wko, Wi, - - -, Wkn. - A sparseness-promoting prior is chosen for the componentgcptuch that
only a relatively small set ofi; will have non-zero (or significant) amplitudes; those spatial regions
for which the associated amplitudes are non-zero correspond to régiansich a particular model
parameter is expected to dominate in the segmentation (this is similar to the KSBP wh{@&),
also has spatially localized kernels). The indicator variables controllingadidocto components
are then drawn from

Zni ~ Bernoullio (gk(sn))],

whereo(g) = 1/[1+ exp(—g)] is the inverse of the logit link in (3).

There are many ways that such sparseness promotion may be constitgtec have consid-
ered two. As one choice, one may employ a hierarchical Student-t prappied in the relevance
vector machine (Tipping, 2001; Bishop and Tipping, 2000; Bishop ameth$®n, 2003):

Wi ~ N(Wii|0,A . Gamméi|ag, bo),

where shrinkage is encouraged with= by = 108 (Tipping, 2001). Alternatively, one may con-
sider a “spike-and-slab” prior (Ishwaran and Rao, 2005). Spatifjc

Wi ~ VA0, A 1) 4 (1= Vi) 8o, vk ~ BetaVi|co, do).

The expressiod, represents a unit point measure concentrated at zero. The parafogtds$
are set such thaty is encouraged to be close to zero (or we simplyVix= ﬁ), enforcing
sparseness iwg; the parametek is again drawn from a gamma prior, with hyperparameters set to
allow a possibly large range in the non-zero valuew/gf and therefore these anet set as in the
Student-t representation. The advantage of the latter model is that it exphgitbses that many of
the components oy are exactly zero, while the Student-t construction imposes that many of the
coefficients are close to zero. In our numerical experiments on wamefod image segmentation,
we have employed the Student-t construction.
Note that parameteft; is associated with as-dependent functiogk(s), and there ar& — 1
such functions. The model is constructed such that within a contiguotial&panporal region, a
particular paramete; is selected, with these model parameters used to generate the observed data
There are two key components of the LSBP constructigrsparseness promotion on thvg,
and (i) the use of a logistic link function to define space-dependent stick weigktdiscussed fur-
ther in Section 2.2, these concepts are motivated by the idea of making alpagmace-dependent
LSBP stick weightri(s) = o(9k(s)) [Tw<k[1 — 9k(s)] near one within a localized region in space
(motivating the sparseness prior on the weights), while also yielding comsgsegments with
sharp boundaries (manifested via the logistic).
It is desirable to allow flexibility in the kernel parametgr as this will influence the size of
segments that are encouraged (discussed further below). Heneacfix we draw

Wk =y, Ik~ Mult(l/T,...,1/1),

with ¥* = {qJ]f}Tj:l a library of possible kernel-size parametegss an index for the one non-zero
component of aingledraw from Mult1/1,...,1/1). We employ a discrete dictionary of kernel
sizes¥* because there is not a conjugate prior for imposition of a continuous digtritnf kernel
parameters (this is discussed further in Section 4). A draw from this biecat prior is denoted
concisely a$ss ~ LSBP(H, ag, b, ¥*), where it is assumed that we are using the Student-t prior for
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weights{wy }k=1k—1, With a similar representation used for a spike-and-slab prior; notesist
defined simultaneously fail spatial locations. The model parametés },>_; are assumed drawn
from the measureél.

In practice we usually truncate the LSBPKosticks, as in a truncated stick-breaking process
(Ishwaran and James, 2001). With a truncation l&vepecified, ifz,c=0forallk=1,... K—1,
thenz,k = 1 so that9, = 6. The VB analysis yields an approximation to the marginal likelihood
of the observed data, which can be used to evaluate the efféadiothe model performance. When
presenting results we consider simply setttp a large value, and also test the model performance
with K initialized to different values.

Figure 1 shows the graphical form of the model (using a Student-tespegs prior), in which
U* represents the discrete set of kernel-width candidadigss the kernel width selected for the
kth stick, and the prioH takes on different forms depending upon the application. In Figure 1 the
1/t emphasizes that the candidate kernel widths are selected with uniformbgitybover thet
candidates inP*.

Figure 1: Graphical representation of the LSBP.

2.2 Discussion of LSBP Properties and Relationship to Other Models

The proposed model is motivated by the work (Sudderth and Jorda#),2i@0which multiple
draws from a Gaussian process (GP) are employed. Candidate meattelgpers are associated with
each GP draw, and the GP draws serve to constitute a nonparametric gatirmgkny associating
particular model parameters with a given spatial position. In the model (&hdaed Jordan,
2008) the spatial correlation associated with the GP draws induces spatiaiiguous segments (a
highly spatially correlated gating network), and this may be related to a spategndent stick-
breaking process. However, use of the GP produces computatiail@refes. The proposed LSBP
model also manifests multiple space-dependent functions @hérg), with associated candidate
model parameter§f; }k—1 . Further, we constitute a spatially dependent gating network that has a
stick-breaking interpretation. However, a different and relatively simpdeedure is proposed for
favoring spatially contiguous segments with sharp boundaries.

At each locatiors we have a stick-breaking process, with the probability of selecting moelel pa
rameters 6; defined as m(s) = o(gk(s))[Mw<kl — o(gk(s))]. Recall that
ok(s) = zi’\':clwkiK(s,éi;wk) + W, With sparseness favored for coefficieqtsi }i—on.. Consid-
ering firstgi(s), note that since mosiw; }i—1n, are zero or near-zero, the biagg controls the
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stick weightr (s) for all s sufficiently distant from those locatiossWith non-zerows;. Further, if
wi; > 0, 0(01(s)) =~ 1 for s in the “neighborhood” of the associated locatigntfie neighborhood
sizeis defined byy;. Hence, thos€s; }i—1 N, with associated largéws; }i—1 n, define localized re-
gions as a function of over which parameteft] is highly probable, with locality defined by kernel
scale parametap;. For those regions of for which T (s) is not near one, there is appreciable
probability 1— m (s) that model parametef®);; }—» k may be used.

Continuing the generative process, model paraméfgase probable whem(s) = a(gz(s))[1—

T (s)] =~ 1. The latter occurs in the vicinity of thosethat are distant frons; Wwith large associated
wy; (i.e., where -1 (s) = 1), while also being neas; With largews; (i.e., whereo(gz(s)) ~ 1).
We again underscore thabo impactsy(s) for all s.

This process continues for increasikgand therefore it is probable that kgets large all or
almost alls will be associated with a large stick weight, or a lacgenulativesum of stick weights,
such that parameteéy become improbable for lardeand alls.

Key characteristics of this construction are the clipping property of thetlodisk function,
and the associated fast rise of the logistic. The former imposes that tleecergiguous regions
(segments) over which the same model parameter has near-unity probabdaging used. This
encouraging of homogeneous segments is also complemented by sharptdegumnelaries, mani-
fested by the fast rise of the logistic. The aforementioned “clipping” pitype clearly not distinct
to logistic regression. It would apply as well to other binary response linktfons, which can be
any CDF for a continuous random variable. For example, probit linksii@tand Dunson, 2009)
would have the same property, though the logistic has heavier tails than thi¢ gsanay have
slightly different clipping properties. We have here selected the logistic linktfon for computa-
tional simplicity (it is widely used, for example, in the relevance vector machipeifig 2001, and
we borrow related technology). It is interesting to see how the segmentesiirations differ with
the form of link function, with this to be considered in future research.

To give a more-detailed view of the generative process, we consideg-dimensional exam-
ple, which in Section 5 will be related to a problem with real data. Specificallysider a one-
dimensional signal with 488 discrete sample points. In this illustrative exalple 98, defined
by taking every fifth sample point for the underlying signal. We wish to exarnfieegenerative
process of the LSBP prior, in thebsenceof data. For this illustration, it is therefore best to use
the spike-and-slab construction, since without any data the Studenstrection will with high
probability make allwg =~ 0 (when considering data, and evaluating the posterior, a small fraction
of these coefficients are pulled away from zero, via the likelihood funcgBach that the model
fits the data; we reconsider this in Section 5). Further, again for illustrptivieoses, we here treat
{Wio}k=1k as drawn from a separate normal distributiont from the spike-and-slab prior used
for all other components aiy. This distinct handling ofwio}k—1« has been found unnecessary
when processing data, as the likelihood function again imposes constrai{N&g}x—1 . Hence
this form of the spike-and-slab prior any is simply employed to illuminate the characteristics of
LSBP, with model implementation simplifying when considering data.

In Figure 2 we plot representative draws fef, gk(s), o(gk(s)) and Tk(s), for the one-
dimensional signal of interest. In thibustrative example eacly is drawn from Betél, 10) to
encourage sparseness, and those non-zero coefficients arefdyaw\(0,A), with A fixed to cor-
respond to a standard deviation of 15 (we could also draw &athm a gamma distribution). Each
bias termwg is here drawn iid from\’(0,A). We see from Figure 2 that the LSBP naturally favors
localized segments that have near-unity probability of using the same modetgtars. This is a
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Figure 2: Example draw from a one-dimensional LSBP, using a spikesiahdconstruction for
model-parameter sparseness.«®f), (b) gk(t) , (c) ok(t), (d) Ti(t)

o

typical draw, where we note that fae> 4 the probability 0B} being used is near zero. While Figure
2 represents a typical LSBP draw, one could also envision other lsgsdole draws. For example,
if wio>> 0 thenty(s) ~ 1 for all s, implying that the paramete® is used for alls (essentially
no segmentation). Other “pathological” draws may be envisioned. Theref@ underscore that
the data, via the likelihood function, clearly influences the posterior stroagtythe pathological
draws supported by the prior in the absence of data are given negligiskeimtne posterior.

As further examples, now for two-dimensional signals, Figure 3 corsiedample draws as a
function of the kernel parametdr,. These example draws were manifested via the same process
used for the one-dimensional example in Figure 2, now extenglitgtwo dimensions. Figure
3 also shows the dependence of the size of the segments on the keamekfadgy, which has
motivated the learning od in a data-dependent manner (based on a finite dictionary of kernel
parameterd* = {UJT}E::L). The draws in Figure 3 are similar to those manifested by the GP-based
construction (Sudderth and Jordan, 2008), motivating the simple modsbged here.
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Figure 3: Samples drawn from the spatially dependent LSBP prior, flardift (fixed) choices of
kernel parameterg, applied for eactk within the LSBP. In row 1 = 15; in row 2
Y =10; and in row 3p = 5. In these examples the spike-and-slab prior has been used to
impose sparseness on the coefficignig -1k 1.

3. Hierarchical LSBP (H-LSBP)

Multi-task learning (MTL) is an inductive transfer framework (Caruab@97), with the goal of
improving modeling performance by exploiting related information in multiple data $étshere
employ MTL for joint analysis of multiple spatially dependent data sets, yieldihgegrchical
logistic stick-breaking process (H-LSBP). This framework models eadividual data set (task)
with its own LSBP draw, while sharing the same set of model parameters (ahdonss all tasks,
in @ manner analogous to HDP (Teh et al., 2005). The set of shared atod® are inferred in the
analysis.

The spatially-dependent probability measure for tasks, is drawn from a LSBP with base
measuresy, andGg is shared across dlll tasks. Further(3g is drawn from a Dirichlet process
(Blackwell and MacQueen, 1973), and in this manner each task-depeh8BP shares the same
set of discrete atoms. The H-LSBP model is represented as

Ymn@mn~ F(@mn);  Omn|Gm ~ Gm,
Gm|{Go,ao, bo,‘I’*} ~ LSBP(Go,ao,bo,‘I’*),
Goly,H ~ DP(yH).

Note that we are assuming a Student-t construction of the sparsenesgittmio the LSBP, defined
by hyperparameteia andbg.
Assume taskne {1,...,M} hasNy, observations, defining the data
Dm = {Dmt,.-.,Dmny,) }- We introduce a set of latent indicator variables
tm = {tm,...,tme } fOr each task, with

tmkNZB|6|7 k:17"'7007 m:]-u"'7M7 (4)



REN, Du, CARIN AND DUNSON

where 3 corresponds to th&h stick weight of the stick-breaking construction of the DP draw
Go=7321Bi 695«. The indicator variablet, establish an association between the observations from
each task and the atongé; };>, shared globally; hence the ataff), is associated with LSBBK

for taskm. Accordingly, we may write the probability measusg, for positionsyy, in the form

Gsp = Z ka(smn)éet*mk-
k=1

Note that it is possible that in such a draw we may have the same atom used fiiffexent LSBP
Ok- This doesn’t pose a problem in practice, as the same type of segmen) (aty reside in
multiple distinct spatial positions (e.g., of an image), and the diffekemith the same atom may
account for these different regions of the data.

A graphical representation of the proposed hierarchical model istéepic Figure 4. As in the
single-task LSBP discussed in Section 2, a uniform prior is placed on tbeetisslements o¥*,
and the precision parametgfor the Dirichlet process is assumed drawn from a gamma distribution
Ga(ep, fp). In practice we truncate the number of sticks used to représgnémployingL — 1
draws from the beta distribution, and the length of tthie stick isp. = 1— ;' Bi (Ishwaran and
James, 2001). We also set a truncation l&vébr eachGy,, analogous to truncation of a traditional
stick-breaking process.

We note that one may suggest drawingtomsé; ~ H, for| = 1,...,L, and then simply as-
signing each of these atoms in the same way to ea¢h-efL gy in the M LSBPs associated with
the M images under test. Although there &dunctionsgi in the LSBP, as a consequence of the
stick-breaking construction, those with small indexre more probable to be used in the generative
process. Therefore, the process reflected by (4) serves taeethie atoms in an task-dependent
manner, such that the important atoms for a given task occur with small kndexour experi-
ments, we mak& < L, since the number of different segments/atoms anticipated for any giden tas
is expected to be small relative to the library of possible at{)ﬁffs},L:l available across all tasks.

| | ®
i

Figure 4: Graphical representation of H-LSBP.

One may view the H-LSBP model as a hierarchy of multiple layers, in terms ofrarbiecal
tree structure as depicted in Figure 5. In this figGg, ..., Gnk-1) represent th& — 1 “gating
nodes” within thamth task, and each gating node controls how the data are assignedttetyers.
Thus, the H-LSBP may be viewed as a mixture-of-experts model (Bisho@aengn, 2003) with
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Figure 5: Hierarchical tree structure representation of the H-LSBP,spdltially dependent gating
nodes. The parametex,, are defined asX,, = {1, {K(Smn, 3ni; quk)}i'\':Cl}.

spatially dependent gating nodes. Given the assigned laymdicated byz,,, the appearance
featureymn is drawn from the associated at@h, .

3.1 Setting Model Parameters

To implement LSBP, one must set several parameters. As discusses #fmhyperparameters
associated with the Student-t priorag are set agy = by = 1075, this corresponding to the settings

of the related RVM (Bishop and Tipping, 2000). The number of kerneferaN; is generally set in

a natural manner, depending upon the application. For example, in theexaahiple considered in
Section 5.2N; is set to the number of total temporal subsequences used to sample the Baynal.
the image-processing applicatidw, may be set to the number of superpixels used to define space-
dependent image features (discussed in more detail when presentingsetagentation results

in Section 5.3). The truncation levl on the LSBP may be set to any large value that exceeds
the number of anticipated segments in the image, and the model automatically iefensnler

of segments in the end. The details are discussed and examined in Sectien Hrekenting
results. For the H-LSBP results one must alsoLsethich defines the total library size of model
atoms/parameters shared across the multiple data sets. Again, we havarfyuedatively large
setting forL to yield good results, as the nonparametric nature of LSBP manifests a selefctio
which subset of the. library elements are actually needed for the data under test. This is also
examined when presenting experimental results in Section 5.

We must also define a set of possible kernel sca[l$$}}:1. These again are set naturally to
define the relative range of scales in the data under test. For example,imate-segmentation
application, we seleat scale levels to cover a range of resolutions characteristic of the images of
interest (e.g., defined by the size of the expected segment sizes reldlieeterall image size). In
the specific audio and image segmentation applications discussed below ligélgxjefine these
parameters, and note that no tuning of these parameters was perforarezkp®rience is that any
“reasonable” set of kernel scales yields very similar results.
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The final thing that must be set within the model is the base me&bufer the audio-signal
example the data observed at each time point is a real vector, and tkeitef®rconvenient to
use a multivariate Gaussian distribution to repregenj in (1). Therefore, in that example the
observation-model parameters correspond to the mean and covarianGauossian, implying that
the measurél should be a Gaussian-Wishart prior (or a Gaussian-Gamma prior, if argihgo-
variance matrix is assumed in the prior). For the image processing applicatiobskrved image
feature vectors are quantized, and consequently the observatioy poiam in the image corre-
sponds to a code index. In this cdsg) is represented by a multinomial distribution, and heHce
is made to correspond to a Dirichlet distribution. Therefore, one may figtdedineH based upon
the form of the modefF (-), in ways typically employed within such Bayesian models.

4. Model Inference

Markov chain Monte Carlo (MCMC) (Gilks et al., 1998) is widely used forfpeming inference
with hierarchical models like LSBP. For example, many of the previous spatiafjgndent mix-
tures have been analyzed using MCMC (Duan et al., 2007; DunsonakdZ907; Nguyen and
Gelfand, 2008; Orbanz and Buhmann, 2008). The H-KSBP (An et@82model is developed
based on a hybrid variational inference inference algorithm; howeeer)y half of the model pa-
rameters still need to be estimated via a sampling technique. Although MCMC is actiegtr
method for such inference, the computational requirements may lead to impléiorentallenges
for large-scale problems, and algorithm convergence is often difficdiignose.

The LSBP model proposed here may be readily implemented via MCMC samploweusr,
motivated by the goal of fast and relatively accurate inference foelacgle problems, we consider
variational Bayesian (VB) inference (Beal, 2003).

4.1 Variational Bayesian Analysis

Bayesian inference seeks to estimate the posterior distribution of the latedilea®, given the
observed dat®:

(DR, T)p(®|T)
P(®ID ) = T oD]%. 1) pe | T)de”

where the denominatgip(D|®, Y )p(®|Y)d® = p(D|Y) is the model evidence (marginal likeli-
hood); the vectofX denotes hyper-parameters within the prior #&r Variational Bayesian (VB)
inference (Beal, 2003) seeks a variational distributjo®) to approximate the true posterior distri-
bution of the latent variableg(®). The expression

log p(D|Y) = L(a(®)) +KL(q(®) || p(®(D,T))

with
_ p(DI. Y)p(®|Y)
La@)) = [ a@)iog? == 28 de ©)

yielding a lower bound for log(D|Y) so that log p(D|Y) > L(q(®)), since
KL(q(®) || p(®|D,Y)) > 0. Accordingly, the goal of minimizing the KL divergence between
the variational distribution and the true posterior reduces to adjug(i®g to maximize (5).
Variational Bayesian inference (Beal, 2003) assumes a factagizey typically with the same
form as employed im(®|D,Y). With such an assumption, the variational distributions can be
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updated iteratively to increase the lower bound. For the LSBP model applizdingle task, as
introduced in Section 2.1, we assume

K K—1 N
P) = (7] Wy A/
q(®) k|:|1q( k) k|:|1 [a(wie)a(Ax) n|:|1q(znw)]

whereq(6y) is defined by the specific application. In the audio-segmentation examplelect
below, the feature vectgr, may be assumed drawn from a multivariate normal distribution, and the
K model parameters are means and precision mat{;ag,ﬂk}k 1; accordinglyq(6) is specified
as a Normal-Wishart distribution (as k$), N(uk]uk,tk 1oy~ )Wl(ﬂk|Vk,dk) For the rest of the
model,q(wy ) = |_||:ON(W|(/ Wi, Tiei), g ) = |‘|I °oGa(Ai |&i, bi), anda(zq ) has a Bernoulli
form pf{‘w” (1— pnr )12 with pow = a(gw (n)). The factorized representation fgi®) is a function
of the hyper-parameters on each of the factors, with these hypenetmes adjusted to minimize
the aforementioned KL divergence.

By integrating over all the hidden variables and model parameters, the lbmued for the log
model evidence

log p(D|Y) =log [ p(y,s 6,W,\,z)d®

> [q(6,W, 2 z).og%d@

= [q(8)q(W)q(N)a(z )Iog%dq’

=LB(q(®)),

is a function of variational distributiong(®). The variational lower bound is optimized by itera-
tively taking derivatives with respect to the hyper-parameters in ga¢ghand setting the result to
zero while fixing the hyper-parameters of the other terms. Within each iterétietower bound is
increased until the model converges.

The difficulty of applying VB inference for this model lies with the logistic-linkfttion, which
is not within the conjugate-exponential family. Based on bounding log cofuretions, we use a
variational bound for the logistic sigmoid function in the form (Bishop anchSae, 2003)

0(x) = o(n)exp(* " — £(n)(¢—n?), ™

(6)

wheref(n) = % andn is a variational parameter. An exact bound is achievey asx or
n=-—x

The detailed update equations are omitted for brevity, but are of the fordogedon the work
(Beal, 2003; Bishop and Sves, 2003). Like other optimization algorithms, VB inference may
converge to a local-optimal solution. However, such a problem can baaa#ievby running the
algorithm multiple times from different initializations (including varying the trunaatevelK, and
for each case the atom parameters are initialized with k-mean clustering méthisth¢ and Gray,
1991) for a fast model convergence) and then using the solution thdimas the variational
model evidence.

4.2 Sampling the Kernel Width

As introduced in Section 2.1, the kernel widpihis inferred for eactk. Due to the non-conjugacy of
the sigmoid function, we cannot acquire a variational distributionjfjorHowever, we can sample
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it from its posterior distribution or find a maximum a posterior (MAP) solution btaklishing a
discrete set of potential kernel widthg* = {w*;}}zl, as discussed above. This resulting hybrid
variational inference algorithm combines both sampling technique and VBeide, motivated
by the Monte Carlo Expectation Maximization (MCEM) algorithm (Wei and Tan®890) and
developed by An et al. (2008). The intractable nodes within the grapimiceél are approximated
with Monte Carlo samples from their conditional posterior distributions, andativer bound of
the log model evidence generally has small fluctuations after the modelrgesv@n et al., 2008).
A detail on related treatments within variational Bayesian (VB) analysis has discussed (Winn
and Bishop, 2005) (see Section 6.3 of that paper).

Based on the variables, the cluster membership of each d&tacorresponding to different
mixture component§6; }_; can be specified as

k-1
Enk = 1—Zw) - Znk-
K kD1( K) - Znk

Based on the above assumptions, we observe that# 1 and the other entries & = [&n1, - - -, &nk]
are equal to zero, theyy, is assigned to be drawn frof(6;).

With the variablet introduced and a uniform pridd assumed on the kernel widtp;}]_,,
the posterior distribution for eaapy is represented as

P(Wc=yi|---) O Uj-exp{ $n < &> [ <logo(gh(sn) > ]}

exp{ SnY sk <& > [ < Iog(l—c(glj((sq))) > 1}, (8)

whereU;j is the jth component obJ, < - > represents the expectation with the associated random
variablesgl(s) = 31 WiiK (s, §: W) +Wio with j =1,...,T.
With the definitionxy, = [1, K(sn,55;Wj),-- -, K(Sn, S\ ij)} , it can be verified that

log(1—o(gk(sn))) = —Wix) +loga(gl(s)). 9)

Inserting (9) into the kernel width’s posterior distribution, (8) can beiced to

p(Wk=wi|-+) 0 Uj-exp{3n < &> [ <logo(gk(sn) >} _
-exp{ SnYisk < &nl > [— < Wi >T xh+ < Iogc(gl’((sq)) > ] },

in which < Iogo(glj((sq)) > is calculated via the variational bound of the logistic sigmoid function
in (7):

< logo(gl(s)) >> logo(nnk) + %(< gh(sh) > —Nnk) + (M) (< {gl(30)}2 > —n2Y),

in which _ . | . |
<gl(s) >=<Wi>Txh, < {gh(s)12>=xh <WW] > x) (10)

xh= [LK(s8005), - K(sn 8 0))]

AsnNnk= \/x,j]T < WKWI > x,‘}, the bound holds and the Equation (10) is reduced to:
j 1 T o
< 10go(gi(sn)) >=logo (k) + 5 (< Wi > xh—Nnk)-

216



LOGISTIC STICK-BREAKING PROCESS

From the above discussion, we have the following update equation foethellkwidths. For
each specifik fromk=1,...,K:

W=}, Tk~ Mult(p, ..., Pr),
o p(We=)
PKj = S P

We sample the kernel width based on the multinomial distribution from a giveretiésset in each
iteration, or we can set the kernel width by choosing one with the largebapility component.
The latter one can be regarded as a MAP solution by specifying a discrete poth of the two
methods get similar results in our experiments. Therefore, we only présergsult by sampling
the kernel widths in our experimental examples.

Because of the sampling of the kernel width within the VB iterations, the lowendahown
in (6) does not monotonically increase in general. Until the model consgtbe lower bound
generally has small fluctuations, as shown when presenting experimesu#sr

For the hierarchical logistic stick-breaking process (H-LSBP), weptdosimilar inference
technique to that employed for LSBP, with the addition of updating the parasradtére Dirichlet
process. We omit those details here, but summarize the model update egjirattmAppendix.

5. Experimental Results

The LSBP model proposed here may be employed in many problems for winéchas spatially-
dependent data that must be clustered or segmented. Since the spdt@igielps are encoded
via a kernel distance measure, the model can also be used to segmentrigaalata. Below
we consider three examples) & simple “toy” problem that allows us to compare with related
approaches in an easily understood settiingségmentation of multiple speakers in an audio signal,
and (ii) segmentation of images. When presentiiig, (we first consider processing single images,
to demonstrate the quality of the segmentations, and to provide more details ondéle Yile then
consider joint segmentation of multiple images, with the goal of inferring reldtipashetween
images (of interest for image sorting and search). In all examples therfftuckenstruction is used
to impose the model sparseness, and all model coefficients (including théebias) are drawn
from the same prior.

5.1 Simulation Example

In this example the feature vectgy is the intensity value of each pixel, and the pixel location is
the spatial informatiors,. Each observation is assumed to be drawn from a spatially dependent
Gaussian mixture (i.eF(-) is a Gaussian). A comparison is made between the proposed LSBP, the
Dirichlet process (DP), and the kernel stick-breaking process @S&hd in all cases VB inference

is performed; for the KSBP, we use the same model as considered by &#n(2008), and this
simple example was also taken from that paper. The data are shown in B{@yé which four
distinct contiguous sub-regions reside in a background, with a colagrzarding the pixel ampli-
tudes. Each pixel is drawn from a Gaussian distribution with a standaidtidevof 10; the two

pairs of contiguous regions are generated respectively from thes@audistributions with mean
intensities equal to 40 and 60, and the background has a mean of 5 (A2808). In the LSBP,

DP, and KSBP analyses, we do not set the number of cluatgrsori and the models infer the
number of clusters automatically from the data. Therefore, we fixed thedtion level toK = 10
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for all models, and the clustering results are shown in Figure 6, with diffe@ors representing
the cluster index (mixture component to which a data sample is assigned).

e T et s B
10 20 30 40 50 60 10 20 30 40 50 60 a 10 20 30 40 50 60

@) (b) (© (d)

Figure 6: Segmentation results for the simulation example. (a) original imagBPc) KSBP,
(d) LSBP

Compared with DP and KSBP, the proposed LSBP shows a much cleanerg@agjon in Figure
6(d), as a consequence of the imposed favoring of contiguous segméfetsalso note that the
proposed model inferred that there were only three impokdtiiree dominant sticks) within the
observed data, consistent with the representation in Figure 6(a).

5.2 Segmentation of Audio Waveforms

A \}" I w W j
| | {i w ‘» :
| H IHII -

w ﬁ‘ i

audio wave form
feature index

‘“ |ih Mkl

10

12

Ll
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sample index x 10° observation index

@) (b)
Figure 7: Original audio waveform, (a), and representation in terms @@ ®features, (b).

With the kernel in(2.1) specified in a temporal (one-dimensional) space, the proposed LSBP
is naturally extended to segmentation of sequential data, such as foespéeaikzation (Ben et al.,
2004; Tranter and Reynolds, 2006; Fox et al., 2008). Provided wjtblees document consisting of
multiple speakers, speaker diarization is the process of segmenting thesapndibinto contiguous
temporal regions, and within a given region a particular individual isldpga Further, one also
wishes to group all temporal regions in which a specific individual is Spgak

We assume the acoustic observations at different times are drawn froaussi@n mixture
model (each generating Gaussian ideally corresponds to a speaké(ithih LSBP and KSBP, the
observations of adjacent temporal points are encouraged to be dawthie same Gaussian, since
they are with high probability assumed to be generated from the same sepeakér). The total
number of speakers is unknown in advance, and is inferred from the Ala alternative approach,
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to which we compare, is a sticky HMM (Fox et al., 2008), in which the speedpigsented by an
HMM with Gaussian state-dependent emissions; to associate a giverespéidka particular state,
the states are made to be persistent, or “sticky’, with the state-dependget dé stickiness also
inferred.

We consider identification of different speakers from a recording@ddicast news, which may
be downloaded with its ground truthThe spoken document has a length of DB2seconds, and
consists of three speakers. Figure 7(a) presents the audio wavsitira sampling rate of 16000
Hz. The ground truth indicates that Speaker 1 talked within the fir§t718econds, followed by
Speaker 2 until the 586 second, then Speaker 1 began to talk again until574econds, and
Speaker 3 followed and speaks until the end.
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Figure 8: Segmentation results for the audio recording. The colored $yrdbnote the ground
truth: red represents Speaker 1, green represents Speaker 2efnlesents Speaker 3.
Each MFCC feature vector is assigned to a cluster infex (L0), with the index shown
along the vertical axis. (a) DP, (b) KSBP, (c) sticky HMM using VB infeze, (d) LSBP

For the feature vector, we computed the first 13 Mel Frequency Cégstedficients (MFCCs)
(Ganchev et al., 2005) over a 30 ms window every 10 ms, and defineds$eevations as averages
over every 250 ms block, without overlap. We used the first 13 MFCCause the high frequency

1. Recording can be downloaded frduttp://www.itl.nist.gov/iad/mig//tests/rt/2002/inde x.html .
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content of these features contained little discriminative information (Fox &048). The software
that we used to extract the MFCCs feature can be downloaded &rilinete are 488 feature vectors
in total, shown in Figure 7(b); the features are normalized to zero mean eustbiidard deviation
is made equal to one.

To apply the DP, KSBP and LSBP Gaussian mixture models on this data, we seirthation
level asKk = 10. To calculate the temporal distance between each pair of observatmieke the
observation index from 1 to 488 as the location coordinates in (2.13.fGhe potential kernel-
width set is®* = {50,100,...,1000} for LSBP and KSBP; note that these are the same range of
parameters used to present the generative model in Figure 2. Thénaxpeshows that all the
models converge after 20 VB iterations.

For the sticky HMM, we employed two distinct forms of posterior computationa /B anal-
ysis, which is consistent with the methods employed for the other modelsii pad3jibbs sampler,
analogous to that employed in the original sticky-HMM paper (Fox et al.80Bor both the VB
and Gibbs sampler, a truncated stick-breaking representation wasangbd DP draws from the
hierarchical Dirichlet process (HDP); see Fox et al. (2008) for audision of how the HDP is
employed in this model.

sticky iHMM

observation index

obsenation index

L PNgY

Speaker Speaker Speaker Speaker
1 2 1 3

156 240 298 488
J

Figure 9: Sticky HMM results for the data in Figure 7(a), based on a Giabwpker. The figure
denotes the fraction of times within the collection samples that a given portioreof th
waveform shares the same underlying state.

To segment the audio data, we labeled each observation to the index of sher elith the
largest probability value, and the results are shown in Figure 8 (her¢itkg-BIMM results were
computed via VB analysis). To indicate the ground truth, different symbalsators are used to
represent different speakers.

From the results in Figure 8, the proposed LSBP yields the best segmeptiormance, with
results in close agreement with ground truth. We found the sticky-HMMtgegube very sensitive
to VB initialization, and the results in Figure 8 were the best we could achieve.

2. Software can be downloaded frdtp://www.ee.columbia.edu/ ~ dpwe/resources/matlab/rastamat/
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While the sticky HMM did not yield reliable VB-computed results, it performed| wden a
Gibbs sampler was employed (as in the work Fox et al., 2008). In Figure Shawn the fraction
of times within the collection Gibbs samples that a given portion of the signat sharsame un-
derlying state; note that the results are in very close agreement with “trk”cannot plot the
Gibbs results in the same form as the VB results in Figure 8 due to label switetthig the Gibbs
sampler. The Gibbs-sampler results were computed using 5000 burn itsratidrb000 collection
iterations.

These results demonstrate that the proposed LSBP, based on a fashitiBns yields results
commensurate with a state-of-the-art method (the sticky HMM based on a &ibigger). On the
same PC, the VB LSBP results required approximately 45 seconds of CPUnthiile the Gibbs
sticky-HMM results required 3 hours; in both cases the code was writteariroptimized Matlab,
and these numbers should be viewed as providinglative view of computational expense. The
accuracy and speed of the VB LSBP is of interest for large-scaldgimah like those considered
in the next section. Further, the LSBP is a general-purpose algorithnicap to time- and
spatially-dependent data (images), while the sticky HMM is explicitly desigoetinhe-dependent
data.

In the LSBP, DP, and KSBP analyses, we do not set the number of clastaiori and the
models infer the number of clusters automatically from the data. Thereferfix&d the truncation
level toK = 10 for all models, and the clustering results are shown in Figure 6, withreliffeolors
representing the cluster index (mixture component to which a data sampl@jiseas

In Figure 2 we illustrated a draw from the LSBP prior, in the absence oflate,. The param-
eters of that example (number of samples, the definitioNpfand the library®*) were selected
as to correspond to this audio example. To generate the draws in Figusp®&eaand-slab prior
was employed, since the Student-t prior would prefer (in the absenaaa)ftd set all coefficients
to zero (or near zero), with high probability. Further, for related reaswe treated the bias terms
Wi distinct from the other coefficients. We now consider a draw from theR_S&sterior, based
on the audio data considered above. This gives further insight into thieimeag of the LSBP. We
also emphasize that, in this example based on real data, as in all examplesistibis section,
we impose sparseness via the Student-t prior. Therefore, when |oaikihg posterior, we may see
which coefficientsvy; have been “pulled” away from zero such that the model fits the obseatad d
A representative draw from the LSBP posterior is shown in Figure ifguike same presentation
format as applied to the draw from the prior in Figure 2. Note that only thiglesshave appreciable
probability for any time, and the segments tend to be localized, with near-unity probability of using
a corresponding model parameter within a given segment. While the spikprglawas needed to
manifest desirable draws from the prior alone, the presence of data sasié form of the LSBP
prior, based only on a relatively standard use of the hierarchical Stadenstruction.

5.3 Image Segmentation with LSBP

The images considered first are from Microsoft Research CamBrishgkeach image has 32®213

pixels. To apply the hierarchical model to image segmentation, we firstsgggnent each im-
age into 1000 “superpixels”, which are local, coherent and preserve most dfttbeture neces-
sary for segmentation at the scale of interest (Ren and Malik, 2003).sdftveare used for this

3. Images can be downloaded from http://research.microsoft.com/en-us/projects/
objectclassrecognition/
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Figure 10: Example draw from the LSBP posterior, for the audio dataruese (a)wy , (b) gk(t)
, (€) ok (t), (d) The(t)

is described in Mori (2005), and can be downloadedittat/fas.sfu.ca/ ~mori/research/
superpixels/ . Each superpixel is represented by both color and texture descriptsed on
the local RGB, hue feature vectors (Weijer and Schmid, 2006), and aseathes of Maximum
Response (MR) filter banks (Varma and Zisserman, 2002). We discth@se features using a
codebook of size 32, and then calculate the distributions (Ahonen and&hietik 2009) for each
feature within each superpixel as visual words (Cao and Li, 2007 g\vdad Grimson, 2007).

Since each superpixel is represented by three visual words, the meei@onent#®; are three
multinomial distributions agMult (p*) © Mult(p?,) @ Mult(p3,)} fork=1,...,K. The variational
distributionq(6;,) is Dir(p'x|3L) ® Dir(p%B2) @ Dir(p3|32), and within VB inference we opti-
mize the parametei@y, A2, and/3;.

To perform segmentation at the patch level (each superpixel comdspo one patch), the cen-
ter of each superpixel is recorded as the location coordmafehe discrete kernel-width sdt* is
composed of 3@B5,...,160, which are scaled empirically based on the image and object average
size. Typically we may choose the* as a subset between the minimum and maximum Euclidean
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distance associated with any two data points’ spatial locations within this imagav@axomputa-
tional resources, we chose as basis Iocat{cﬁ\}é\'zcl the spatial centers of every tenth superpixel in
a given image, after sequentially indexing the superpixels (we found that ifo not perform this
subsampling, very similar segmentation results are achieved, but at greaeutational expense).

Three representative example images are shown in Figures 11(a)d(f)athe superpixels are
generated by over-segmentation (Mori, 2005) on each image, with aezboisger-segmentation re-
sults shown in Figures 11(d), (e) and (f). The segmentation task nawesdo grouping/clustering
the superpixels based on the associated image feature vector andtagsspatial information.
To examine the effect of the truncation lewe| we considered& from 2 to 10 and quantified the
VB approximation to the model evidence (marginal likelihood). The segmentpgdiormance
for each of these images is shown in Figure 11(g), (h) and (i), usimpcgselyK = 4, 3 and 6,
based on the model evidence (discussed further below). These (fyjisalts are characterized
by homogeneous segments with sharp boundaries. In Figure 11(j)ndkjha the segmentation
results are shown witK fixed atK = 10. In this case the LSBP has ten sticks; however, based on
the segmentation there are a subset of sticks (5, 8 and 7, respectifeiy@dnto have appreciable
amplitude.

Based upon these representative example results, which are consigteat large number
of tests on related images, we make the following observations. Consideghthé “chimney”
results in Figure 11(a), (g) and (j), for example, we note that thereati®ps of the brick that have
textural differences. However, the prior tends to favor contiguogsisats, and one solid texture is
manifested for the bricks. We also note the sharp boundaries manifestedsiegiiments, despite the
fact that the logistic-regression construction is only using simple Gaussraelk (not particularly
optimized for near-linear boundaries). For the relatively simple “chimneygenthe segmentation
results are very similar with different initializations Kf (Figure 11(g)) and simply truncating the
sticks at a “large” value (Figure 11(j) witk = 10).

The “cow” example is more complex, pointing out further characteristicsSBR. We again
observe homogeneous contiguous segments with sharp boundarieis. dasth a smallek yields
(as expected) a simpler segmentation (Figure 11(h)). All of the relatiak/ cbws are segmented
together. By contrast, with the initialization & = 10, the results in Figure 11(k) capture more
details in the cows. However, we also note that in Figure 11(k) the clowdpraperly assigned
to a distinctive type of segment, while in Figure 11(h) the clouds are just iadlirdthe sky clus-
ter/segment. Similar observations are also obtained from the “flower” exdmpkgure 11(c),
with more flower texture details kept with a large truncation level setting in Figgu(® than the
result with a smalleK shown in Figure 11(i).

Because of the sampling of the kernel width, the lower bound of the log nevddnce did not
increase monotonically in general. For the “chimney” example considereidima=11(a), the log
model evidence was found to sequentially increase approximately within sh@@iiterations and
then converge to the local optimal solution with small fluctuations, as shown urd-i2(a) with
a model ofK = 4. To test the model performance with different initializationd<gfwe calculate
the mean and standard deviation of the lower bound after 25 iterationsKvbguals from 2 to 10,
as plotted in Figure 12(b); from this figure one clearly observes thatatefdvor the model with
K = 4, for at this point the VB lower bound (approximation to the evidence) hdarigest value.
Hence, one may stop examining increasihgnce it is evident that the model evidence is falling
with increasingK (as compared with simply settingto a large value).

223



REN, Du, CARIN AND DUNSON

() (h) @

5

a2 3
) :
¢ :

. d
0 (k) o

Figure 11: LSBP Segmentation for three image examples~(@)image examples of “chim-
ney”,“cows” and “flowers”; (dj-(f) image examples represented with “superpixels”;
(9)~(i) segmentation results with largest values of model evideKce @ for “chim-
ney”, K = 3 for “cows” andK = 6 for “flowers”); (j)~(I) segmentation results with a

initialization of K = 10 for the image examples.
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Figure 12: LSBP Segmentation for three image examples. (a)VB iterationdowed for image
“chimney” with K = 4; (b) Approximating the model evidence as a functiorKafor
image “chimney”.

To further evaluate the performance of LSBP for image segmentation, weaisider several
other state-of-art methods, including two other non-parametric statisticalmdte Dirichlet pro-
cess (DP) (Sethuraman, 1994) and the kernel stick-breaking gr€88P) (An et al., 2008). We
also consider two graph-based spectral decomposition methods: nodmalise(Ncuts) (Shi and
Malik, 2000) and multi-scale Ncut with long-range graph connections(€bal., 2005). Further,
we consider the Student-t distribution mixture model (Stu.-t MM) (Sfikas et @07 and also
spatially varying mixture segmentation with edge preservation (St.-svgm) $&fikal., 2008). We
consider the same data source as in the previous examples, but for treehekresults segmen-
tation “ground truth” was provided with the data. The data are divided intat e@tegories: trees,
houses, cows, faces, sheep, flowers, lake and street; eachrgdiagadhirty images. All models
were initialized with a segment numberkf= 10.

Figure 13 shows typical segmentation results for the different algorithnigen@ segment
count number, both the normalized cuts and the multi-scale Ncut producgdmeoth segmen-
tations, while certain textured regions might be split into several piecesSitlikent-t distribution
mixture model (Stu.-t MM) yields a relatively robust segmentation, but it isisiea to the texture
appearance. Compared with Stu.-t MM, the spatially varying mixtures (Ststayors a more
contiguous segmentation for the texture region, preserving edges; thisnaley/a good tradeoff
between keeping coherence and capturing details, but the segmentatavmpace is degraded by
redundant boundaries, such as those within the goose body. Comythrédese state-of-art algo-
rithms, the LSBP results appear to be very competitive. Among the BayesiandadibP, KSBP
and LSBP), LSBP tends to yield better segmentation, characterized by basmg segmentation
regions and sharp segment boundaries.

To quantify segmentation results, we also calculated the Rand Index (Rijkitishnan et al.,
2007) and the Variation of Information (Mol) (M&i] 2003), using segmentation “truth” provided
with the data. Rl measures consistency between two segmentation labels vierlapming frac-
tion, and Vol roughly calculates the amount of randomness that exists isegmeentation that is
not explained by the other. Accordingly, for the RI measure, largeregalapresent better perfor-
mance, and for Vol smaller values are preferred. We calculated thage/Bl and Vol values of the
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Figure 13: Segmentation examples of different methods with an initializati6h-0f.0. From top
to down, each row shows: the original image, the image ground truth, noedali#s,
multiscale Ncut, Student-t distributions mixture model (Stu.-t MM), spatially varyin
mixtures (St.-svgm), DP mixture, KSBP mixture, and the LSBP mixture model.

thirty images for each category; the statistics for the two measures are depidi@bles 1 and 2,
considering all 240 images and varidds

Compared with other state-of-the-art methods, the LSBP yields relativglgrlarean and me-
dian values for average RI, and relatively small average Vol, for idosFor K = 2 and 4 the
spatially varying mixtures (St.-svgm) shows the largest Rl values, while & doeyield similar
effectiveness aK increases. In contrast, the LSBP yields a relatively stable Rl and Mol fre= 4
to 10. This property is more easily observed in Figure 14, which showsvéraged Rl and Vol
evaluated as a function &, for categories “houses” and “cows”. The Stu.-t MM, St.-svgm, DP and
KSBP have similar performances for mast LSBP generates a competitive result with a smaller
K, and also yields robust performance with a lakge

We also considered the Berkeley 300 data SBtese images have size 48821 pixels, and we
also over-segmented each image into 1000 superpixels. Both the Rl antsslres are calculated
on average, with the multiple labels (human labeled) provided with the data.iftticidual image

4. Data set can be downloaded frorhitp://www.eecs.berkeley.edu/Research/Projects/CSiv ision/
grouping/segbench/
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K 2 4 6 8 10

mean | 0.5552| 0.6169 | 0.6269 | 0.6180 | 0.6093
Ncuts | median| 0.5259 | 0.6098 | 0.6376 | 0.6286 | 0.6235
st. dev. | 0.0953| 0.1145| 0.1317 | 0.1402| 0.1461
Multi- | mean | 0.6102 | 0.6491 | 0.6387 | 0.6306 | 0.6228
scale | median| 0.5903 | 0.6548 | 0.6515| 0.6465 | 0.6396
Ncuts | st. dev.| 0.0979| 0.1361| 0.1462 | 0.1523 | 0.1584
mean | 0.6522 | 0.6663 | 0.6409 | 0.6244 | 0.6110
median| 0.6341 | 0.6858| 0.6631 | 0.6429 | 0.6360
st. dev. | 0.1253| 0.1248 | 0.1384 | 0.1455| 0.1509
mean | 0.6881| 0.6861 | 0.6596 | 0.6393 | 0.6280
median| 0.6781| 0.7026 | 0.6825| 0.6575 | 0.6516
st. dev.| 0.1249| 0.1262 | 0.1427 | 0.1532| 0.1599
mean | 0.6335| 0.6527 | 0.6389 | 0.6270| 0.6187
DP | median| 0.6067 | 0.6669 | 0.6431| 0.6321 | 0.6232
st. dev.| 0.1272| 0.1283| 0.1384 | 0.1464 | 0.1507
mean | 0.6306 | 0.6530| 0.6396 | 0.6290 | 0.6229
KSBP | median| 0.5963 | 0.6693| 0.6448 | 0.6371 | 0.6272
st. dev. | 0.1237| 0.1303 | 0.1397 | 0.1464 | 0.1523
mean | 0.6516 | 0.6791| 0.6804 | 0.6704 | 0.6777
LSBP | median| 0.6384 | 0.6921 | 0.6900 | 0.6835| 0.6885
st. dev.| 0.1310| 0.1202 | 0.1263 | 0.1294 | 0.1319

Stu.-t
MM

St.-
svgm

Table 1: Statistics on the averaged Rand Index (RI) over 240 imagesiastaoh ofK (Microsoft
Research Cambridge images).

typically has roughly ten segments within the ground truth. We calculated theatiea measures
for K =5, 10 and 15. Table 3 presents results, demonstrating that all methodsg@dartumpetitive
results for both the Rl and Vol measures. By a visual evaluation of theesg@gtion results (see
Figure 15), multi-scale Ncut is not as good as the other methods when thersasgare of irregular
shape and unequal size.

The purpose of this section was to demonstrate that LSBP yields competigneesttion
performance, compared with many state-of-the-art algorithms. It sheu@hiphasized that there
is no perfect way of quantifying segmentation performance, especiatlg ffire underlying “truth”
is itself subjective. An important advantage of the Bayesian methods (DBPKHd LSBP) is
that they may be readily extended to joint segmentation of multiple images, comkidehe next
section.

5.4 Joint Image Segmentation with H-LSBP

In this section we consider H-LSBP for joint segmentation of multiple images.efitmpnts are
performed on the Microsoft data, with another two unlabeled categordeud” and “office”.
Each category is composed of 30 images, and therefore there are 30&siimatptal, analyzed
simultaneously. The same feature and image processing techniques argezshgsi@bove.
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K 2 4 6 8 10

mean | 1.7911 | 2.2034 | 2.4344 | 2.6885 | 2.8828
Ncuts | median| 1.8201 | 2.1990 | 2.4392 | 2.7134 | 2.8956
st. dev.| 0.4402 | 0.4213| 0.4003| 0.3673| 0.3615
Multi- | mean | 1.7017 | 2.0538 | 2.3535| 2.5548 | 2.7397
scale | median| 1.7322 | 2.0238 | 2.3746 | 2.5912 | 2.7471
Ncuts | st. dev.| 0.4253 | 0.4276 | 0.4030 | 0.4056 | 0.4215
mean | 1.4903 | 2.0078 | 2.4258 | 2.7421 | 3.0085
median| 1.5312 | 2.0283 | 2.4653 | 2.7495 | 3.0341
st. dev.| 0.5161 | 0.4544| 0.4120| 0.3941| 0.3798
mean | 1.4031 | 1.8957 | 2.2667 | 25764 | 2.7999
median| 1.4000 | 1.8957 | 2.2673 | 2.5919 | 2.8123
st. dev.| 0.5094 | 0.4176| 0.4113| 0.3956 | 0.4001
mean | 1.4810| 1.9522 | 2.2961 | 2.5808 | 2.7740
DP | median| 1.5145| 1.9522 | 2.3541 | 2.6321 | 2.8432
st. dev.| 0.4952| 0.3923| 0.4186 | 0.4164 | 0.4573
mean | 1.4806| 1.9383 | 2.3063 | 2.5888 | 2.7873
KSBP | median| 1.4980| 1.9811 | 2.3403 | 2.6304 | 2.8338
st. dev.| 0.4811| 0.3919| 0.4150| 0.4128 | 0.4457
mean | 1.4484| 1.8142| 1.9811| 2.1050 | 2.0861
LSBP | median| 1.4631| 1.8288 | 1.9825| 2.1528 | 2.1178
st. dev.| 0.4835| 0.4478| 0.4979| 0.5101 | 0.5254

Stu.-t
MM

St.-
svgm

Table 2: Statistics on the Variation of Information (Vol) over 240 images ametion ofK (Mi-
crosoft Research Cambridge images).

Normalized| Multiscale| Stu.-t St.- DP KSBP LSBP
cuts Ncut MM svgm mixture mixture mixture
Rl | 0.7220 0.7404 0.7093 0.7188 0.7228 0.7237 0.7241
Vol | 2.7857 2.5541 3.7772 3.5682 2.8573 2.7027 2.6591

Table 3: Different segmentation methods compared on Berkeley 300 imatgesed.

The H-LSBP automatically generates a set of indicator variablg$or each superpixel. The
probability that thenth superpixel within imagen is associated with thkth hidden indicator vari-
abletyy, is represented g%(Smn) = 0(9k(Smn)) [Ti<k(1—0(gi(Smn))). By integrating out the distri-
bution for each hidden indicator varialtjg drawn from the global set of atonfis, we approximate
the membership for each superpixel by assigning it to the cluster with lgpgaisability. This
“hard” segmentation decision is employed to provide labels for each data(fferBayesian anal-
ysis yields a “soft” segmentation in terms of a full posterior distribution), as@yepg above when
considering one image at a time.

Our goal is to segment all the images simultaneously, sharing model parataébens) across
all images. The results of this analysis are used to infer the inter-relatiobhehigeen different
images, of interest for image sorting and search. We set truncation level40 andK = 10
(similar results were found for larger truncations, and these parameteesniot been optimized).
As demonstrated below, the model automatically infers the total number of m@iratipms shared
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Figure 14: Average Rand Index (RI) and Variation of Information {Mas functions oK with
image categories. (a) Rl for “houses” , (b) RI for “cows”, (c) Vol fhouses”, (d) Vol
for “cows”.

across all images, and the number of atoms that dominate the segmentatiorn afdiaiciual
image. The learning of these principal atoms, across the multiple images, is atani@spect of
the model, so that the associated mixture weights with these atoms for each imdxgeregarded
as a measurable quantity of inter-relationship between images (Blei et &, R0t al., 2008).
Specifically, similar images should have similar distributions over the model atomsthigame
inter-relationship measure generated from the HDP (Teh et al., 20085BR (An et al., 2008)
and the proposed H-LSBP, we may compare model utility as an image sortingamizing engine.

To depict how the atoms are shared across multiple images with H-LSBP, waydigpatom-
usage count matrix in Figure 16, in which the size of each square sizepsriomal to the relative
counts of that atom in a given image. Similar atom usage was revealed forad®P-KSBP
(omitted for brevity), but the H-LSBP generally was more parsimonious in @éotiatoms. This is
attributed to the fact that the spatial continuity constraint within LSBP engesgra parsimonious
representation (a relatively small number of contiguous clusters).

Each inferred image atom is in principle associated with one class of featitihésthe images.
To get a feel for how the model operates, we examine the types of imagestgassociated
with representative atoms. Specifically, in Figure 17 we consider how egh¢sentative atoms
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Figure 15: Segmentation examples of different methods Kith 10, for Berkeley image data set.

atom index

From left to right, each column shows: the original image, the image groutid tror-
malized cuts, multiscale Ncut, the Student-t distribution mixture model (Stu.-t MM),
spatially varying mixtures (St.-svgm), DP mixture, KSBP mixture, and the LSBP mix-
ture model.
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Figure 16: Atom usage-count matrix for H-LSBP.

are distributed within example images. In this figure we show the original imagkealkso the
same image with all portionsot associated with a given atom blacked out. From Figure 17 we
observe that atom 1 is principally associated with trees, atom 2 is associdlbedrass, atom 4
principally models offices, and atom 10 is mainly attributed to the surface ofibgdd Figure 18
shows atom examples inferred from the H-KSBP and HDP, and the epagise “cloud”, “grass”,
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Figure 17: Demonstration of different atoms inferred by the H-LSBP moda. driginal images
and associated connection to model-parameter atoms are shown on tgasEous.
All regionsnot associated with a respective atom are blacked out.

26t atom *

14 atom

“tree” and “street” atoms do not do as well in maintaining spatial contiguity. Phigerty is

especially important to locate certain objects or scenes. For example, forta@e annotation
task, it is usually expensive to acquire training data set by manually anmptatage by image.
Therefore, the H-LSBP might be used as an automatic annotation tool toexhuedant manual
work for the preprocessing the images with no words given.

Figure 18: Examples of different atoms inferred by the H-KSBP and HD&emd he first row is
the original images; the second row is the atoms inferred by H-KSBP; thertvirds
the atoms inferred by HDP.
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Based on the atoms inferred from Figure 16, we can jointly segment the 3@@s$méth H-
LSBP. Each atom represents a label, and the superpixels that sharsghtheatom are grouped
together. Some representative segmentation examples are shown in Bigaretich each column
shows one segmentation example with its “ground truth” (the second rodharcolor bar encodes
the labels/indexes of the results in the third row (the labels are re-ordeteddiferent from the
atom index).

Another interesting problem is to infer the inter-relationship between difféneages, and this
may be achieved by quantifying the degree to which they share atoms (ttiregsbiathe same set
of atoms across all images plays an important role in inferring inter-image redhtjus). Since we
know which atoms{6; }}-_; the superpixels within each image are drawn from, we may calculate
the Kullback-Leibler (KL) divergence based on the histogram over atostween each pair of
images (a small value is added to the probability of each atom, to avoid numenbidims when
computing the KL divergence, when the actual usage of particular atom$enagro). The KL
divergence between different categories, computed by averagiogsaall of the sub-class images,
are shown in Figure 20. To make the figure easier to read, the KL diveed¥, is re-scaled as
exp(—DkyL). In Figure 20(a) results are shown based on the proposed H-LS@#,based upon an
H-KSBP analysis, and in (c) based upon an HDP analysis. The H-USB&BP and HDP each
yield good results, but Figure 20 indicates that the H-LSBP produces sro@dks-class similarity
(additionally, the H-KSBP results are better than those of HDP).

To demonstrate the utility of the proposed method in the context of an image #ssfinch
engine, we show image sorting examples in Figure 21. The left-most columnasigireal image,
and columns 2-6 are the ordered five most similar images in the databasedoadeording to the
value of the KL divergence between the original image and the remainingn28§es. The five
most similar images are shown in Figure 21, with generally good sorting paafaze manifested.

5.5 Computational Complexity

All the experiments in this paper were performed in Matlab on a Pentium PC wigh@Hz CPU
and 4G RAM. For the audio-waveform example, 80 VB iterations for LS&Riired 40 seconds.

Figure 19: Representative set of segmentation results of H-LSBP. phewogives example im-
ages, the second row defines “truth” as given by the data set, and thesthirepresents
the respective H-LSBP results.
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Figure 20: Similarity matrix associated with the ten image categories. (a) H-L®BBR-KSBP,
(c) HDP

For the multi-task image segmentation, H-LSBP required nearly 7 hours oft€lhtly segment
300 images, using 60 VB iterations (this CPU time may be cut in half if we only uséB3ider-
ations, with minor degradation in performance). With both experiments, KSBIEBP typically
required comparable CPU time, while DP/HDP required less than half the CPU time.

6. Conclusions

The logistic stick-breaking process (LSBP) is proposed for clustenagiadly- or temporally-
dependent data, imposing the belief that proximate data are more likely to beretusogether.
The sticks in the LSBP are realized via multiple kernel-based logistic regre&sictions, with
a shrinkage prior employed for favoring contiguous and spatially localetitions. Competi-
tive segmentation performance has been manifested in several examplasveRo other related
approaches, the proposed LSBP yields sharp segmentations, and is abtematically infer an
appropriate number of segments.

We also propose thieierarchicallogistic stick-breaking process, H-LSBP, to segment multiple
data sets simultaneously, with example results presented for images. Thepai@ieéters (atoms)
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Figure 21: Sample image sorting result, as generated by H-LSBP. Thiefirsblumn shows the
images inquired, followed by the five most similar images from the second to sixth
column.
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are shared across all images, using a shared draw from a globali@P Pphe total number of
important atoms across all images, as well as the particular important atomsgeciéic image,
are inferred with an efficient variational Bayesian (VB) solution. Coregawith the hierarchical
Dirichlet process (HDP) and the hierarchical KSBP, the proposed mgfietds superior segmen-
tation performance, based on studies with natural images. Further, wenvagtigated the ability
of HDP, H-KSBP and H-LSBP to infer inter-relationship between diffeierages, based on the
underlying sharing of model atoms. The improved segmentation quality of @B, relative to
HDP and H-KSBP, also yields an improved ability to infer inter-image relatiosship

Concerning future research, the results in Figure 17 indicate that threcicifetoms have con-
nections to physical entities in images. This suggests that the model may bdezkterthe joint
modeling of images and text (Barnard et al., 2003), with the text associatedagpects of the
image. In addition, in the H-LSBP modeling of multiple images, the employed DP m&maes
that the order of the images is exchangeable (although LSBP imposesadtiat kyration within
a particular image is not exchangeable). There are many applicationsv{gep) for which the
multiple images may have a prescribed time index, that should be exploited. Tis @s the
time-dependent audio data demonstrate how LSBP may also be employed foterpgbaral infor-
mation.

The LSBP software is postedwavw.ece.duke.edu\  ~Icarin\LSBP_code.rar

Appendix A. VB Update Equations for H-LSBP

For the model introduced in Section 3, we assume
M K -

q(® r!q (6h) |_|QB|' l[k A(tm) |_| A(Wmk) d(Amk) ﬁQ(Zmnk)”a

whereq(6)) is the Dirichlet distribution, the same form as its prig® |ao). Thenq(6|&) is
updated with a uniform prior specified forp as follows:

M Npn K

Qi = doi + < Emnk > gz < tmk,l > Ymnis

rrgln 1kZ Az
whereag =1/l fori=1,...,1, andl is the feature dimensior; &mnk > Q(zmn) = |‘|'§_ 1(1 q(Zmn=
K)) - a(zZmn=K) represents the approximated posterior probability that Datais associated with
the hidden “atomty,. Fork' =K, Emnw = |‘|'|§_‘1(1 q(znn=K)). Finally, < tyk| >=q(tmk =1)
represents the approximated posterior probability thatakes the atonf).

For updatingy(3) andq(y) given the priorp(y) = Ga(y|ev, fo), assumeq(&) Be(fS||Tq1,qu)
with | =1,...,L, andq(y) = Ga(y|€, ). Then the update equations are as follows:

Tﬁ1—1+Zm 1Zk’ 1<tm|<| >,

Tio =&/ f+ S0 1 Skt Sl <tmerr >,
8=e+L—-1

F=fo— sk 2 [W(ma) — W(ma +112)].

in which y(+) is the Digamma function.
Given the approximate distribution of the other variables,

d(tmk = 1) D exp| <logp(tmk|B3) >q(s) + < 109P(Ymltmk,Zm, 61) >qzm).q@) |»
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where< - > represents the expectation of the associated variable’s distribution. Qreauasly
derive that

-1

Atk =1) O exp| T [W(Tha2) = W(Toa+Th2)] + [W(TH) — (1o +Ti2)] +
I'=1
N

Z < Emnk’ >q(Zmn)< Iogp(y|0|) >q(0|) i|7
n=1
where < logp(y|6)) >, is the data likelihood, with expectation performed with respect to the
distribution of atoms;, (which may be derived readily). Thefitmk) = Mult(Umka, - -, UnkL), IN

H _ q(tmk’zl)
which Uk = STl 1)

Similarly, assume|(W mk) = N(Mmk, f‘mk) andq(zmnk=1) = Pmnk = 0(hmni) fork=1,... K —
1, then

K L
Rmnk= Z ()" < Emnkr > ozt Z Atmk =1") [ < logp(y|6)) >qa)) | + X
K=k =1
where< Emnk, > k= ﬂﬁ‘;ll’#k [Pmnj(—1)" 4+ V] is the expectation associated the gating vari-
ables{zZmn, - - -, Zmnk—1)> Zmn(k+1)> - - - » Zmn(K—1) } EXCEPZmnk, With the following definition forvyy:

Ve — 0 if tm is in the left subtree o6 (see Fig. 5),
ki 1 otherwise.

Assumingg(Amki) = Ga(&mi, Bmki), withi =0,1,...,N, the update equations fogfW ) are
as follows: B
D= (233" 1 f (M b +duag<amk>}
Mmk = kazn 1 [(pmnk — 1/2) ]

where the variational parameter

Nmnk = \/Xk T(mnkmnk+rmk) Xmny

and f(Nmnk) = ta”'},']]imnkvz (Bishop and Sver&n, 2003; Bishop and Tipping, 2000). The parameters
X are defined ask,, = {1, {K(Smn, &mi; Umk} 11 }-

Giveng(Wnmy), the update equations fqtAm) are
8mki = a0 +1/2,
brnki = 3 (Trmi(i, 1) + 18,) + bo.
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