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Abstract
This paper provides the best bounds to date on the number of randomly sampled entries required
to reconstruct an unknown low-rank matrix. These results improve on prior work by Cand̀es and
Recht (2009), Cand̀es and Tao (2009), and Keshavan et al. (2009). The reconstruction is accom-
plished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject
to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence
condition, then the number of entries required is equal to a quadratic logarithmic factor times the
number of parameters in the singular value decomposition. The proof of this assertion is short,
self contained, and uses very elementary analysis. The novel techniques herein are based on recent
work in quantum information theory.
Keywords: matrix completion, low-rank matrices, convex optimization, nuclear norm minimiza-
tion, random matrices, operator Chernoff bound, compressed sensing

1. Introduction

Recovering a low-rank matrix from a partial sampling of its entries is a recurring problem in collab-
orative filtering (Rennie and Srebro, 2005; Koren et al., 2009) and dimensionality reduction (Wein-
berger and Saul, 2006; So and Ye, 2007). Estimating of low-rank models also arise in embedding
problems (Linial et al., 1995) and multi-class learning (Argyriou et al., 2008; Obozinski et al., 2009).
While a variety of heuristics have been developed across many disciplines,the general problem of
finding the lowest rank matrix satisfying equality constraints is NP-hard. All known algorithms
which can compute the lowest rank solution for all instances require time at least exponential in the
dimensions of the matrix in both theory and practice (Chistov and Grigoriev, 1984).

In sharp contrast to such worst case pessimism, Candès and Recht (2009) showed that most
low-rank matrices could be recovered from most sufficiently large sets ofentries by computing
the matrix of minimumnuclear normthat agreed with the provided entries, and furthermore the
revealed set of entries could comprise a vanishing fraction of the entire matrix. The nuclear norm is
equal to the sum of the singular values of a matrix and is the best convex lower bound of the rank
function on the set of matrices whose singular values are all bounded by 1. The intuition behind this
heuristic is that whereas the rank function counts the number of nonvanishing singular values, the
nuclear norm sums their amplitude, much like how theℓ1 norm is a useful surrogate for counting the
number of nonzeros in a vector. Moreover, the nuclear norm can be minimized subject to equality
constraints via semidefinite programming.

Nuclear norm minimization had long been observed to produce very low-rank solutions in prac-
tice (see, for example, Beck and D’Andrea, 1998; Fazel, 2002; Fazel et al., 2001; Srebro, 2004;
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Mesbahi and Papavassilopoulos, 1997), but only very recently was there any theoretical basis for
when it produced the minimum rank solution. The first paper to provide suchfoundations was
Recht et al. (2010), where the authors developed probabilistic techniques to study average case
behavior and showed that the nuclear norm heuristic could solve most instances of the linearly-
constrained rank-minimization problem assuming the number of linear constraints was sufficiently
large. The results in Recht et al. (2010) inspired a groundswell of interest in theoretical guarantees
for rank minimization, and these results lay the foundation for Candès and Recht (2009). Candès
and Recht’s bounds were subsequently improved by Candès and Tao (2009) and Keshavan et al.
(2009) to show that one could, in special cases, reconstruct a low-rank matrix by observing a set of
entries of size at most a polylogarithmic factor larger than the intrinsic dimensionof the variety of
rankr matrices.

This paper sharpens the results in Candès and Tao (2009) and Keshavan et al. (2009) to provide
a bound on the number of entries required to reconstruct a low-rank matrixwhich is optimal up to
a small numerical constant and one logarithmic factor. The main theorem makesminimal assump-
tions about the low-rank matrix of interest. Moreover, the proof is very short and relies on mostly
elementary analysis.

In order to precisely state the main result, we need one definition. Candès and Recht observed
that it is impossible to recover a matrix which is equal to zero in nearly all of its entries unless all
of the entries of the matrix are observed (consider, for example, the rankone matrix which is equal
to 1 in one entry and zeros everywhere else). In other words, the matrix cannot be mostly equal to
zero on the observed entries. This motivated the following definition

Definition 1 Let U be a subspace ofRn of dimension r andPU be the orthogonal projection onto
U. Then thecoherenceof U (vis-̀a-vis the standard basis(ei)) is defined to be

µ(U)≡ n
r

max
1≤i≤n

‖PUei‖2.

Note that for any subspace, the smallestµ(U) can be is 1, achieved, for example, ifU is spanned by
vectors whose entries all have magnitude 1/

√
n. The largest possible value forµ(U) is n/r which

would correspond to any subspace that contains a standard basis element. If a matrix has row and
column spaces with low coherence, then each entry can be expected to provide about the same
amount of information.

Recall that thenuclear normof an n1×n2 matrix X is the sum of the singular values ofX,
‖X‖∗ = ∑min{n1,n2}

k=1 σk(X), where, here and below,σk(X) denotes thekth largest singular value of
X. The main result of this paper is the following

Theorem 2 Let M be an n1 × n2 matrix of rank r with singular value decompositionUΣV ∗.
Without loss of generality, impose the conventions n1 ≤ n2, Σ is r× r, U is n1× r andV is n2× r.
Assume that

A0 The row and column spaces have coherences bounded above by some positive µ0.

A1 The matrixUV ∗ has a maximum entry bounded by µ1
√

r/(n1n2) in absolute value for some
positive µ1.

Suppose m entries ofM are observed with locations sampled uniformly at random. Then if

m≥ 32max{µ2
1,µ0} r(n1+n2) β log2(2n2) (1)
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for someβ > 1, the minimizer to the problem

minimize ‖X‖∗
subject to Xi j = Mi j (i, j) ∈ Ω.

(2)

is unique and equal toM with probability at least1−6log(n2)(n1+n2)
2−2β −n2−2β1/2

2 .

The assumptionsA0 and A1 were introduced in Candès and Recht (2009). Bothµ0 and µ1

may depend onr, n1, or n2. Moreover, note thatµ1 ≤ µ0
√

r by the Cauchy-Schwarz inequality.
As shown in Cand̀es and Recht (2009), both subspaces selected from the uniform distribution and
spaces constructed as the span of singular vectors with bounded entriesare not only incoherent with
the standard basis, but also obeyA1 with high probability for values ofµ1 at most logarithmic inn1

and/orn2. Applying this theorem to the models studied in Section 2 of Candès and Recht (2009),
we find that there is a numerical constantcu such thatcur(n1+n2) log5(n2) entries are sufficient to
reconstruct a rankr matrix whose row and column spaces are sampled from the Haar measure on the
Grassmann manifold. Ifr > log(n2), the number of entries can be reduced tocur(n1+n2) log4(n2).
Similarly, there is a numerical constantci such thatciµ2

0r(n1+n2) log3(n2) entries are sufficient to
recover a matrix of arbitrary rankr whose singular vectors have entries with magnitudes bounded
by
√

µ0/n1.
Theorem 2 greatly improves upon prior results. First of all, it has the weakest assumptions

on the matrix to be recovered. In addition to assumptionA1, Cand̀es and Tao (2009) require a
“strong incoherence condition” which is considerably more restrictive than the assumptionA0 in
Theorem 2. Many of their results also require restrictions on the rank ofM , and their bounds depend
superlinearly onµ0. Keshavan et al. (2009) require the matrix rank to be no more than log(n2), and
require bounds on the maximum magnitude of the entries inM and the ratiosσ1(M)/σr(M) and
n2/n1. Theorem 2 makes no such assumptions about the rank, aspect ratio, nor condition number
of M . Moreover, (1) has a smaller log factor than Candès and Tao (2009), and features numerical
constants that are both explicit and small.

Also note that there is not much room for improvement in the bound form. It is a consequence
of the coupon collector’s problem that at leastn2 logn2 uniformly sampled entries are necessary
just to guarantee that at least one entry in every row and column is observed with high probability.
In addition, rankr matrices haver(n1+n2− r) parameters, a fact that can be verified by counting
the number of degrees of freedom in the singular value decomposition. Interestingly, Cand̀es and
Tao (2009) showed thatCµ0n2r log(n2) entries werenecessaryfor completion when the entries are
sampled uniformly at random. Hence, (1) is optimal up to a small numerical constant times log(n2).

Most importantly, the proof of Theorem 2 is short and straightforward. Cand̀es and Recht
employed sophisticated tools from the study of random variables on Banach spaces including de-
coupling tools and powerful moment inequalities for the norms of random matrices. Cand̀es and
Tao rely on intricate moment calculations spanning over 30 pages. The present work only uses basic
matrix analysis, elementary large deviation bounds, and a noncommutative version of Bernstein’s
Inequality proven here in the Appendix.

The proof of Theorem 2 is adapted from a recent paper by Gross et al. (2010) in quantum infor-
mation which considered the problem of reconstructing the density matrix of a quantum ensemble
using as few measurements as possible. Their work extended results fromCand̀es and Recht (2009)
to the quantum regime by using special algebraic properties of quantum measurements. Their proof
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followed a methodology analogous to the approach of Candès and Recht but had three main differ-
ences: they used a sampling with replacement model as a proxy for uniformsampling, deployed
a powerful noncommutative Chernoff bound developed by Ahlswede and Winter (2002) for use in
quantum information theory, and devised a simplified appeal to convex dualityto guarantee exact
recovery. In this paper, I adapt these strategies from Gross et al. (2010) to the matrix completion
problem. In Section 3 I show how the sampling with replacement model bounds probabilities in the
uniform sampling model, and present very short proofs of some of the mainresults in Cand̀es and
Recht (2009). Surprisingly, this yields a simple proof of Theorem 2, provided in Section 4, which
has the least restrictive assumptions of any assertion proven thus far.1

2. Preliminaries and Notation

Before continuing, let us survey the notations used throughout the paper. I closely follow the con-
ventions established in Candès and Recht (2009), and invite the reader to consult this reference for
a more thorough discussion of the matrix completion problem and the associatedconvex geometry.
A thorough introduction to the necessary matrix analysis used in this paper can be found in Recht
et al. (2010).

Matrices are bold capital, vectors are bold lowercase and scalars or entries are not bold. For
example,X is a matrix, andXi j its (i, j)th entry. Likewisex is a vector, andxi its ith component.
If uk ∈ R

n for 1≤ k≤ d is a collection of vectors,[u1, . . . ,ud] will denote then×d matrix whose
kth column isuk. ek will denote thekth standard basis vector inRd, equal to 1 in componentk and
0 everywhere else. The dimension ofek will always be clear from context.X∗ andx∗ denote the
transpose of matricesX and vectorsx respectively.

A variety of norms on matrices will be discussed. The spectral norm of a matrix is denoted by
‖X‖. The Euclidean inner product between two matrices is〈X,Y 〉 = Tr(X∗Y ), and the corre-
sponding Euclidean norm, called the Frobenius or Hilbert-Schmidt norm, is denoted‖X‖F . That
is, ‖X‖F = 〈X,X〉1/2. The nuclear norm of a matrixX is ‖X‖∗. The maximum entry ofX (in
absolute value) is denoted by‖X‖∞ ≡ maxi j |Xi j |. For vectors, the only norm applied is the usual
Euclideanℓ2 norm, simply denoted as‖x‖.

Linear transformations that act on matrices will be denoted by calligraphic letters. In particular,
the identity operator will be denoted byI . The spectral norm (the top singular value) of such an
operator will be denoted by‖A‖= supX:‖X‖F≤1 ‖A(X)‖F .

Fix once and for all a matrixM obeying the assumptions of Theorem 2. Letuk (respectivelyvk)
denote thekth column ofU (respectivelyV ). SetU ≡ span(u1, . . . ,ur), andV ≡ span(v1, . . . ,vr).
Also assume, without loss of generality, thatn1 ≤ n2. It is convenient to introduce the orthogonal
decompositionRn1×n2 = T ⊕ T⊥ whereT is the linear space spanned by elements of the form
uky

∗ andxv∗
k, 1≤ k ≤ r, wherex andy are arbitrary, andT⊥ is its orthogonal complement.T⊥

is the subspace of matrices spanned by the family(xy∗), wherex (respectivelyy) is any vector
orthogonal toU (respectivelyV).

The orthogonal projectionPT ontoT is given by

PT(Z) = PUZ+ZPV −PUZPV , (3)

1. Shortly after the appearance of a preprint of this manuscript, Gross(2011) announced a far reaching generalization
of the techniques in Gross et al. (2010), providing bounds on recovering low-rank matrices in almost any basis. This
work is more general than the work presented here, but the present paper achieves tighter constants and bounds and
work directly with non-Hermitian matrices. The interested reader should consult Gross (2011) for more details.
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wherePU andPV are the orthogonal projections ontoU andV respectively. Note here that while
PU andPV are matrices,PT is a linear operator mapping matrices to matrices. The orthogonal
projection ontoT⊥ is given by

PT⊥(Z) = (I −PT)(Z) = (In1 −PU)Z(In2 −PV)

whereId denotes thed×d identity matrix. It follows from the definition (3) ofPT that

PT(eae
∗
b) = (PUea)e

∗
b+ea(PVeb)

∗− (PUea)(PVeb)
∗.

This gives

‖PT(eae
∗
b)‖2

F = 〈PT(eae
∗
b),eae

∗
b〉= ‖PUea‖2+‖PVeb‖2−‖PUea‖2‖PVeb‖2 .

Since‖PUea‖2 ≤ µ(U)r/n1 and‖PVeb‖2 ≤ µ(V)r/n2,

‖PT(eae
∗
b)‖2

F ≤ max{µ(U),µ(V)}r
n1+n2

n1n2
≤ µ0r

n1+n2

n1n2
. (4)

I will make frequent use of this calculation throughout the sequel.

3. Sampling with Replacement

As discussed above, the main contribution of this work is an analysis of uniformly sampled sets
of entries via the study of a sampling with replacement model. All of the previouswork (e.g.,
Cand̀es and Recht, 2009; Candès and Tao, 2009; Keshavan et al., 2009) studied a Bernoulli sam-
pling model as a proxy for uniform sampling. There, each entry was revealed independently with
probability equal top. In all of these results, the theorem statements concerned sampling sets of
m entries uniformly, but it was shown that probability of failure under Bernoulli sampling with
p= m

n1n2
closely approximated the probability of failure under uniform sampling. The present work

will analyze the situation where each entry index is sampled independently from the uniform distri-
bution on{1, . . . ,n1}×{1, . . . ,n2}. This modification of the sampling model gives rise to all of the
simplifications below.

It would appear that sampling with replacement is not suitable for analyzing matrix completion
as one might encounter duplicate entries. However, just as is the case with Bernoulli sampling,
bounding the likelihood of error when sampling with replacement allows us to bound the probability
of the nuclear norm heuristic failing under uniform sampling.

Proposition 3 The probability that the nuclear norm heuristic fails when the set of observed entries
is sampled uniformly from the collection of sets of size m is less than or equal to the probability that
the heuristic fails when m entries are sampled independently with replacement.

Proof The proof follows the argument in Section II.C of Candés et al. (2006). LetΩ′ be a collection
of mentries, each sampled independently from the uniform distribution on{1, . . . ,n1}×{1, . . . ,n2}.
Let Ωk denote a set of entries of sizek sampled uniformly from all collections of entries of sizek.
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It follows that

P(Failure(Ω′)) =
m

∑
k=0

P(Failure(Ω′) | |Ω′|= k)P(|Ω′|= k)

=
m

∑
k=0

P(Failure(Ωk))P(|Ω′|= k)

≥ P(Failure(Ωm))
m

∑
k=0

P(|Ω′|= k) = P(Failure(Ωm)) .

Where the inequality follows becauseP(Failure(Ωm)) ≥ P(Failure(Ωm′)) if m≤ m′. That is, the
probability decreases as the number of entries revealed is increased.

Surprisingly, changing the sampling model makes most of the theorems from Candès and Recht
(2009) simple consequences of a noncommutative variant of Bernstein’sInequality.

Theorem 4 (Noncommutative Bernstein Inequality) Let X1, . . . ,XL be independent zero-mean
random matrices of dimension d1×d2. Supposeρ2

k =max{‖E[XkX
∗
k ]‖,‖E[X∗

kXk]‖} and‖Xk‖≤
M almost surely for all k. Then for anyτ > 0,

P

[∥

∥

∥

∥

∥

L

∑
k=1

Xk

∥

∥

∥

∥

∥

> τ

]

≤ (d1+d2)exp

( −τ2/2

∑L
k=1 ρ2

k +Mτ/3

)

.

Note that in the case thatd1 = d2 = 1, this is precisely the two sided version of the standard Bernstein
Inequality. When theXk are diagonal, this bound is the same as applying the standard Bernstein
Inequality and a union bound to the diagonal of the matrix summation. Furthermore, observe that
the right hand side is less than(d1 + d2)exp(−3

8τ2/(∑L
k=1 ρ2

k)) as long asτ ≤ 1
M ∑L

k=1 ρ2
k. This

condensed form of the inequality will be used exclusively throughout. Theorem 4 is a corollary
of an Chernoff bound for finite dimensional operators developed by Ahlswede and Winter (2002).
A similar inequality for symmetric i.i.d. matrices is proposed in Gross et al. (2010).The proof is
provided in the Appendix.

Let us now record two theorems, proven for the Bernoulli model in Candès and Recht (2009),
that admit very simple proofs in the sampling with replacement model. The theoremstatements re-
quires some additional notation. LetΩ = {(ak,bk)}l

k=1 be a collection of indices sampled uniformly
with replacement. SetRΩ to be the operator

RΩ(Z) =
|Ω|

∑
k=1

〈eake
∗
bk
,Z〉eake

∗
bk
.

Note that the(i, j)th component ofRΩ(X) is zero unless(i, j) ∈ Ω. For(i, j) ∈ Ω, RΩ(X) is equal
to Xi j times the multiplicity of(i, j) ∈ Ω. Unlike in previous work on matrix completion,RΩ is not
a projection operator if there are duplicates inΩ. Nonetheless, this does not adversely affect the
argument, andRΩ(X) = 0 if and only ifXab = 0 for all (a,b) ∈ Ω. Moreover, we can show that the
maximum duplication of any entry is always less than8

3 log(n2) with very high probability.

Proposition 5 With probability at least1−n2−2β
2 , the maximum number of repetitions of any entry

in Ω is less than8
3β log(n2) for n2 ≥ 9 andβ > 1.
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Proof This assertion can be proven by applying a standard Chernoff bound for the Bernoulli dis-
tribution. Note that for a fixed entry, the probability it is sampled more thant times is equal to the
probability of more thant heads occurring in a sequence ofm tosses where the probability of a head
is 1

n1n2
. This probability can be upper bounded by

P[more thant heads inm trials]≤
(

m
n1n2t

)t

exp

(

t − m
n1n2

)

(see Hagerup and R̈ub, 1990, for example). Applying the union bound over all of then1n2 entries
and the fact thatm

n1n2
< 1, we have

P[any entry is selected more than8
3β log(n2) times]

≤n1n2
(

8
3β log(n2)

)−8
3β log(n2)exp

(

8
3β log(n2)

)

≤n2−2β
2

whenn2 ≥ 9.

This application of the Chernoff bound is very crude, and much tighter bounds can be derived
using more careful analysis. For example in Gonnet (1981), the maximum oversampling is shown to
be bounded byO( log(n2)

log log(n2)
). For our purposes here, the loose upper bound provided by Proposition 5

will be more than sufficient.
In addition to this bound on the norm ofRΩ, the following theorem asserts that the operator

PTRΩPT is also very close to an isometry onT if the number of sampled entries is sufficiently
large. This result is analgous to the Theorem 4.1 in Candès and Recht (2009) for the Bernoulli
model, whose proof uses several powerful theorems from the study ofprobability in Banach spaces.
Here, one only needs to compute a few low order moments and then apply Theorem 4.

Theorem 6 SupposeΩ is a set of entries of size m sampled independently and uniformly with
replacement. Then for allβ > 1,

n1n2

m

∥

∥

∥

∥

PTRΩPT − m
n1n2

PT

∥

∥

∥

∥

≤
√

16µ0r(n1+n2)β log(n2)

3m

with probability at least1−2n2−2β
2 provided that m> 16

3 µ0r(n1+n2)β log(n2).

Proof Decompose any matrixZ asZ = ∑ab〈Z,eae
∗
b〉eae

∗
b so that

PT(Z) = ∑
ab

〈PT(Z),eae
∗
b〉eae

∗
b = ∑

ab

〈Z,PT(eae
∗
b)〉eae

∗
b. (5)

For k = 1, . . . ,m sample(ak,bk) from {1, . . . ,n1}×{1, . . . ,n2} uniformly with replacement. Then
RΩPT(Z) = ∑m

k=1〈Z,PT(eake
∗
bk
)〉eake

∗
bk

which gives

(PTRΩPT)(Z) =
m

∑
k=1

〈Z,PT(eake
∗
bk
)〉PT(eake

∗
bk
).

3419



RECHT

Now the fact that the operatorPTRΩPT does not deviate from its expected value

E(PTRΩPT) = PT(ERΩ)PT = PT(
m

n1n2
I )PT =

m
n1n2

PT

in the spectral norm can be proven using the Noncommutative Bernstein Inequality.
To proceed, define the operatorTab which mapsZ to 〈PT(eae

∗
b),Z〉PT(eae

∗
b). This operator is

rank one, has operator norm‖Tab‖ = ‖PT(eae
∗
b)‖2

F , and we havePT = ∑a,bTab by (5). Hence, for
k= 1, . . . ,m, E[Takbk] =

1
n1n2

PT .
Observe that ifA andB are positive semidefinite, we have‖A−B‖≤max{‖A‖,‖B‖}. Using

this fact, we can compute the bound

‖Takbk − 1
n1n2

PT‖ ≤ max{‖PT(eake
∗
bk
)‖2

F ,
1

n1n2
} ≤ µ0r

n1+n2

n1n2
,

where the final inequality follows from (4). We also have

‖E[(Takbk − 1
n1n2

PT)
2]‖= ‖E[‖PT(eake

∗
bk
)‖2

FTakbk]−
1

n2
1n2

2

PT ]‖

≤ max{‖E[‖PT(eake
∗
bk
)‖2

FTakbk]‖,
1

n2
1n2

2

}

≤ max{‖E[Takbk]‖µ0r
n1+n2

n1n2
,

1

n2
1n2

2

} ≤ µ0r
n1+n2

n2
1n2

2

.

The theorem now follows by applying the Noncommutative Bernstein Inequality.

The next theorem is an analog of Theorem 6.3 in Candès and Recht (2009) or Lemma 3.2 in
Keshavan et al. (2009). This theorem asserts that for a fixed matrix, if one sets all of the entries not
in Ω to zero it remains close to a multiple of the original matrix in the operator norm.

Theorem 7 SupposeΩ is a set of entries of size m sampled independently and uniformly with
replacement and letZ be a fixed n1×n2 matrix. Assume without loss of generality that n1 ≤ n2,
Then for allβ > 1,

∥

∥

∥

(n1n2

m
RΩ − I

)

(Z)
∥

∥

∥≤

√

8βn1n2
2 log(n1+n2)

3m
‖Z‖∞

with probability at least1− (n1+n2)
1−β provided that m> 6βn1 log(n1+n2).

Proof First observe that the operator norm can be upper bounded by a multiple of the matrix infinity
norm

‖Z‖= sup
‖x‖=1
‖y‖=1

∑
a,b

Zabyaxb ≤
(

∑
a,b

Z2
aby

2
a

)1/2(

∑
a,b

x2
b

)1/2

≤√
n2max

a

(

∑
b

Z2
ab

)1/2

≤√
n1n2‖Z‖∞ .
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Note thatn1n2
m RΩ(Z)−Z = 1

m ∑m
k=1n1n2Zakbkeake

∗
bk
−Z. This is a sum of zero-mean random

matrices, and‖n1n2Zakbkeake
∗
bk
−Z‖ ≤ ‖n1n2Zakbkeake

∗
bk
‖+ ‖Z‖ < 3

2n1n2‖Z‖∞ for n1 ≥ 2. We
also have

‖E[(n1n2Zakbkeake
∗
bk
−Z)∗(n1n2Zakbkeake

∗
bk
−Z)]‖

=

∥

∥

∥

∥

∥

n1n2∑
c,d

Z2
cdede

∗
d −Z∗Z

∥

∥

∥

∥

∥

≤max

{∥

∥

∥

∥

∥

n1n2∑
c,d

Z2
cdede

∗
d

∥

∥

∥

∥

∥

,‖Z∗Z‖
}

≤n1n2
2‖Z‖2

∞

where we again use the fact that‖A−B‖ ≤ max{‖A‖,‖B‖} for positive semidefiniteA andB.
A similar calculation holds for(n1n2Zakbkeake

∗
bk
−Z)(n1n2Zakbkeake

∗
bk
−Z)∗. The theorem now

follows by the Noncommutative Bernstein Inequality.

Finally, the following Lemma is required to prove Theorem 2. Succinctly, it says that for a fixed
matrix inT, the operatorPTRΩ does not increase the matrix infinity norm.

Lemma 8 SupposeΩ is a set of entries of size m sampled independently and uniformly with re-
placement and letZ ∈ T be a fixed n1×n2 matrix. Assume without loss of generality that n1 ≤ n2.
Then for allβ > 2,

∥

∥

∥

n1n2

m
PTRΩ(Z)−Z

∥

∥

∥

∞
≤
√

8βµ0r(n1+n2) logn2

3m
‖Z‖∞

with probability at least1−2n2−β
2 provided that m> 8

3βµ0r(n1+n2) logn2.

Proof This lemma can be proven using the standard Bernstein Inequality. For eachmatrix index
(c,d), sample (a,b) uniformly at random to define the random variableξcd =
〈ece

∗
d,n1n2〈eae

∗
b,Z〉PT(eae

∗
b)−Z〉. We haveE[ξcd] = 0, |ξcd| ≤ µ0r(n1+n2)‖Z‖∞, and

E[ξ2
cd] =

1
n1n2

∑
a,b

〈ece
∗
d,n1n2〈eae

∗
b,Z〉PT(eae

∗
b)−Z〉2

= n1n2∑
a,b

〈PT(ece
∗
d),eae

∗
b〉2〈eae

∗
b,Z〉2−Z2

cd

≤ n1n2‖PT(ece
∗
d)‖2

F‖Z‖2
∞ ≤ µ0r(n1+n2)‖Z‖2

∞ .

Since the(c,d) entry of n1n2
m PTRΩ(Z)−Z is identically distributed to1

m ∑m
k=1 ξ(k)cd , whereξ(k)cd are

i.i.d. copies ofξcd, we have by Bernstein’s Inequality and the union bound:

Pr

[

∥

∥

∥

n1n2

m
PTRΩ(Z)−Z

∥

∥

∥

∞
>

√

8βµ0r(n1+n2) log(n2)

3m
‖Z‖∞

]

≤ 2n2−β
2 .
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4. Proof of Theorem 2

The proof follows the program developed in Gross et al. (2010) which itself adapted the strategy
proposed in Cand̀es and Recht (2009). The main idea is to approximate a dual feasible solution
of (2) which certifies thatM is the unique minimum nuclear norm solution. In Candès and Recht
(2009) such a certificate was constructed via an infinite series using a construction developed in
the compressed sensing literature (See, for example Candés et al., 2006; Fuchs, 2004). The terms
in this series were then analyzed individually using the decoupling inequalitiesof de la Pẽna and
Montgomery-Smith (1995). Truncating the infinite series after 4 terms gave their result. In Cand̀es
and Tao (2009), the authors bounded the contribution ofO(log(n2)) terms in this series using inten-
sive combinatorial analysis of each term. The insight in Gross et al. (2010) was that, when sampling
observations with replacement, a dual feasible solution could be closely approximated by a mod-
ified series where each term involved the product of independent random variables. This change
in the sampling model allows one to avoid decoupling inequalities and gives rise tothe dramatic
simplification here.

To proceed, recall again that by Proposition 3 it suffices to consider thescenario when the entries
are sampled independently and uniformly with replacement. I will first developthe main argument
of the proof assuming many conditions hold with high probability. The proof is completed by
subsequently bounding probability that all of these events hold. Supposethat

n1n2

m

∥

∥

∥

∥

PTRΩPT − m
n1n2

PT

∥

∥

∥

∥

≤ 1
2
, ‖RΩ‖ ≤ 8

3β1/2 log(n2) . (6)

Also suppose there exists aY in the range ofRΩ such that

‖PT(Y )−UV ∗‖F ≤
√

r
2n2

, ‖PT⊥(Y )‖< 1
2
. (7)

If (6) holds, then for anyZ ∈ kerRΩ, PT(Z) cannot be too large. Indeed, we have

0= ‖RΩ(Z)‖F ≥ ‖RΩPT(Z)‖F −‖RΩPT⊥(Z)‖F .

Now observe that

‖RΩPT(Z)‖2
F = 〈Z,PTR

2
ΩPT(Z)〉 ≥ 〈Z,PTRΩPT(Z)〉 ≥ m

2n1n2
‖PT(Z)‖2

F

and ‖RΩPT⊥(Z)‖F ≤ 8
3β1/2 log(n2)‖PT⊥(Z)‖F . Collecting these facts gives that for anyZ ∈

kerRΩ,

‖PT⊥(Z)‖F ≥
√

9m

128βn1n2 log2(n2)
‖PT(Z)‖F >

√

2r
n2

‖PT(Z)‖F .

Now recall that‖A‖∗ = sup‖B‖≤1〈A,B〉. ForZ ∈ kerRΩ, pickU⊥ andV⊥ such that[U ,U⊥] and
[V ,V⊥] are unitary matrices and that〈U⊥V ∗

⊥ ,PT⊥(Z)〉= ‖PT⊥(Z)‖∗. Then it follows that

‖M +Z‖∗ ≥ 〈UV ∗+U⊥V
∗
⊥ ,M +Z〉

= ‖M‖∗+ 〈UV ∗+U⊥V
∗
⊥ ,Z〉

= ‖M‖∗+ 〈UV ∗−PT(Y ),PT(Z)〉+ 〈U⊥V
∗
⊥ −PT⊥(Y ),PT⊥(Z)〉

> ‖M‖∗−
√

r
2n2

‖PT(Z)‖F +
1
2
‖PT⊥(Z)‖∗ ≥ ‖M‖∗ .
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The first inequality holds from the variational characterization of the nuclear norm. We also used
the fact that〈Y ,Z〉 = 0 for all Z ∈ kerRΩ. Thus, if aY exists obeying (7), we have that for any
X obeyingRΩ(X−M) = 0, ‖X‖∗ > ‖M‖∗. That is, any ifX hasMab = Xab for all (a,b) ∈ Ω,
X has strictly larger nuclear norm thanM , and henceM is the unique minimizer of (2). The
remainder of the proof shows that such aY exists with high probability.

To this end, partition 1, . . . ,m into p partitions of sizeq. By assumption, we may choose

q≥ 128
3

max{µ0,µ
2
1}r(n1+n2)β log(n1+n2) and p≥ 3

4
log(2n2) .

Let Ω j denote the set of indices corresponding to thejth partition. Note that each of these partitions
are independent of one another when the indices are sampled with replacement. Assume that

n1n2

q

∥

∥

∥

∥

PTRΩkPT − q
n1n2

PT

∥

∥

∥

∥

≤ 1
2

(8)

for all k. DefineW0 = UV ∗ and setYk =
n1n2

q ∑k
j=1RΩ j (W j−1), Wk = UV ∗−PT(Yk) for k =

1, . . . , p. Then

‖Wk‖F =

∥

∥

∥

∥

Wk−1−
n1n2

q
PTRΩk(Wk−1)

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(PT − n1n2

q
PTRΩkPT)(Wk−1)

∥

∥

∥

∥

F

≤ 1
2
‖Wk−1‖F ,

and it follows that‖Wk‖F ≤ 2−k‖W0‖F = 2−k√r. Sincep≥ 3
4 log(2n2)≥ 1

2 log2(2n2)= log2
√

2n2,
thenY = Yp will satisfy the first inequality of (7). Also suppose that

∥

∥

∥

∥

Wk−1−
n1n2

q
PTRΩk(Wk−1)

∥

∥

∥

∥

∞
≤ 1

2
‖Wk−1‖∞, (9)

∥

∥

∥

∥

(

n1n2

q
RΩ j − I

)

(W j−1)

∥

∥

∥

∥

≤
√

8n1n2
2β log(n1+n2)

3q
‖W j−1‖∞ (10)

for k= 1, . . . , p.
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To see that‖PT⊥(Yp)‖ ≤ 1
2 when (9) and (10) hold, observe‖Wk‖∞ ≤ 2−k‖UV ∗‖∞, and it

follows that

‖PT⊥Yp‖ ≤
p

∑
j=1

‖n1n2
q PT⊥RΩ jW j−1‖

=
p

∑
j=1

‖PT⊥(n1n2
q RΩ jW j−1−W j−1)‖

≤
p

∑
j=1

‖(n1n2
q RΩ j − I )(W j−1)‖

≤
p

∑
j=1

√

8n1n2
2 β log(n1+n2)

3q
‖W j−1‖∞

= 2
p

∑
j=1

2− j

√

8n1n2
2 β log(n1+n2)

3q
‖UV ∗‖∞ <

√

32µ2
1rn2 β log(n1+n2)

3q
< 1/2

sinceq > 128
3 µ2

1rn2β log(n1 + n2). The first inequality follows from the triangle inequality. The
second line follows becauseW j−1 ∈ T for all j. The third line follows because, for anyZ,

‖PT⊥(Z)‖= ‖(In1 −PU)Z(In2 −PV)‖ ≤ ‖Z‖ .

The fourth line applies (10). The next line follows from (9). The final linefollows from the assump-
tion A1.

All that remains is to bound the probability that all of the invoked events hold. With msatisfying
the bound in the main theorem statement, the first inequality in (6) fails to hold with probability at

most 2n2−2β
2 by Theorem 6, and the second inequality fails to hold with probability at mostn2−2β1/2

2

by Proposition 5. For allk, (8) fails to hold with probability at most 2n2−2β
2 , (9) fails to hold with

probability at most 2n2−2β
2 , and (10) fails to hold with probability at most(n1+n2)

1−2β. Summing
these all together, all of the events hold with probability at least

1−6log(n2)(n1+n2)
2−2β −n2−2β1/2

2

by the union bound. This completes the proof.

5. Discussion and Conclusions

The results proven here are nearly optimal, but small improvements can possibly be made. The
numerical constant 32 in the statement of the theorem may be reducible by moreclever bookkeeping,
and it may be possible to derive a linear dependence on the logarithm of the matrix dimensions. But
further reduction is not possible because of the necessary conditions provided by Cand̀es and Tao.
One minor improvement that could be made would be to remove the assumptionA1. For instance,
while µ1 is known to be small in most of the models of low-rank matrices that have been analyzed,
no one has shown that an assumption of the formA1 is necessary for completion. Nonetheless, all
prior results on matrix completion have imposed an assumption likeA1 (i.e., Cand̀es and Recht,
2009; Cand̀es and Tao, 2009; Keshavan et al., 2009), and it would be interesting to see if it can be
removed as a requirement, or if it is somehow necessary.
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In many matrix completion scenarios of interest in machine learning, the provided entries are
corrupted by noise. While Theorem 2 only addresses the noise-free case, we can immediately extend
our results to the noisy case. Specifically, suppose we observeXi j = Mi j +νi j on the setΩ and we
are guaranteed that

∑
(i, j)∈Ω

ν2
i j ≤ δ2 .

Then if we solve the quadratically constrained problem

minimize ‖X‖∗
subject to ∑(i, j)∈Ω(Xi j −Mi j )

2 ≤ δ2 .
(11)

we will have that any optimal solution,̂M of (11) satisfies

‖M̂ −M‖F ≤



2+

√

48n2
1n2

m



δ .

This claim follows directly from the argument of Candès and Plan (2009). Indeed, the only nec-
essary requirements for such stable recovery is that (6) and (7) hold.Hence, under the sampling
assumptions of Theorem 2, low-rank matrices can be approximated from noisy data by solving a
quadratically constrained nuclear norm problem.

We conclude by noting that much of the simplicity of the argument presented here arises from an
application of new large deviation inequalities for matrices. The noncommutativeversions of Cher-
noff and Bernstein’ s Inequalities may be useful throughout machine learning and statistical signal
processing, and a fruitful line of inquiry would examine how to apply these tools from quantum
information to the study of classical signals and systems.
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Appendix A. Operator Chernoff Bounds

In this section, I present a proof of 4 based on foundational results needed from Quantum Informa-
tion Theory. For completeness, I also provide proofs of Theorems 9 and10 which were originally
proven in Ahlswede and Winter (2002). I have made minor modifications to the original arguments,
but the assertions remain the same.

To review, a symmetric matrixA is positive semidefinite if all of its eigenvalues are nonnegative.
If A andB are positive semidefinite matrices,A �B meansB−A is positive semidefinite. For
square matricesA, the matrix exponential will be denoted exp(A) and is given by the power series

exp(A) =
∞

∑
k=0

Ak

k!
.

3425



RECHT

The following theorem is a generalization of Markov’s inequality originally proven in Ahlswede
and Winter (2002). Unlike the original proof, the following argument closely follows the standard
proof of the traditional Markov inequality and does not rely on discrete summations.

Theorem 9 (Operator Markov Inequality) LetX be a random positive semidefinite matrix and
A a fixed positive definite matrix. Then

P [X 6�A]≤ Tr(E[X]A−1) .

Proof Note that ifX 6�A, thenA−1/2XA−1/2 6� I, and hence‖A−1/2XA−1/2‖> 1. Let IX 6�A

denote the indicator of the eventX 6�A. ThenIX 6�A ≤ Tr(A−1/2XA−1/2) as the right hand side is
always nonnegative, and, if the left hand side equals 1, the trace of theright hand side must exceed
the norm of the right hand side which is greater than 1. Thus we have

P[X 6�A] = E[IX 6�A]≤ E[Tr(A−1/2XA−1/2)] = Tr(E[X]A−1) .

where the last equality follows from the linearity and cyclic properties of the trace.

Next I will derive a noncommutative version of the Chernoff bound. Thiswas also proven in
Ahlswede and Winter (2002) for i.i.d. matrices. The version stated here is more general in that the
random matrices need not be identically distributed, but the proof is essentially the same.

Theorem 10 (Noncommutative Chernoff Bound)LetX1, . . . ,Xn be independent symmetric ran-
dom matrices inRd×d. LetA be an arbitrary symmetric matrix. Then for any invertible d×d matrix
T

P

[

n

∑
k=1

Xk 6� nA

]

≤ d
n

∏
k=1

‖E[exp(TXkT
∗−TAT ∗)]‖ .

Proof The proof relies on an estimate of Golden (1965) and Thompson (1965) which is stated here
without proof.

Lemma 11 (Golden-Thompson inequality)For any symmetric matricesA andB,

Tr(exp(A+B))≤ Tr((expA)(expB)) .
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Much like the proof of the standard Chernoff bound, the theorem now follows from a long chain of
inequalities.

P

[

n

∑
k=1

Xk 6� nA

]

= P

[

n

∑
k=1

(Xk−A) 6� 0

]

= P

[

n

∑
k=1

T (Xk−A)T ∗ 6� 0

]

= P

[

exp

(

n

∑
k=1

T (Xk−A)T ∗
)

6� Id

]

≤ Tr

(

E

[

exp

(

n

∑
k=1

T (Xk−A)T ∗
)])

= E

[

Tr

(

exp

(

n

∑
k=1

T (Xk−A)T ∗
))]

≤ E

[

Tr

(

exp

(

n−1

∑
k=1

T (Xk−A)T ∗
)

exp(T (Xn−A)T ∗)

)]

≤ E1,...,n−1

[

Tr

(

exp

(

n−1

∑
k=1

T (Xk−A)T ∗
)

E[exp(T (Xn−A)T ∗)]

)]

≤ ‖E[exp(T (Xn−A)T ∗)]‖E1,...,n−1

[

Tr

(

exp

(

n−1

∑
k=1

T (Xk−A)T ∗
))]

≤
n

∏
k=2

‖E[exp(T (Xk−A)T ∗)]‖E [Tr(exp(T (X1−A)T ∗))]

≤ d
n

∏
k=1

‖E[exp(T (Xk−A)T ∗)]‖ .

Here, the first three lines follow from standard properties of the semidefinite ordering. The fourth
line invokes the Operator Markov Inequality. The sixth line follows from the Golden-Thompson
inequality. The seventh line follows from independence of theXk. The eighth line follows because
for positive definite matrices Tr(AB) ≤ Tr(A)‖B‖. This is just another statement of the duality
between the nuclear and operator norms. The ninth line iteratively repeats the previous two steps.
The final line follows because for a positive definite matrixA, Tr(A) is the sum of the eigenvalues
of A, and all of the eigenvalues are at most‖A‖.

Let us now turn to proving the Noncommutative Bernstein Inequality presented in Section 3.
Gross et al. (2010) proposed a similar inequality for symmetric i.i.d. random matrices with a slightly
worse constant. The proof here is more general and follows the standard derivation of Bernstein’s
inequality.
Proof [of Theorem 4] Set

Yk =

[

0 Xk

X∗
k 0

]

.
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ThenYk are symmetric random variables, and for allk

‖E[Y 2
k ]‖=

∥

∥

∥

∥

E

[[

XkX
∗
k 0

0 X∗
kXk

]]∥

∥

∥

∥

= max{‖E[XkX
∗
k ]‖,‖E[X∗

kXk]‖}= ρ2
k .

Moreover, the maximum singular value of∑L
k=1Xk is equal to the maximum eigenvalue of∑L

k=1Yk.
By Theorem 10, we have for allλ > 0

P

[∥

∥

∥

∥

∥

L

∑
k=1

Xk

∥

∥

∥

∥

∥

> Lt

]

= P

[

L

∑
k=1

Yk 6� LtI

]

≤ (d1+d2)exp(−Lλt)
L

∏
k=1

‖E[exp(λYk)]‖ .

For eachk, letYk =UkΛkU
∗
k be an eigenvalue decomposition, whereΛk is the diagonal matrix

of the eigenvalues ofYk. In turn, it follows that fors> 0

−MsY 2
k �−UkM

s
Λ

2
kU

∗
k �UkΛ

2+s
k U ∗

k = Y 2+s
k �UkM

s
Λ

2
kU

∗
k � MsY 2

k ,

which then implies

‖E[Y s+2
k ]‖ ≤ Ms‖E[Y 2

k ]‖ . (12)

For fixedk, we have

‖E[exp(λYk)]‖ ≤ ‖I‖+
∞

∑
j=2

λ j

j!
‖E[Y j

k ]‖

≤ 1+
∞

∑
j=2

λ j

j!
‖E[Y 2

k ]‖M j−2

= 1+
ρ2

k

M2

∞

∑
j=2

λ j

j!
M j = 1+

ρ2
k

M2(exp(λM)−1−λM)

≤ exp

(

ρ2
k

M2(exp(λM)−1−λM)

)

.

The first inequality follows from the triangle inequality and the fact thatE[Yk] = 0, the second
inequality follows from (12), and the final inequality follows from the fact that 1+ x≤ exp(x) for
all x. Putting this together gives

P

[∥

∥

∥

∥

∥

L

∑
k=1

Xk

∥

∥

∥

∥

∥

> Lt

]

≤ (d1+d2)exp

(

−λLt +
∑L

k=1 ρ2
k

M2 (exp(λM)−1−λM)

)

.

This final expression is now just a real number, and only has to be minimized as a function ofλ.
The theorem now follows by algebraic manipulation: the right hand side is minimized by setting
λ = 1

M log(1+ tLM
∑L

k=1 ρ2
k
), then basic approximations can be employed to complete the argument (see,

for example, Panchenko, 2007, Lectures 4 and 5).
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