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Abstract

This paper provides the best bounds to date on the numbendbmaly sampled entries required
to reconstruct an unknown low-rank matrix. These resuligrave on prior work by Caries and
Recht (2009), Cariss and Tao (2009), and Keshavan et al. (2009). The recotistris accom-
plished by minimizing the nuclear norm, or sum of the singuddues, of the hidden matrix subject
to agreement with the provided entries. If the underlyingrinaatisfies a certain incoherence
condition, then the number of entries required is equal taadcptic logarithmic factor times the
number of parameters in the singular value decompositidme groof of this assertion is short,
self contained, and uses very elementary analysis. Thd temliques herein are based on recent
work in quantum information theory.

Keywords: matrix completion, low-rank matrices, convex optimizatiauclear norm minimiza-
tion, random matrices, operator Chernoff bound, comptessasing

1. Introduction

Recovering a low-rank matrix from a partial sampling of its entries is a raguproblem in collab-
orative filtering (Rennie and Srebro, 2005; Koren et al., 2009) andrdiforality reduction (Wein-
berger and Saul, 2006; So and Ye, 2007). Estimating of low-rank moldelsagse in embedding
problems (Linial et al., 1995) and multi-class learning (Argyriou et al., 2@ zinski et al., 2009).
While a variety of heuristics have been developed across many discigheegeneral problem of
finding the lowest rank matrix satisfying equality constraints is NP-hard. Adwkn algorithms
which can compute the lowest rank solution for all instances require timesateg@onential in the
dimensions of the matrix in both theory and practice (Chistov and Grigori&4)19

In sharp contrast to such worst case pessimism, €aadd Recht (2009) showed that most
low-rank matrices could be recovered from most sufficiently large seenwfes by computing
the matrix of minimumnuclear normthat agreed with the provided entries, and furthermore the
revealed set of entries could comprise a vanishing fraction of the entirexni&tte nuclear normis
equal to the sum of the singular values of a matrix and is the best convexbowad of the rank
function on the set of matrices whose singular values are all boundedIthelintuition behind this
heuristic is that whereas the rank function counts the number of nonwragisingular values, the
nuclear norm sums their amplitude, much like how#haorm is a useful surrogate for counting the
number of nonzeros in a vector. Moreover, the nuclear norm can be madrsitbject to equality
constraints via semidefinite programming.

Nuclear norm minimization had long been observed to produce very loksi@ations in prac-
tice (see, for example, Beck and D’Andrea, 1998; Fazel, 2002;| leqazd., 2001; Srebro, 2004;
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Mesbahi and Papavassilopoulos, 1997), but only very recently veas &my theoretical basis for
when it produced the minimum rank solution. The first paper to provide fuahdations was
Recht et al. (2010), where the authors developed probabilistic teclsntqugtudy average case
behavior and showed that the nuclear norm heuristic could solve mostéastaf the linearly-
constrained rank-minimization problem assuming the number of linear cortistvas sufficiently
large. The results in Recht et al. (2010) inspired a groundswell ofesitén theoretical guarantees
for rank minimization, and these results lay the foundation for @arahd Recht (2009). Cagsl
and Recht’s bounds were subsequently improved by €aatd Tao (2009) and Keshavan et al.
(2009) to show that one could, in special cases, reconstruct a ldwnaratrix by observing a set of
entries of size at most a polylogarithmic factor larger than the intrinsic dime$itve variety of
rankr matrices.

This paper sharpens the results in Gasidnd Tao (2009) and Keshavan et al. (2009) to provide
a bound on the number of entries required to reconstruct a low-rank matich is optimal up to
a small numerical constant and one logarithmic factor. The main theorem méki@sal assump-
tions about the low-rank matrix of interest. Moreover, the proof is veoytsdind relies on mostly
elementary analysis.

In order to precisely state the main result, we need one definition. &Saamt Recht observed
that it is impossible to recover a matrix which is equal to zero in nearly all of it$esrunless all
of the entries of the matrix are observed (consider, for example, theoranknatrix which is equal
to 1 in one entry and zeros everywhere else). In other words, the matmotbe mostly equal to
zero on the observed entries. This motivated the following definition

Definition 1 Let U be a subspace @&" of dimension r and?®; be the orthogonal projection onto
U. Then thecoherencef U (vis--vis the standard basig;)) is defined to be

Note that for any subspace, the smallgét ) can be is 1, achieved, for exampleUifis spanned by
vectors whose entries all have magnitude/h. The largest possible value fafU) is n/r which
would correspond to any subspace that contains a standard basisteldraanatrix has row and
column spaces with low coherence, then each entry can be expectedvidepabout the same
amount of information.

Recall that thenuclear normof ann; x np matrix X is the sum of the singular values &f,
|1X || = s 6, (X)), where, here and belowy(X) denotes théth largest singular value of
X . The main result of this paper is the following

Theorem 2 Let M be an n x np matrix of rank r with singular value decompositidixXV *.
Without loss of generality, impose the conventionsimy, Y isrxr, Uism xrandVism xr.
Assume that

A0 The row and column spaces have coherences bounded above dypassitive g.

Al The matrixU V* has a maximum entry bounded by\ﬁ/(nlnz) in absolute value for some
positive 4.

Suppose m entries @ are observed with locations sampled uniformly at random. Then if

m> 32max 2, ho} r(ng + ny) Blog?(2ny) (1)
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for some3 > 1, the minimizer to the problem

minimize | X ]| @)
subjectto X =M (i,j)€Q.

. . . e 272B 27281/2
is unique and equal td4 with probability at leastl — 6log(nz)(ny + Ny) -n, :

The assumption&0 and A1 were introduced in Cars and Recht (2009). Boily and
may depend om, n1, or n,. Moreover, note thafy < po+/r by the Cauchy-Schwarz inequality.
As shown in Cands and Recht (2009), both subspaces selected from the uniformutistniland
spaces constructed as the span of singular vectors with bounded argrigx only incoherent with
the standard basis, but also ol#&y with high probability for values offi; at most logarithmic im;
and/orn,. Applying this theorem to the models studied in Section 2 of @arahd Recht (2009),
we find that there is a numerical constapsuch thatc,r (n; + ny) Iog5(n2) entries are sufficient to
reconstruct a rankmatrix whose row and column spaces are sampled from the Haar measuee on th
Grassmann manifold. If > log(n,), the number of entries can be reduced(n; + ny) log*(ny).
Similarly, there is a numerical constastsuch thai;|dr (ny + nz) log*(np) entries are sufficient to
recover a matrix of arbitrary rankwhose singular vectors have entries with magnitudes bounded
by /Ho/N1.

Theorem 2 greatly improves upon prior results. First of all, it has the astakssumptions
on the matrix to be recovered. In addition to assump#idn Cands and Tao (2009) require a
“strong incoherence condition” which is considerably more restrictiva tha assumptio®\0 in
Theorem 2. Many of their results also require restrictions on the rai odind their bounds depend
superlinearly onl. Keshavan et al. (2009) require the matrix rank to be no more thgnJpgnd
require bounds on the maximum magnitude of the entrid&liand the ratio®; (M) /o, (M) and
nz/n;. Theorem 2 makes no such assumptions about the rank, aspect rattond@ion number
of M. Moreover, (1) has a smaller log factor than Camdnd Tao (2009), and features numerical
constants that are both explicit and small.

Also note that there is not much room for improvement in the boundhfdt is a consequence
of the coupon collector’s problem that at leastogn, uniformly sampled entries are necessary
just to guarantee that at least one entry in every row and column is edserth high probability.

In addition, rankr matrices have(n; + n, —r) parameters, a fact that can be verified by counting
the number of degrees of freedom in the singular value decompositiomedtiteyly, Cands and
Tao (2009) showed th&ppnor log(n,) entries werenecessaryor completion when the entries are
sampled uniformly at random. Hence, (1) is optimal up to a small numericalasdrisnes logny).

Most importantly, the proof of Theorem 2 is short and straightforwar@ndes and Recht
employed sophisticated tools from the study of random variables on Bapachssincluding de-
coupling tools and powerful moment inequalities for the norms of random raatriCands and
Tao rely on intricate moment calculations spanning over 30 pages. Thenpresrk only uses basic
matrix analysis, elementary large deviation bounds, and a noncommutatsiernvef Bernstein’s
Inequality proven here in the Appendix.

The proof of Theorem 2 is adapted from a recent paper by Gross(2040) in quantum infor-
mation which considered the problem of reconstructing the density matrix wé@tgm ensemble
using as few measurements as possible. Their work extended resultSmos and Recht (2009)
to the quantum regime by using special algebraic properties of quantunimeesnts. Their proof

3415



RECHT

followed a methodology analogous to the approach of @arhd Recht but had three main differ-
ences: they used a sampling with replacement model as a proxy for urstompling, deployed
a powerful noncommutative Chernoff bound developed by Ahlswedé/inter (2002) for use in
guantum information theory, and devised a simplified appeal to convex dt@lifyarantee exact
recovery. In this paper, | adapt these strategies from Gross etdl0) 2o the matrix completion
problem. In Section 3 | show how the sampling with replacement model bowobalglities in the
uniform sampling model, and present very short proofs of some of the mesirts in Canéds and
Recht (2009). Surprisingly, this yields a simple proof of Theorem 2yigeal in Section 4, which
has the least restrictive assumptions of any assertion proven thus far.

2. Preliminaries and Notation

Before continuing, let us survey the notations used throughout the. gagesely follow the con-
ventions established in Caésland Recht (2009), and invite the reader to consult this reference fo
a more thorough discussion of the matrix completion problem and the asscmistexk geometry.

A thorough introduction to the necessary matrix analysis used in this papdrec@und in Recht

et al. (2010).

Matrices are bold capital, vectors are bold lowercase and scalars @seate not bold. For
example,X is a matrix, andX; its (i, j)th entry. Likewisex is a vector, and; its ith component.
If ux € R" for 1 <k < dis a collection of vectordus, . .., ug] will denote then x d matrix whose
kth column isuy. ex will denote thekth standard basis vector Rf, equal to 1 in componettand
0 everywhere else. The dimensionefwill always be clear from contextX* andx* denote the
transpose of matriceX and vectorse respectively.

A variety of norms on matrices will be discussed. The spectral norm of axnisattenoted by
|| X]|. The Euclidean inner product between two matriceSXsY') = Tr(X*Y'), and the corre-
sponding Euclidean norm, called the Frobenius or Hilbert-Schmidt normniste|| X ||z. That
is, | X ||r = (X, X)¥2. The nuclear norm of a matriX is || X||.. The maximum entry ofX (in
absolute value) is denoted By || = max; |X;j|. For vectors, the only norm applied is the usual
Euclidean/, norm, simply denoted gge||.

Linear transformations that act on matrices will be denoted by calligraphicdetteparticular,
the identity operator will be denoted by The spectral norm (the top singular value) of such an
operator will be denoted by || = supx- x| .<1 [A(X)]IF.

Fix once and for all a matridZ obeying the assumptions of Theorem 2. Lg{(respectivelywy)
denote théth column ofU (respectivelyW). SetU = spanug,...,u,), andV = span(vs,...,vr).
Also assume, without loss of generality, tlmat< n,. It is convenient to introduce the orthogonal
decompositionrR™*™ = T ¢ T+ whereT is the linear space spanned by elements of the form
wy* andzvy, 1<k <r, wherex andy are arbitrary, and * is its orthogonal complement.
is the subspace of matrices spanned by the fafaily*), wherex (respectivelyy) is any vector
orthogonal tdJ (respectively).

The orthogonal projectio#®r ontoT is given by

Pr(Z) = RyZ+ZR — Py ZRy, 3

1. Shortly after the appearance of a preprint of this manuscript, G2044) announced a far reaching generalization
of the techniques in Gross et al. (2010), providing bounds on reicavienv-rank matrices in almost any basis. This
work is more general than the work presented here, but the pregpet achieves tighter constants and bounds and
work directly with non-Hermitian matrices. The interested reader shoulddbGross (2011) for more details.
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where P, and R, are the orthogonal projections ortioandV respectively. Note here that while
P, and R, are matrices®r is a linear operator mapping matrices to matrices. The orthogonal
projection ontdTl + is given by
Pri(Z)=(1-2Pr)(Z) = In,— Ry)Z(In,— R)
wherely denotes thel x d identity matrix. It follows from the definition (3) ofr that
r (eaeh) = (Puea)eh+ ea( Rren) — (Puea)(Rre)".
This gives
1Pr (eaep) |F = (Pr(eaes), eaep) = | Pueal|” + || Rren|® — | Pueal|” || Rrep||*.
Since|| Ry ea|? < p(U)r /ny and|| Ryep % < p(V)r /ne,

n1—|-n2< rn1+n2
ninp = mny

11 (eae) [E < max{u(U), u(v)}r (4)

I will make frequent use of this calculation throughout the sequel.

3. Sampling with Replacement

As discussed above, the main contribution of this work is an analysis ofrofifsampled sets
of entries via the study of a sampling with replacement model. All of the previark (e.g.,
Candes and Recht, 2009; Cadsland Tao, 2009; Keshavan et al., 2009) studied a Bernoulli sam-
pling model as a proxy for uniform sampling. There, each entry wasalestendependently with
probability equal top. In all of these results, the theorem statements concerned sampling sets of
m entries uniformly, but it was shown that probability of failure under Befli@ampling with
p= ﬁ"r‘]z closely approximated the probability of failure under uniform sampling. Thegnt work
will analyze the situation where each entry index is sampled independentiytfi@uniform distri-
bution on{1,...,m} x {1,...,np}. This modification of the sampling model gives rise to all of the
simplifications below.

It would appear that sampling with replacement is not suitable for analyzitrgxroampletion
as one might encounter duplicate entries. However, just as is the case evithulli sampling,
bounding the likelihood of error when sampling with replacement allows usttndthe probability
of the nuclear norm heuristic failing under uniform sampling.

Proposition 3 The probability that the nuclear norm heuristic fails when the set of obdermties
is sampled uniformly from the collection of sets of size m is less than or equal poabability that
the heuristic fails when m entries are sampled independently with replacement.

Proof The proof follows the argument in Section 11.C of Césdet al. (2006). Le®’ be a collection

of mentries, each sampled independently from the uniform distributioiion., n1} x {1,...,ny}.
Let Qx denote a set of entries of sikessampled uniformly from all collections of entries of sike
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It follows that

m

P(FailurgQ’)) = § P(Failurg Q') | |Q| = k) P(]Q'| =k)

=
=Nl

P(Failurg(Qx)) P(|Q'| = k)
0

> P(FailurgQm)) iIP’(|Q’| =k) = P(FailurgQn)).
k=

i

Where the inequality follows becau$éFailurg Qn,)) > P(FailurgQqy)) if m< mf. That is, the
probability decreases as the number of entries revealed is increased. [ |

Surprisingly, changing the sampling model makes most of the theorems frodé€and Recht
(2009) simple consequences of a noncommutative variant of Berndiedgsality.

Theorem 4 (Noncommutative Bernstein Inequality) Let X1, ..., X be independent zero-mean
random matrices of dimension & d,. Suppos@?2 = max{|| E[ X X;]||, | E[X; Xk]||} and | Xi| <
M almost surely for all k. Then for ary> 0,

L _-[2/2
X di+d ).
k; k >T] < (di+ z)exp< )

Sko1Pi+M1/3
Note that in the case thdt = d, = 1, this is precisely the two sided version of the standard Bernstein
Inequality. When theXy are diagonal, this bound is the same as applying the standard Bernstein
Inequality and a union bound to the diagonal of the matrix summation. Furtheymioserve that
the right hand side is less thdd; + dp) exp(—312/(3k_,p2)) as long ast < & 5k ,p2. This
condensed form of the inequality will be used exclusively throughoueofém 4 is a corollary
of an Chernoff bound for finite dimensional operators developed Hgwdde and Winter (2002).
A similar inequality for symmetric i.i.d. matrices is proposed in Gross et al. (20M@3. proof is
provided in the Appendix.

Let us now record two theorems, proven for the Bernoulli model in €arshd Recht (2009),
that admit very simple proofs in the sampling with replacement model. The thestae¢ements re-
quires some additional notation. L@t= {(ax, bx) }}_, be a collection of indices sampled uniformly
with replacement. SeRq to be the operator

P

Q|
Ra(Z) = 3 (eachoZ)eachy:
Note that th€i, j)th component ok (X)) is zero unlessi, j) € Q. For (i, ) € Q, Ro(X) is equal
to X;; times the multiplicity of(i, j) € Q. Unlike in previous work on matrix completio®kg is not
a projection operator if there are duplicatein Nonetheless, this does not adversely affect the
argument, aneko (X)) = 0 if and only if X5p = O for all (a,b) € Q. Moreover, we can show that the
maximum duplication of any entry is always less t@ng(nz) with very high probability.

Proposition 5 With probability at leastl. — ngfzﬁ, the maximum number of repetitions of any entry
in Qis less thar§[3|og(n2) forn, >9andp > 1
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Proof This assertion can be proven by applying a standard Chernoff baurldef Bernoulli dis-
tribution. Note that for a fixed entry, the probability it is sampled more thi@mes is equal to the
probability of more tham heads occurring in a sequencewfosses where the probability of a head
is Tlnz This probability can be upper bounded by

t
o m m
P[more thart heads irmtrials| < ( ) exp(t — )
nynot NNy

(see Hagerup andi®, 1990, for example). Applying the union bound over all of the, entries
and the fact thaf - < 1, we have

[P[any entry is selected more théﬁlog(nz) timeg

8
<ngn; (8log(nz)) 337%™ exp(8Blog(ny))
<n2 2B

whenn, > 9. |

This application of the Chernoff bound is very crude, and much tightend®ean be derived
using more careful analysis. For example in Gonnet (1981), the maximersampling is shown to
be bounded b®( |o|§|%n2 For our purposes here, the loose upper bound provided by Rtiopds
will be more than su?ﬂuent

In addition to this bound on the norm &, the following theorem asserts that the operator
PrRoPr is also very close to an isometry dnif the number of sampled entries is sufficiently
large. This result is analgous to the Theorem 4.1 in @areghd Recht (2009) for the Bernoulli
model, whose proof uses several powerful theorems from the stymtploébility in Banach spaces.
Here, one only needs to compute a few low order moments and then applseihédo

Theorem 6 SupposeQ is a set of entries of size m sampled independently and uniformly with
replacement. Then for af > 1,

nlnz 16401 (N1 + n2) Blog(nz)

3m

PrRaPr —fPTH \/

nn

with probability at leastl — 2n2 prowded that m> 2 18110r (N1 4 n2) Blog(ny).
Proof Decompose any matri& asZ = S 5,(Z, eae})) eaef SO that

Pr(Z) = %(Tr(z)aeae’&eaeé = §<Zvi”T(ea€E)>ea€E- (5)

a

Fork=1,...,msample(ay,byx) from {1,...,n1} x {1,...,n2} uniformly with replacement. Then
RaPr(Z) =311 (Z, Preaes,)) eaep, Which gives

(Z, 1 (eacen,)) Pr(eacen,)-

M3

(PrRar)(Z) = )

1
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Now the fact that the operatdt Ro Pr does not deviate from its expected value

E(r Rafr) = Pr(ERa)Pr = Pr (oo 1)Pr = oy

ninz

in the spectral norm can be proven using the Noncommutative Bernstejndlity.

To proceed, define the operatfy, which mapsZ to (Pr(eaey), Z)Pr(eae);). This operator is
rank one, has operator nofifay|| = || 2r (eaej)||2, and we havePr = 5,1, Tap by (5). Hence, for
k=1,...,m E[Tan] = 7 Pr-

Observe that ifA and B are positive semidefinite, we hajjd — B|| < max{||A||, || B||}. Using
this fact, we can compute the bound

nl +ny
nny

1 T2 — iy 2rll < max{||Pr (eacen, )| myg } < Ho

where the final inequality follows from (4). We also have
1 2 NTY: 1
IE(Tab. — oy 21)711 = B[ Zr (eacen ) IF Tand — 552l
12

. 1
< max{|| E[| Pr (eacep,) | Tan I ﬁ}

ni+np n1+n
< max{|| E[Z; r——, .
> {H [ akbk]H Ho nino nz 2} Hor n2n2
The theorem now follows by applying the Noncommutative Bernstein Inequality |

The next theorem is an analog of Theorem 6.3 in @anahd Recht (2009) or Lemma 3.2 in
Keshavan et al. (2009). This theorem asserts that for a fixed matrixei§ets all of the entries not
in Q to zero it remains close to a multiple of the original matrix in the operator norm.

Theorem 7 SupposeQ is a set of entries of size m sampled independently and uniformly with
replacement and le¥ be a fixed g x n, matrix. Assume without loss of generality thatin,,
Then for allf > 1,

H(nlnz&2 I) Z)HS\/SBnln%mg(nﬁnz)|Z‘°o

3m

with probability at leastl — (ny + n,)*~® provided that m> 6Bn; log(ny +ny).

Proof First observe that the operator norm can be upper bounded by a muttipteroatrix infinity
norm

1/2 1/2
1Z]| = sup § ZapyaXo < [ § Z2Y2 2
Hlea o a% a7 a%Xb

lyl=1
1/2
< \/n>2maax<gng>
< VM| Z||e.
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Note that™2 Rq(Z) — Z = £ 3L, mMoZapeae;, — Z. This is a sum of zero-mean random

matrices, andmnzZapeaep, — Z|| < [[mnaZapeaep || +[1Z] < 3| Z || for ng > 2. We
also have

| E[(nm2Zapeaen, — Z) (MM2Zapeaen — Z)]|

= nan%Zczdedeé - Z*ZH
C,

< max{ nlnzzizgdedeg , ||Z*Z||}
C,

<mng(|Z |2,
where we again use the fact thed — B|| < max{||A||, ||B]|} for positive semidefinited and B.
A similar calculation holds fomnzZan,eaep, — Z)(MZapeaer, — Z)*. The theorem now
follows by the Noncommutative Bernstein Inequality. |

Finally, the following Lemma is required to prove Theorem 2. Succinctly, it sast for a fixed
matrix in T, the operatoPr Rq does not increase the matrix infinity norm.

Lemma 8 Suppos& is a set of entries of size m sampled independently and uniformly with re-

placement and leZ € T be a fixed npx ny matrix. Assume without loss of generality thattin,.
Then for allf > 2,

niny 8BHor (N +Nny) logn;
a7 <

M e (2 2002 7.,

with probability at leastl — 2n§_B provided that m> %BuOr (n1 4+ np) logns.

Proof This lemma can be proven using the standard Bernstein Inequality. Fomesdk index
(c,d), sample (a,b) uniformly at random to define the random variablgy =
1
BIEE = 1y, 3 ecein uNleac, Z) 2 (each) — 2)°

= Ny Zwecez), eaep)?(eael, Z)% — 72,

a7

< || Pr (ece) 211 212 < Hor (n+ o) || Z]2.

Since the(c,d) entry of W22 Rq (Z) — Z is identically distributed tqt zﬂ”zlééﬁ), WhereEgg are
i.i.d. copies of¢cq, we have by Bernstein’s Inequality and the union bound:

[Hnlnzi’% g B Lralo0e) 7 | o

3m
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4. Proof of Theorem 2

The proof follows the program developed in Gross et al. (2010) whielf isslapted the strategy
proposed in Cargs and Recht (2009). The main idea is to approximate a dual feasible solution
of (2) which certifies thaiV is the uniqgue minimum nuclear norm solution. In Cas@nd Recht
(2009) such a certificate was constructed via an infinite series usings&rwction developed in
the compressed sensing literature (See, for example&3agtdal., 2006; Fuchs, 2004). The terms
in this series were then analyzed individually using the decoupling inequalitiés la P&a and
Montgomery-Smith (1995). Truncating the infinite series after 4 terms gairerd¢iselt. In Canés
and Tao (2009), the authors bounded the contributidd(édg(n;)) terms in this series using inten-
sive combinatorial analysis of each term. The insight in Gross et al. J2@d9that, when sampling
observations with replacement, a dual feasible solution could be closelgxamated by a mod-
ified series where each term involved the product of independentmandriables. This change
in the sampling model allows one to avoid decoupling inequalities and gives rtbe tiramatic
simplification here.

To proceed, recall again that by Proposition 3 it suffices to considectmario when the entries
are sampled independently and uniformly with replacement. | will first dev@l@pnain argument
of the proof assuming many conditions hold with high probability. The proobispleted by
subsequently bounding probability that all of these events hold. Supipatse

1

nin
ine <5 lRall < §BY2l0g(no). ©)

m

m
Prﬂig?r—@?r

Also suppose there existsyain the range ofRg such that

r 1
- Ry — N -,
12 (V) - UV e <o ()l <5 ()
If (6) holds, then for anyZ € kerRq, Pr(Z) cannot be too large. Indeed, we have
0=[|Ra(2)[F = [[RaPr (Z)|lF — [ RaPr-(Z)]|F -

Now observe that

R (Z)]2 = (2. B RGP (2)) > (2,21 Rar (2)) = 5o || 21 (Z)

and |RoPr. (Z)||e < 8BY2log(ny)|| ;. (Z)||e. Collecting these facts gives that for aify e

kerRq,
9m 2r
|2r(2)]lF > \/ @nmlogm) & (2l >y 12 (Z) e

Now recall that| A|[.. = supg<1(A, B). For Z € kerRq, pick U, andV, such tha{U,U | and
[V, V] are unitary matrices and thé/, V", Py . (Z)) = | Py .(Z)|«. Then it follows that
|\M+Z|, >({UV*+U, V], M+Z)
=M. +UV"+U.V],Z)
= M. +UV" =2 (Y),Pr(2)) + (U V] - Pr.(Y), Pr.(2))

r 1
> || M| — TI,]ZHTT(ZMIF +51Pra(Z)] = (| Ml
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The first inequality holds from the variational characterization of the rmusierm. We also used
the fact thatY", Z) = 0 for all Z € kerRq. Thus, if aY exists obeying (7), we have that for any
X obeyingRo(X — M) =0, | X|. > || M||.. Thatis, any ifX hasMa, = Xap, for all (a,b) € Q,

X has strictly larger nuclear norm thaw, and henceM is the unique minimizer of (2). The
remainder of the proof shows that suclraexists with high probability.

To this end, partition 1.., minto p partitions of sizey. By assumption, we may choose

128 3
q> o= maxX{o, ki }1 (M +1p)Blog(mu +1z) and p> 7 log(2ny).

Let Q; denote the set of indices corresponding tojttiepartition. Note that each of these partitions
are independent of one another when the indices are sampled with raplacé@ssume that

nn
q

@TRQKTT—TTH ®)

nino

for all k. I:;efineWo =UV* and sefYj = "~ 551 Ro, (Wi_1), Wi =UV* — 2 (Y;) for k=
., p. Then

nen
[WillF = HWkl—lziPTi’(Q (Wk-1)

H ninz

1&——4——fﬂ%ﬂ%a )(Wi-1)

F

F
EHWk 1llF,

and it follows that| Wy||e < 27%||Wp||r =27 /. Sincep> 2log(2n;) > 110g,(2n,) = log, /2y,
thenY =Y, will satisfy the first inequality of (7). Also suppose that

(Wil (9)

8nin3Blog(ny + nz)
3q

IWi-lle (10)

fork=1,...,p.
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To see that| 2. (Yp)|| < 3 when (9) and (10) hold, obsenB¥i||. < 27X|UV*|, and it
follows that

M-

1P Ypll < 3 [|%52 Pro Ko, W]
1

o |

1P (g2 Ry W1 — W)

o |
MR

<> (M2 R, — (Wi
=1
P /8mnZBlog(ny+ny

< 2Ploom + 1)y
= 3q

o BBl )y B2y

=1
sinceq > %su%rnzﬁlog(nl +ny). The first inequality follows from the triangle inequality. The
second line follows becaudd’;_; € T for all j. The third line follows because, for ai,

1P (Z)]| = [|(In, — Bu) Z (In, — B) || < || Z]].

The fourth line applies (10). The next line follows from (9). The final fiokows from the assump-
tion Al.

All that remains is to bound the probability that all of the invoked events hoilth ksatisfying
the bound in the main theorem statement, the first inequality in (6) fails to hold vatrapility at

most 213728 by Theorem 6, and the second inequality fails to hold with probability at n@é&?m

by Proposition 5. For ak, (8) fails to hold with probability at mostréfzﬁ, (9) fails to hold with
probability at most ﬂg_zB, and (10) fails to hold with probability at mot; + np)*~2%. Summing
these all together, all of the events hold with probability at least

_opl/2
1—6log(np)(ny +np)%> 2 —n2

by the union bound. This completes the proof.

5. Discussion and Conclusions

The results proven here are nearly optimal, but small improvements caiblpdss made. The
numerical constant 32 in the statement of the theorem may be reducible bglsaebookkeeping,
and it may be possible to derive a linear dependence on the logarithm of the diraensions. But
further reduction is not possible because of the necessary conditiovidgd by Cands and Tao.
One minor improvement that could be made would be to remove the assurAftidfor instance,
while py is known to be small in most of the models of low-rank matrices that have bedyrad,

no one has shown that an assumption of the fAtis necessary for completion. Nonetheless, all
prior results on matrix completion have imposed an assumptiorAlikéi.e., Canés and Recht,
2009; Canés and Tao, 2009; Keshavan et al., 2009), and it would be interestireg ibis can be
removed as a requirement, or if it is somehow necessary.
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In many matrix completion scenarios of interest in machine learning, the prbeidkies are
corrupted by noise. While Theorem 2 only addresses the noise-Begwa can immediately extend
our results to the noisy case. Specifically, suppose we ob3greeM;; -+ vj; on the sed and we
are guaranteed that

Y Vi <&
(i,Neq
Then if we solve the quadratically constrained problem

minimize || X« (11)
subject to Z(i,j)GQ (X” — M;; )2 < 3.

we will have that any optimal solutiod\Z of (11) satisfies

- 48n2
IV — M| < 2+\/% 5.

This claim follows directly from the argument of Ca&sland Plan (2009). Indeed, the only nec-
essary requirements for such stable recovery is that (6) and (7) hi@dce, under the sampling
assumptions of Theorem 2, low-rank matrices can be approximated frmy data by solving a
guadratically constrained nuclear norm problem.

We conclude by noting that much of the simplicity of the argument presentedhises from an
application of new large deviation inequalities for matrices. The noncommutegigens of Cher-
noff and Bernstein’ s Inequalities may be useful throughout machineifepand statistical signal
processing, and a fruitful line of inquiry would examine how to apply theséstisom quantum
information to the study of classical signals and systems.
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Appendix A. Operator Chernoff Bounds

In this section, | present a proof of 4 based on foundational resudtdatefrom Quantum Informa-
tion Theory. For completeness, | also provide proofs of Theorems 4@m¢hich were originally
proven in Ahlswede and Winter (2002). | have made minor modifications torii@al arguments,
but the assertions remain the same.

To review, a symmetric matriA is positive semidefinite if all of its eigenvalues are nonnegative.
If A and B are positive semidefinite matriced, < B meansB — A is positive semidefinite. For
square matriced, the matrix exponential will be denoted €xp) and is given by the power series

o Ak
exp(A) = kZOW :
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The following theorem is a generalization of Markov’s inequality originallgpyen in Ahlswede
and Winter (2002). Unlike the original proof, the following argument dpé$ellows the standard
proof of the traditional Markov inequality and does not rely on discretersations.

Theorem 9 (Operator Markov Inequality) Let X be a random positive semidefinite matrix and
A afixed positive definite matrix. Then

P[X £ Al <Tr(E[X]A™1).

Proof Note thatifX £ A, thenA=Y/2X A=Y/2 £ I, and hencdl A~/2X A~Y/2|| > 1. Letlx4a
denote the indicator of the evelit £ A. Thenl x x4 < Tr(A~Y/2X A~%/2) as the right hand side is
always nonnegative, and, if the left hand side equals 1, the trace oftitdand side must exceed
the norm of the right hand side which is greater than 1. Thus we have

P[X £ Al =E[lxza] <E[Tr(A"Y2X A7Y2)| =Tr(E[X]A™Y).
where the last equality follows from the linearity and cyclic properties of teetr |

Next | will derive a noncommutative version of the Chernoff bound. s also proven in
Ahlswede and Winter (2002) for i.i.d. matrices. The version stated here is gemreral in that the
random matrices need not be identically distributed, but the proof is edketiteasame.

Theorem 10 (Noncommutative Chernoff Bound)Let X1, ..., X, be independent symmetric ran-
dom matrices ifR9<9. Let A be an arbitrary symmetric matrix. Then for any invertible d matrix
T

P X A
[kzl k7N

n
< d [ IEXp(T X, T" — TAT")]| .
k=1

Proof The proof relies on an estimate of Golden (1965) and Thompson (196&h vehstated here
without proof.

Lemma 11 (Golden-Thompson inequality) For any symmetric matriced and B,

Tr(exp(A+ B)) < Tr((expA)(expB)).

3426



A SIMPLER APPROACH TOMATRIX COMPLETION

Much like the proof of the standard Chernoff bound, the theorem nbaxis from a long chain of
inequalities.

P X A
[kzl kZAN

P S (X A)£0
k;(k )ﬁ]

—P|S T(Xy— A)T*£0
_k;(k ) ﬁ]

:P-exp<ilT (Xk— A)T *)ﬁId]
< (ool Srow-ar)]
fle{inar)

(exp< T(Xk—A > eXIO(T(Xn—z‘l)T’k))

<Ei.n1 [Tr eXIO(Z (Xk—A)T*> E[eXD(T(Xn—A)T*)]>]

k=1

n-1
< |[Elexp(T(Xn — A)T*)]| Ex_n- 1[Tr <exp<zT (Xi— AT ))]

< I!ELIIE[eXIO(T(Xk— A)T)]|| E[Tr (exp(T(X1 — A)T))]

HM:

oG

<d k|2|1||E[exp<T<Xk—A>T*>H| .

Here, the first three lines follow from standard properties of the semitke@rdering. The fourth
line invokes the Operator Markov Inequality. The sixth line follows from tr@d&n-Thompson
inequality. The seventh line follows from independence ofXhe The eighth line follows because
for positive definite matrices TAB) < Tr(A)||B||. This is just another statement of the duality
between the nuclear and operator norms. The ninth line iteratively repegtsavious two steps.
The final line follows because for a positive definite matdixTr(A) is the sum of the eigenvalues
of A, and all of the eigenvalues are at mgst||. [

Let us now turn to proving the Noncommutative Bernstein Inequality predent8ection 3.
Gross et al. (2010) proposed a similar inequality for symmetric i.i.d. randonicesirith a slightly
worse constant. The proof here is more general and follows the sthddevation of Bernstein’s
inequality.

Proof [of Theorem 4] Set
0 Xi
e o)
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ThenYy are symmetric random variables, and forlall

Xk X 0
E[Y?]|| = ||E k = E[ XX, || B[ X5 X[} = o
el = [l || X% 2 ||| - mestiEakn. e xin o

Moreover, the maximum singular value p§_, X is equal to the maximum eigenvaluex_; Yx.
By Theorem 10, we have for all > 0

L
P
k=1

5 X

> Lt] =P [i Yi A LtI] < (d1 + dp) exp(—LAt) h IE[exp(AYz)]]| .
k=1 k=1

For eactk, let Y = UxAkU| be an eigenvalue decomposition, whargis the diagonal matrix
of the eigenvalues d¥x. In turn, it follows that fors > O

~M®Y}2 < —~UMPAZU; < UkAZTSU; = V2T < UMPAEUY < M°Y}Z,

which then implies
IE[Y 2] < MY E[YZ]]. (12)

For fixedk, we have
mmmmmaw+;*wnm
<l+;—||IE 2)(|M1—2
—14 Pk Zz MJ 1+ (exp()\M) 1-2AM)
<exp(p (exp(AM) — 1—}\M)>.

The first inequality follows from the triangle inequality and the fact gty = 0, the second
inequality follows from (12), and the final inequality follows from the factth+ x < exp(x) for
all x. Putting this together gives

L
P
k=1

5 X

L 2
> Lt] < (d1+d2)exp<—)\Lt+ ZKl\jllzpk(exp()\l\ﬂ) — 1—>\|v|)> .

This final expression is now just a real number, and only has to be minimgadunction ofA.

The theorem now follows by algebraic manipulation: the right hand side is mirdniigesetting

A=2 v log(1+ “-'V'p ), then basic approximations can be employed to complete the argument (see,
Kk

for example Panchenko 2007, Lectures 4 and 5). |
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