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Abstract

We address the problem of partially-labeled multiclassgifacation, where instead of a single la-
bel per instance, the algorithm is given a candidate seto@i$a only one of which is correct. Our
setting is motivated by a common scenario in many image atgbwiollections, where only partial
access to labels is available. The goal is to learn a clastifi can disambiguate the partially-
labeled training instances, and generalize to unseen d#adefine an intuitive property of the
data distribution that sharply characterizes the abibitjearn in this setting and show that effec-
tive learning is possible even when all the data is only pHytiabeled. Exploiting this property
of the data, we propose a convex learning formulation basechiaimization of a loss function
appropriate for the partial label setting. We analyze thad@@ns under which our loss function
is asymptotically consistent, as well as its generaliratind transductive performance. We apply
our framework to identifying faces culled from web news smisrand to naming characters in TV
series and movies; in particular, we annotated and expatedeon a very large video data set and
achieve 6% error for character naming on 16 episodes of theefiés_ost

Keywords: weakly supervised learning, multiclass classificatiomvex learning, generalization
bounds, names and faces

1. Introduction

We consider a weakly-supervised multiclass classification setting whehnerestance is partially
labeled: instead of a single label per instance, the algorithm is given &édedmdet of labels, only
one of which is correct. A typical example arises in photographs contaseveyal faces per image
and a caption that only specifies who is in the picture but not which name msatdtieh face. In
this setting each face is ambiguously labeled with the set of names extracteth&a@aption, see
Figure 1 (bottom). Photograph collections with captions have motivated maehtraterest in
weakly annotated images and videos (Duygulu et al., 2002; Barnard 20@8; Berg et al., 2004,
Gallagher and Chen, 2007). Another motivating example is shown in Fig(iop)l, which shows
a setting where we can obtain plentiful but weakly labeled data: videosaedrplays. Using a
screenplay, we can tell who is in a given scene, but for every det&tedn the scene, the person’s
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Elena Dementieva and Anna Elena Dementieva picked up her third title of the year Maria Sharapova meets

Kournikova team up. and denied compatriot Maria Sharapova a comeback win. Anna Kournikova

Figure 1: Two examples of partial labeling scenarios for naming fatep: using a screenplay,
we can tell who is in a movie scene, but for every face in the correspgmaiages, the
person’s identity is ambiguous (green labeBditom: images in photograph collections
and webpages are often tagged ambiguously with several potential nathescaption
or nearby text. In both cases, our goal is to learn a model from ambityiabgled ex-
amples so as to disambiguate the training labels and also generalize to urem@iesx

identity is ambiguous: each face is partially labeled with the set of charagipesdng at some
point in the scene (Satoh et al., 1999; Everingham et al., 2006; Rambabn2007). The goal in
each case is to learn a person classifier that can not only disambiguateetiseofethe training faces,
but also generalize to unseen data. Learning accurate models fomhobjgct recognition from
such imprecisely annotated images and videos can improve the performanaey#épplications,
including image retrieval and video summarization.

This partially labeled setting is situated between fully supervised and fullypengised learn-
ing, but is qualitatively different from the semi-supervised setting whetle labeled and unlabeled
data are available. There have been several papers that addrésgettially labeled (also called
ambiguously labeled) problem. Many formulations use the expectation-maximii&goalgo-
rithms to estimate the model parameters and “fill-in” the labeft€ et al., 2008; Ambroise et al.,
2001; Vannoorenberghe and Smets, 2005; Jin and Ghahramani, 2008) methods involve ei-
ther non-convex objectives or procedural, iterative reassignmbatrises which come without any
guarantees of achieving global optima of the objective or classificatiamanc To the best of our
knowledge, there has not been theoretical analysis of conditions whitghr proposed approaches
are guaranteed to learn accurate classifiers. The contributions of fes qra:

e We show theoretically that effective learning is possible under reatodaiributional as-
sumptions even when all the data is partially labeled, leading to useful upgévaer bounds
on the true error.

e \We propose a convex learning formulation based on this analysis by exgegeheral multi-
class loss functions to handle partial labels.
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e We apply our convex learning formulation to the task of identifying faces @utiem web
news sources, and to naming characters in TV series. We experimenlaogeadata set
consisting of 100 hours of video, and in particular achieve 6% (resp) &8%r for character
naming across 8 (resp. 32) labels on 16 episodénsf consistently outperforming several
strong baselines.

e We contribute thénnotated Faces on TV data setich contains about 3,000 cropped faces
extracted from 8 episodes of the TV shawst (one face per track). Each face is registered
and annotated with a groundtruth label (there are 40 different chespcte also include a
subset of those faces with the partial label set automatically extractedtisostreenplay.

e We provide theConvex Learning from Partial Labels Toolhoan open-source matlab and
C++ implementation of our approach as well as the baseline approachsiddnghe paper.
The code includes scripts to illustrate the process on Faces in the Wild DgtdLaey et al.,
2007a) and our Annotated Faces on TV data set.

The paper is organized as follows. We review related work and relevant learning scenarios
in Section 2. We pose the partially labeled learning problem as minimization of aiyaoois
loss in Section 3, and establish upper and lower bounds between theéumed) true loss and the
(observed) ambiguous loss in terms of a critical distributional propertyaltambiguity degree. We
propose the novelonvex Learning from Partial Labe(€LPL) formulation in Section 4, and show
it offers a tighter approximation to the ambiguous loss, compared to a straigattbformulation.
We derive generalization bounds for the inductive setting, and in Sectdsorovide bounds for
the transductive setting. In addition, we provide reasonable suffichmlitions that will guarantee
a consistent labeling in a simple case. We show how to solve proposed QitiRlization problems
by reducing them to more standard supervised optimization problems in Sectin Grovide
several concrete algorithms that can be adapted to our setting, sughpastsiector machines and
boosting. We then proceed to a series of controlled experiments in Sectiomp@adng CLPL to
several baselines on different data sets. We also apply our framéwvarkaming task in TV series,
where screenplay and closed captions provide ambiguous labels. dbeand data used in the
paper can be found aitt t p: / / ww. vi si on. gr asp. upenn. edu/ vi deo.

2. Related Work

We review here the related work for learning under several forms akvseipervision, as well
concrete applications.

2.1 Weakly Supervised Learning

To put the partially-labeled learning problem into perspective, it is usefiay out several related
learning scenarios (see Figure 2), ranging from fully supervisgue(sised and multi-label learn-
ing), to weakly-supervised (semi-supervised, multi-instance, partialtddh, to unsupervised.

e In semi-supervisedearning (Zhu and Goldberg, 2009; Chapelle et al., 2006), the leaaser h
access to a set of labeled examples as well as a set of unlabeled examples.

1. A preliminary version of this work appeared in Cour et al. (2009)ctiSes 4.2 to 6 present new material, and
Sections 7 and 8 contain additional experiments, data sets and comparison
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supervised unsupervised semi-supervised multi-label multi-instance partial-label
label (instance] label
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Figure 2: Range of supervision in classification. Training maysogervised(a label is given for
each instanceynsupervised(no label is given for any instancegemi-supervised(la-
bels are given for some instancesiylti-label (each instance can have multiple labels),
multi-instance (a label is given for a group of instances where at least one instatioe in
group has the label), grartially-labeled (for each instance, several possible labels are
given, only one of which is correct).

¢ In multi-label learning (Boutell et al., 2004; Tsoumakas et al., 2010), each example is as
signed multiple labels, all of which can be true.

¢ In multi-instance learning (Dietterich et al., 1997; Andrews and Hofmann, 2004, Viola et al.,
2006), examples are not individually labeled but grouped into sets whidr eontain at least
one positive example, or only negative examples. A special case cosdidesasier scenario
wherelabel proportions in each bag are known (Kuck and de Freitas, 2005), allowing one to
compute convergence bounds on the estimation error of the correct (@ugldrianto et al.,
2009).

e Finally, in our setting opartially labeled learning, also called ambiguously labeled learning,
each example again is supplied with multiple labelsly one of which is correctA formal
definition is given in Section 3.

Clearly, these settings can be combined, for example with multi-instance multiléateing
(MIML) (Zhou and Zhang, 2007), where training instances are aatgtwith not only multiple
instances but also multiple labels. Another combination of interest appearsdert paper build-
ing on our previous work (Cour et al., 2009) that addresses the dase=\gets of instances are
ambiguously labeled with candidate labeling sets (Luo and Orabona, 2010).

2.2 Learning From Patrtially-labeled or Ambiguous Data

There have been several papers that addressed the ambiguoysdabeh. A number of these use
the expectation-maximization algorithm (EM) to estimate the model parameters aindehabel
(Come et al., 2008; Ambroise et al., 2001; Vannoorenberghe and Smefs, J20@nd Ghahramani,
2002). For example Jin and Ghahramani (2002) use an EM-like algorittimawliscriminative log-
linear model to disambiguate correct labels from incorrect ones. Gasetdind Bengio (2004) add
a minimum entropy term to the set of possible label distributions, with a nonegarivjective as
in the case of (Jin and Ghahramani, 2002). Hullermeier and Beringe6)200pose several non-
parametric, instance-based algorithms for ambiguous learning base@eudydreuristics. These
papers only report results on synthetically-created ambiguous labalat®isets such as the UCI
repository. Also, the algorithms proposed rely on iterative non-conznileg.
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2.3 Images and Captions

A related multi-class setting is common for images with captions: for example, agrhptoof a
beach with a palm tree and a boat, where object locations are not speBitigdulu et al. (2002)
and Barnard et al. (2003) show that such partial supervision camffigent to learn to identify the
object locations. The key observation is that while text and images amasglgambiguous, jointly
they complement each other. The text, for instance, does not mention slayipaarance properties,
but the frequent co-occurrence of a word with a visual element caulthbindication of association
between the word and a region in the image. Of course, words in the textavitbrespondences
in the image and parts of the image not described in the text are virtually inevifBEindeproblem
of naming image regions can be posed as translation from one languageheramBarnard et al.
(2003) address it using a multi-modal extension to mixture of latent Dirichletatilans.

2.4 Names and Faces

The specific problem of naming faces in images and videos using textesoias been addressed
in several works (Satoh et al., 1999; Berg et al., 2004; Gallagher had,@007; Everingham et al.,
2006). There is a vast literature on fully supervised face recognitibichais out of the scope of this
paper. Approaches relevant to ours include Berg et al. (2004) hvalias at clustering face images
obtained by detecting faces from images with captions. Since the name ofpglutedepeople
typically appears in the caption, the resulting set of images is ambiguouslydabatere than
one name appears in the caption. Moreover, in some cases the cormectmay not be included
in the set of potential labels for a face. The problem can be solved by us@mbiguous images
to estimate discriminant coordinates for the entire data set. The images areeclustthis space
and the process is iterated. Gallagher and Chen (2007) address the giohlam of retrieval from
consumer photo collections, in which several people appear in each intage iw labeled with
their names. Instead of estimating a prior probability for each individual,lweithm estimates a
prior for groups using the ambiguous labels. Unlike Berg et al. (2004)r#thod of Gallagher and
Chen (2007) does not handle erroneous names in the captions.

2.5 Peoplein Video

In work on video, a wide range of cues has been used to automatically cltaénvised data,
including: captions or transcripts (Everingham et al., 2006; Cour et@08;2_aptev et al., 2008),
sound (Satoh et al., 1999) to obtain the transcript, or clustering baselbthing, face and hair
color within scenes to group instances (Ramanan et al., 2007). Most ofdati®ds involve either
procedural, iterative reassignment schemes or non-convex optimization.

3. Formulation

In the standard supervised multiclass setting, we have labeled exa8wplééx;,y)",} from an
unknown distributiorP(X,Y) whereX € X is the input and/ € {1,...,L} is the class label. In the
partially supervised setting we investigate, instead of an unambiguous sibglg@& instance we
have a set of labels, one of which is the correct label for the instaneewilMdenotey; = {y;} U

z; as the ambiguity set actually observed by the learning algorithm, where{1,...,L} \ {yi}

is a set of additional labels, ang the latent groundtruth label which we would like to recover.
Throughout the paper, we will use boldface to denote sets and ugpdtcdenote random variables

1505



COUR, SAPP AND TASKAR

e

!Claire A

Figure 3: Left: Co-occurrence graph of the top characters across 16 episotdestoEdge thick-
ness corresponds to the co-occurrence frequency of charaRtghd: The model of the
data generation process{,Y) are observed),Z) are hidden, withty =Y UZ.

with corresponding lowercase values of random variables. We sapfd§Z are distributed
according to an (unknown) distributid®(X,Y,Z) = P(X)P(Y | X)P(Z | X,Y) (see Figure 3, right),
of which we only observe samples of the foBa= {(x,yi)",;} = {(%.{yi}Uz)",}. (In caseX is
continuousP(X) is a density with respect to some underlying measusa X, but we will simply
refer to the jointP(X,Y,Z) as a distribution.) With the above definitioysc vi,z C yi,Vi ¢ z and
YeY,ZCY,Y¢Z.

Clearly, our setup generalizes the standard semi-supervised setting sdme examples are
labeled and some are unlabeled: an example is labeled when the corregmmdiguity sey; is a
singleton, and unlabeled whgnincludes all the labels. However, we do not explicitly consider the
semi-supervised setting this paper, and our analysis below providegiakg@acuous bounds for
the semi-supervised case. Instead, we consider the middle-groung, alhexamples are partially
labeled as described in our motivating examples and analyze assumpti@nswnich learning can
be guaranteed to succeed.

In order to learn from ambiguous data, we must make some assumptiongtaddisgtribution
P(Z | X,Y). Consider a very simple ambiguity pattern that makes accurate learning impossib
L=3,|z| =1and label 1is presentin every getfor alli. Then we cannot distinguish between the
case where 1 is the true label of every example, and the case wheretitisahel of any example.
More generally, if two labels always co-occur when presemt ime cannot tell them apart. In order
to disallow this case, below we will make an assumption on the distrib&i@n X,Y) that ensures
some diversity in the ambiguity set. This assumption is often satisfied in practiceex&mple,
consider our initial motivation of naming characters in TV shows, wherenft@guity set for any
given detected face in a scene is given by the set of charactergiogatrsome point in that scene.
In Figure 3 (left), we show the co-occurrence graph of characteaseason of the TV sholost,
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Symbol Meaning
X, X observed input value/variablg; X € X
y,Y hidden label value/variable;Y € {1,...,L}
z,Z hidden additional label set/variable:z C {1,...,L}
y,Y observed label set/variablg:= {y} Uz, Y = {Y}UZ
h(x),h(X) multiclass classifier mappirfy: X — {1,...,L}
L(h(x),y), La(h(x),y) standard and partial/Q loss

Table 1: Summary of notation used.

where the thickness of the edges corresponds to the number of timestelmshare a scene. This
suggests that for most characters, ambiguity sets are diverse andhegpect that the ambiguity
degree is small. A more quantitative diagram will be given in Figure 11 (left).

Many formulations of fully-supervised multiclass learning have been megbdased on mini-
mization of convex upper bounds on risk, usually, the expectéddss (Zhang, 2004):

0/tloss:  L(h(x),y) = 1(h(x) Y),

whereh(x) : X — {1,...,L} is a multiclass classifier.

We cannot evaluate the/0 loss using our partially labeled training data. We define a surro-
gate loss which we can evaluate, and we call ambiguous or partialo8s (where A stands for
ambiguous):

Partial O/1loss:  La(h(x),y) =1(h(x) ¢y).

3.1 Connection Between Partial and Standar®/1 Losses

An obvious observation is that the partial loss is an underestimate of the ssie lpwever, in
the ambiguous learning setting we would like to minimize the trye @ss, with access only to
the partial loss. Therefore we need a way to upper-bound thddds using the partial loss. We
first introduce a measure of hardness of learning under ambiguoes/g&ipn, which we define as
ambiguity degree of a distributionP(X,Y, Z):

Ambiguity degree: €= sup PzeZ | X=xY =Y). (@D)
xY,ZP(x,y)>0,ze{1,...,L}

In words, € corresponds to the maximum probability of an extra labeb-occurring with a
true labely, over all labels and inputs. Let us consider several extreme casen 8¥h0,Z =0
with probability one, and we are back to the standard supervised learmseg with no ambiguity.
Whene = 1, some extra label always co-occurs with a true Iatmh an example and we cannot
tell them apart: no learning is possible for this example. For a fixed ambiguitsize C (i.e.,
P(|Z] = C) = 1), the smallest possible ambiguity degree is C/(L — 1), achieved for the case
whereP(Z | X,Y) is uniform over subsets of si£& for which we havd®(ze Z | X,Y) =C/(L—1)
forallze {1,...,L}\{y}. Intuitively, the best case scenario for ambiguous learning corresgon
a distribution with high conditional entropy f&%Z | X,Y).

The following proposition shows we can bound the (unobservéd)l@ss by the (observed)
partial loss, allowing us to approximately minimize the standard loss with acclystodhe partial
one. The tightness of the approximation directly relates to the ambiguity degree.
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Proposition 1 (Partial loss bound via ambiguity degreee) For any classifier h and distribution
P(X,Y,Z), withY = XUZ and ambiguity degree:

Epl£a(h(X), Y)] < Ep[£(0(X),Y)] < £ EplZa(h(X),Y)]

with the conventior1/0 = +. These bounds are tight, and for the second one, for any (rational)
€, we can find a number of labels L, a distribution P and classifier h suchetipaality holds.

Proof. All proofs appear in Appendix B. |

3.2 Robustness to Outliers

One potential issue with Proposition 1 is that unlikely (outlier) paigs(with vanishingP(x,y))
might forcee to be close to 1, making the bound very loose. We show we can refine tha obtio
ambiguity degree by excluding such pairs.

Definition 2 (g,d)-ambiguous distribution. A distribution RX,Y,Z) is (g,d)-ambiguous if there
exists a subset G of the support @RY), GC X x {1,...,L} with probability mass at least— d,
thatis, [ y)cc P(X=X,Y =y)dH(x,y) > 1-9, integrated with respect to the appropriate underlying
measure P otk x {1,...,L}, for which

sup PzeZ| X=xY=y)<E.
(xy)eG,ze{1,....L}

Note that in the extreme case= 0 corresponds to standard semi-supervised learning, where
1 - d-proportion of examples are unambiguously labeled, @aagde (potentially) fully unlabeled.
Even though we can accommodate it, semi-supervised learning is not asrifothis paper and
our bounds are not well suited for this case.

This definition allows us to bound the/D loss even in the case when some unlikely set of
pairsx,y with probability < & would make the ambiguity degree large. Suppose we mix an initial
distribution with small ambiguity degree, with an outlier distribution with large ovenaibiguity
degree. The following proposition shows that the bound degrades paly &dditive amount, which
can be interpreted as a form of robustness to outliers.

Proposition 3 (Partial loss bound via(g,d) ) For any classifier h ange, )-ambiguous PZ | X,Y),
1
Ep[L(h(X),Y)] < 37— Er[La(h(X),Y)] +2.
A visualization of the bounds in Proposition 1 and Proposition 3 is shown in&igu

3.3 Label-specific Recall Bounds

In the types of data from video experiments, we observe that certaietsutfdabels are harder to
disambiguate than others. We can further tighten our bounds between anbigas and standard
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Figure 4: Feasible region for expected ambiguous and true loss=d@.2,5 = 0.05.

0/1 loss if we consider label-specific information. We definel#irel-specific ambiguity degreg
of a distribution (witha € {1,...,L}) as:

€a= sup P(zeZ| X=X =a).
x,zP(X=x,Y=a)>0;ze{1,....L}

We can show a label-specific analog of Proposition 1.

Proposition 4 (Label-specific partial loss bound)For any classifier h and distribution(X,Y,Z)
with label-specific ambiguity degres ,

Ep[L(N(X).Y) Y =4 < 3 =

— saEp[LA(h(X)7Y) Y = a],

where we see that, bounds per-class recall.

These bounds give a strong connection between ambiguous loss alusseahens is small.
This assumption allows us to approximately minimize the expected real loss by minin@ing
upper bound on) the ambiguous loss, as we propose in the following section

4. A Convex Learning Formulation

We have not assumed any specific form for our clasdifiey above. We now focus on a particular
family of classifiers, which assigns a scargx) to each labeh for a given inputx and select the
highest scoring label:

h(x) = arg maxgs(x).

We assume that ties are broken arbitrarily, for example, by selecting tHengbemallest indexa.
We define the vectay(x) = [g1(X)...dL(X)] ", with each componem, : X ~ R in a function class
G. Below, we use a multi-linear function clagsby assuming a feature mappifg) : X — R
from inputs tod real-valued features and lgt(x) = w, - f(x), wherew, € RY is a weight vector for
each class, bounded by some noftwy||, < Bfor p=1,2.

We build our learning formulation on a simple and general multiclass schemeghdy used
for the fully supervised setting (Crammer and Singer, 2002; Rifkin and t&lgu2004; Zhang,
2004; Tewari and Bartlett, 2005), that combines convex binary lag6¢s R — R on individual
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components ofj to create a multiclass loss. For example, we can use hinge, exponential ticlogis
loss. In particular, we assume a type of one-against-all scheme forpgbhevied case:

Ly(9(x),y) = W(gy(x)) + 3 W(—=Ga(X))-

azy

A classifierhg(x) is selected by minimizing the empirical logg, on the sample&s = {x;,y; }{";
(called empiricalp-risk) over the function clas§:

imww@wm:wlgw@mm.

g9eg 9eG M&

For the fully supervised case, under appropriate assumptions, thisofaitme multiclass loss
is infinite-sample consistent. This means that a minimgzef ()-risk achieves optimal A risk
infgEs[Ly(9(X),Y)] = infgEp[L(g(X),Y)] as the number of samplesgrows to infinity, provided
that the function clasg grows appropriately fast witm to be able to approximate any function
from X to R andy(u) satisfies the following condition$1) Y(u) is convex,(2) bounded below3)
differentiable and4) @(u) < Y(—u) whenu > 0 (Theorem 9 in Zhang (2004)). These conditions
are satisfied, for example, for the exponential, logistic and squared losgmax0, 1— u)?. Below,
we construct a loss function for the partially labeled case and considan thie proposed loss is
consistent.

4.1 Convex Loss for Partial Labels

In the partially labeled setting, instead of an unambiguous single gl instance we have a set
of labelsY, one of which is the correct label for the instance. We propose the fioldphoss, which
we call ourConvex Loss for Partial Label€LPL):

-wmww:wﬂ;z%w>+zwe%wy 2)
acy

agy

Note that ify is a singleton, the CLPL function reduces to the regular multiclass loss. Q#egrw
CLPL will drive up theaverageof the scores of the labels in If the score of the correct label is
large enough, the other labels in the set do not need to be positive. Thentgnalone does not
guarantee that the correct label has tighestscore. However, we show in Proposition 6 that
Ly(9(x),y) upperboundga(g(x),y) wheneven)(-) is an upper bound on the/0 loss.

Of course, minimizing an upperbound on the loss does not always leaddibleealgorithms.
We show next that our loss function is consistent under certain assumgtichoffers a tighter
upperbound to the ambiguous loss compared to a more straightforward maltafgiroach.

4.2 Consistency for Partial Labels

We derive conditions under which the minimizer of the CLPL in Equation 2 withigddabels
achieves optimal 0L risk: infgc g Es[Ly(9(X),Y)] = infge g Ep[L(g(X),Y)] in the limit of infinite

data and arbitrarily ricl;. Not surprisingly, our loss function is not consistent without making some
additional assumptions d?(Y | X) beyond the assumptions for the fully supervised case. Note that
the Bayes optimal classifier foy/ @ loss satisfies the conditidiix) € argmaxP(Y =a| X =x), and
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may not be unique. First, we require that arggR® = a| X =x) =argmaxyP(ac Y | X =x),
since otherwise argmaR(Y = a| X = x) cannot be determined by any algorithm from partial labels
Y without additional information even with an infinite amount of data. Secondeggire a simple
dominance condition as detailed below and provide a counterexample whebortkison does not
hold. The dominance relation defined formally below states that \athgithe most (or one of the
most) likely label giverx according toP(Y | X = x) andb is not, cU {a} has higher (or equal)
probability thancu {b} for any set of other labels

Proposition 5 (Partial label consistency)Suppose the following conditions hold:

e () is differentiable, convex, lower-bounded and non-increasing, yit@) < 0.
e When RX =x) > 0,argmax P(Y =& | X =x) =argmax P(@ € Y | X = x).

¢ The following dominance relation holdsga € argmax P(& € Y | X =x), Vb ¢ argmax,
P@eY|X=x), Vvec{1,...,L}\{a,b}:

P(Y =cu{a} | X=x) > P(Y =cu{b} | X =x).
ThenLy(g(x),y) is infinite-sample consistent:

inf E5{£y(9(X).Y)] = inf Ep[£(9(X).Y)]

as|S = m— » and G — Rt . As a corollary, consistency is implied when ambiguity degreel
and RY | X) is deterministic, that is, FY | X) = 1(Y = h(X)) for some ff-).

If the dominance relation does not hold, we can find counter-examplagwhbasistency fails.
Consider a distribution with a singlewith P(x) > 0, and letlL =4, P(]Y|=2| X =X) =1,y be
the square-hinge loss, aRdY | X = x) be such that:

a
250-Pp|1 2 3 4
1 0 29 44 O
2 29 0 17 26
3 4 17 0 9
4 0 26 9 O

[250-P, [73 72 70 39

Above, the abbreviations aRa, = P(Y = {a, b} | X = x) andP, = ¥, Pap, and the entries that do not
satisfy the dominance relation are in bold. We can explicitly compute the minimizg&y,afhich

is g = (3P +diag2— 3P,))"1(3P.—2) ~ — [ 0.6572 06571 06736 08568 |. It satisifes
argmaxga = 2 but argmax >, Pap = 1.

4.3 Comparison to Other Loss Functions

The “naive” partial loss, proposed by Jin and Ghahramani (20023fdreach example as having
multiple correct labels, which implies the following loss function

2 S §(galx) + > (-Gl ®
ady

LEVG(¥),y) =
|y‘ acy
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square hinge nave  MN\naive
chord

nai W

ours _~.; >~ ours ‘Tours

max ; max L rnai//\\\‘

9, (@+g)2 9,

Figure 5: Our loss function in Equation 2 provides a tighter convex ugpedbthan the naive loss
Equation 3 on the non-convex max-loss Equation deft) We show the square hinge
Y (blue) and a chord (red) touching two poigs g,. The horizontal lines correspond
to our lossy(3 (g1 +gz)) Equation 2, the max-losg(max(g:,9)), and the naive loss
2(W(g) +W(ge)) (ignoring negative terms and assumipng: {1,2}). (Middle) Corre-
sponding losses as we vagy € [—2, 2] (with g = 0). (Right) Same, withgy = —g;.

One reason we expect our loss function to outperform the naive agipis that we obtain a tighter
convex upper bound onia. Let us also define

00 = (g0 ) + 3 w00, @

which is not convex, but is in some sense closer to the desired true los$olldwing inequalities
are verified for common losseaf such as square hinge loss, exponential loss, and log loss with
proper scaling:

Proposition 6 (Comparison between partial losses)nder the usual conditions thdt is a con-
vex, decreasing upper bound of the step function, the following inequalitigs h

ZLAEELEBXS-wa§£$aN§
The2"d and 3" bounds are tight, and the first one is tight providg) = 1 andlim .y = 0.

This shows that our CLPLLy is a tighter approximation taa than L{l}a“’e, as illustrated in
Figure 5. To gain additional intuition as to why CLPL is better than the naiveHgsstion 3: for
an inputx with ambiguous label séf, b), CLPL only encourages theverageof ga(x) andgp(x)
to be large, allowing the correct score to be positive and the extraneorsst® be negative (e.qg.,
ga(X) = 2,0n(X) = —1). In contrast, the naive model encourages logtlx) andgy(X) to be large.

4.4 Generalization Bounds

To derive concrete generalization bounds on multiclass error for CLétefine our function class
for g. We assume a feature mappif(g) : X — RY from inputs tod real-valued features and let
da(X) = wa-f(x), wherew, € R% is a weight vector for each class, bounded.byiorm : ||wa||> < B.
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We usey(u) = max(0,1— u)P (for example hinge loss with = 1, squared hinge loss with= 2).
The corresponding margin-based loss is defined via a truncatedgiseasion of:

1 ifu<o,
by(u) = ¢ (1-u/y)P ifO<u<y,
0 ifu>y.

Proposition 7 (Generalization bound) For any integer m and ang € (0,1), with probability at
leastl —n over samples S {(x,yi) }i",, for every g inG:

5/2
Ep[La(9(X),Y)] < Es[Ly, (9(X),Y)] + 4p2\|/_ = |fr(nX)Hz] + L\/szm)'

where c is an absolute constant from Lemma 12 in the appeRdiis, the sample average and L is
the number of labels.

The proof in the appendix uses definition 11 for Rademacher and Gaussiglexity, Lemma
12, Theorem 13 and Theorem 14 from Bartlett and Mendelson (28§&pduced in the appendix
and adapted to our notations for completeness. Using Proposition 7 grakRian 1, we can derive
the following bounds on the true expectedlQossEp[L(g(X),Y)] from purely ambiguous data:

Proposition 8 (Generalization bounds on true loss)For any distributiong-ambiguous distribu-
tion P, integer m andj € (0, 1), with probability at leastl —n over samples S {(x;,yi)}[",, for
every ge G:

2/ 2 8log2
Bel£(9(X).Y)] < T (Eg[Lwy(g(X),Y)] RN X e “m ) |

5. Transductive Analysis

We now turn to the analysis of o@onvex Loss for Partial Labe(€LPL) in the transductive setting.
We show guarantees on disambiguating the labels of instances underdagbnable assumptions.

Example 1 Consider a data set S of two pointsx with label set§ 1,2}, {1, 3}, respectively and
suppose that the total number of labels is 3. The objective function is given by

W3 (@100 +0209)) + (- 05() + W5 (@1(X) + 85(€))) + W(~Ga(X).

Suppose the correct labels afe 1). It is clear that without further assumptions about x and x
we cannot assume that the minimizer of the loss above will predict thelaigéit However, if(x)
andf(x') are close, it should be intuitively clear that we should be able to deduce teédéakthe
two examples i4.

A natural question is under what conditions on the data will CLPL produedeling that is
consistent with groundtruth. We provide an analysis under severahas®ns.
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5.1 Definitions

In the remainder of this section, we dengt&) (resp. y(x)) as the true label (resp. ambiguous
label set) of some& € S, andz(x) = y(X)\{y(X)}. || - || denotes an arbitrary norm, with- ||* its

dual norm. As abovea) denotes a decreasing upper bound on the step functiog antassifier
satisfying:Va, ||wa||* < 1 (we can easily generalize the remaining propositions to the case where
0a is 1-Lipschitz and is the identity). Fox € Sandn > 0, we defineB; (x) as the set of neighbors

of x that have the same label as

Bn(x) = {x" € S\{x} : [|[{(X) — f(x)|| <n,y(X) = y(x)}.
Lemma9 Let xe S. If Ly(g(x),y(x)) < W(n/2) and Ya € z(x),3x € By(x) such that g(x') <

—n/2, then g predicts the correct label for x.

In other wordsg predicts the correct label forwhen its loss is sufficiently small, and for each of
its ambiguous labela, we can find a neighbor with same label whose sgg(®) is small enough.
Note that this does not make any assumption om#sestneighbors ok.

Corollary 10 Let x € S.  Supposedq > 0, x1..Xq € By(X) such that Ni—o qz(X) = 0,
max—o.q Ly(9(X),y(%)) < P(n/2) (with X := x). Then g predicts the correct label for x.

In other wordsg predicts the correct label forif we can find a set of neighbors of the same label
with small enough loss, and without any common extra label. This simple condftemarises in
our experiments.

6. Algorithms

Our formulation is quite flexible and we can derive many alternative algorittepsriing on the
choice of the binary los§(u), the regularization, and the optimization method. We can minimize
Equation 2 using off-the-shelf binary classification solvers. To do thésremrite the two types of
terms in Equation 2 as linear combinationsnofL feature vectors. We stack the parameters and
features into one vector as follows below, so tiak) = w, - f(X) = w-f(x,a):

W1 1(a=1Df(x)
w=|[...|; f(x,a) = .
WL 1(a=L)f(x)
We also defind(x,y) to be the average feature vector of the labels in thg:set
1
f(X,y) = W Z f<X7 a)‘

acy

With these definitions, we have:

Ly(9(x),y) = w(w-f(x,y))+ > W(-w-f(x,a)).

agy

Then to use a binary classification method to solve CLPL optimization, we simplsforam the
m partially labelled training exampleS= {x;,y; }i"; into m positive example$, = {f(x;,yi) }i",
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andy;L — |yi| negative exampleS_ = {f(x;,a) in;LagZyi' Note that the increase in dimension of the
features by a factor df does not significantly affect the running time of most methods since the
vectors are sparse. We use the off-the-shelf implementation of binaryW@tnéquared hinge (Fan

et al., 2008) in most of our experiments, where the objective is:

1
mmlln§\|w\|§+CZmax(O,1—w-f(xi,yi))2+C S max(0,1+w-f(x,a))%
| i,agyi

Using hinge loss ant; regularization lead to a linear programming formulation, and uking
with exponential loss leads naturally to a boosting algorithm. We presentefaetiment with)
a boosting variant of the algorithm, allowing efficient feature selectiongasribed in Appendix
A. We can also consider the case where the regularizatibp @df(x) : X — RY is a nonlinear
mapping to a high, possibly infinite dimensional space using kernels. IndBat & is simple to
show that

W= Zaif(xi7Yi) - z C‘i,af(xi7a)7
! i7a¢yi
for some set of non-negatiwes, wherea; corresponds to the positive examle;,yi), anda; a
corresponds to the negative examfibe, a), for a ¢ y;. Letting K(x,x') = f(x) - f(X) be the kernel
function, note that(x, a) - f(X',b) = 1(a= b)K(x,x). Hence, we have:
w-ixb)= 3 SLi@=bKx.X) ~ T dial(@a=bK(x,x).
i,acy; |Yi| i,agyi

This transformation allows us to use kernels with standard off-the-shelf\{oBVM implementa-
tions.

7. Controlled Partial Labeling Experiments

We first perform a series of controlled experiments to analyz€ouawex Learning from Partial La-
bels(CLPL) framework on several data sets, including standard benclsrivark theUCI repos-
itory (Asuncion and Newman, 2007), speaker identification task from audio extracted from
movies, and dace naming taskfrom Labeled Faces in the Wild (Huang et al., 2007b). In Section
8 we also consider the challenging tasknaiming characters in TV showsthroughout an entire
season. In each case the goal is to correctly label faces/speechnsg@mstances from examples
that have multiple potential labels (transductive case), as well as learne thatican generalize
to other unlabeled examples (inductive case).

We analyze the effect on learning of the following factors: distributionrob@uous labels,
size of ambiguous bags, proportion of instances which contain an ambigagu&ntropy of the
ambiguity, distribution of true labels and number of distinct labels. We compai@ld°PL approach
against a number dfaselines including a generative model, a discriminative maximum-entropy
model, a naive model, two K-nearest neighbor models, as well as modeigrtbed the ambiguous
bags. We also propose and compare several variations on our oofibfu We conclude with
a comparative summary, analyzing our approach and the baselinesgliagctar several criteria:
accuracy, applicability, space/time complexity and running time.
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7.1 Baselines

In the experiments, we compare CLPL with the following baselines.

7.1.1 (HANCE BASELINE

We define thechancebaseline as randomly guessing between the possible ambiguous labels only.
Defining the (empirical) average ambiguous size t@&bey|] = %z{’;l lyi|, then the expected error
from thechancebaseline is given by errgfance= 1 — m.

7.1.2 NAIVE MODEL

We report results on an un-normalized version of the naive model inteoblin Equation 3:
Yacy W(da(X)) + Tagy W(—0a(x)), but both normalized and un-normalized versions produce very
similar results. After training, we predict the label with the highest score értrinsductive set-

ting): ¥ = arg maXey ga(X).

7.1.3 IBM MoDEL 1

This generative model was originally proposed in Brown et al. (1993)nfachine translation, but
we can adapt it to the ambiguous label case. In our setting, the conditiartetplity of observ-
ing examplex € RY given that its label is is Gaussianx ~ N, Za). We use the expectation-
maximization (EM) algorithm to learn the parameters of the Gaussians (meard diagonal co-
variance matrix, = diag(o,) for each label).

7.1.4 DSCRIMINATIVE EM

We compare with the model proposed in Jin and Ghahramani (2002), whildiscriminative
model with an EM procedure adapted for the ambiguous label setting. Therauminimize the
KL divergence between a maximum entropy moBdkstimated in the M-step) and a distribution
over ambiguous label? (estimated in the E-step):

JO.P)=3 5 P(a|x)log <m> :
T acy i

7.1.5 K-NEARESTNEIGHBOR

Following Hullermeier and Beringer (2006), we adapt the k-Nearestheig Classifier to the
ambiguous label setting as follows:

k
knn(x) = arg max wil(aeyi), (5)

wherex; is thei'" nearest-neighbor of using Euclidean distance, amg are a set of weights. We
use two kNN baselineskNN assumes uniform weighig; = 1 (model used in Hullermeier and
Beringer, 2006), andieighted kNN uses linearly decreasing weights=k —i+1. We us&k =5
and break ties randomly as in Hullermeier and Beringer (2006).
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7.1.6 SUPERVISEDMODELS

Finally we also consider two baselines tlgiore the ambiguous label setting. The first one, de-
noted asupervised modelremoves from Equation 3 the examples with> 1. The second model,
denoted asupervised KNN removes from Equation 5 the same examples.

7.2 Data Sets and Feature Description

We describe below the different data sets used to report our experimé&hes experiments for
automatic naming of characters in TV shows can be found in Section 8. Aseosgmmary is
given in Table 2.

Data Set # instancesr() | # featuresd) | # labels [) prediction task
UCI: dermatology 366 34 6 disease diagnostic
UCI: ecoli 336 8 8 site prediction
UCI: abalone 4177 8 29 age determination
FIW(10b) 500 50 10 (balanced) face recognition
FIW(10) 1456 50 10 face recognition
FIW(100) 3011 50 100 face recognition

Lostaudio 522 50 19 speaker id
TV+movies 10,000 50 100 face recognition

Table 2: Summary of data sets used in our experiments. The TV+moviesregpes are treated
in Section 8. Faces in the Wild (1) uses a balanced distribution of labels5@iishages
for the top 10 most frequent people).

7.2.1 UCI| DaTA SETS

We selected three biology related data sets from the publicly available UGsitery (Asuncion
and Newman, 2007): dermatology, ecoli, abalone. As a preprocedsmgeach feature was inde-
pendently scaled to have zero mean and unit variance.

7.2.2 FACES IN THEWILD (FIW)

We experiment with different subsets of the publicly available LabeledsHacthe Wild (Huang
et al., 2007a) data set. We use the images registered with funneling (Hualng2607a), and crop
out the central part corresponding to the approximate face locationhwldaesize to 60x90. We
project the resulting grayscale patches (treated as 5400x1 vecttosy 6A-dimensional subspace
using PCA? In Table 2, FIW(10b) extracts the first 50 images for each of the top 10 freagient
people (balanced label distribution); FIW(10) extragisimages for each of the top 10 most fre-
qguent people (heavily unbalanced label distribution, with 530 hits for @&Bush and 53 hits for
John Ashcroft); FIW(100) extracts up to 100 faces for each of thel@pmost frequent people
(again, heavily unbalanced label distribution).

2. We kept the features simple by design; more sophisticated part-tegisttation and representation would further
improve results, as we will see in Section 8.
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7.2.3 PEAKERIDENTIFICATION FROM AUDIO

We also investigate a speaker identification task based on audio in an whechénvironment.
The audio is extracted from an episodelaist (season 1, episode 5) and is initially completely
unaligned. Compared to recorded conversation in a controlled enviranthentask is more re-
alistic and very challenging due to a number of factors: background ,nstiseng variability in
tone of voice due to emotions, and people shouting or talking at the same timesé/teeuHid-
den Markov Model Toolkit (HTK) kit t p: // ht k. eng. cam ac. uk/) to compute forced alignment
(Moreno et al., 1998; $jander, 2003), between the closed captions and the audio (givenue ro
initial estimates from closed caption time stamps, which are often overlappingcemain back-
ground noise). After alignment, our data set is composed of 522 uttexé@meh one corresponding
to a closed caption line, with aligned audio and speaker id obtained from dlggneenplay), with
19 different speakers. For each speech segment (typically betwanad 4 seconds) we extract
standard voice processing audio features: pitch (Talkin, 1995), Mejtency Cepstral Coefficients
(MFCC) (Mermelstein, 1976), Linear predictive coding (LPC) (Proakid Manolakis, 1996). This
results in a total of 4,000 features, which we normalize to the réndel] and then project onto 50
dimensions using PCA.

7.3 Experimental Setup

For theinductive experiments we split randomly in half the instances into @mbiguously la-
beled training set and (2)unlabeled testing set The ambiguous labels in the training set are
generated randomly according to different noise models which we spadgch case. For each
method and parameter setting, we reportakierage test error rateover 20 trials after training
the model on the ambiguous train set. We also report the correspastdimgard deviation as an
error bar in the plots. Note, in the inductive setting we consider the tess setlabeled, thus the
classifier votes amonagl possible labels:

a"=h(x) = argaer{nﬁi(} Ga(X).
For thetransductive experiments there is no test set; we report the error rate for disambiguating
the ambiguous labels (also averaged over 20 trials corresponding tmmagedtings of ambiguous
labels). The main differences with the inductive setting are: (1) the modeligtt on all instances
and tested on the same instances; and (2) the classifier votes only amomgbigecus labels,
which is easier:

a"=h(x) =arg gg;})ga(x).

We compare our CLPL approach (denotednasan in figures, due to the form of the loss)
against thebaselinespresented in Section 7.1: Chance, Model 1, Discriminative EM model, k-
Nearest Neighbor, weighted k-Nearest Neighbor, Naive model rgigpd model, and supervised
KNN. Note, in our experiments the Discriminative EM model was much slowerneerge than all
the other methods, and we only report the first series of experiments withetbidine.

Table 3 summarizes the different settings used in each experiment. Wenssmpiewith dif-
ferent noise models for ambiguous bags, parametrizeqd, jye, see Figure 6.p represents the
proportion of examples that are ambiguously labelgdepresents the number ektralabels for
each ambiguous example.represents the degree of ambiguity (defined in 1) for each ambiguous

1518



LEARNING FROM PARTIAL LABELS

example? We also vary the dimensionality by increasing the number of PCA componenisifto
200, with half of extra labels added uniformly at random. In Figure 7, v three ambiguity size
for three different subsets of Faces in the Wild. We report results ditiadal data sets in Figure 8.

Experiment fig | induct. | data set parameter
# of ambiguous bags 6 yes | FIW(10b) p € [0,0.95,q=2
degree of ambiguity, 6 yes | FIW(10b) | p=1,q=1¢e€[1/(L-1),1]
degree of ambiguity, 6 no FIW(10b) | p=1,q=21e€[1/(L-1),1]
dimension 6 | yes | FIW(10b) | p=1,q="52,d€[L,..,200
ambiguity size 7 yes | FIW(10b) p=1,q€[0,0.9(L—1)]
ambiguity size 7 yes FIW(10) p=19¢€[0,0.9(L—1)]
ambiguity size 7 yes | FIW(100) p=19¢€[0,0.9(L—1)]
ambiguity size 8 yes | Lostaudio p=1,9€[0,0.9(L—1)]
ambiguity size 8 yes ecoli p=19¢€[0,0.9(L—-1)]
ambiguity size 8 yes derma p=19€[0,0.9(L—1)]
ambiguity size 8 yes abalone p=19€[0,0.9(L—1)]

Table 3: Summary of controlled experiments. We experiment with 3 differeisermodels for
ambiguous bags, parametrized g, €. p represents the proportion of examples that are
ambiguously labeledy represents the number ettralabels for each ambiguous example
(generated uniformly without replacemerg).epresents the degree of ambiguity for each
ambiguous example (see definition L)is the total number of labels. We also study the
effects of data set choice, inductive vs transductive learning, atdriedimensionality.

7.3.1 EXPERIMENTS WITH ABOOSTINGVERSION OFCLPL

We also experiment with a boosting version of our CLPL optimization, as piedgéen Appendix A.
Results are shown in Figure 9, comparing our method with KNN and the naitmdélso using
boosting). Despite the change in learning algorithm and loss function, tiastremain the same.

7.4 Comparative Summary

We can draw several conclusions. Our proposed CLPL maaigrmly outperformed all base-
lines in all but one experiment (UCI dermatology data set), where it ras&ednd closely behind
Model 1. In particular CLPL always uniformly outperformed the naive slod’he naive model
ranks in second. As expected, increasing ambiguity size monotonicalbtsaéeror rate. We also
see that increasingsignificantly affects error, even though the ambiguity size is constantissons
tent with our bounds in Section 3.3. We also note that the supervised modielsddie Section
7.1.6 (which ignore the ambiguously labeled examples) consistently perforse wwan their coun-
terparts adapted for the ambiguous setting. For example, in Figure 6 (Topd.enodel trained
with nearly all examples ambiguously labeled (“mean” curve% 95%) performs as good as a
model which uses 60% dtilly labeledexamples (“supervised” curve,= 40%). The same holds
between the “kNN” curve ap = 95% and the “supervised kNN” curve pt= 40%.

3. We first choose at random for each label a dominant co-ocgueairel which is sampled with probabiligy the rest
of the labels are sampled uniformly with probability— €) /(L — 2) (there is a single extra label per example).
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Figure 6: Results on Faces in the Wild in different settings, comparing opoged CLPL (denoted
asmean) to several baselines. In each case, we report the averageaggy+axis) and
standard deviation over 20 trials as in Figure(tap left) increasing proportion of am-
biguous bags, inductive setting(top right) increasing ambiguity degregEquation 1),
inductive setting(bottom left) increasing ambiguity degree(Equation 1), transductive
setting.(bottom right) increasing dimensionality, inductive setting.

Figure 7: Additional results on Faces in the Wild, obtained by varying the arntbigizeq on the
x-axis (inductive case)Left: balanced data set using 50 faces for each of the top 10
labels.Middle: unbalanced data set using all faces for each of the top 10 laRiglst:
unbalanced data set using up to 100 faces for each of the top 100 labels.

7.4.1 GOMPARISON WITHVARIANTS OF OUR APPROACH

In order to get some intuition on CLPL (Equation 2), which we refer to agrtean model in our
experiments, we also compare with the followsgm andcontrastive alternatives:

Ly™M9(Xx),y) =y (Z ga(X)> + > W(=0a(x), (6)

acy agy
contrastiv " ' 7
LM g(x), a%yllg 0|y| 2,800 ( )> 7
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Figure 8: Inductive results on different data sets. In each casegpogtithe average error rate (y-
axis) and standard deviation over 20 trials as in FigurBop.Left: speaker identification
from Lostaudio. Top Right: ecoli data set (UCI)Bottom Left: dermatology data set
(UCI). Bottom Right: abalone data set (UCI).
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Figure 9: Left: We experiment with a boosting version of the ambiguous learning, and cempar
to a boosting version of the naive baseline (here with ambiguous bagseoBsiANe
plot accuracyvs number of boosting rounds. The green horizontal line corresponds
the best performance (acrdgsof the k-NN baselineMiddle: accuracy of k-NN base-
line acrosk. Right: we compare CLPL (labelethean) with two variants defined in
Equation 6,Equation 7, along with the naive model (same setting as Figure Befipp

Wheny(-) is the hinge loss, the mean and sum model are very similar, but this is not théocas
strictly convex binary losses. Figure 9 shows that variations on ourfaonstion havdlittle effect
in the transductive setting. In the inductive setting, other experiments i@ped show that the
mean and sum version are still very similar, but the contrastive versionrgewim general it seems
that models based on minimization of a convex loss function (naive andetiffeersions of our
model) usually outperform the other models.
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Figure 10: Predictions obostandC.S.I. Incorrect examples are: row 1, column 3 (truth: Boone);
row 2, column 2 (truth: Jack).

8. Experiments with Partially Labeled Faces in Videos

We now return to our introductory motivating example, naming people in TV shigigure 1,
right). Our goal is to identify characters given ambiguous labels defiesd the screenplay. Our
data consists of 100 hours bbstandC.S.I, from which we extract ambiguously labeled faces to
learn models of common characters. We use the same features, learnig@@nd loss function
as in Section 7.2.2. We also explore using additional person- and mow#ism®nstraints to
improve performance. Sample results are shown in Figure 10.

8.1 Data Collection

We adopt the following filtering pipeline to extract face tracks, inspiredsriagham et al. (2006):
(1) Run the off-the-shelf OpenCV face detector over all frames, seaydwver rotations and scales.
(2) Run face part detectdrsver the face candidate€3) Perform a 2D rigid transform of the parts
to a template.(4) Compute the score of a candidate fae) as the sum of part detector scores
plus rigid fit error, normalizing each to weight them equally, and filteringfaces with low score.
(5) Assign faces to tracks by associating face detections within a shot usintpliwed cross-
correlation in RGB space, and using dynamic programming to group them éogeth tracks.
(6) Subsample face tracks to avoid repetitive examples. In the experimenitgerepere we use the
best scoring face in each track, according(tg.

Concretely, for a particular episode, step (1) finds approximately 100z2@@s, step (4) keeps
approximately 10,000 of those, and after subsampling tracks in step (&evefiawith 1000 face
examples.

8.2 Ambiguous Label Selection

Screenplays for popular TV series and movies are readily availablegferoh the web. Given an
alignment of the screenplay to frames, we have ambiguous labels foctdraran each scene: the
set of speakers mentioned at some point in the scene, as shown in Eigligninent of screenplay
to video uses methods presented in Cour et al. (2008) and Everinglan(2806), linking closed
captions to screenplay.

4. The detectors use boosted cascade classifiers of Haar featutes éges, nose and mouth.
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| Lost(#labels, #episodes) (8,16) | (16,8) | (16,16)] (32,16)]

Naive 14% | 18.6% | 16.5% | 18.5%
ours (CLPL/“mean”) | 10% | 12.6% | 14% 17%
ours+constraints 6% n/a 11% 13%

Table 4: Misclassification rates of different methods on TV shost In comparison, for (16,16)
the baseline performances dmn 30%; Model I 44%; chance 53%. t: This column
contains results exactly reproducible from our publicly available reterémplementa-
tion, which can be found dtt t p: // vi si on. grasp. upenn. edu/ vi deo. For simplicity,
this public code does not include a version with extra constraints.

We use the ambiguous sets to select face tracks filtered through our pipdtngrune scenes
which contain characters other than the set we choose to focus onplerireents (top(8,16,32
characters), or contain 4 or more characters. This leaves ambigugsiefsize 1, 2 or 3, with an
average bag size of 3 for Lost, and 217 for C.S.I.

8.3 Errors in Ambiguous Label Sets

In the TV episodes we considered, we observed that approximately Erhlofyuous label sets
were wrong, in that they didn’t contain the ground truth label of the famektr This came from
several reasons: presence of a non-english speaking chatkot&mon inLost who speaks Ko-
rean) whose dialogue is not transcribed in the closed captions; sudderence of an unknown,
uncredited character on screen, and finally alignment problems due ¢odisgyepencies between
screenplay and closed captions. While this is not a major problem, it becanvelsen we con-
sider additional cues (mouth motion, gender) that restrict the ambiguousé&tb®Ve will see how
we tackle this issue with a robust confidence measure for obtaining geoiipn recall curves in
Section 8.5.

8.4 Results with the Basic System

Now that we have a set of instances (face tracks), feature dessriptothe face track and am-
biguous label sets for each face track, we can apply the same methoskcabeld in the previous
section. We use a transductive setting: we test our method on our ambiglaingded training set.

The confusion matrix displaying the distribution of ambiguous labels for the Gogh&racters
in Lostis shown in Figure 11 (left). The confusion matrix of our predictions affgryang our
ambiguous learning algorithm is shown in Figure 11 (right). Our method hachtisé trouble dis-
ambiguating Ethan Rom from Claire Littleton (Ethan Rom only appears/i#o®f the ambiguous
bags, 3 times less then the second least common character) and LiamdPacthfirlie Pace (they
are brothers and co-occur frequently, as can be seen in the top figihieecase of Sun Kwon and Jin
Kwon is a bit special, as Jin does not speak English in the series and is alevestmentioned in
the closed-captions, which creates alignment errors between screanglalosed captions. These
difficulties illustrate some of the interesting challenges in ambiguously labeledsétta As we
can see, the most difficult classes are the ones with which another classglyscorrelated in the
ambiguous label confusion matrix. This is consistent with the theoreticaldsowe obtained in
Section 3.3, which establish a relation between the class specific errondatéass specific degree
of ambiguitye.
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0.91667

John 0.48089 0.94118

Charlie 045521 0.8625

Kate 0.45817 0.84298

James lo:45098 1

Boone [ | 044231 0.88462

Hurley BBs417 0.8125

Sayid 014231 0.94872

Michael 0dccqill 1

Claire 0.49454 0.90164

Sun B os641 0.96154
Walt 82727
Liam 83333

Shannon

Jin
Ethan

0.81818
0;28571
0

Figure 11: Left: Label distribution of top 16 characters luost(using the standard matlab color
map). ElemenD;; represents the proportion of times classas seen with clasgin
the ambiguous bags, amd = 1. Right: Confusion matrix of predictions from Section
8.4. Element\j represents the proportion of times clasgas classified as clagsand
Al = 1. Class priors for the most frequent, the median frequency, and thedeaseht
characters iLostare Jack Shephard, 14%; Hugo Reyes, 6%; Liam Pace 1%.

Quantitative results are shown in Table 4. We measure error accordingrema 0-1 loss with
respect to hand-labeled groundtruth labeled in 8 entire episodaesbiOur model outperforms all
the baselines, and we will further improve results. We now compare $enethods to obtain the
best possible precision at a given recall, and propose a confidermseirado this end.

8.5 Improved Confidence Measure for Precision-recall Evaluation

We obtain a precision-recall curve using a refusal to predict schesnese by Everingham et al.
(2006): we report the precisigmfor ther most confident predictions, varyinge [0, 1]. We com-
pare severatonfidence measurebased on the classifier scoigx) and propose a novel one that
significantly improves precision-recall, see Figure 12 for results.

1. themax andratio confidence measures (as used in Everingham et al., 2006) are defined
Crax(9(X)) = mé'?‘Xga(X)a

) — e )
Cratlo(g(x)) - m;’:lxzb eX[ng(X)).

2. therelative score can be defined as the difference between the best and sestrstdres
over all classifier§ga)ac 1.1y (Wherea” = argmaxc 1y ga(X)):

Crei(9(X)) = Ga () = max _ ga(X).

ac{l.L}—{a"}

3. we can define theelative-constrained score as an adaptation to the ambiguous setting; we
only consider votes among ambiguous lalyef@herea” = arg max., ga(X)):

Crel,y(g(x)) = Oa (X) — aegl?{‘)a(*} Oa(X).
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Figure 12: Improvechybrid confidence measure for precision-recall evaluatianaxis: recall;
y axis: naming error rate for CLPL on 16 episoded. okt (top 16 characters)max
confidence score performs rather poorly as it ignores other labelstive improves
the high precision/low recall region by considering the margin instead. rdlatve-
constrain improves the high-recall/low-precision region by only voting among the am-
biguous bags, but it suffers in high-precision/low recall region beeaome ambiguous
bags may be erroneous. Cwbrid confidence score gets the best of both worlds.

There are some problems with all of those choices, especially in the case whdave some
errors in ambiguous label set ¢ Y for the true labeb). This can occur for example if we restrict
them with some heuristics to prune down the amount of ambiguity, such as theverensider in
Section 8.6 (mouth motion cue, gender, etc)ldi recall, we want maximum precision, therefore
we cannot trust too much the heuristic used in relative-constrained coodidéthigh recall, the
errors in the classifier dominate the errors in ambiguous labels, and redatigtrained confidence
gives better precision because of the restriction. We introduggbed confidence measure that
performs well for all recall levels, interpolating between the two confidence measures:

() — {ga(X) | ifacy,
(1—r)ga(X) +rminygp(x) else.

G (9(X)) = Crei(hr (x)).

By design, in the limit — 0, C; (g(X)) =~ Crei(g(X)). In the limitr — 1, hg(x) is small fora ¢ y and
$0Cr(9(X)) ~ Crely(9(X))-

8.6 Additional Cues

We investigate additional features to further improve the performance sfystem: mouth motion,
grouping constraints, gender. Final misclassification results are rdporiable 4.
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8.6.1 MOUTH MOTION

We use a similar approach to Everingham et al. (2006) to detect mouth motimg diielog and
adapt it to our ambiguous label settifdzor a face track with ambiguous label sgt and a tem-
porally overlapping utterance from a speaket {1..L} (after aligning screenplay and closed cap-
tions), we restricy as follows:

{a} if mouth motion,
yi=1y if refuse to predict oy = {a},
y—{a} if absence of mouth motion.

8.6.2 (ENDER CONSTRAINTS

We introduce a gender classifier to constrain the ambiguous labels bapeeldicied gender. The
gender classifier is trained on a data set of registered male and femalgbgd®osting a set of
decision stumps computed on Haar wavelets. We use the average sauadametrack output by
the gender classifier. We assume known the gender of names mentionedsangeplay (using
automatically extracted cast list from IMDB). We use gender by filteringlo@ifabels that do not
match by gender the predicted gender of a face track, if the confid&needs a threshold (one for
females and one for males are set on a validation data to achieve 90% préaistach direction
of the gender prediction). Thus, we modify ambiguous labey set

y if gender uncertain,
y:=qy—{a:aismalg if gender predicts female,
y—{a:aisfemalg if gender predicts male.

8.6.3 (ROUPINGCONSTRAINTS

We propose a very simple must-not-link constraint, which statesy; if face tracksx;,x; are in
two consecutive shots (modeling alternation of shots, common in dialogs)cadimssraint is active
only when a scene has 2 characters. Unlike the previous constraintspiisisaint is incorporated
as additional terms in our loss function, as in Yan. et al. (2006). We atsmopegroundtruth
grouping constraints for comparisop:= y; for each pair of face tracks, x; of the same label, and
that are separated by at most one shot.

8.7 Ablative Analysis

Figure 13 is an ablative analysis, showing error rate vs recall cuovelifferent sets of cues. We see
that the constraints provided by mouth motion help most, followed by genddimgncbnstraints.
The best setting (without using groundtruth) combines the former two @lss, we notice, once
again, a significant performance improvement of our method over the rmagthod.

8.8 Qualitative Results and Video Demonstration

We show examples with predicted labels and corresponding accuraicyarious characters in
C.S.1, see Figure 14. Those results were obtained with the basic system ofrS&dtid-ull-frame

5. Motion or absence of motion are detected with a low and high thresholawnatized cross-correlation around
mouth regions in consecutive frames.
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Naive
0.14 —6&— Mean

—#— Mean+Link
—o— Mean+Gender
0.12| —s— Mean+Mouth
Mean+Mouth+Gender
0.1} —*— Mean+Link Groundtruth
—%— Mean+Mouth Groundtruth

MM (Y ST 08 1 MR ] 04 06 08 1

0.6 0.8 1

Figure 13: Ablative analysis.x-axis: recall;y-axis: error rate for character naming across 16
episodes of ost and the 8, 16, and 32 most common labels (respectively for the left,
middle, right plots). We compare our methadean to theNaive model and show the
effect of adding several cues to our systerimk : simple must-not-link constraints from
shot alternationGender. gender cue for simplification of ambiguous badéputh:
mouth motion cue for detecting the speaker with synchronous mouth motion; ave als
consider the combinatiomlouth+Gender, as well as swapping in perfect components
such agGroundtruth link constraints an@Groundtruth Mouth maotion.

Figure 14: Left: Examples classified as Catherine Willows@S.l. data set using our method
(zoom-in for details). Results are sorted by classifier score, in column rfuajoet;
this explains why most of the errors occur in the last columns. The precésgmn3%.
Right: Examples classified as Sara Sidledrs.1. The precision is 78.3%.

detections folLostandC.S.l.data sets can be seen in Figure 10. We also propagate the predicted
labels of our model to all faces in the same face track throughout an epigumto results of several
episodes can be found at the following webgitep: / / www. yout ube. conf user / Ambi guousNanmi ng.

9. Conclusion

We have presented an effective learning approach for partially labekad where each instance is
tagged with more than one label. Theoretically, under reasonable assusmmtitime data distribu-
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tion, one can show that our algorithm will produce an accurate classfeapplied our method to
two partially-supervised naming tasks: one on stillimages and one on visladV series. We also
compared to several strong competing algorithms on the same data sets amdtdated that our
algorithm achieves superior performance. We attribute the successayitheach to better model-
ing of the mutual exclusion between labels than the simple multi-label approamieoler, unlike
recently published techniques that address similar ambiguously labelddmsmur method does
not rely on heuristics and does not suffer from local optima of horv@omethods.
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Appendix A. CLPL with Feature Selection Using Boosting
We derive Algorithm 1 by taking the second order Taylor expansion ofd$®Ly(g(x),y), with

Y(u) = exp(—u). The updates of the algorithm are similar to a multiclass version of Gentleboost

(Friedman et al., 2000), but keep a combined weigfdr the positive exampl&x;,y;) and weights
Vi a for the negative exampldéx;,a),a ¢ yi.

Algorithm 1 Boosting for CLPL with exponential loss

1: Initialize weights:vi =1 Vi, via=1 Vi,a¢y;

2. fort=1...T do

3 fora=1...Ldo

4 Fit the parameters of each weak classifiex) to minimize the second-order Taylor
approximation of the cost function with respect to #feclassifier:

% > [vi-L(@aeyi)(u(x)/Iyil = 1) +Via- 1(@¢ yi)(u(x) + 1)?] + constant

5: end for
6: Choose the combination of a with lowest residual error.
I£ Updatega(x) = ga(X) + u(x)
8: fori=1...mdo
9: if acy;then
10: Vi = Vi -exp(—u(x))
11: else
12: Via=Via-explu(x))
13: end if
14: end for
15: Normalizev to sum to 1.
16: end for
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Appendix B. Proofs

Proof of Proposition 1 (Partial loss bound via ambiguity degreee). The first inequality comes
from the fact thah(x) ¢ y = h(x) #y. For the second inequality, fix ane X with P(X =x) >0
and defineEp[- | X] as the expectation with respectRQY | X = x).

Ep[La(h(x),Y)|x] = P(h(x) Y | X =X) = P(h(x) # Y,h(X) ¢ Z | X =)
Z PlY=a|X=X)(1-P(h(x) e Z | X=x,Y =a))

a#h(x)

<e by definition

> z P(Y=a|X=X)(1—¢) = (1—¢)Ep[L(h(X),Y)|X].

a#h(x)

Hence,Ep[L(h(X),Y)|X] < 7 EP[LA(h( ),Y)|x] for any x. We conclude by taking expectation
over x.The first inequality |s tlght equality can be achieved, for example, Wr(gix) is deter-
ministic, and a perfect classifirsuch that for alk, h(x) =y. The second inequality is also tight:
for example consider the uniform case with a fixed ambiguity &ize- C and for allx,y,z #y,
P(zez| X=x,Y =y)=C/(L—1). In the proof above (second inequality), the only inequality
becomes an equality. In fact, this also shows that for any (ratiena# can find a number of labels
L, a distributionP and a classifen such that there is equality. |

Proof of Proposition 3 (Partial loss bound via(g,d)). We split up the expectation in two parts:
Ep[L(h(X),Y)] =Ep[L(h(X),Y)[(X,Y) € G](1-98) +Ep[L(h(X),Y)|(X,Y) & G]d
Ep[L(h(X),Y)|[(X,Y) € G](1—8)+d
1
~1-¢
We applied Proposition 1 in the last step. Using a symmetric argument,
Ep[La(h(X),Y)] = Ep[La(h(X),Y)[(X,Y) € G](1—0) 4+ Ep[La(N(X),Y)[(X,Y) & G|3
> Ep[La(h(X),Y)[(X,Y) € G](1-9).

Finally we obtain  Ep[£(h(X),Y)] < 12 Ep[La(h(X),Y)] +8. u

IN

VAN

PILA(N(X), Y)[(X,Y) € G](1-0) + .

Proof of Proposition 4 (Label-specific partial loss bound). Fix x € X such thatP(X =x) > 0
andP(Y = alx) > 0 and definéEp|[- | X, a) as the expectation w.r(Z | X =x,Y = a). We consider
two cases:

a) ifh(x) =a, Ep[La(h(X),Y)]|X a8 =P(h(X)#ah(x)¢y|X=xY=a)=0.

b) if h(x) #a, Ep[La(h(X),Y)|x,a=P(h(x)¢Z|X=xY =a)
=1-Ph(x)eZ|X=xY=a)>1—¢,.

We conclude by taking expectation over

Ep[La(h(X),Y) | Y = &a] = P(h(X) = a]Y = a)Ep[La(h(X),Y) [ h(X) =&Y = &
+P(h(X) #alY = a)Ep[La(N(X),Y) [ (X) # &)Y =&
> 0+P(h(X) #alY =a)-(1-¢a)
= (1-2a)-Ep[L(h(X),Y) [ Y =a]. u
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Proof of Proposition 5 (Partial label consistency). We assumey(x) is found by minimizing
over an appropriately rich sequence of function classes (TewarBanitett, 2005), in our case,
asm— o, G — R- . Hence we can focus on analysis for a fixe@vith P(X = x) > 0), writing
0a=0a(X), and for any set C {1,...,L}, gc = S accYa/|C| @andP. = P(Y = ¢|X = x). We also write
P.=P(ac Y|X =x) for any labela, and use shortharfé o = Py j(a) andgca = Jeu(a)- We have:

Ly(g) = Z Pe- (m(gc) + Z w(_ga)> .

ag¢c

Note that the derivative)/(-) exists and is non-positive and non-decreasing by assumption and
Y'(z) < 0 forz< 0. The assumptions imply thai —co) — o, so assuming thd, < 1, minimizers
are upper-boundedy, < . The case oP,; = 0 leads tag, — —o and it can be ignored without
loss of generality, so we can assume that optigialbounded for fixeg with 0 < P, < 1.

Taking the derivative of the loss with respectgg and setting to 0, we have the first order
optimality conditions:

0Ly(9) Peal'(9ca) )
— = == _(1-P, —0a) =0.
aga L |C| +1 ( a)qJ( ga)
Now suppose (for contradiction) that at a minimizgib € argmay, g+ but P, > B, for some
a € argmax, Py. Subtracting the optimality conditions farb from each other, we get

Peal (9c.a) — PepW (Ocb)

|C|+1 = (1—Pa)l|v'/(—ga)_(1—pb)w/(—gb)

c:a,bé¢c
Sincega < go, Y'(gea) < W (9ep) andy’(—ga) > Y'(—0p). Plugging in on both sides:

(Pc,a — Pc,b)w/(gc,b>
lc|+1

> (P — Pa)W' (—0p).
c:a,b¢c

By dominance assumptioriP.a — Pcp) > 0 and since(P, — Px) < 0 andy/(-) is non-positive,
the only possibility of the inequality holding is th@tf'(—gy,) = O (which impliesg, > 0) and
(Pea—Pep)W(9ca) = 0 for all c. But (P, — Pa) < 0 implies that there exists a subsesuch that
(Pea—Pep) > 0. Sinceb € argmadg, gep < Gb, SOGcp < 0, henca)'(gep) < 0, a contradiction.

WhenP(y | x) is deterministic, leP(y|x) = 1(y = a). Clearly, ife < 1, thena = argmay, Py
andP; = 1> Py,Va # a. Then the minimizeg satisfies either (1g, — o (this happens i§/(-) <0
for finite arguments) whilgy are finite because ¢fl — Py)y(—gx) terms in the objective or (3)
is finite and the proof above applies since dominance hégds= 0 if a ¢ ¢, so we can apply the
theorem.

[ |
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Proof of Proposition 6 (Comparison between partial losses).Let a* = argmaxci1.| ga(X). For
the first inequality, ifa” € y, L§’{(g(x),y) > 0= 2La(g(X),y). Otherwisea* ¢ y:

Ly=9(x),y) = W(maxga(x)) + W(—Gar (X)) = W(Gar (X)) + W(~gar (X))

* — * X
> 2y (9“29”) — 20(0) > 2(gX).Y).
The second inequality comes from the fact that

1
Maxga (X 7 z Oa(X
aey

acy

For the third inequality, we use the convexitysf

l

For the tightness proof: Wheg,(x) = constantovera € y, we have

w(maxga ) <|y,agyga ) Iy\a%w Ja(X

implying LJ#(g(x),y) = Ly(9(x),y) = LE(9(X),y).

As for the first inequality, we provide a sequerg'® that verifies equality in the limit: let
gt (x) = —1/nif acy, g” (x) = O for someb ¢ y, andgt” (x) = —n for all ¢ ¢ y,c # b. Then
provided (0) = 1 and lim,. Y(u) = 0, we have lim o Lq’]‘ax(g(”) (x),y) = 2 and for alln,
La(g™ (x),y) = 1. =

Proof of Proposition 7 (Generalization bounds). The proof uses Definition 11 for Rademacher
and Gaussian complexity, Lemma 12, Theorem 13 and Theorem 14 frattetBand Mendelson
(2002), reproduced below and adapted to our notations for complste¥és apply Theorem 13
with £:=$La, @:= L Ly,

8log(2/n)
m

LEp[La(G(X), V)] < ZEel Ly, (9(X), Y)] + R(@0 ) +

L

- \
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From Lemma 12Rm(@o G) < 1Gm(@o G). From Theorem 14Gm(9o G) < 2\ 551 Gm(Ga)- Let
(vi) bemindependent standard normal random variables.

Gm(Ga) =E

2 2
sumeViga(xi)]S] :mEV[ sup Wa- Z\)f S]
|

Ga€ Ga |wal|<B

—Ev DRUGIIE —EV S vivif(4)TH(x;) | S
2

<2r:13¢E\, [Zvvfx. TH(x) | S erB\/Z v [VA[If(x)]? | S]
:ﬁ IZHf(Xi)HZ-

Putting everything togetheRm(@o G) < 2LG(Ga) < LB, /51[f(x)[|2 and:

2
BplLA(G(X).Y)] < EslLy (90X, V)] + o0 > 1P+ \/W

The Lipschitz constant from 14 can be computed as \—‘;ﬁ using the Lipschitz constant of the
scalar functionpy, which is—e, and the fact thatg(x)||1 < v/L||g(X)||2. [ |

Definition 11 (Definition 2 from Bartlett and Mendelson (2002) ) Let u be a probability distri-
bution on a sefX and suppose thatS {x;}" ; are independent samples sampled from p. ¢ &ie
a class of function& — R. Define the random variables

Rn(¥) = Eq

sup— S oif(x)|S
fef ZI I|]

sup— ZVT \S]

feg M

Gm(F) =Ey

where(ag;) are m independent uniforfi-1}-valued random variables an@;) are m independent
standard normal random variables. Then the Rademacher (respusskmn) complexity o& is

Rm(%) = Es[Rm(¥ )] (resp. Gn(¥) = Es[Fm(F))).

Rm(F) andGm(F) quantify how much can & € ¥ be correlated with a noise sequence of length
m.

Lemma 12 (Lemma 4 from Bartlett and Mendelson (2002) )There are absolute constants ¢ and
C such that for every clas§ and every integer m,

CRu(G) < Gm(G) < ClogmRn(G).
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Theorem 13 (Theorem 8 from Bartlett and Mendelson (2002) )Consider a loss functios : A x
9 — [0,1] and a dominating cost functiap: A x 9 — [0, 1], where A is an arbitrary output space.
Let G be a class of functions mapping frakhto A and let S= {(x;,yi)}["; be independently se-
lected according to the probability measure P. Defees = {(x,y) — @(9(X),y) —@(0,y) : g€ G}.
Then, for any integer m and amye (0, 1), with probability at leastL — n over samples of length m,
Vge G:

8log(2/n)

Ep[L(9(X),Y)] < Es®(g(X),Y) +Rm(®0 G) + —m

Theorem 14 (Theorem 14 from Bartlett and Mendelson (2002) Let A= RL, and let G be a
class of functions mappinj to A. Suppose that there are real-valued clasges.., G| such thatg
is a subset of their direct sum. Assume further thiah x 9" — R is such that, for all ye 9, @(-,y) is

a Lipschitz function (with respect to Euclidean distance on A) with conateutich passes through
the origin and is uniformly bounded. Forq G, define@o g as the mappingx,y) — @g(X),y).
Then, for every integer m and every samptle §x,Vi)}",,

A~ L A~
Gm((PO G) <2\ Zle(Ga),

vyhereém((po G) are the Gaussian averages @b G with respect to the samplgx;,yi)}", and
Gm(Ga) are the Gaussian averages g4 with respect to the sampleq }" ;.

Proof of Proposition 8 (Generalization bounds on true loss).This follows from Propositions 7
and 1. -

Proof of Lemma 9. Let us writez = z(X), y = y(X),y = y(X).
e Letac z. By hypothesisix € By(x) : ga(X) < —3. By definition of By (x),

Ga(X) = Ga(X) +Wa- (f(x) = (X)) < ga(X) + ||Wal|"n < ga(x) +n < %

In fact, we also havea(x) < % by considering two casewf = 0 orw, # 0) and using the
fact that||f(x) — f(X)|| <n.

e Leta¢y. SinceLy(g(x),y) < P(n/2) and each term is nonnegative, we have:

W(—0a0) SW(F) = Gal) < —3.
o Leta=y. Ly(g(x),y) < W(n/2) also implies the following:
W (o ®x) <)
= by X > %
— g = saw
bez
yin _1zZn _n
ST T2 T2
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Finally, Va # y,ga(X) < gy(X) andg classifiesx correctly. [ |

Proof of corollary 10. Leta € z(x), by the empty intersection hypothesis,> 1 :a ¢ z(x;) and

sincey(x) = y(x) anda # y(x) we also havea ¢ y(x;). SinceLy(g(x),y(x) < W(n/2), we have
Oa(X) < —%, as in the previous proof. We can apply Lemma 9 (with- x;). |

References

C. Ambroise, T. Denoeux, G. Govaert, and P. Smets. Learning from are@isp teacher: Proba-
bilistic and evidential approaches. Applied Stochastic Models and Data Analysislume 1,
pages 100-105, 2001.

S. Andrews and T. Hofmann. Multiple instance learning via disjunctivenaroging boosting. In
Advances in Neural Information Processing Syste2084.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

K. Barnard, P. Duygulu, D.A. Forsyth, N. de Freitas, D.M. Blei, and Niokdan. Matching words
and picturesJournal of Machine Learning Researc311107-1135, 2003.

P. L. Bartlettand S. Mendelson. Rademacher and Gaussian complexiik&dRnds and structural
results.Journal of Machine Learning Researc1463—-482, 2002.

T.L. Berg, A.C. Berg, J.Edwards, M.Maire, R.White, Y.W. Teh, E.G. LedrMiller, and D.A.
Forsyth. Names and faces in the news. Pioc. IEEE Conference on Computer Vision and
Pattern Recognitionpages 848—-854, 2004.

M.R. Boutell, J. Luo, X. Shen, and C.M. Brown. Learning multi-label scelassification.Pattern
Recognition37(9):1757-1771, 2004.

P. E. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L. Mercer. maghematics of statistical
machine translation: Parameter estimatiGomputational Linguisticsl9:263—-311, 1993.

O. Chapelle, B. Satikopf, and A. Zien.Semi-Supervised Learninghe MIT Press, 2006.

E. Come, L. Oukhellou, T. Denceux, and P. Aknin. Mixture model estimation with labgls.
International Conference on Soft Methods in Probability and Statis?i@68.

T. Cour, C. Jordan, E. Miltsakaki, and B. Taskar. Movie/script: Alignteerd parsing of video and
text transcription. IrProc. European Conference on Computer Visi2008.

T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from amhgydabeled images. IRroc.
IEEE Conference on Computer Vision and Pattern Recognifl6Q9.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernellbasctor
machinesJournal of Machine Learning Resear@1265-292, 2002.

T.G. Dietterich, R.H. Lathrop, and T. Lozan@#ez. Solving the multiple instance problem with
axis-parallel rectanglegrtificial Intelligence 89(1-2):31-71, 1997.

1534



LEARNING FROM PARTIAL LABELS

P. Duygulu, K. Barnard, J.F.G. de Freitas, and D.A. Forsyth. Objecdgmtion as machine trans-
lation: Learning a lexicon for a fixed image vocabularyPioc. European Conference on Com-
puter Vision pages 97-112, 2002.

M. Everingham, J. Sivic, and A. Zisserman. Hello! My name is... Buffy — @nattic naming of
characters in tv video. IBritish Machine Vision Conferenc2006.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LNBEAR: A library for large
linear classificationJournal of Machine Learning Research11871-1874, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regressioriatistical view of boosting.
Annals of Statistic28:337—-407, 2000.

A.C. Gallagher and T. Chen. Using group prior to identify people in consumages. INCVPR
Workshop on Semantic Learning Applications in Multimeg@iz07.

Y. Grandvalet and Y. Bengio. Learning from partial labels with minimum qaytr€entre interuni-
versitaire de recherche en analyse des organisations (CIRARIDN.

G.B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint aligrim&énomplex images. In
Proc. International Conference on Computer Visi@fd07a.

G.B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeledsfacthe wild: A database for
studying face recognition in unconstrained environments. TechnicarR@p-49, University of
Massachusetts, Amherst, 2007b.

E. Hullermeier and J. Beringer. Learning from ambiguously labeled examji¢elligent Data
Analysis 10(5):419-439, 2006.

R. Jin and Z. Ghahramani. Learning with multiple labels. Aldvances in Neural Information
Processing Systemgages 897-904, 2002.

H. Kuck and N. de Freitas. Learning about individuals from group sitgis In Uncertainty in
Artificial Intelligence 2005.

I. Laptev, M. Marszatek, C. Schmid, and B. Rozenfeld. Learning féalisiman actions from
movies. InProc. IEEE Conference on Computer Vision and Pattern RecognZions.

J. Luo and F. Orabona. Learning from candidate labeling setddWances in Neural Information
Processing System2010.

P. Mermelstein. Distance measures for speech recognition, psycholkagicmstrumentalPattern
Recognition and Artificial Intelligen¢gages 374—-388, 1976.

P.J. Moreno, C. Joerg, J.M.V. Thong, and O. Glickman. A recursiverithgn for the forced align-
ment of very long audio segments. Iternational Conference on Spoken Language Processing
1998.

J.G. Proakis and D.G. Manolakifigital signal processing: principles, algorithms, and applica-
tions Prentice Hall, 1996.

1535



COUR, SAPP AND TASKAR

N. Quadrianto, A.J. Smola, T.S. Caetano, and Q.V. Le. Estimating labels flmehpgeoportions.
Journal of Machine Learning ResearctD:2349-2374, 2009. ISSN 1532-4435.

D. Ramanan, S. Baker, and S. Kakade. Leveraging archival vigiebufilding face datasets. In
Proc. International Conference on Computer Visian07.

R. Rifkin and A. Klautau. In defense of one-vs-all classificatialournal of Machine Learning
Research5:101-141, 2004.

S. Satoh, Y. Nakamura, and T. Kanade. Name-it: Naming and detectirgjifacews videoslEEE
MultiMedia, 6(1):22-35, 1999.

K. Sjolander. An HMM-based system for automatic segmentation and alignmepeetls. In
Fonetik pages 93—-96, 2003.

D. Talkin. A robust algorithm for pitch tracking (RAPT)Speech Coding and Synthegmges
495-518, 1995.

A. Tewari and P. L. Bartlett. On the consistency of multiclass classificationadsthininterna-
tional Conference on Learning Thegmolume 3559, pages 143-157, 2005.

G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label d&tata Mining and Knowledge
Discovery Handboqgkpages 667—-685, 2010.

P. Vannoorenberghe and P. Smets. Partially supervised learning dal &M approach. In
European Conference on Symbolic and Quantitative Approaches to itegsath Uncertainty
pages 956967, 2005.

P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object dete@&ivances in Neural
Information Processing Systenif:1417, 2006.

R. Yan., J. Zhang, J. Yang, and A.G. Hauptmann. A discriminative leafrémgework with pair-
wise constraints for video object classificatidBEE Transactions on Pattern Analysis and Ma-
chine Intelligence28(4):578-593, 2006.

T. Zhang. Statistical analysis of some multi-category large margin classificagtimods.Journal
of Machine Learning Research:1225-1251, 2004. ISSN 1533-7928.

Z.H. Zhou and M.L. Zhang. Multi-instance multi-label learning with applicationceng classifi-
cation. Advances in Neural Information Processing Systerisl609, 2007.

X. Zhu and A.B. Goldberg. Introduction to semi-supervised learn8ymthesis Lectures on Artifi-
cial Intelligence and Machine Learnin@(1):1-130, 2009.

1536



