
Journal of Machine Learning Research 12 (2011) 1501-1536 Submitted 10/10; Revised 2/11; Published 5/11

Learning from Partial Labels

Timothee Cour TIMOTHEE.COUR@GMAIL .COM

NEC Laboratories America
10080 N Wolfe Rd # Sw3350
Cupertino, CA 95014, USA

Benjamin Sapp BENSAPP@CIS.UPENN.EDU

Ben Taskar TASKAR@SEAS.UPENN.EDU

Department of Computer and Information Science
University of Pennsylvania
3330 Walnut Street
Philadelphia, PA 19107, USA

Editor: Yoav Freund

Abstract

We address the problem of partially-labeled multiclass classification, where instead of a single la-
bel per instance, the algorithm is given a candidate set of labels, only one of which is correct. Our
setting is motivated by a common scenario in many image and video collections, where only partial
access to labels is available. The goal is to learn a classifier that can disambiguate the partially-
labeled training instances, and generalize to unseen data.We define an intuitive property of the
data distribution that sharply characterizes the ability to learn in this setting and show that effec-
tive learning is possible even when all the data is only partially labeled. Exploiting this property
of the data, we propose a convex learning formulation based on minimization of a loss function
appropriate for the partial label setting. We analyze the conditions under which our loss function
is asymptotically consistent, as well as its generalization and transductive performance. We apply
our framework to identifying faces culled from web news sources and to naming characters in TV
series and movies; in particular, we annotated and experimented on a very large video data set and
achieve 6% error for character naming on 16 episodes of the TVseriesLost.

Keywords: weakly supervised learning, multiclass classification, convex learning, generalization
bounds, names and faces

1. Introduction

We consider a weakly-supervised multiclass classification setting where each instance is partially
labeled: instead of a single label per instance, the algorithm is given a candidate set of labels, only
one of which is correct. A typical example arises in photographs containingseveral faces per image
and a caption that only specifies who is in the picture but not which name matches which face. In
this setting each face is ambiguously labeled with the set of names extracted from the caption, see
Figure 1 (bottom). Photograph collections with captions have motivated much recent interest in
weakly annotated images and videos (Duygulu et al., 2002; Barnard et al.,2003; Berg et al., 2004;
Gallagher and Chen, 2007). Another motivating example is shown in Figure 1(top), which shows
a setting where we can obtain plentiful but weakly labeled data: videos and screenplays. Using a
screenplay, we can tell who is in a given scene, but for every detectedface in the scene, the person’s

c©2011 Timothee Cour, Ben Sapp and Ben Taskar.



COUR, SAPP AND TASKAR

Figure 1: Two examples of partial labeling scenarios for naming faces.Top: using a screenplay,
we can tell who is in a movie scene, but for every face in the corresponding images, the
person’s identity is ambiguous (green labels).Bottom: images in photograph collections
and webpages are often tagged ambiguously with several potential names inthe caption
or nearby text. In both cases, our goal is to learn a model from ambiguously labeled ex-
amples so as to disambiguate the training labels and also generalize to unseen examples.

identity is ambiguous: each face is partially labeled with the set of characters appearing at some
point in the scene (Satoh et al., 1999; Everingham et al., 2006; Ramanan et al., 2007). The goal in
each case is to learn a person classifier that can not only disambiguate the labels of the training faces,
but also generalize to unseen data. Learning accurate models for face and object recognition from
such imprecisely annotated images and videos can improve the performance ofmany applications,
including image retrieval and video summarization.

This partially labeled setting is situated between fully supervised and fully unsupervised learn-
ing, but is qualitatively different from the semi-supervised setting where both labeled and unlabeled
data are available. There have been several papers that addressedthis partially labeled (also called
ambiguously labeled) problem. Many formulations use the expectation-maximization-like algo-
rithms to estimate the model parameters and “fill-in” the labels (Côme et al., 2008; Ambroise et al.,
2001; Vannoorenberghe and Smets, 2005; Jin and Ghahramani, 2002). Most methods involve ei-
ther non-convex objectives or procedural, iterative reassignment schemes which come without any
guarantees of achieving global optima of the objective or classification accuracy. To the best of our
knowledge, there has not been theoretical analysis of conditions underwhich proposed approaches
are guaranteed to learn accurate classifiers. The contributions of this paper are:

• We show theoretically that effective learning is possible under reasonable distributional as-
sumptions even when all the data is partially labeled, leading to useful upper and lower bounds
on the true error.

• We propose a convex learning formulation based on this analysis by extending general multi-
class loss functions to handle partial labels.
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• We apply our convex learning formulation to the task of identifying faces culled from web
news sources, and to naming characters in TV series. We experiment on alarge data set
consisting of 100 hours of video, and in particular achieve 6% (resp. 13%) error for character
naming across 8 (resp. 32) labels on 16 episodes ofLost, consistently outperforming several
strong baselines.

• We contribute theAnnotated Faces on TV data set, which contains about 3,000 cropped faces
extracted from 8 episodes of the TV showLost (one face per track). Each face is registered
and annotated with a groundtruth label (there are 40 different characters). We also include a
subset of those faces with the partial label set automatically extracted fromthe screenplay.

• We provide theConvex Learning from Partial Labels Toolbox, an open-source matlab and
C++ implementation of our approach as well as the baseline approach discussed in the paper.
The code includes scripts to illustrate the process on Faces in the Wild Data Set(Huang et al.,
2007a) and our Annotated Faces on TV data set.

The paper is organized as follows.1 We review related work and relevant learning scenarios
in Section 2. We pose the partially labeled learning problem as minimization of an ambiguous
loss in Section 3, and establish upper and lower bounds between the (unobserved) true loss and the
(observed) ambiguous loss in terms of a critical distributional property we call ambiguity degree. We
propose the novelConvex Learning from Partial Labels(CLPL) formulation in Section 4, and show
it offers a tighter approximation to the ambiguous loss, compared to a straightforward formulation.
We derive generalization bounds for the inductive setting, and in Section 5also provide bounds for
the transductive setting. In addition, we provide reasonable sufficient conditions that will guarantee
a consistent labeling in a simple case. We show how to solve proposed CLPL optimization problems
by reducing them to more standard supervised optimization problems in Section 6, and provide
several concrete algorithms that can be adapted to our setting, such as support vector machines and
boosting. We then proceed to a series of controlled experiments in Section 7, comparing CLPL to
several baselines on different data sets. We also apply our frameworkto a naming task in TV series,
where screenplay and closed captions provide ambiguous labels. The code and data used in the
paper can be found at:http://www.vision.grasp.upenn.edu/video.

2. Related Work

We review here the related work for learning under several forms of weak supervision, as well
concrete applications.

2.1 Weakly Supervised Learning

To put the partially-labeled learning problem into perspective, it is usefulto lay out several related
learning scenarios (see Figure 2), ranging from fully supervised (supervised and multi-label learn-
ing), to weakly-supervised (semi-supervised, multi-instance, partially-labeled), to unsupervised.

• In semi-supervisedlearning (Zhu and Goldberg, 2009; Chapelle et al., 2006), the learner has
access to a set of labeled examples as well as a set of unlabeled examples.

1. A preliminary version of this work appeared in Cour et al. (2009). Sections 4.2 to 6 present new material, and
Sections 7 and 8 contain additional experiments, data sets and comparisons.
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Figure 2: Range of supervision in classification. Training may be:supervised(a label is given for
each instance),unsupervised(no label is given for any instance),semi-supervised(la-
bels are given for some instances),multi-label (each instance can have multiple labels),
multi-instance (a label is given for a group of instances where at least one instance inthe
group has the label), orpartially-labeled (for each instance, several possible labels are
given, only one of which is correct).

• In multi-label learning (Boutell et al., 2004; Tsoumakas et al., 2010), each example is as-
signed multiple labels, all of which can be true.

• In multi-instance learning (Dietterich et al., 1997; Andrews and Hofmann, 2004; Viola et al.,
2006), examples are not individually labeled but grouped into sets which either contain at least
one positive example, or only negative examples. A special case considers the easier scenario
wherelabel proportions in each bag are known (Kuck and de Freitas, 2005), allowing one to
compute convergence bounds on the estimation error of the correct labels(Quadrianto et al.,
2009).

• Finally, in our setting ofpartially labeled learning, also called ambiguously labeled learning,
each example again is supplied with multiple labels,only one of which is correct.A formal
definition is given in Section 3.

Clearly, these settings can be combined, for example with multi-instance multi-labellearning
(MIML) (Zhou and Zhang, 2007), where training instances are associated with not only multiple
instances but also multiple labels. Another combination of interest appears in arecent paper build-
ing on our previous work (Cour et al., 2009) that addresses the case where sets of instances are
ambiguously labeled with candidate labeling sets (Luo and Orabona, 2010).

2.2 Learning From Partially-labeled or Ambiguous Data

There have been several papers that addressed the ambiguous labelproblem. A number of these use
the expectation-maximization algorithm (EM) to estimate the model parameters and thetrue label
(Côme et al., 2008; Ambroise et al., 2001; Vannoorenberghe and Smets, 2005; Jin and Ghahramani,
2002). For example Jin and Ghahramani (2002) use an EM-like algorithm with a discriminative log-
linear model to disambiguate correct labels from incorrect ones. Grandvalet and Bengio (2004) add
a minimum entropy term to the set of possible label distributions, with a non-convex objective as
in the case of (Jin and Ghahramani, 2002). Hullermeier and Beringer (2006) propose several non-
parametric, instance-based algorithms for ambiguous learning based on greedy heuristics. These
papers only report results on synthetically-created ambiguous labels fordata sets such as the UCI
repository. Also, the algorithms proposed rely on iterative non-convex learning.
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2.3 Images and Captions

A related multi-class setting is common for images with captions: for example, a photograph of a
beach with a palm tree and a boat, where object locations are not specified. Duygulu et al. (2002)
and Barnard et al. (2003) show that such partial supervision can be sufficient to learn to identify the
object locations. The key observation is that while text and images are separately ambiguous, jointly
they complement each other. The text, for instance, does not mention obvious appearance properties,
but the frequent co-occurrence of a word with a visual element could be an indication of association
between the word and a region in the image. Of course, words in the text without correspondences
in the image and parts of the image not described in the text are virtually inevitable. The problem
of naming image regions can be posed as translation from one language to another. Barnard et al.
(2003) address it using a multi-modal extension to mixture of latent Dirichlet allocations.

2.4 Names and Faces

The specific problem of naming faces in images and videos using text sources has been addressed
in several works (Satoh et al., 1999; Berg et al., 2004; Gallagher and Chen, 2007; Everingham et al.,
2006). There is a vast literature on fully supervised face recognition, which is out of the scope of this
paper. Approaches relevant to ours include Berg et al. (2004), which aims at clustering face images
obtained by detecting faces from images with captions. Since the name of the depicted people
typically appears in the caption, the resulting set of images is ambiguously labeled if more than
one name appears in the caption. Moreover, in some cases the correct name may not be included
in the set of potential labels for a face. The problem can be solved by using unambiguous images
to estimate discriminant coordinates for the entire data set. The images are clustered in this space
and the process is iterated. Gallagher and Chen (2007) address the similarproblem of retrieval from
consumer photo collections, in which several people appear in each image which is labeled with
their names. Instead of estimating a prior probability for each individual, the algorithm estimates a
prior for groups using the ambiguous labels. Unlike Berg et al. (2004), the method of Gallagher and
Chen (2007) does not handle erroneous names in the captions.

2.5 People in Video

In work on video, a wide range of cues has been used to automatically obtainsupervised data,
including: captions or transcripts (Everingham et al., 2006; Cour et al., 2008; Laptev et al., 2008),
sound (Satoh et al., 1999) to obtain the transcript, or clustering based on clothing, face and hair
color within scenes to group instances (Ramanan et al., 2007). Most of themethods involve either
procedural, iterative reassignment schemes or non-convex optimization.

3. Formulation

In the standard supervised multiclass setting, we have labeled examplesS= {(xi ,yi)
m
i=1} from an

unknown distributionP(X,Y) whereX ∈ X is the input andY ∈ {1, . . . ,L} is the class label. In the
partially supervised setting we investigate, instead of an unambiguous single label per instance we
have a set of labels, one of which is the correct label for the instance. We will denoteyi = {yi}∪
zi as the ambiguity set actually observed by the learning algorithm, wherezi ⊆ {1, . . . ,L} \ {yi}
is a set of additional labels, andyi the latent groundtruth label which we would like to recover.
Throughout the paper, we will use boldface to denote sets and uppercase to denote random variables
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Figure 3: Left : Co-occurrence graph of the top characters across 16 episodes ofLost. Edge thick-
ness corresponds to the co-occurrence frequency of characters. Right: The model of the
data generation process:(X,Y) are observed,(Y,Z) are hidden, withY =Y∪Z.

with corresponding lowercase values of random variables. We suppose X,Y,Z are distributed
according to an (unknown) distributionP(X,Y,Z) = P(X)P(Y | X)P(Z | X,Y) (see Figure 3, right),
of which we only observe samples of the formS= {(xi ,yi)

m
i=1}= {(xi ,{yi}∪zi)

m
i=1}. (In caseX is

continuous,P(X) is a density with respect to some underlying measureµ onX , but we will simply
refer to the jointP(X,Y,Z) as a distribution.) With the above definitions,yi ∈ yi ,zi ⊂ yi ,yi /∈ zi and
Y ∈ Y,Z ⊂ Y,Y /∈ Z.

Clearly, our setup generalizes the standard semi-supervised setting where some examples are
labeled and some are unlabeled: an example is labeled when the corresponding ambiguity setyi is a
singleton, and unlabeled whenyi includes all the labels. However, we do not explicitly consider the
semi-supervised setting this paper, and our analysis below provides essentially vacuous bounds for
the semi-supervised case. Instead, we consider the middle-ground, where all examples are partially
labeled as described in our motivating examples and analyze assumptions under which learning can
be guaranteed to succeed.

In order to learn from ambiguous data, we must make some assumptions aboutthe distribution
P(Z | X,Y). Consider a very simple ambiguity pattern that makes accurate learning impossible:
L= 3, |zi |= 1 and label 1 is present in every setyi , for all i. Then we cannot distinguish between the
case where 1 is the true label of every example, and the case where it is not a label of any example.
More generally, if two labels always co-occur when present iny, we cannot tell them apart. In order
to disallow this case, below we will make an assumption on the distributionP(Z | X,Y) that ensures
some diversity in the ambiguity set. This assumption is often satisfied in practice. For example,
consider our initial motivation of naming characters in TV shows, where the ambiguity set for any
given detected face in a scene is given by the set of characters occurring at some point in that scene.
In Figure 3 (left), we show the co-occurrence graph of characters ina season of the TV showLost,

1506



LEARNING FROM PARTIAL LABELS

Symbol Meaning
x,X observed input value/variable:x,X ∈ X

y,Y hidden label value/variable:y,Y ∈ {1, . . . ,L}
z,Z hidden additional label set/variable:z,Z ⊆ {1, . . . ,L}
y,Y observed label set/variable:y = {y}∪z,Y = {Y}∪Z

h(x),h(X) multiclass classifier mappingh : X 7→ {1, . . . ,L}
L(h(x),y),LA(h(x),y) standard and partial 0/1 loss

Table 1: Summary of notation used.

where the thickness of the edges corresponds to the number of times characters share a scene. This
suggests that for most characters, ambiguity sets are diverse and we can expect that the ambiguity
degree is small. A more quantitative diagram will be given in Figure 11 (left).

Many formulations of fully-supervised multiclass learning have been proposed based on mini-
mization of convex upper bounds on risk, usually, the expected 0/1 loss (Zhang, 2004):

0/1 loss: L(h(x),y) = 1(h(x) 6= y),

whereh(x) : X 7→ {1, . . . ,L} is a multiclass classifier.
We cannot evaluate the 0/1 loss using our partially labeled training data. We define a surro-

gate loss which we can evaluate, and we call ambiguous or partial 0/1 loss (where A stands for
ambiguous):

Partial 0/1 loss: LA(h(x),y) = 1(h(x) /∈ y).

3.1 Connection Between Partial and Standard0/1 Losses

An obvious observation is that the partial loss is an underestimate of the true loss. However, in
the ambiguous learning setting we would like to minimize the true 0/1 loss, with access only to
the partial loss. Therefore we need a way to upper-bound the 0/1 loss using the partial loss. We
first introduce a measure of hardness of learning under ambiguous supervision, which we define as
ambiguity degreeε of a distributionP(X,Y,Z):

Ambiguity degree: ε = sup
x,y,z:P(x,y)>0,z∈{1,...,L}

P(z∈ Z | X = x,Y = y). (1)

In words,ε corresponds to the maximum probability of an extra labelz co-occurring with a
true labely, over all labels and inputs. Let us consider several extreme cases: Whenε = 0, Z = /0
with probability one, and we are back to the standard supervised learning case, with no ambiguity.
Whenε = 1, some extra label always co-occurs with a true labely on an examplex and we cannot
tell them apart: no learning is possible for this example. For a fixed ambiguity set size C (i.e.,
P(|Z| = C) = 1), the smallest possible ambiguity degree isε = C/(L− 1), achieved for the case
whereP(Z | X,Y) is uniform over subsets of sizeC, for which we haveP(z∈ Z | X,Y) =C/(L−1)
for all z∈ {1, . . . ,L}\{y}. Intuitively, the best case scenario for ambiguous learning corresponds to
a distribution with high conditional entropy forP(Z | X,Y).

The following proposition shows we can bound the (unobserved) 0/1 loss by the (observed)
partial loss, allowing us to approximately minimize the standard loss with access only to the partial
one. The tightness of the approximation directly relates to the ambiguity degree.
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Proposition 1 (Partial loss bound via ambiguity degreeε) For any classifier h and distribution
P(X,Y,Z), with Y = X∪Z and ambiguity degreeε:

EP[LA(h(X),Y)]≤ EP[L(h(X),Y)]≤ 1
1− ε

EP[LA(h(X),Y)],

with the convention1/0= +∞. These bounds are tight, and for the second one, for any (rational)
ε, we can find a number of labels L, a distribution P and classifier h such thatequality holds.

Proof. All proofs appear in Appendix B.

3.2 Robustness to Outliers

One potential issue with Proposition 1 is that unlikely (outlier) pairsx,y (with vanishingP(x,y))
might forceε to be close to 1, making the bound very loose. We show we can refine the notion of
ambiguity degreeε by excluding such pairs.

Definition 2 (ε,δ)-ambiguous distribution. A distribution P(X,Y,Z) is (ε,δ)-ambiguous if there
exists a subset G of the support of P(X,Y), G⊆ X ×{1, . . . ,L} with probability mass at least1−δ,
that is,

∫
(x,y)∈GP(X = x,Y= y)dµ(x,y)≥ 1−δ, integrated with respect to the appropriate underlying

measure µ onX ×{1, . . . ,L}, for which

sup
(x,y)∈G,z∈{1,...,L}

P(z∈ Z | X = x,Y = y)≤ ε.

Note that in the extreme caseε = 0 corresponds to standard semi-supervised learning, where
1− δ-proportion of examples are unambiguously labeled, andδ are (potentially) fully unlabeled.
Even though we can accommodate it, semi-supervised learning is not our focus in this paper and
our bounds are not well suited for this case.

This definition allows us to bound the 0/1 loss even in the case when some unlikely set of
pairsx,y with probability≤ δ would make the ambiguity degree large. Suppose we mix an initial
distribution with small ambiguity degree, with an outlier distribution with large overallambiguity
degree. The following proposition shows that the bound degrades only by an additive amount, which
can be interpreted as a form of robustness to outliers.

Proposition 3 (Partial loss bound via(ε,δ) ) For any classifier h and(ε,δ)-ambiguous P(Z |X,Y),

EP[L(h(X),Y)]≤ 1
1− ε

EP[LA(h(X),Y)]+δ.

A visualization of the bounds in Proposition 1 and Proposition 3 is shown in Figure 4.

3.3 Label-specific Recall Bounds

In the types of data from video experiments, we observe that certain subsets of labels are harder to
disambiguate than others. We can further tighten our bounds between ambiguous loss and standard
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Figure 4: Feasible region for expected ambiguous and true loss, forε = 0.2,δ = 0.05.

0/1 loss if we consider label-specific information. We define thelabel-specific ambiguity degreeεa

of a distribution (witha∈ {1, . . . ,L}) as:

εa = sup
x,z:P(X=x,Y=a)>0;z∈{1,...,L}

P(z∈ Z | X = x,Y = a).

We can show a label-specific analog of Proposition 1:

Proposition 4 (Label-specific partial loss bound)For any classifier h and distribution P(X,Y,Z)
with label-specific ambiguity degreeεa ,

EP[L(h(X),Y) |Y = a]≤ 1
1− εa

EP[LA(h(X),Y) |Y = a],

where we see thatεa bounds per-class recall.
These bounds give a strong connection between ambiguous loss and real loss whenε is small.

This assumption allows us to approximately minimize the expected real loss by minimizing(an
upper bound on) the ambiguous loss, as we propose in the following section.

4. A Convex Learning Formulation

We have not assumed any specific form for our classifierh(x) above. We now focus on a particular
family of classifiers, which assigns a scorega(x) to each labela for a given inputx and select the
highest scoring label:

h(x) = arg max
a∈1..L

ga(x).

We assume that ties are broken arbitrarily, for example, by selecting the label with smallest indexa.
We define the vectorg(x) = [g1(x) . . .gL(x)]⊤, with each componentga : X 7→ R in a function class
G . Below, we use a multi-linear function classG by assuming a feature mappingf(x) : X 7→ R

d

from inputs tod real-valued features and letga(x) = wa · f(x), wherewa ∈R
d is a weight vector for

each class, bounded by some norm:||wa||p ≤ B for p= 1,2.
We build our learning formulation on a simple and general multiclass scheme, frequently used

for the fully supervised setting (Crammer and Singer, 2002; Rifkin and Klautau, 2004; Zhang,
2004; Tewari and Bartlett, 2005), that combines convex binary lossesψ(·) : R 7→ R+ on individual
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components ofg to create a multiclass loss. For example, we can use hinge, exponential or logistic
loss. In particular, we assume a type of one-against-all scheme for the supervised case:

Lψ(g(x),y) = ψ(gy(x))+ ∑
a6=y

ψ(−ga(x)).

A classifierhg(x) is selected by minimizing the empirical lossLψ on the sampleS= {xi ,yi}m
i=1

(called empiricalψ-risk) over the function classG :

inf
g∈G

ES[Lψ(g(X),Y)] = inf
g∈G

1
m

m

∑
i=1

Lψ(g(xi),yi).

For the fully supervised case, under appropriate assumptions, this formof the multiclass loss
is infinite-sample consistent. This means that a minimizer ˆg of ψ-risk achieves optimal 0/1 risk
infgES[Lψ(g(X),Y)] = infgEP[L(g(X),Y)] as the number of samplesm grows to infinity, provided
that the function classG grows appropriately fast withm to be able to approximate any function
fromX toR andψ(u) satisfies the following conditions:(1) ψ(u) is convex,(2) bounded below,(3)
differentiable and(4) ψ(u) < ψ(−u) whenu> 0 (Theorem 9 in Zhang (2004)). These conditions
are satisfied, for example, for the exponential, logistic and squared hingeloss max(0,1−u)2. Below,
we construct a loss function for the partially labeled case and consider when the proposed loss is
consistent.

4.1 Convex Loss for Partial Labels

In the partially labeled setting, instead of an unambiguous single labely per instance we have a set
of labelsY, one of which is the correct label for the instance. We propose the following loss, which
we call ourConvex Loss for Partial Labels(CLPL):

Lψ(g(x),y) = ψ

(

1
|y| ∑

a∈y
ga(x)

)

+ ∑
a/∈y

ψ(−ga(x)). (2)

Note that ify is a singleton, the CLPL function reduces to the regular multiclass loss. Otherwise,
CLPL will drive up theaverageof the scores of the labels iny. If the score of the correct label is
large enough, the other labels in the set do not need to be positive. This tendency alone does not
guarantee that the correct label has thehighestscore. However, we show in Proposition 6 that
Lψ(g(x),y) upperboundsLA(g(x),y) wheneverψ(·) is an upper bound on the 0/1 loss.

Of course, minimizing an upperbound on the loss does not always lead to sensible algorithms.
We show next that our loss function is consistent under certain assumptions and offers a tighter
upperbound to the ambiguous loss compared to a more straightforward multi-label approach.

4.2 Consistency for Partial Labels

We derive conditions under which the minimizer of the CLPL in Equation 2 with partial labels
achieves optimal 0/1 risk: infg∈G ES[Lψ(g(X),Y)] = infg∈G EP[L(g(X),Y)] in the limit of infinite
data and arbitrarily richG . Not surprisingly, our loss function is not consistent without making some
additional assumptions onP(Y | X) beyond the assumptions for the fully supervised case. Note that
the Bayes optimal classifier for 0/1 loss satisfies the conditionh(x)∈ argmaxaP(Y = a |X = x), and

1510



LEARNING FROM PARTIAL LABELS

may not be unique. First, we require that argmaxaP(Y = a | X = x) = argmaxaP(a∈ Y | X = x),
since otherwise argmaxaP(Y= a |X = x) cannot be determined by any algorithm from partial labels
Y without additional information even with an infinite amount of data. Second, werequire a simple
dominance condition as detailed below and provide a counterexample when thiscondition does not
hold. The dominance relation defined formally below states that whena is the most (or one of the
most) likely label givenx according toP(Y | X = x) andb is not, c∪ {a} has higher (or equal)
probability thanc∪{b} for any set of other labelsc.

Proposition 5 (Partial label consistency)Suppose the following conditions hold:

• ψ(·) is differentiable, convex, lower-bounded and non-increasing, withψ′(0)< 0.

• When P(X = x)> 0, argmaxa′ P(Y = a′ | X = x) = argmaxa′ P(a′ ∈ Y | X = x).

• The following dominance relation holds:∀a∈ argmaxa′ P(a
′ ∈ Y | X = x), ∀b 6∈ argmaxa′

P(a′ ∈ Y | X = x), ∀c⊂ {1, . . . ,L}\{a,b}:

P(Y = c∪{a} | X = x)≥ P(Y = c∪{b} | X = x).

ThenLψ(g(x),y) is infinite-sample consistent:

inf
g∈G

ES[Lψ(g(X),Y)] = inf
g∈G

EP[L(g(X),Y)],

as |S|= m→ ∞ andG → R
L . As a corollary, consistency is implied when ambiguity degreeε < 1

and P(Y | X) is deterministic, that is, P(Y | X) = 1(Y = h(X)) for some h(·).

If the dominance relation does not hold, we can find counter-examples where consistency fails.
Consider a distribution with a singlex with P(x) > 0, and letL = 4, P(|Y| = 2 | X = x) = 1, ψ be
the square-hinge loss, andP(Y | X = x) be such that:

a
250·Pab 1 2 3 4

b

1 0 29 44 0
2 29 0 17 26
3 44 17 0 9
4 0 26 9 0

250·Pa 73 72 70 35

Above, the abbreviations arePab=P(Y = {a,b} |X = x) andPa =∑bPab, and the entries that do not
satisfy the dominance relation are in bold. We can explicitly compute the minimizer ofLψ, which
is g = (1

2Pab+diag(2− 3
2Pa))

−1(3Pa−2) ≈ −
[

0.6572 0.6571 0.6736 0.8568
]
. It satisifes

argmaxaga = 2 but argmaxa ∑bPab = 1.

4.3 Comparison to Other Loss Functions

The “naive” partial loss, proposed by Jin and Ghahramani (2002), treats each example as having
multiple correct labels, which implies the following loss function

Lnaive
ψ (g(x),y) =

1
|y| ∑

a∈y
ψ(ga(x))+ ∑

a/∈y

ψ(−ga(x)). (3)
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Figure 5: Our loss function in Equation 2 provides a tighter convex upperbound than the naive loss
Equation 3 on the non-convex max-loss Equation 4. (Left ) We show the square hinge
ψ (blue) and a chord (red) touching two pointsg1,g2. The horizontal lines correspond
to our lossψ(1

2(g1+ g2)) Equation 2, the max-lossψ(max(g1,g2)), and the naive loss
1
2(ψ(g1)+ψ(g2)) (ignoring negative terms and assumingy = {1,2}). (Middle ) Corre-
sponding losses as we varyg1 ∈ [−2,2] (with g2 = 0). (Right) Same, withg2 =−g1.

One reason we expect our loss function to outperform the naive approach is that we obtain a tighter
convex upper bound onLA. Let us also define

Lmax
ψ (g(x),y) = ψ

(

max
a∈y

ga(x)

)

+ ∑
a/∈y

ψ(−ga(x)), (4)

which is not convex, but is in some sense closer to the desired true loss. The following inequalities
are verified for common lossesψ such as square hinge loss, exponential loss, and log loss with
proper scaling:

Proposition 6 (Comparison between partial losses)Under the usual conditions thatψ is a con-
vex, decreasing upper bound of the step function, the following inequalities hold:

2LA ≤ Lmax
ψ ≤ Lψ ≤ Lnaive

ψ .

The2nd and3rd bounds are tight, and the first one is tight providedψ(0) = 1 and lim+∞ ψ = 0.

This shows that our CLPLLψ is a tighter approximation toLA thanLnaive
ψ , as illustrated in

Figure 5. To gain additional intuition as to why CLPL is better than the naive lossEquation 3: for
an inputx with ambiguous label set(a,b), CLPL only encourages theaverageof ga(x) andgb(x)
to be large, allowing the correct score to be positive and the extraneous score to be negative (e.g.,
ga(x) = 2,gb(x) =−1). In contrast, the naive model encourages bothga(x) andgb(x) to be large.

4.4 Generalization Bounds

To derive concrete generalization bounds on multiclass error for CLPL we define our function class
for g. We assume a feature mappingf(x) : X 7→ R

d from inputs tod real-valued features and let
ga(x) =wa · f(x), wherewa ∈R

d is a weight vector for each class, bounded byL2 norm : ||wa||2 ≤B.
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We useψ(u) = max(0,1−u)p (for example hinge loss withp= 1, squared hinge loss withp= 2).
The corresponding margin-based loss is defined via a truncated, rescaled version ofψ:

ψγ(u) =







1 if u≤ 0,

(1−u/γ)p if 0 < u≤ γ,

0 if u> γ.

Proposition 7 (Generalization bound) For any integer m and anyη ∈ (0,1), with probability at
least1−η over samples S= {(xi ,yi)}m

i=1, for every g inG :

EP[LA(g(X),Y)]≤ ES[Lψγ(g(X),Y)]+
4pBL5/2

cγ

√

ES[||f(X)||2]
m

+L

√

8log(2/η)
m

.

where c is an absolute constant from Lemma 12 in the appendix,ES is the sample average and L is
the number of labels.

The proof in the appendix uses definition 11 for Rademacher and Gaussian complexity, Lemma
12, Theorem 13 and Theorem 14 from Bartlett and Mendelson (2002),reproduced in the appendix
and adapted to our notations for completeness. Using Proposition 7 and Proposition 1, we can derive
the following bounds on the true expected 0/1 lossEP[L(g(X),Y)] from purely ambiguous data:

Proposition 8 (Generalization bounds on true loss)For any distributionε-ambiguous distribu-
tion P, integer m andη ∈ (0,1), with probability at least1−η over samples S= {(xi ,yi)}m

i=1, for
every g∈ G :

EP[L(g(X),Y)]≤ 1
1− ε



ES[Lψγ(g(X),Y)]+
4pBL5/2

cγ

√

ES[||f(X)||2]
m

+L

√

8log 2
η

m



 .

5. Transductive Analysis

We now turn to the analysis of ourConvex Loss for Partial Labels(CLPL) in the transductive setting.
We show guarantees on disambiguating the labels of instances under fairly reasonable assumptions.

Example 1 Consider a data set S of two points, x,x′, with label sets{1,2},{1,3}, respectively and
suppose that the total number of labels is 3. The objective function is given by:

ψ(
1
2
(g1(x)+g2(x)))+ψ(−g3(x))+ψ(

1
2
(g1(x

′)+g3(x
′)))+ψ(−g2(x

′)).

Suppose the correct labels are(1,1). It is clear that without further assumptions about x and x′

we cannot assume that the minimizer of the loss above will predict the rightlabel. However, iff(x)
and f(x′) are close, it should be intuitively clear that we should be able to deduce the label of the
two examples is1.

A natural question is under what conditions on the data will CLPL produce alabeling that is
consistent with groundtruth. We provide an analysis under several assumptions.
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5.1 Definitions

In the remainder of this section, we denotey(x) (resp. y(x)) as the true label (resp. ambiguous
label set) of somex ∈ S, andz(x) = y(x)\{y(x)}. || · || denotes an arbitrary norm, with|| · ||∗ its
dual norm. As above,ψ denotes a decreasing upper bound on the step function andg a classifier
satisfying:∀a, ||wa||∗ ≤ 1 (we can easily generalize the remaining propositions to the case where
ga is 1-Lipschitz andf is the identity). Forx∈ Sandη > 0, we defineBη(x) as the set of neighbors
of x that have the same label asx:

Bη(x) = {x′ ∈ S\{x} : || f (x′)− f (x)||< η,y(x′) = y(x)}.

Lemma 9 Let x∈ S. If Lψ(g(x),y(x)) ≤ ψ(η/2) and ∀a ∈ z(x),∃x′ ∈ Bη(x) such that ga(x′) ≤
−η/2, then g predicts the correct label for x.

In other words,g predicts the correct label forx when its loss is sufficiently small, and for each of
its ambiguous labelsa, we can find a neighbor with same label whose scorega(x′) is small enough.
Note that this does not make any assumption on thenearestneighbors ofx.

Corollary 10 Let x ∈ S. Suppose∃q ≥ 0, x1...xq ∈ Bη(x) such that ∩i=0..qz(xi) = /0,
maxi=0..qLψ(g(xi),y(xi))≤ ψ(η/2) (with x0 := x). Then g predicts the correct label for x.

In other words,g predicts the correct label forx if we can find a set of neighbors of the same label
with small enough loss, and without any common extra label. This simple condition often arises in
our experiments.

6. Algorithms

Our formulation is quite flexible and we can derive many alternative algorithms depending on the
choice of the binary lossψ(u), the regularization, and the optimization method. We can minimize
Equation 2 using off-the-shelf binary classification solvers. To do this, we rewrite the two types of
terms in Equation 2 as linear combinations ofm·L feature vectors. We stack the parameters and
features into one vector as follows below, so thatga(x) = wa · f(x) = w · f(x,a):

w =





w1

. . .
wL



 ; f(x,a) =





1(a= 1)f(x)
. . .

1(a= L)f(x)



 .

We also definef(x,y) to be the average feature vector of the labels in the sety:

f(x,y) =
1
|y| ∑

a∈y
f(x,a).

With these definitions, we have:

Lψ(g(x),y) = ψ(w · f(x,y))+ ∑
a/∈y

ψ(−w · f(x,a)).

Then to use a binary classification method to solve CLPL optimization, we simply transform the
m partially labelled training examplesS= {xi ,yi}m

i=1 into m positive examplesS+ = {f(xi ,yi)}m
i=1
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and∑i L−|yi | negative examplesS− = {f(xi ,a)}m
i=1,a/∈yi

. Note that the increase in dimension of the
features by a factor ofL does not significantly affect the running time of most methods since the
vectors are sparse. We use the off-the-shelf implementation of binary SVMwith squared hinge (Fan
et al., 2008) in most of our experiments, where the objective is:

min
w

1
2
||w||22+C∑

i

max(0,1−w · f(xi ,yi))
2+C ∑

i,a/∈yi

max(0,1+w · f(xi ,a))
2.

Using hinge loss andL1 regularization lead to a linear programming formulation, and usingL1

with exponential loss leads naturally to a boosting algorithm. We present (andexperiment with)
a boosting variant of the algorithm, allowing efficient feature selection, as described in Appendix
A. We can also consider the case where the regularization isL2 andf(x) : X 7→ R

d is a nonlinear
mapping to a high, possibly infinite dimensional space using kernels. In that case, it is simple to
show that

w = ∑
i

αi f(xi ,yi)− ∑
i,a/∈yi

αi,af(xi ,a),

for some set of non-negativeα’s, whereαi corresponds to the positive examplef(xi ,yi), andαi,a

corresponds to the negative examplef(xi ,a), for a /∈ yi . Letting K(x,x′) = f(x) · f(x′) be the kernel
function, note thatf(x,a) · f(x′,b) = 1(a= b)K(x,x′). Hence, we have:

w · f(x,b) = ∑
i,a∈yi

αi

|yi |
1(a= b)K(xi ,x)− ∑

i,a/∈yi

αi,a1(a= b)K(xi ,x).

This transformation allows us to use kernels with standard off-the-shelf binary SVM implementa-
tions.

7. Controlled Partial Labeling Experiments

We first perform a series of controlled experiments to analyze ourConvex Learning from Partial La-
bels(CLPL) framework on several data sets, including standard benchmarks from theUCI repos-
itory (Asuncion and Newman, 2007), aspeaker identification task from audio extracted from
movies, and aface naming taskfrom Labeled Faces in the Wild (Huang et al., 2007b). In Section
8 we also consider the challenging task ofnaming characters in TV showsthroughout an entire
season. In each case the goal is to correctly label faces/speech segments/instances from examples
that have multiple potential labels (transductive case), as well as learn a model that can generalize
to other unlabeled examples (inductive case).

We analyze the effect on learning of the following factors: distribution of ambiguous labels,
size of ambiguous bags, proportion of instances which contain an ambiguousbag, entropy of the
ambiguity, distribution of true labels and number of distinct labels. We compare our CLPL approach
against a number ofbaselines, including a generative model, a discriminative maximum-entropy
model, a naive model, two K-nearest neighbor models, as well as models thatignore the ambiguous
bags. We also propose and compare several variations on our cost function. We conclude with
a comparative summary, analyzing our approach and the baselines according to several criteria:
accuracy, applicability, space/time complexity and running time.
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7.1 Baselines

In the experiments, we compare CLPL with the following baselines.

7.1.1 CHANCE BASELINE

We define thechancebaseline as randomly guessing between the possible ambiguous labels only.
Defining the (empirical) average ambiguous size to beES[|y|] = 1

m ∑m
i=1 |yi |, then the expected error

from thechancebaseline is given by errorchance= 1− 1
ES[|y|] .

7.1.2 NAIVE MODEL

We report results on an un-normalized version of the naive model introduced in Equation 3:
∑a∈y ψ(ga(x)) +∑a/∈y ψ(−ga(x)), but both normalized and un-normalized versions produce very
similar results. After training, we predict the label with the highest score (in the transductive set-
ting): ŷ= argmaxa∈y ga(x).

7.1.3 IBM MODEL 1

This generative model was originally proposed in Brown et al. (1993) for machine translation, but
we can adapt it to the ambiguous label case. In our setting, the conditional probability of observ-
ing examplex ∈ R

d given that its label isa is Gaussian:x ∼ N(µa,Σa). We use the expectation-
maximization (EM) algorithm to learn the parameters of the Gaussians (meanµa and diagonal co-
variance matrixΣa = diag(σa) for each label).

7.1.4 DISCRIMINATIVE EM

We compare with the model proposed in Jin and Ghahramani (2002), which isa discriminative
model with an EM procedure adapted for the ambiguous label setting. The authors minimize the
KL divergence between a maximum entropy modelP (estimated in the M-step) and a distribution
over ambiguous labelŝP (estimated in the E-step):

J(θ, P̂) = ∑
i

∑
a∈y

P̂(a | xi) log

(
P̂(a | xi)

P(a | xi ,θ)

)

.

7.1.5 K-NEARESTNEIGHBOR

Following Hullermeier and Beringer (2006), we adapt the k-Nearest Neighbor Classifier to the
ambiguous label setting as follows:

knn(x) = argmax
a∈y

k

∑
i=1

wi1(a∈ yi), (5)

wherexi is theith nearest-neighbor ofx using Euclidean distance, andwi are a set of weights. We
use two kNN baselines:kNN assumes uniform weightswi = 1 (model used in Hullermeier and
Beringer, 2006), andweighted kNN uses linearly decreasing weightswi = k− i +1. We usek= 5
and break ties randomly as in Hullermeier and Beringer (2006).
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7.1.6 SUPERVISEDMODELS

Finally we also consider two baselines thatignore the ambiguous label setting. The first one, de-
noted assupervised model, removes from Equation 3 the examples with|y|> 1. The second model,
denoted assupervised kNN, removes from Equation 5 the same examples.

7.2 Data Sets and Feature Description

We describe below the different data sets used to report our experiments. The experiments for
automatic naming of characters in TV shows can be found in Section 8. A concise summary is
given in Table 2.

Data Set # instances (m) # features (d) # labels (L) prediction task
UCI: dermatology 366 34 6 disease diagnostic

UCI: ecoli 336 8 8 site prediction
UCI: abalone 4177 8 29 age determination

FIW(10b) 500 50 10 (balanced) face recognition
FIW(10) 1456 50 10 face recognition
FIW(100) 3011 50 100 face recognition
Lostaudio 522 50 19 speaker id

TV+movies 10,000 50 100 face recognition

Table 2: Summary of data sets used in our experiments. The TV+movies experiments are treated
in Section 8. Faces in the Wild (1) uses a balanced distribution of labels (first50 images
for the top 10 most frequent people).

7.2.1 UCI DATA SETS

We selected three biology related data sets from the publicly available UCI repository (Asuncion
and Newman, 2007): dermatology, ecoli, abalone. As a preprocessing step, each feature was inde-
pendently scaled to have zero mean and unit variance.

7.2.2 FACES IN THE WILD (FIW)

We experiment with different subsets of the publicly available Labeled Faces in the Wild (Huang
et al., 2007a) data set. We use the images registered with funneling (Huang et al., 2007a), and crop
out the central part corresponding to the approximate face location, which we resize to 60x90. We
project the resulting grayscale patches (treated as 5400x1 vectors) onto a 50-dimensional subspace
using PCA.2 In Table 2, FIW(10b) extracts the first 50 images for each of the top 10 most frequent
people (balanced label distribution); FIW(10) extractsall images for each of the top 10 most fre-
quent people (heavily unbalanced label distribution, with 530 hits for George Bush and 53 hits for
John Ashcroft); FIW(100) extracts up to 100 faces for each of the top100 most frequent people
(again, heavily unbalanced label distribution).

2. We kept the features simple by design; more sophisticated part-basedregistration and representation would further
improve results, as we will see in Section 8.
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7.2.3 SPEAKER IDENTIFICATION FROM AUDIO

We also investigate a speaker identification task based on audio in an uncontrolled environment.
The audio is extracted from an episode ofLost (season 1, episode 5) and is initially completely
unaligned. Compared to recorded conversation in a controlled environment, this task is more re-
alistic and very challenging due to a number of factors: background noise, strong variability in
tone of voice due to emotions, and people shouting or talking at the same time. We use the Hid-
den Markov Model Toolkit (HTK) (http://htk.eng.cam.ac.uk/) to compute forced alignment
(Moreno et al., 1998; Sjölander, 2003), between the closed captions and the audio (given the rough
initial estimates from closed caption time stamps, which are often overlapping andcontain back-
ground noise). After alignment, our data set is composed of 522 utterances (each one corresponding
to a closed caption line, with aligned audio and speaker id obtained from aligned screenplay), with
19 different speakers. For each speech segment (typically between 1and 4 seconds) we extract
standard voice processing audio features: pitch (Talkin, 1995), Mel-Frequency Cepstral Coefficients
(MFCC) (Mermelstein, 1976), Linear predictive coding (LPC) (Proakisand Manolakis, 1996). This
results in a total of 4,000 features, which we normalize to the range[−1,1] and then project onto 50
dimensions using PCA.

7.3 Experimental Setup

For theinductive experiments, we split randomly in half the instances into (1)ambiguously la-
beled training set, and (2)unlabeled testing set. The ambiguous labels in the training set are
generated randomly according to different noise models which we specifyin each case. For each
method and parameter setting, we report theaverage test error rateover 20 trials after training
the model on the ambiguous train set. We also report the correspondingstandard deviation as an
error bar in the plots. Note, in the inductive setting we consider the test set as unlabeled, thus the
classifier votes amongall possible labels:

a∗ = h(x) = arg max
a∈{1..L}

ga(x).

For thetransductive experiments, there is no test set; we report the error rate for disambiguating
the ambiguous labels (also averaged over 20 trials corresponding to random settings of ambiguous
labels). The main differences with the inductive setting are: (1) the model is trained on all instances
and tested on the same instances; and (2) the classifier votes only among the ambiguous labels,
which is easier:

a∗ = h(x) = argmax
a∈y

ga(x).

We compare our CLPL approach (denoted asmean in figures, due to the form of the loss)
against thebaselinespresented in Section 7.1: Chance, Model 1, Discriminative EM model, k-
Nearest Neighbor, weighted k-Nearest Neighbor, Naive model, supervised model, and supervised
kNN. Note, in our experiments the Discriminative EM model was much slower to converge than all
the other methods, and we only report the first series of experiments with thisbaseline.

Table 3 summarizes the different settings used in each experiment. We experiment with dif-
ferent noise models for ambiguous bags, parametrized byp,q,ε, see Figure 6.p represents the
proportion of examples that are ambiguously labeled.q represents the number ofextra labels for
each ambiguous example.ε represents the degree of ambiguity (defined in 1) for each ambiguous
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example.3 We also vary the dimensionality by increasing the number of PCA components from 1 to
200, with half of extra labels added uniformly at random. In Figure 7, we vary the ambiguity sizeq
for three different subsets of Faces in the Wild. We report results on additional data sets in Figure 8.

Experiment fig induct. data set parameter
# of ambiguous bags 6 yes FIW(10b) p∈ [0,0.95],q= 2
degree of ambiguity 6 yes FIW(10b) p= 1,q= 1,ε ∈ [1/(L−1),1]
degree of ambiguity 6 no FIW(10b) p= 1,q= 1,ε ∈ [1/(L−1),1]

dimension 6 yes FIW(10b) p= 1,q= L−1
2 ,d ∈ [1, ..,200]

ambiguity size 7 yes FIW(10b) p= 1,q∈ [0,0.9(L−1)]
ambiguity size 7 yes FIW(10) p= 1,q∈ [0,0.9(L−1)]
ambiguity size 7 yes FIW(100) p= 1,q∈ [0,0.9(L−1)]
ambiguity size 8 yes Lostaudio p= 1,q∈ [0,0.9(L−1)]
ambiguity size 8 yes ecoli p= 1,q∈ [0,0.9(L−1)]
ambiguity size 8 yes derma p= 1,q∈ [0,0.9(L−1)]
ambiguity size 8 yes abalone p= 1,q∈ [0,0.9(L−1)]

Table 3: Summary of controlled experiments. We experiment with 3 different noise models for
ambiguous bags, parametrized byp,q,ε. p represents the proportion of examples that are
ambiguously labeled.q represents the number ofextralabels for each ambiguous example
(generated uniformly without replacement).ε represents the degree of ambiguity for each
ambiguous example (see definition 1).L is the total number of labels. We also study the
effects of data set choice, inductive vs transductive learning, and feature dimensionality.

7.3.1 EXPERIMENTS WITH A BOOSTINGVERSION OFCLPL

We also experiment with a boosting version of our CLPL optimization, as presented in Appendix A.
Results are shown in Figure 9, comparing our method with kNN and the naive method (also using
boosting). Despite the change in learning algorithm and loss function, the trends remain the same.

7.4 Comparative Summary

We can draw several conclusions. Our proposed CLPL modeluniformly outperformed all base-
lines in all but one experiment (UCI dermatology data set), where it rankedsecond closely behind
Model 1. In particular CLPL always uniformly outperformed the naive model. The naive model
ranks in second. As expected, increasing ambiguity size monotonically affects error rate. We also
see that increasingε significantly affects error, even though the ambiguity size is constant, consis-
tent with our bounds in Section 3.3. We also note that the supervised models defined in Section
7.1.6 (which ignore the ambiguously labeled examples) consistently perform worse than their coun-
terparts adapted for the ambiguous setting. For example, in Figure 6 (Top Left), a model trained
with nearly all examples ambiguously labeled (“mean” curve”,p = 95%) performs as good as a
model which uses 60% offully labeledexamples (“supervised” curve,p= 40%). The same holds
between the “kNN” curve atp= 95% and the “supervised kNN” curve atp= 40%.

3. We first choose at random for each label a dominant co-occurring label which is sampled with probabilityε; the rest
of the labels are sampled uniformly with probability(1− ε)/(L−2) (there is a single extra label per example).
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Figure 6: Results on Faces in the Wild in different settings, comparing our proposed CLPL (denoted
asmean) to several baselines. In each case, we report the average error rate (y-axis) and
standard deviation over 20 trials as in Figure 7.(top left) increasing proportion of am-
biguous bagsq, inductive setting.(top right) increasing ambiguity degreeε (Equation 1),
inductive setting.(bottom left) increasing ambiguity degreeε (Equation 1), transductive
setting.(bottom right) increasing dimensionality, inductive setting.
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Figure 7: Additional results on Faces in the Wild, obtained by varying the ambiguity sizeq on the
x-axis (inductive case).Left: balanced data set using 50 faces for each of the top 10
labels.Middle: unbalanced data set using all faces for each of the top 10 labels.Right:
unbalanced data set using up to 100 faces for each of the top 100 labels.

7.4.1 COMPARISON WITH VARIANTS OF OUR APPROACH

In order to get some intuition on CLPL (Equation 2), which we refer to as themeanmodel in our
experiments, we also compare with the followingsumandcontrastivealternatives:

Lsum
ψ (g(x),y) = ψ

(

∑
a∈y

ga(x)

)

+ ∑
a/∈y

ψ(−ga(x)), (6)

Lcontrastive
ψ (g(x),y) = ∑

a′ /∈y

ψ

(

1
|y| ∑

a∈y
ga(x)−ga′(x)

)

. (7)
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Figure 8: Inductive results on different data sets. In each case, we report the average error rate (y-
axis) and standard deviation over 20 trials as in Figure 7.Top Left: speaker identification
from Lost audio. Top Right: ecoli data set (UCI).Bottom Left: dermatology data set
(UCI). Bottom Right: abalone data set (UCI).

Figure 9: Left: We experiment with a boosting version of the ambiguous learning, and compare
to a boosting version of the naive baseline (here with ambiguous bags of size 3). We
plot accuracyvs number of boosting rounds. The green horizontal line correspondsto
the best performance (acrossk) of the k-NN baseline.Middle: accuracy of k-NN base-
line acrossk. Right: we compare CLPL (labeledmean) with two variants defined in
Equation 6,Equation 7, along with the naive model (same setting as Figure 6, TopLeft).

Whenψ(·) is the hinge loss, the mean and sum model are very similar, but this is not the case for
strictly convex binary losses. Figure 9 shows that variations on our costfunction havelittle effect
in the transductive setting. In the inductive setting, other experiments we performed show that the
mean and sum version are still very similar, but the contrastive version is worse. In general it seems
that models based on minimization of a convex loss function (naive and different versions of our
model) usually outperform the other models.
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Figure 10: Predictions onLostandC.S.I.. Incorrect examples are: row 1, column 3 (truth: Boone);
row 2, column 2 (truth: Jack).

8. Experiments with Partially Labeled Faces in Videos

We now return to our introductory motivating example, naming people in TV shows (Figure 1,
right). Our goal is to identify characters given ambiguous labels derivedfrom the screenplay. Our
data consists of 100 hours ofLostandC.S.I., from which we extract ambiguously labeled faces to
learn models of common characters. We use the same features, learning algorithm and loss function
as in Section 7.2.2. We also explore using additional person- and movie-specific constraints to
improve performance. Sample results are shown in Figure 10.

8.1 Data Collection

We adopt the following filtering pipeline to extract face tracks, inspired by Everingham et al. (2006):
(1) Run the off-the-shelf OpenCV face detector over all frames, searching over rotations and scales.
(2) Run face part detectors4 over the face candidates.(3) Perform a 2D rigid transform of the parts
to a template.(4) Compute the score of a candidate faces(x) as the sum of part detector scores
plus rigid fit error, normalizing each to weight them equally, and filtering outfaces with low score.
(5) Assign faces to tracks by associating face detections within a shot using normalized cross-
correlation in RGB space, and using dynamic programming to group them together into tracks.
(6) Subsample face tracks to avoid repetitive examples. In the experiments reported here we use the
best scoring face in each track, according tos(x).

Concretely, for a particular episode, step (1) finds approximately 100,000 faces, step (4) keeps
approximately 10,000 of those, and after subsampling tracks in step (6) we are left with 1000 face
examples.

8.2 Ambiguous Label Selection

Screenplays for popular TV series and movies are readily available for free on the web. Given an
alignment of the screenplay to frames, we have ambiguous labels for characters in each scene: the
set of speakers mentioned at some point in the scene, as shown in Figure 1. Alignment of screenplay
to video uses methods presented in Cour et al. (2008) and Everingham etal. (2006), linking closed
captions to screenplay.

4. The detectors use boosted cascade classifiers of Haar features for the eyes, nose and mouth.
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Lost(#labels, #episodes) (8,16) (16,8)† (16,16) (32,16)

Naive 14% 18.6% 16.5% 18.5%
ours (CLPL / “mean”) 10% 12.6% 14% 17%

ours+constraints 6% n/a 11% 13%

Table 4: Misclassification rates of different methods on TV showLost. In comparison, for (16,16)
the baseline performances areknn: 30%; Model 1: 44%; chance: 53%. †: This column
contains results exactly reproducible from our publicly available reference implementa-
tion, which can be found athttp://vision.grasp.upenn.edu/video. For simplicity,
this public code does not include a version with extra constraints.

We use the ambiguous sets to select face tracks filtered through our pipeline. We prune scenes
which contain characters other than the set we choose to focus on for experiments (top{8,16,32}
characters), or contain 4 or more characters. This leaves ambiguous bags of size 1, 2 or 3, with an
average bag size of 2.13 forLost, and 2.17 forC.S.I..

8.3 Errors in Ambiguous Label Sets

In the TV episodes we considered, we observed that approximately 1% ofambiguous label sets
were wrong, in that they didn’t contain the ground truth label of the face track. This came from
several reasons: presence of a non-english speaking character (Jin Kwon inLost, who speaks Ko-
rean) whose dialogue is not transcribed in the closed captions; sudden occurence of an unknown,
uncredited character on screen, and finally alignment problems due to large discrepencies between
screenplay and closed captions. While this is not a major problem, it becomes so when we con-
sider additional cues (mouth motion, gender) that restrict the ambiguous label set. We will see how
we tackle this issue with a robust confidence measure for obtaining good precision recall curves in
Section 8.5.

8.4 Results with the Basic System

Now that we have a set of instances (face tracks), feature descriptors for the face track and am-
biguous label sets for each face track, we can apply the same method as described in the previous
section. We use a transductive setting: we test our method on our ambiguously labeled training set.

The confusion matrix displaying the distribution of ambiguous labels for the top 16 characters
in Lost is shown in Figure 11 (left). The confusion matrix of our predictions after applying our
ambiguous learning algorithm is shown in Figure 11 (right). Our method had themost trouble dis-
ambiguating Ethan Rom from Claire Littleton (Ethan Rom only appears in 0.7% of the ambiguous
bags, 3 times less then the second least common character) and Liam Pace from Charlie Pace (they
are brothers and co-occur frequently, as can be seen in the top figure). The case of Sun Kwon and Jin
Kwon is a bit special, as Jin does not speak English in the series and is almostnever mentioned in
the closed-captions, which creates alignment errors between screenplay and closed captions. These
difficulties illustrate some of the interesting challenges in ambiguously labeled datasets. As we
can see, the most difficult classes are the ones with which another class is strongly correlated in the
ambiguous label confusion matrix. This is consistent with the theoretical bounds we obtained in
Section 3.3, which establish a relation between the class specific error rate and class specific degree
of ambiguityε.
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Figure 11: Left : Label distribution of top 16 characters inLost (using the standard matlab color
map). ElementDi j represents the proportion of times classi was seen with classj in
the ambiguous bags, andD1= 1. Right: Confusion matrix of predictions from Section
8.4. ElementAi j represents the proportion of times classi was classified as classj, and
A1= 1. Class priors for the most frequent, the median frequency, and the least frequent
characters inLostare Jack Shephard, 14%; Hugo Reyes, 6%; Liam Pace 1%.

Quantitative results are shown in Table 4. We measure error according to average 0-1 loss with
respect to hand-labeled groundtruth labeled in 8 entire episodes ofLost. Our model outperforms all
the baselines, and we will further improve results. We now compare several methods to obtain the
best possible precision at a given recall, and propose a confidence measure to this end.

8.5 Improved Confidence Measure for Precision-recall Evaluation

We obtain a precision-recall curve using a refusal to predict scheme, as used by Everingham et al.
(2006): we report the precisionp for the r most confident predictions, varyingr ∈ [0,1]. We com-
pare severalconfidence measuresbased on the classifier scoresg(x) and propose a novel one that
significantly improves precision-recall, see Figure 12 for results.

1. themax andratio confidence measures (as used in Everingham et al., 2006) are definedas:

Cmax(g(x)) = max
a

ga(x),

Cratio(g(x)) = max
a

exp(ga(x))

∑bexp(gb(x))
.

2. therelative score can be defined as the difference between the best and second best scores
over all classifiers(ga)a∈{1..L} (wherea∗ = argmaxa∈{1..L}ga(x)):

Crel(g(x)) = ga∗(x)− max
a∈{1..L}−{a∗}

ga(x).

3. we can define therelative-constrainedscore as an adaptation to the ambiguous setting; we
only consider votes among ambiguous labelsy (wherea∗ = argmaxa∈y ga(x)):

Crel,y(g(x)) = ga∗(x)− max
a∈y−{a∗}

ga(x).
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Figure 12: Improvedhybrid confidence measure for precision-recall evaluation.x axis: recall;
y axis: naming error rate for CLPL on 16 episodes ofLost (top 16 characters).max
confidence score performs rather poorly as it ignores other labels.relative improves
the high precision/low recall region by considering the margin instead. Therelative-
constrain improves the high-recall/low-precision region by only voting among the am-
biguous bags, but it suffers in high-precision/low recall region because some ambiguous
bags may be erroneous. Ourhybrid confidence score gets the best of both worlds.

There are some problems with all of those choices, especially in the case where we have some
errors in ambiguous label set (a /∈Y for the true labela). This can occur for example if we restrict
them with some heuristics to prune down the amount of ambiguity, such as the ones we consider in
Section 8.6 (mouth motion cue, gender, etc). Atlow recall, we want maximum precision, therefore
we cannot trust too much the heuristic used in relative-constrained confidence. Athigh recall, the
errors in the classifier dominate the errors in ambiguous labels, and relative-constrained confidence
gives better precision because of the restriction. We introduce ahybrid confidence measure that
performs well for all recall levelsr, interpolating between the two confidence measures:

ha
r (x) =

{

ga(x) if a∈ y,

(1− r)ga(x)+ r minbgb(x) else.

Cr(g(x)) =Crel(hr(x)).

By design, in the limitr → 0,Cr(g(x))≈Crel(g(x)). In the limit r → 1, ha
r (x) is small fora /∈ y and

soCr(g(x))≈Crel,y(g(x)).

8.6 Additional Cues

We investigate additional features to further improve the performance of our system: mouth motion,
grouping constraints, gender. Final misclassification results are reported in Table 4.
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8.6.1 MOUTH MOTION

We use a similar approach to Everingham et al. (2006) to detect mouth motion during dialog and
adapt it to our ambiguous label setting.5 For a face trackx with ambiguous label sety and a tem-
porally overlapping utterance from a speakera∈ {1..L} (after aligning screenplay and closed cap-
tions), we restricty as follows:

y :=







{a} if mouth motion,

y if refuse to predict ory = {a},

y−{a} if absence of mouth motion.

8.6.2 GENDER CONSTRAINTS

We introduce a gender classifier to constrain the ambiguous labels based onpredicted gender. The
gender classifier is trained on a data set of registered male and female faces, by boosting a set of
decision stumps computed on Haar wavelets. We use the average score over a face track output by
the gender classifier. We assume known the gender of names mentioned in thescreenplay (using
automatically extracted cast list from IMDB). We use gender by filtering outthe labels that do not
match by gender the predicted gender of a face track, if the confidence exceeds a threshold (one for
females and one for males are set on a validation data to achieve 90% precision for each direction
of the gender prediction). Thus, we modify ambiguous label sety as:

y :=







y if gender uncertain,

y−{a : a is male} if gender predicts female,

y−{a : a is female} if gender predicts male.

8.6.3 GROUPINGCONSTRAINTS

We propose a very simple must-not-link constraint, which statesyi 6= y j if face tracksxi ,x j are in
two consecutive shots (modeling alternation of shots, common in dialogs). Thisconstraint is active
only when a scene has 2 characters. Unlike the previous constraints, thisconstraint is incorporated
as additional terms in our loss function, as in Yan. et al. (2006). We also proposegroundtruth
grouping constraints for comparison:yi = y j for each pair of face tracksxi ,x j of the same label, and
that are separated by at most one shot.

8.7 Ablative Analysis

Figure 13 is an ablative analysis, showing error rate vs recall curves for different sets of cues. We see
that the constraints provided by mouth motion help most, followed by gender andlink constraints.
The best setting (without using groundtruth) combines the former two cues.Also, we notice, once
again, a significant performance improvement of our method over the naive method.

8.8 Qualitative Results and Video Demonstration

We show examples with predicted labels and corresponding accuracy, for various characters in
C.S.I., see Figure 14. Those results were obtained with the basic system of Section 8.4. Full-frame

5. Motion or absence of motion are detected with a low and high threshold on normalized cross-correlation around
mouth regions in consecutive frames.
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Figure 13: Ablative analysis.x-axis: recall; y-axis: error rate for character naming across 16
episodes ofLost, and the 8, 16, and 32 most common labels (respectively for the left,
middle, right plots). We compare our method,mean, to theNaive model and show the
effect of adding several cues to our system.Link : simple must-not-link constraints from
shot alternation,Gender: gender cue for simplification of ambiguous bags;Mouth :
mouth motion cue for detecting the speaker with synchronous mouth motion; we also
consider the combinationMouth+Gender, as well as swapping in perfect components
such asGroundtruth link constraints andGroundtruth Mouth motion.

Figure 14: Left: Examples classified as Catherine Willows inC.S.I.data set using our method
(zoom-in for details). Results are sorted by classifier score, in column majorformat;
this explains why most of the errors occur in the last columns. The precisionis 85.3%.
Right: Examples classified as Sara Sidle inC.S.I.. The precision is 78.3%.

detections forLostandC.S.I.data sets can be seen in Figure 10. We also propagate the predicted
labels of our model to all faces in the same face track throughout an episode. Video results of several
episodes can be found at the following websitehttp://www.youtube.com/user/AmbiguousNaming.

9. Conclusion

We have presented an effective learning approach for partially labeleddata, where each instance is
tagged with more than one label. Theoretically, under reasonable assumptions on the data distribu-
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tion, one can show that our algorithm will produce an accurate classifier.We applied our method to
two partially-supervised naming tasks: one on still images and one on video from TV series. We also
compared to several strong competing algorithms on the same data sets and demonstrated that our
algorithm achieves superior performance. We attribute the success of theapproach to better model-
ing of the mutual exclusion between labels than the simple multi-label approach. Moreover, unlike
recently published techniques that address similar ambiguously labeled problems, our method does
not rely on heuristics and does not suffer from local optima of non-convex methods.
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Appendix A. CLPL with Feature Selection Using Boosting

We derive Algorithm 1 by taking the second order Taylor expansion of thelossLψ(g(x),y), with
ψ(u) = exp(−u). The updates of the algorithm are similar to a multiclass version of Gentleboost
(Friedman et al., 2000), but keep a combined weightvi for the positive examplef(xi ,yi) and weights
vi,a for the negative examplesf(xi ,a),a /∈ yi .

Algorithm 1 Boosting for CLPL with exponential loss

1: Initialize weights:vi = 1 ∀i, vi,a = 1 ∀i,a /∈ yi

2: for t = 1. . .T do
3: for a= 1. . .L do
4: Fit the parameters of each weak classifieru(x) to minimize the second-order Taylor

approximation of the cost function with respect to theath classifier:

1
2 ∑

i

[
vi ·1(a∈ yi)(u(xi)/|yi |−1)2+vi,a ·1(a /∈ yi)(u(xi)+1)2]+constant.

5: end for
6: Choose the combination ofu,a with lowest residual error.
7: Updatega(x) = ga(x)+u(x)
8: for i = 1. . .mdo
9: if a∈ yi then

10: vi = vi ·exp(−u(xi))
11: else
12: vi,a = vi,a ·exp(u(xi))
13: end if
14: end for
15: Normalizev to sum to 1.
16: end for
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Appendix B. Proofs

Proof of Proposition 1 (Partial loss bound via ambiguity degreeε). The first inequality comes
from the fact thath(x) /∈ y =⇒ h(x) 6= y. For the second inequality, fix anx∈ X with P(X = x)> 0
and defineEP[· | x] as the expectation with respect toP(Y | X = x).

EP[LA(h(x),Y)|x] = P(h(x) 6∈ Y | X = x) = P(h(x) 6=Y,h(x) 6∈ Z | X = x)

= ∑
a6=h(x)

P(Y = a | X = x)(1−P(h(x) ∈ Z | X = x,Y = a)
︸ ︷︷ ︸

≤ε by definition

)

≥ ∑
a6=h(x)

P(Y = a | X = x)(1− ε) = (1− ε)EP[L(h(x),Y)|x].

Hence,EP[L(h(x),Y)|x] ≤ 1
1−εEP[LA(h(x),Y)|x] for any x. We conclude by taking expectation

over x.The first inequality is tight: equality can be achieved, for example, whenP(y|x) is deter-
ministic, and a perfect classifierh such that for allx, h(x) = y. The second inequality is also tight:
for example consider the uniform case with a fixed ambiguity size|z| = C and for allx,y,z 6= y,
P(z∈ z | X = x,Y = y) = C/(L− 1). In the proof above (second inequality), the only inequality
becomes an equality. In fact, this also shows that for any (rational)ε, we can find a number of labels
L, a distributionP and a classiferh such that there is equality.

Proof of Proposition 3 (Partial loss bound via(ε,δ)). We split up the expectation in two parts:

EP[L(h(X),Y)] = EP[L(h(X),Y)|(X,Y) ∈ G](1−δ)+EP[L(h(X),Y)|(X,Y) 6∈ G]δ
≤ EP[L(h(X),Y)|(X,Y) ∈ G](1−δ)+δ

≤ 1
1− ε

EP[LA(h(X),Y)|(X,Y) ∈ G](1−δ)+δ.

We applied Proposition 1 in the last step. Using a symmetric argument,

EP[LA(h(X),Y)] = EP[LA(h(X),Y)|(X,Y) ∈ G](1−δ)+EP[LA(h(X),Y)|(X,Y) 6∈ G]δ
≥ EP[LA(h(X),Y)|(X,Y) ∈ G](1−δ).

Finally we obtain EP[L(h(X),Y)]≤ 1
1−εEP[LA(h(X),Y)]+δ.

Proof of Proposition 4 (Label-specific partial loss bound). Fix x ∈ X such thatP(X = x) > 0
andP(Y = a|x)> 0 and defineEP[· | x,a] as the expectation w.r.t.P(Z | X = x,Y = a). We consider
two cases:

a) if h(x) = a, EP[LA(h(X),Y) | x,a] = P(h(x) 6= a,h(x) 6∈ y | X = x,Y = a) = 0.

b) if h(x) 6= a, EP[LA(h(X),Y) | x,a] = P(h(x) 6∈ Z | X = x,Y = a)
= 1−P(h(x) ∈ Z | X = x,Y = a)≥ 1− εa.

We conclude by taking expectation overx:

EP[LA(h(X),Y) |Y = a] = P(h(X) = a|Y = a)EP[LA(h(X),Y) | h(X) = a,Y = a]

+P(h(X) 6= a|Y = a)EP[LA(h(X),Y) | h(X) 6= a,Y = a]

≥ 0+P(h(X) 6= a |Y = a) · (1− εa)

= (1− εa) ·EP[L(h(X),Y) |Y = a].
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Proof of Proposition 5 (Partial label consistency). We assumeg(x) is found by minimizing
over an appropriately rich sequence of function classes (Tewari andBartlett, 2005), in our case,
asm→ ∞, G → R

L . Hence we can focus on analysis for a fixedx (with P(X = x) > 0), writing
ga = ga(x), and for any setc⊆ {1, . . . ,L}, gc = ∑a∈cga/|c| andPc = P(Y = c|X = x). We also write
Pa = P(a∈ Y|X = x) for any labela, and use shorthandPc,a = Pc∪{a} andgc,a = gc∪{a}. We have:

Lψ(g) = ∑
c

Pc ·
(

ψ(gc)+∑
a/∈c

ψ(−ga)

)

.

Note that the derivativeψ′(·) exists and is non-positive and non-decreasing by assumption and
ψ′(z)< 0 for z≤ 0. The assumptions imply thatψ(−∞)→ ∞, so assuming thatPa < 1, minimizers
are upper-bounded:ga < ∞. The case ofPa = 0 leads toga → −∞ and it can be ignored without
loss of generality, so we can assume that optimalg is bounded for fixedp with 0< Pa < 1.

Taking the derivative of the loss with respect toga and setting to 0, we have the first order
optimality conditions:

∂Lψ(g)

∂ga
= ∑

c:a6∈c

Pc,aψ′(gc,a)

|c|+1
− (1−Pa)ψ′(−ga) = 0.

Now suppose (for contradiction) that at a minimizerg, b ∈ argmaxa′ ga′ but Pa > Pb for some
a∈ argmaxa′ Pa′ . Subtracting the optimality conditions fora,b from each other, we get

∑
c:a,b/∈c

Pc,aψ′(gc,a)−Pc,bψ′(gc,b)

|c|+1
= (1−Pa)ψ′(−ga)− (1−Pb)ψ′(−gb).

Sincega ≤ gb, ψ′(gc,a)≤ ψ′(gc,b) andψ′(−ga)≥ ψ′(−gb). Plugging in on both sides:

∑
c:a,b/∈c

(Pc,a−Pc,b)ψ′(gc,b)

|c|+1
≥ (Pb−Pa)ψ′(−gb).

By dominance assumption,(Pc,a −Pc,b) ≥ 0 and since(Pb −Pa) < 0 andψ′(·) is non-positive,
the only possibility of the inequality holding is thatψ′(−gb) = 0 (which impliesgb > 0) and
(Pc,a−Pc,b)ψ′(gc,a) = 0 for all c. But (Pb−Pa) < 0 implies that there exists a subsetc such that
(Pc,a−Pc,b)> 0. Sinceb∈ argmaxg, gc,b ≤ gb, sogc,b ≤ 0, henceψ′(gc,b)< 0, a contradiction.

WhenP(y | x) is deterministic, letP(y|x) = 1(y= a). Clearly, if ε < 1, thena= argmaxa′ Pa′

andPa = 1>Pa′ ,∀a′ 6= a. Then the minimizerg satisfies either (1)ga → ∞ (this happens ifψ′(·)< 0
for finite arguments) whilega′ are finite because of(1−Pa′)ψ(−ga′) terms in the objective or (2)g
is finite and the proof above applies since dominance holds:Pc,b = 0 if a /∈ c, so we can apply the
theorem.
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Proof of Proposition 6 (Comparison between partial losses).Let a∗ = argmaxa∈1..L ga(x). For
the first inequality, ifa∗ ∈ y, Lmax

ψ (g(x),y)≥ 0= 2LA(g(x),y). Otherwisea∗ /∈ y:

Lmax
ψ (g(x),y)≥ ψ(max

a∈y
ga(x))+ψ(−ga∗(x))≥ ψ(ga∗(x))+ψ(−ga∗(x))

≥ 2ψ
(

ga∗(x)−ga∗(x)
2

)

= 2ψ(0)≥ 2LA(g(x),y).

The second inequality comes from the fact that

max
a∈y

ga(x)≥
1
|y| ∑

a∈y
ga(x).

For the third inequality, we use the convexity ofψ:

ψ

(

1
|y| ∑

a∈y
ga(x)

)

≤ 1
|y| ∑

a∈y
ψ(ga(x)).

For the tightness proof: Whenga(x) = constantovera∈ y, we have

ψ
(

max
a∈y

ga(x)

)

= ψ

(

1
|y| ∑

a∈y
ga(x)

)

=
1
|y| ∑

a∈y
ψ(ga(x)) ,

implyingLmax
ψ (g(x),y) = Lψ(g(x),y) = Lnaive

ψ (g(x),y).

As for the first inequality, we provide a sequenceg(n) that verifies equality in the limit: let
g(n)a (x) = −1/n if a ∈ y, g(n)b (x) = 0 for someb /∈ y, andg(n)c (x) = −n for all c /∈ y,c 6= b. Then
provided ψ(0) = 1 and limu→∞ ψ(u) = 0, we have limn→+∞L

max
ψ (g(n)(x),y) = 2 and for alln,

LA(g(n)(x),y) = 1.

Proof of Proposition 7 (Generalization bounds). The proof uses Definition 11 for Rademacher
and Gaussian complexity, Lemma 12, Theorem 13 and Theorem 14 from Bartlett and Mendelson
(2002), reproduced below and adapted to our notations for completeness. We apply Theorem 13
with L := 1

LLA, φ := 1
LLψγ :

1
L
EP[LA(g(X),Y)]≤ 1

L
ES[Lψγ(g(X),Y)]+Rm(φ̄◦G)+

√

8log(2/η)
m

.
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From Lemma 12,Rm(φ̄◦G)≤ 1
cGm(φ̄◦G). From Theorem 14,Gm(φ̄◦G)≤ 2λ∑L

a=1Ĝm(Ga). Let
(νi) bem independent standard normal random variables.

Ĝm(Ga) = Eν

[

sup
ga∈Ga

2
m∑

i

νiga(xi) | S

]

=
2
m
Eν

[

sup
||wa||≤B

wa ·∑
i

νi f(xi) | S

]

=
2B
m

Eν

[

||∑
i

νi f(xi)|| | S

]

=
2B
m

Eν

[
√

∑
i j

νiν j f(xi)T f(x j) | S

]

≤ 2B
m

√
√
√
√Eν

[

∑
i j

νiν j f(xi)T f(x j) | S

]

=
2B
m

√

∑
i

Eν
[
ν2

i ||f(xi)||2 | S
]

=
2B
m

√

∑
i

||f(xi)||2.

Putting everything together,Rm(φ̄◦G)≤ 2λL
c Ĝm(Ga)≤ 4λLB

mc

√

∑i ||f(xi)||2 and:

EP[LA(g(X),Y)]≤ ES[Lψγ(g(X),Y)]+
4λBL2

mc

√

∑
i

||f(xi)||2+L

√

8log(2/η)
m

.

The Lipschitz constant from 14 can be computed asλ := p
γ
√

L, using the Lipschitz constant of the

scalar functionψγ, which is p
γ , and the fact that||g(x)||1 ≤

√
L||g(x)||2.

Definition 11 (Definition 2 from Bartlett and Mendelson (2002) ) Let µ be a probability distri-
bution on a setX and suppose that S= {xi}m

i=1 are independent samples sampled from µ. LetG be
a class of functionsX → R. Define the random variables

R̂m(F ) = Eσ

[

sup
f∈F

2
m∑

i

σi f (xi) | S

]

,

Ĝm(F ) = Eν

[

sup
f∈F

2
m∑

i

νi f (xi) | S

]

,

where(σi) are m independent uniform{±1}-valued random variables and(νi) are m independent
standard normal random variables. Then the Rademacher (resp. Gaussian) complexity ofG is
Rm(F ) = ES[R̂m(F )] (resp. Gm(F ) = ES[F̂m(F )]).

Rm(F ) andGm(F ) quantify how much can af ∈ F be correlated with a noise sequence of length
m.

Lemma 12 (Lemma 4 from Bartlett and Mendelson (2002) )There are absolute constants c and
C such that for every classG and every integer m,

cRm(G)≤ Gm(G)≤C logmRm(G).
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Theorem 13 (Theorem 8 from Bartlett and Mendelson (2002) )Consider a loss functionL : A×
Y 7→ [0,1] and a dominating cost functionφ : A×Y → [0,1], where A is an arbitrary output space.
LetG be a class of functions mapping fromX to A and let S= {(xi ,yi)}m

i=1 be independently se-
lected according to the probability measure P. Defineφ̄◦G = {(x,y) 7→ φ(g(x),y)−φ(0,y) : g∈G}.
Then, for any integer m and anyη ∈ (0,1), with probability at least1−η over samples of length m,
∀g∈ G :

EP[L(g(X),Y)]≤ ESφ(g(X),y)+Rm(φ̄◦G)+

√

8log(2/η)
m

.

Theorem 14 (Theorem 14 from Bartlett and Mendelson (2002) )Let A= R
L, and letG be a

class of functions mappingX to A. Suppose that there are real-valued classesG1, ...,GL such thatG
is a subset of their direct sum. Assume further thatφ : A×Y →R is such that, for all y∈Y , φ(·,y) is
a Lipschitz function (with respect to Euclidean distance on A) with constantλ which passes through
the origin and is uniformly bounded. For g∈ G , defineφ ◦ g as the mapping(x,y) 7→ φ(g(x),y).
Then, for every integer m and every sample S= {(xi ,yi)}m

i=1,

Ĝm(φ◦G)≤ 2λ
L

∑
a=1

Ĝm(Ga),

whereĜm(φ ◦G) are the Gaussian averages ofφ ◦G with respect to the sample{(xi ,yi)}m
i=1 and

Ĝm(Ga) are the Gaussian averages ofGa with respect to the sample{xi}m
i=1.

Proof of Proposition 8 (Generalization bounds on true loss).This follows from Propositions 7
and 1.

Proof of Lemma 9. Let us writez= z(x), y= y(x),y = y(x).

• Let a∈ z. By hypothesis,∃x′ ∈ Bη(x) : ga(x′)≤−η
2 . By definition ofBη(x),

ga(x) = ga(x
′)+wa · (f(x)− f(x′))≤ ga(x

′)+ ||wa||∗η ≤ ga(x
′)+η ≤ η

2
.

In fact, we also havega(x) <
η
2 , by considering two cases (wa = 0 or wa 6= 0) and using the

fact that||f(x)− f(x′)||< η.

• Let a /∈ y. SinceLψ(g(x),y)≤ ψ(η/2) and each term is nonnegative, we have:

ψ(−ga(x))≤ ψ(
η
2
) =⇒ ga(x)≤−η

2
.

• Let a= y. Lψ(g(x),y)≤ ψ(η/2) also implies the following:

ψ
(

1
|y| ∑b∈y gb(x)

)

≤ ψ(
η
2
)

=⇒ 1
|y| ∑b∈y gb(x) ≥ η

2

=⇒ gy(x) ≥ |y|η
2

−∑
b∈z

gb(x)

>
|y|η

2
− |z|η

2
=

η
2
.
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Finally, ∀a 6= y,ga(x)< gy(x) andg classifiesx correctly.

Proof of corollary 10. Let a∈ z(x), by the empty intersection hypothesis,∃i ≥ 1 : a 6∈ z(xi) and
sincey(xi) = y(x) anda 6= y(x) we also havea 6∈ y(xi). SinceLψ(g(xi),y(xi) ≤ ψ(η/2), we have
ga(xi)≤−η

2 , as in the previous proof. We can apply Lemma 9 (withx′ = xi).
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E. Côme, L. Oukhellou, T. Denœux, and P. Aknin. Mixture model estimation with soft labels.
International Conference on Soft Methods in Probability and Statistics, 2008.

T. Cour, C. Jordan, E. Miltsakaki, and B. Taskar. Movie/script: Alignment and parsing of video and
text transcription. InProc. European Conference on Computer Vision, 2008.

T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from ambiguously labeled images. InProc.
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines.Journal of Machine Learning Research, 2:265–292, 2002.

T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with
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