Binary Search Tree Algorithm
Tracking the color of each node necessitates only 1 bit of information per node because there are only two colors. In computer science, a red – black tree is a kind of self-balancing binary search tree. In a 1978 paper," A Dichromatic Framework for Balanced Trees", Leonidas J. Guibas and Robert Sedgewick derived the red-black tree from the symmetric binary B-tree. Sedgewick originally allowed nodes whose two children are red, make his trees more like 2-3-4 trees, but later this restriction was added, make new trees more like 2-3 trees. These trees maintained all paths from root to leaf with the same number of nodes, make perfectly balanced trees.
/* Binary Search Tree!!
*
* Nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*/
// class Node
var Node = (function () {
// Node in the tree
function Node (val) {
this.value = val
this.left = null
this.right = null
}
// Search the tree for a value
Node.prototype.search = function (val) {
if (this.value === val) {
return this
} else if (val < this.value && this.left != null) {
return this.left.search(val)
} else if (val > this.value && this.right != null) {
return this.right.search(val)
}
return null
}
// Visit a node
Node.prototype.visit = function () {
// Recursively go left
if (this.left != null) {
this.left.visit()
}
// Print out value
console.log(this.value)
// Recursively go right
if (this.right != null) {
this.right.visit()
}
}
// Add a node
Node.prototype.addNode = function (n) {
if (n.value < this.value) {
if (this.left == null) {
this.left = n
} else {
this.left.addNode(n)
}
} else if (n.value > this.value) {
if (this.right == null) {
this.right = n
} else {
this.right.addNode(n)
}
}
}
// returns the constructor
return Node
}())
// class Tree
var Tree = (function () {
function Tree () {
// Just store the root
this.root = null
};
// Inorder traversal
Tree.prototype.traverse = function () {
this.root.visit()
}
// Start by searching the root
Tree.prototype.search = function (val) {
const found = this.root.search(val)
if (found === null) {
console.log(val + ' not found')
} else {
console.log('Found:' + found.value)
}
}
// Add a new value to the tree
Tree.prototype.addValue = function (val) {
const n = new Node(val)
if (this.root == null) {
this.root = n
} else {
this.root.addNode(n)
}
}
// returns the constructor
return Tree
}())
// Implementation of BST
var bst = new Tree()
bst.addValue(6)
bst.addValue(3)
bst.addValue(9)
bst.addValue(2)
bst.addValue(8)
bst.addValue(4)
bst.traverse()
bst.search(8)