
ZK-less Region Assignment (HBASE-11059)

The Problem
Propose
Implementation Choices

Where to Store Intermediate Region States
Upgrade Consideration
Client Change
Coprocessor or RPC

The Problem

Currently, region assignment uses ZK to do communication between master and region servers.
Many steps are involved in one region assignment:

It is error-prone and hard to maintain, scale.

We have region assignment information in ZK, master memory, and meta table. They are not
consistent during region transitions. Both master and region servers can update meta and ZK.

Propose

With HBASE-10569, we co-located meta and master. To further improve it, we have HBASE-
11059 (ZK-less region assignment). The goal is to simplify the region assignment a lot to
improve the performance and make it more scalable.

In this approach,

1. Region states are stored in meta, and cached in master memory, and they are
consistent all the time.

2. Only master update the meta table. Region server doesn’t update it.
3. Master and region server talk to each other directly on region assignment.

The call flow this approach is much simpler.

1. Region open/close should be initiated by master

a. Master sets the region to pending_open/pending_close after sending the
corresponding request to the region server

Comment [1]: ... because only the master is
editing the meta (I see you say this next --
sorry)? Because the meta is on the master so
we can do atomic meta/memory updates?

Comment [2]: Since they are colocated, we'd
like the update to be atomic

Comment [3]: Forgive me if I'm asking
something obvious - but would this in-memory
update of meta still go thru RPC or it will just go
directly?

Comment [4]: We assume the meta is
colocated with the master. If so, we can make a
short-circuit call instead of going through RPC.

Comment [5]: Yep, I think so. I'm just keeping
in mind multi-master model, but since it's
separate efforts, I'm thinking of what hookup
points it'd be good to have, so it's easier to
"intercept" such update for consensus also.

Btw, meta is now always colocated with master,
it's not an option user may choose to turn off?

Comment [6]: In the meta table? In a new
column on the meta?

Comment [7]: Yes

b. Region server reports back to the master after open/close is done (either
success/failure, for close, in case failure, the region server can just abort as it
does today)

c. If region server has problem to report the status to master, it must be because
the master is down or temporary network issue. Otherwise, the region server
should abort since it must be a bug. If the master is not accessible, the region
server should keep trying until the server is stopped or till the status is reported to
the (new) master

d. If region server dies in the middle of opening/closing a region, SSH picks it up
and finishes it somewhere else

e. If master dies in the middle, the new master recovers the state during
initialization from the meta table. It should get the report from the region server
soon.

2. Region split/merge should be initiated by region servers

a. To split a region, a region server sends a request to master to try to set a region

to splitting, together with two daughters to splitting new. If approved by the
master, the splitting can move ahead

b. To merge two regions, a region server sends a request to master to try to set the
new merged region to merging_new, together with two daughter regions to
merging. If it is ok with the master, the merge can move ahead

c. Once the splitting/merging is done, the region server reports the status back to
the master either success/failure.

d. Other scenarios should be handled similarly as for region open/close

Implementation Choices

Where to Store Intermediate Region States

We used to store intermediate/transient region states in ZK. Now we need to store it somewhere
else. We have two choices.

1. Store them in a system state table

Matteo suggested to store them in a new system state table. We can store all HBase system
objects like tables, regions, and their states in this table. The information in this table should not
be accessed by clients. Clients can access it via some master RPC calls instead.

2. Store them in the meta table

Comment [8]: Using the heartbeat? Control
messages on the heartbeat again like in the old
days?

Comment [9]: With hearbeat, we can do
some aggregation, which is good. Only issue is
that we may need to wait a little bit.

Comment [10]: In old days, as soon there
was a message to deliver, we used to
heartbeat; i.e. we'd not wait for the heartbeat
time to elapse before passing it on... so no need
to wait I'd say.

Comment [11]: What might be the conditions
for approval from HM side?

Also for failures handling I assume something
like that:

 - if HM approves split and dies, RS proceeds
and finishes split and keep attempting to report
the successful split to the new HM?
 - if HM approves split, RS starts doing it and
dies, HM simply moves region back to non-split
state, and upon next assignment the next RS
will try to split it again? Does it make sense (if
HM already knows region was requested to be
split once) if RS fails during split, next RS can
do combined recovery+split?

Comment [12]: For approval, it means the
mater is not trying to move the region so as to
avoid some racing. We could mandate that
master to initiate the split/merge process, but
the change is big. Perhaps we can do it later.

Yes, if the master is ok with the split but dies,
RS can finish it. If RS dies, master should reset
their states. Combined recovery+split probably
is too much.

Comment [13]: Yep, combined recovery and
split may be complicated, just wanted to throw it
on the table so we have this option covered..

For the splits/merges to be initiated by master,
we need to keep up-to-date stats about size of
each region in system tables - that's probably it?
Am thinking of advantages/disadvantages of
having splits initiated by master - probably, ... [1]

Comment [14]: HBASE-7958 - that covers
per-CF/per-region stats. Can be used for
master-driven splits/merges I think?

Comment [15]: Can these be bulk
operations? Bulk merge/split? Ditto w/ opens?
Can we do bulk opens/closes?

Comment [16]: Only bulk open.

Comment [17]: Could these 'master RPC
calls' just be your usual scan/get? We just treat
them differently when target is this new table?

One concern w/ new table is whether state will ... [2]

Comment [18]: I'd assume for clients it will be
read-only "dictionary" tables, so they could just
use regular scans and gets, and modifications
needed within the master -they can use just
java locks? ... [3]

The other choice is to store region states in the meta table, some state column. We can still
have the new system state table to store states for other system objects like tables, but the
regions and their states are in the meta table.

The good part of this choice is that clients can still get region locations from the meta table.
There is no need to break (client-side) compatibility, or put region states in two tables and make
sure they are consistent.

After several releases, and all clients start to use master RPC calls to get region locations, we
can simply copy the data from meta to the new system state/object table.

Upgrade Consideration

This feature will most likely be in 2.0. We mentioned that we probably won’t support rolling
upgrade in 2.0. However, we still need to consider how to migrate the region transition states in
ZK to the meta table.

When a master starts up, currently we create the assignment znode if it is not there. With this
feature, we don’t need to create this znode any more. We can migrate the region transition
states, and then remove this znode and its children.

If we store region states in the meta table, we can assume the state is OPEN if there is no value
in the state column. If we use the new system state table, we have to copy over the data from
the meta table and set the state column.

Client Change

It’s better to have one system state table in the future. So we need to provide some master RPC
calls for client to look up region locations.

Coprocessor or RPC

When a region is open, region server can notify master via a separate RPC call, or it can just
update the meta table and master learns it from a coprocessor. The issue is that if the open
failed, region server won’t update meta currently. So we can’t get the event from a coprocessor.
The other benefit to use a RPC call is that we can make sure only master can do the updates so
that we can maintain the integrity of the meta table.

Comment [19]: not sure why we should have
this two things? just to have the client able to
scan .META.?

Comment [20]: How about those old clients?
Rewrite the scan object a little to scan regions
only?

Comment [21]: the .META. scan is hidden
inside HTable, so changing it to a call to Master
doesn't break anyone. and I guess you have to
deploy anyway hbase 2.0 on the client side to
have everything working. (e.g. if you are using
security you must update the client to use the
new coordinated grant/revoke)

Comment [22]: That's a good point. That
means 2.0 will require client app to upgrade,
which may be a hard sell.

Comment [23]: client library upgrade but not
code changes. we still have binary compatibility.

Comment [24]: you already broke the
compatibility by changing the communication
between Master and RS for the assignment

Comment [25]: You think it impossible to do
this in a compatible way? Have servers support
old and new systems for a release? If a master
comes up and sees a region is already half-
assigned using zk path, then finish it w/ zk but
for new assignments go the new route? (Also,
listen for zk callbacks and feed them into same
code path as gets triggered when we get a
control message up off the heartbeat?)

Comment [26]: we talked about this and we
got a couple of solutions to make it compatible,
like the coprocessor to intercept and translate.
but Jon was more for avoiding tricks to keep the
compatibility since we decided that 2.0 is a
major and we shutdown everything

Comment [27]: Here is compatibility means
client side.

Comment [28]: See above. I wonder if we
can't just override the current API w/ different
implementations if the special system table?

Great doc. Lets get it upstream (smile). Mikhail
for one will be interested.

Comment [29]: I thought about this. If
someone tries to scan meta, we use the system
state table instead, which may work, not sure.

Page 3: [1] Comment [13] Mikhail Antonov 5/7/2014 10:55:00 PM

Yep, combined recovery and split may be complicated, just wanted to throw it on the table so
we have this option covered..

For the splits/merges to be initiated by master, we need to keep up-to-date stats about size of
each region in system tables - that's probably it? Am thinking of advantages/disadvantages of
having splits initiated by master - probably, more straightforward (in-process) synchronization
and simpler coordination (in future)?

Page 3: [2] Comment [17] Michael Stack 5/7/2014 11:19:00 AM

Could these 'master RPC calls' just be your usual scan/get? We just treat them differently when
target is this new table?

One concern w/ new table is whether state will span two tables? If so, will this be an issue if
they are actual HBase tables? Or, it won't be a concern because these are in-memory, local-to-
the-master tables so it should be easy to do atomic modifications across them.

Advantage of new table would be could do the schema 'right'.

Would need to figure out how to do migration... or not... since we are now saying this 2.0 feature
(start/stop cluster)

Page 3: [3] Comment [18] Mikhail Antonov 5/7/2014 6:27:00 PM

I'd assume for clients it will be read-only "dictionary" tables, so they could just use regular scans
and gets, and modifications needed within the master -they can use just java locks?

Keeping in mind multi-master setup, sounds like we could leave hookup-point to add
coordination of operations between multiple masters, and already agreed operations (in case
with no consensus, just all operations) could be guarded by in-process lock?

