A publishing partnership

Table of contents

Volume 859

Number 2, 2018 June 1

Previous issue Next issue

78

, , , , , , , , , et al

We present optical and near-infrared observations of a low-luminosity (LL) Type IIP supernova (SN) 2016bkv from the initial rising phase to the plateau phase. Our observations show that the end of the plateau is extended to ≳140 days since the explosion, indicating that this SN takes one of the longest times to finish the plateau phase among Type IIP SNe (SNe IIP), including LL SNe IIP. The line velocities of various ions at the middle of the plateau phase are as low as 1000–1500 km s−1, which is the lowest even among LL SNe IIP. These measurements imply that the ejecta mass in SN 2016bkv is larger than that of the well-studied LL IIP SN 2003Z. In the early phase, SN 2016bkv shows a strong bump in the light curve. In addition, the optical spectra in this bump phase exhibit a blue continuum accompanied by a narrow Hα emission line. These features indicate an interaction between the SN ejecta and the circumstellar matter (CSM) as in SNe IIn. Assuming the ejecta–CSM interaction scenario, the mass loss rate is estimated to be $\sim 1.7\times {10}^{-2}\,{M}_{\odot }$ yr−1 within a few years before the SN explosion. This is comparable to or even larger than the largest mass loss rate observed for the Galactic red supergiants ($\sim {10}^{-3}\,{M}_{\odot }$ yr−1 for VY CMa). We suggest that the progenitor star of SN 2016bkv experienced a violent mass loss just before the SN explosion.

79

, , , , , , , , and

The late-time light curves of Type Ia supernovae (SNe Ia), observed >900 days after explosion, present the possibility of a new diagnostic for SN Ia progenitor and explosion models. First, however, we must discover what physical process (or processes) leads to the slow-down of the light curve relative to a pure 56Co decay, as observed in SNe 2011fe, 2012cg, and 2014J. We present Hubble Space Telescope observations of SN 2015F, taken ≈600–1040 days past maximum light. Unlike those of the three other SNe Ia, the light curve of SN 2015F remains consistent with being powered solely by the radioactive decay of 56Co. We fit the light curves of these four SNe Ia in a consistent manner and measure possible correlations between the light-curve stretch—a proxy for the intrinsic luminosity of the SN—and the parameters of the physical model used in the fit. We propose a new, late-time Phillips-like correlation between the stretch of the SNe and the shape of their late-time light curves, which we parameterize as the difference between their pseudo-bolometric luminosities at 600 and 900 days: ΔL900 = log(L600/L900). Our analysis is based on only four SNe, so a larger sample is required to test the validity of this correlation. If true, this model-independent correlation provides a new way to test which physical process lies behind the slow-down of SN Ia light curves >900 days after explosion, and, ultimately, fresh constraints on the various SN Ia progenitor and explosion models.

80

, , , , , , , and

BL Lacertae (BL Lac) objects are prominent members of the third Fermi Large Area Telescope catalog of γ-ray sources. Half of the members of the BL Lac population (∼300) lack redshift measurements, which is due to the absence of lines in their optical spectra, thereby making it difficult to utilize spectroscopic methods. Our photometric dropout technique can be used to establish the redshift for a fraction of these sources. This work employed six filters mounted on the Swift-UVOT and four optical filters on two telescopes, the 0.65 m SARA-CTIO in Chile and 1.0 m SARA-ORM in the Canary Islands, Spain. A sample of 15 sources was extracted from the Swift archival data for which six filter UVOT observations were conducted. By complementing the Swift observations with the SARA ones, we were able to discover two high-redshift sources: 3FGL J1155.4-3417 and 3FGL J1156.7–2250 at $z={1.83}_{-0.13}^{+0.10}$ and $z={1.73}_{-0.19}^{+0.11}$, respectively, resulting from the dropouts in the power-law template fits to these data. The discoveries add to the important (26 total) sample of high-redshift BL Lacs. While the sample of high-z BL Lacs is still rather small, these objects do not seem to fit well within known schemes of the blazar population and represent the best probes of the extragalactic background light.

81

, , , , , , , , , and

The Hubble Space Telescope photometric survey of Galactic globular clusters (GCs) has revealed a peculiar "chromosome map" for NGC 6934. In addition to a typical sequence, similar to that observed in Type I GCs, NGC 6934 displays additional stars on the red side, analogous to the anomalous Type II GCs, as defined in our previous work. We present a chemical abundance analysis of four red giants in this GC. Two stars are located on the chromosome map sequence common to all GCs, and another two lie on the additional sequence. We find (i) star-to-star Fe variations, with the two anomalous stars being enriched by ∼0.2 dex. Because of our small-size sample, this difference is at the ∼2.5σ level. (ii) There is no evidence for variations in the slow neutron-capture abundances over Fe, at odds with what is often observed in anomalous Type II GCs, e.g., M 22 and ω Centauri; (iii) no large variations in light elements C, O, and Na, compatible with locations of the targets on the lower part of the chromosome map where such variations are not expected. Since the analyzed stars are homogeneous in light elements, the only way to reproduce the photometric splits on the sub-giant (SGB) and the red giant (RGB) branches is to assume that red RGB/faint SGB stars are enhanced in [Fe/H] by ∼0.2. This fact corroborates the spectroscopic evidence of a metallicity variation in NGC 6934. The observed chemical pattern resembles only partially the other Type II GCs, suggesting that NGC 6934 might belong either to a third class of GCs, or be a link between normal Type I and anomalous Type II GCs.

82

, , , , , , , , , et al

Mass measurements of gravitational microlenses require one to determine the microlens parallax πE, but precise πE measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which πE is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-πE model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector ${{\boldsymbol{\pi }}}_{{\rm{E}}}$ by factors ∼18 and ∼4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M1, M2) ∼ (1.1, 0.8) M or ∼(0.4, 0.3) M according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ∼10 years after the event.

83

, , and

Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number Sc exists, hovering around Sc ∼ 104, above which threshold Sweet–Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet–Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.

84

, , , , , , , , , et al

We investigate Lyα, [O iii] λ5007, Hα, and [C ii] 158 μm emission from 1124 galaxies at z = 4.9–7.0. Our sample is composed of 1092 Lyα emitters (LAEs) at z = 4.9, 5.7, 6.6, and 7.0 identified by Subaru/Hyper-Suprime-Cam (HSC) narrowband surveys covered by Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) and 34 galaxies at z = 5.148–7.508 with deep ALMA [C ii] 158 μm data in the literature. Fluxes of strong rest-frame optical lines of [O iii] and Hα (Hβ) are constrained by significant excesses found in the SPLASH 3.6 and 4.5 μm photometry. At z = 4.9, we find that the rest-frame Hα equivalent width and the Lyα escape fraction fLyα positively correlate with the rest-frame Lyα equivalent width ${\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}$. The ${f}_{\mathrm{Ly}\alpha }\mbox{--}{\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}$ correlation is similarly found at z ∼ 0–2, suggesting no evolution of the correlation over z ≃ 0–5. The typical ionizing photon production efficiency of LAEs is log(ξion/[Hz erg−1]) ≃ 25.5, significantly (60%–100%) higher than those of LBGs at a given UV magnitude. At z = 5.7–7.0, there exists an interesting turnover trend that the [O iii]/Hα flux ratio increases in ${\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}\simeq 0\mbox{--}30\,\mathring{\rm A} $ and then decreases out to ${\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}\simeq 130\,\mathring{\rm A} $. We also identify an anticorrelation between a ratio of [C ii] luminosity to star formation rate (L[C ii]/SFR) and ${\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}$ at the >99% confidence level.. We carefully investigate physical origins of the correlations with stellar-synthesis and photoionization models and find that a simple anticorrelation between ${\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}$ and metallicity explains self-consistently all of the correlations of Lyα, Hα, [O iii]/Hα, and [C ii] identified in our study, indicating detections of metal-poor (∼0.03 Z) galaxies with ${\mathrm{EW}}_{\mathrm{Ly}\alpha }^{0}\simeq 200\,\mathring{\rm A} $.

85

, , , , , , and

Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.

86

This paper reports a reanalysis of archival ALMA data of the high velocity(-width) compact cloud CO−0.40–0.22, which has recently been hypothesized to host an intermediate-mass black hole (IMBH). If beam-smearing effects, difference in beam sizes among frequency bands, and Doppler shift due to the motion of the Earth are considered accurately, none of the features reported as evidence for an IMBH in previous studies are confirmed in the reanalyzed ALMA images. Instead, through analysis of the position–velocity structure of the HCN J = 3–2 data cube, we have found kinematics typical of a cloud–cloud collision (CCC), namely, two distinct velocity components bridged by broad emission features with elevated temperatures and/or densities. One velocity component has a straight filamentary shape with approximately constant centroid velocities along its length but with a steep, V-shaped velocity gradient across its width. This contradicts the IMBH scenario but is consistent with a collision between two dissimilar-sized clouds. From a non-LTE analysis of the multitransition methanol lines, the volume density of the post-shock gas has been measured to be ≳106 cm−3, indicating that the CCC shock can compress gas in a short timescale to densities typical of star-forming regions. Evidence for star formation has not been found, possibly because the cloud is in an early phase of CCC-triggered star formation or because the collision is nonproductive.

87

, , , , , , and

Flare research is becoming a burgeoning realm of interest in the study of stellar activity due to the launch of Kepler in 2009. Kepler provides data with two time resolutions, i.e., the long-cadence (LC) data with a time resolution of 30 minutes and the short-cadence (SC) data with a time resolution of 1 minute, both of which can be used to study stellar flares. In this paper, we search flares in light curves with both LC data and SC data, and compare them in aspects of the true-flare rate, the flare energy, the flare amplitude, and the flare duration. It is found that LC data systematically underestimated the energies of flares by 25%, and underestimated the amplitudes of flares by 60% compared with SC flares. The durations are systematically overestimated by 50% compared with SC flares. However, the above percentages are poorly constrained and there is a lot of scatter. About 60% of SC flares have not been detected by LC data. We investigate the limitation of LC data, and suggest that although LC data cannot reflect the detailed profiles of flares, they can also capture the basic properties of stellar flares.

88

, , and

We have observed the Galactic black hole transient 4U 1630−47 during the decay of its 2016 outburst with Chandra and Swift to investigate the properties of the dust-scattering halo created by the source. The scattering halo shows a structure that includes a bright ring between 80'' and 240'' surrounding the source, and a continuous distribution beyond 250''. An analysis of the 12CO J = 1–0 map and spectrum in the line of sight to the source indicates that a molecular cloud with a radial velocity of −79 km s−1 (denoted MC −79) is the main scattering body that creates the bright ring. We found additional clouds in the line of sight, calculated their kinematic distances, and resolved the well known "near" and "far" distance ambiguity for most of the clouds. At the favored far-distance estimate of MC −79, the modeling of the surface brightness profile results in a distance to 4U 1630−47 of 11.5 ± 0.3 kpc. If MC −79 is at the near distance, then 4U 1630−47 is at 4.7 ± 0.3 kpc. Future Chandra, Swift, and submillimeter radio observations not only can resolve this ambiguity, but also would provide information regarding properties of dust and the distribution of all molecular clouds along the line of sight. Using the results of this study we also discuss the nature of this source and the reasons for the observation of an anomalously low soft state during the 2010 decay.

89
The following article is Open access

and

We consider a Compton cloud (CC) surrounding a black hole (BH) in an accreting BH system, where electrons propagate with thermal and bulk velocities. In that cloud, soft (disk) photons may be upscattered off these energetic electrons and attain energies of several MeV. They could then create pairs due to photon–photon interactions. In this paper, we study the formation of the 511 keV annihilation line due to this photon–photon interaction, which results in the creation of electron–positron pairs, followed by the annihilation of the created positrons with the CC electrons. The appropriate conditions for annihilation-line generation take place very close to a BH horizon within (103–104)m cm from it, where m is the BH hole mass in solar units. As a result, the created annihilation line should be seen by the Earth observer as a blackbody bump, or the so-called reflection bump at energies around (511/20) (20/z) keV, where z ∼ 20 is a typical gravitational redshift experienced by the created annihilation-line photons when they emerge. This transient feature should occur in any accreting BH system, either galactic or extragalactic. Observational evidences for this feature in several galactic BH systems is detailed in an accompanying paper. An extended hard tail of the spectrum up to 1 MeV may also be formed due to X-ray photons upscattering off created pairs.

90

, , and

Within the parameter space of the equation of state (EOS) of dense neutron-rich matter limited by existing constraints mainly from terrestrial nuclear experiments, we investigate how the neutron star maximum mass Mmax > 2.01 ± 0.04 M, radius 10.62 km < R1.4 < 12.83 km and tidal deformability Λ1.4 ≤ 800 of canonical neutron stars together constrain the EOS of dense neutron-rich nucleonic matter. While the 3D parameter space of Ksym (curvature of nuclear symmetry energy), Jsym, and J0 (skewness of the symmetry energy and EOS of symmetric nuclear matter, respectively) is narrowed down significantly by the observational constraints, more data are needed to pin down the individual values of Ksym, Jsym, and J0. The J0 largely controls the maximum mass of neutron stars. While the EOS with J0 = 0 is sufficiently stiff to support neutron stars as massive as 2.37 M, supporting the hypothetical ones as massive as 2.74 M (composite mass of GW170817) requires J0 to be larger than its currently known maximum value of about 400 MeV and beyond the causality limit. The upper limit on the tidal deformability of Λ1.4 = 800 from the recent observation of GW170817 is found to provide upper limits on some EOS parameters consistent with but far less restrictive than the existing constraints of other observables studied.

91

, , , , , , and

We report on a search for ultraluminous Lyα-emitting galaxies (LAEs) at z = 6.6 using the NB921 filter on the Hyper Suprime-Cam on the Subaru telescope. We searched a 30 deg2 area around the north ecliptic pole, which we observed in broadband g', r', i', z', and y' and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z'-NB921 > 1.3. This corresponds to a selection of log L(Lyα) > 43.5 erg s−1. We followed up seven candidate LAEs (out of 13) with the Keck DEIMOS spectrograph and confirmed five z = 6.6 LAEs, one z = 6.6 AGN with a broad Lyα line and a strong red continuum, and one low-redshift ([O iii] 5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower-luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z = 6.6 ultraluminous LAEs are systematically different from those of lower-luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyα profile of the galaxy—including any blue wings—to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ∼ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.

92
The following article is Open access

, , , , , , and

We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the Kc 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample.

93

, , , , , , , , , et al

We provide timing solutions for 45 radio pulsars discovered by the Robert C. Byrd Green Bank Telescope. These pulsars were found in the Green Bank North Celestial Cap pulsar survey, an all-GBT-sky survey being carried out at a frequency of $350\,\mathrm{MHz}$. We include pulsar timing data from the Green Bank Telescope and Low Frequency Array. Our sample includes five fully recycled millisecond pulsars (MSPs, three of which are in a binary system), a new relativistic double neutron star system, an intermediate-mass binary pulsar, a mode-changing pulsar, a 138 ms pulsar with a very low magnetic field, and several nulling pulsars. We have measured two post-Keplerian parameters and thus the masses of both objects in the double neutron star system. We also report a tentative companion mass measurement via Shapiro delay in a binary MSP. Two of the MSPs can be timed with high precision and have been included in pulsar timing arrays being used to search for low-frequency gravitational waves, while a third MSP is a member of the black widow class of binaries. Proper motion is measurable in five pulsars, and we provide an estimate of their space velocity. We report on an optical counterpart to a new black widow system and provide constraints on the optical counterparts to other binary MSPs. We also present a preliminary analysis of nulling pulsars in our sample. These results demonstrate the scientific return of long timing campaigns on pulsars of all types.

94

, , and

Prompted by the H i Lyα absorption associated with the X-ray ultrafast outflow at −17,300 km s−1 in the quasar PG 1211+143, we have searched archival UV spectra at the expected locations of H i Lyα absorption for a large sample of ultrafast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H i Lyα wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which ultrafast X-ray outflows (UFOs) were detected. In our spectra broad features with FWHM of 1000 km s−1 have 2σ upper limits on the H i column density of generally ≲2 × 1013 cm−2. Using grids of photoionization models covering a broad range of spectral energy distributions (SEDs), we find that producing Fe xxvi Lyα X-ray absorption with equivalent widths >30 eV and associated H i Lyα absorption with ${N}_{{\rm{H}}{\rm{I}}}\lt 2\times {10}^{13}\,{\mathrm{cm}}^{-2}$ requires total absorbing column densities ${N}_{{\rm{H}}}\gt 5\times {10}^{22}\,{\mathrm{cm}}^{-2}$ and ionization parameters log ξ ≳ 3.7. Nevertheless, a wide range of SEDs would predict observable H i Lyα absorption if ionization parameters are only slightly below peak ionization fractions for Fe xxv and Fe xxvi. The lack of Lyα features in the archival UV spectra indicates that the UFOs have very high ionization parameters, that they have very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations owing to variability.

95

, , , , , and

Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth's and Mars's orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

96

, , and

We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

97

, , , , and

Jupiter and Saturn each have complex systems of satellites and rings. These satellites can be classified into dynamical groups, implying similar formation scenarios. Recently, a larger number of additional irregular satellites have been discovered around both gas giants that have yet to be classified. The aim of this paper is to examine the relationships between the satellites and rings of the gas giants, using an analytical technique called cladistics. Cladistics is traditionally used to examine relationships between living organisms, the "tree of life." In this work, we perform the first cladistical study of objects in a planetary science context. Our method uses the orbital, physical, and compositional characteristics of satellites to classify the objects in the Jovian and Saturnian systems. We find that the major relationships between the satellites in the two systems, such as families, as presented in previous studies, are broadly preserved. In addition, based on our analysis of the Jovian system, we identify a new retrograde irregular family, the Iocaste family, and suggest that the Phoebe family of the Saturnian system can be further divided into two subfamilies. We also propose that the Saturnian irregular families be renamed, to be consistent with the convention used in Jovian families. Using cladistics, we are also able to assign the new unclassified irregular satellites into families. Taken together, the results of this study demonstrate the potential use of the cladistical technique in the investigation of relationships between orbital bodies.

98

, , , , and

Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of −0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.

99

, , , , , , , , , et al

We present observations of NGC 1068 covering the 19.7–53.0 μm wavelength range using FORCAST and HAWC+ on board SOFIA. Using these observations, high-angular-resolution infrared (IR) and submillimeter observations, we find an observational turnover of the torus emission in the 30–40 μm wavelength range with a characteristic temperature of 70–100 K. This component is clearly different from the diffuse extended emission in the narrow line and star formation regions at 10–100 μm within the central 700 pc. We compute 2.2–432 μm 2D images using the best inferred clumpy torus model based on several nuclear spectral energy distribution (SED) coverages. We find that when 1–20 μm SED is used, the inferred result gives a small torus size (<4 pc radius) and a steep radial dust distribution. The computed torus using the 1–432 μm SED provides comparable torus sizes, ${5.1}_{-0.4}^{+0.4}$ pc radius, and morphology to the recently resolved 432 μm Atacama Large Millimeter Array observations. This result indicates that the 1–20 μm wavelength range is not able to probe the full extent of the torus. The characterization of the turnover emission of the torus using the 30–60 μm wavelength range is sensitive to the detection of cold dust in the torus. The morphology of the dust emission in our 2D image at 432 μm is spatially coincident with the cloud distribution, while the morphology of the emission in the 1–20 μm wavelength range shows an elongated morphology perpendicular to the cloud distribution. We find that our 2D clumpy torus image at 12 μm can produce comparable results to those observed using IR interferometry.

100

and

Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1–1.2 M, but the adopted shapes for that relation have remained somewhat arbitrary for lack of strong observational constraints. In previous work, we compared stellar evolution models to well-measured eclipsing binaries to show that, when overshooting is implemented as a diffusive process, the fitted free parameter fov rises sharply up to about 2 M, and remains largely constant thereafter. Here, we analyze a new sample of eight binaries selected to be in the critical mass range below 2 M where fov is changing the most, nearly doubling the number of individual stars in this regime. This interval is important because the precise way in which fov changes determines the shape of isochrones in the turnoff region of ∼1–5 Gyr clusters, and can thus affect their inferred ages. It also has a significant influence on estimates of stellar properties for exoplanet hosts, on stellar population synthesis, and on the detailed modeling of interior stellar structures, including the calculation of oscillation frequencies that are observable with asteroseismic techniques. We find that the derived fov values for our new sample are consistent with the trend defined by our earlier determinations, and strengthen the relation. This provides an opportunity for future series of models to test the new prescription, grounded on observations, against independent observations that may constrain overshooting in a different way.

101

, , , , , , , , , et al

We present optical light curves, redshifts, and classifications for $365$ spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of $279$ PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of $1048$ SNe Ia in the range of 0.01 < z < 2.3, which we call the "Pantheon Sample." When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find ${{\rm{\Omega }}}_{m}=0.307\pm 0.012$ and $w=-1.026\pm 0.041$ for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H0 measurements, the analysis yields the most precise measurement of dark energy to date: ${w}_{0}=-1.007\pm 0.089$ and ${w}_{a}=-0.222\pm 0.407$ for the ${w}_{0}{w}_{a}$CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.

102

, , , , , , and

In the early stages of planet formation, small dust grains grow to become millimeter-sized particles in debris disks around stars. These disks can in principle be characterized by their emission at submillimeter and millimeter wavelengths. Determining both the occurrence and abundance of debris in unresolved circumstellar disks of A-type main-sequence stars requires that the stellar photospheric emission be accurately modeled. To better constrain the photospheric emission for such systems, we present observations of Sirius A, an A-type star with no known debris, from the James Clerk Maxwell Telescope, Submillimeter Array, and Jansky Very Large Array at 0.45, 0.85, 0.88, 1.3, 6.7, and 9.0 mm. We use these observations to inform a PHOENIX model of Sirius A's atmosphere. We find the model provides a good match to these data and can be used as a template for the submillimeter/millimeter emission of other early A-type stars where unresolved debris may be present. The observations are part of an ongoing observational campaign entitled Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter wavelengths.

103

and

We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system's morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly more evolved in the outer disk than in the inner disk.

104

, , , , , and

In late 2014, the solar wind dynamic pressure increased by ∼50% over a relatively short time (∼6 months). In early 2017, the Interstellar Boundary Explorer (IBEX) observed an increase in heliospheric energetic neutral atom (ENA) fluxes from directions near the front of the heliosphere. These enhanced ENA emissions resulted from the increase in SW pressure propagating through the inner heliosheath (IHS), affecting the IHS plasma pressure and emission of ∼keV ENA fluxes. We expand on the analysis by McComas et al. on the effects of this pressure change on ENA fluxes observed at 1 au using a three-dimensional, time-dependent simulation of the heliosphere. The pressure front has likely already crossed the termination shock (TS) in all directions, but ENA fluxes observed at 1 au will change over the coming years, as the TS, heliopause, and IHS plasma pressure continue to change in response to the SW pressure increase. Taken in isolation, the pressure front creates a "ring" of increasing ENA fluxes projected in the sky that expands in angular radius over time, as a function of the distances to the heliosphere boundaries and the ENA propagation speed. By tracking the position of this ring over time in our simulation, we demonstrate a method for estimating the distances to the TS, heliopause, and ENA source region that can be applied to IBEX data. This will require IBEX observations at 4.3 keV up through ∼2020, and longer times at lower ENA energies, in order to observe significant changes from the heliotail.

105

, , , , , , , , , et al

Low-mass asymptotic giant branch stars are among the most important polluters of the interstellar medium. In their interiors, the main component (A ≳ 90) of the slow neutron capture process (the s-process) is synthesized, the most important neutron source being the 13C(α,n)16O reaction. In this paper, we review its current experimental status, discussing possible future synergies between some experiments currently focused on the determination of its rate. Moreover, in order to determine the level of precision needed to fully characterize this reaction, we present a theoretical sensitivity study, carried out with the FUNS evolutionary stellar code and the NEWTON post-process code. We modify the rate up to a factor of 2 with respect to a reference case. We find that variations of the 13C(α,n)16O rate do not appreciably affect s-process distributions for masses above 3 M at any metallicity. Apart from a few isotopes, in fact, the differences are always below 5%. The situation is completely different if some 13C burns in a convective environment: this occurs in FUNS models with M < 3 M at solar-like metallicities. In this case, a change of the 13C(α,n)16O reaction rate leads to nonnegligible variations of the element surface distribution (10% on average), with larger peaks for some elements (such as rubidium) and neutron-rich isotopes (such as 86Kr and 96Zr). Larger variations are found in low-mass, low-metallicity models if protons are mixed and burned at very high temperatures. In this case, the surface abundances of the heavier elements may vary by more than a factor of 50.

106

, , and

3XMM J031820.8-663034, first detected by ROSAT in NGC 1313, is one of a few known transient ultraluminous X-ray sources (ULXs). In this paper, we present decades of X-ray data of this source from ROSAT, XMM-Newton, Chandra, and the Neil Gehrels Swift Observatory. We find that its X-ray emission experienced four outbursts since 1992, with a typical recurrent time ∼1800 days, an outburst duration ∼240–300 days, and a nearly constant peak X-ray luminosity ∼1.5 × 1039 erg s−1. The upper limit of X-ray luminosity at the quiescent state is ∼5.6 × 1036 erg s−1, and the total energy radiated during one outburst is ∼1046 erg. The spectra at the high luminosity states can be described with an absorbed disk blackbody, and the disk temperature increases with the X-ray luminosity. We compare its outburst properties with other known transient ULXs including ESO 243-49 HLX-1. As its peak luminosity only marginally puts it in the category of ULXs, we also compare it with normal transient black hole binaries. Our results suggest that the source is powered by an accreting massive stellar-mass black hole, and the outbursts are triggered by the thermal-viscous instability.

107

, , and

A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.

108

, , , , , and

M85 is a peculiar S0 galaxy in Virgo and a well-known merger remnant. We present the first spectroscopic study of globular clusters (GCs) in M85. We obtain spectra for 21 GC candidates and the nucleus of M85 using the Gemini Multi-Object Spectrograph on the Gemini North 8.1 m telescope. From their radial velocities, 20 of the GCs are found to be members of M85. We find a strong rotation signal of the M85 GC system with a rotation amplitude of 235 km s−1. The rotation axis of the GC system has a position angle of about 161°, which is 51fdg5 larger than that of the stellar light. The rotation-corrected radial velocity dispersion of the GC system is estimated to be ${\sigma }_{{\rm{r}},\mathrm{cor}}=160$ km s−1. The rotation parameter ${\rm{\Omega }}{R}_{\mathrm{icor}}/{\sigma }_{{\rm{r}},\mathrm{cor}}$ of the GC system is derived to be ${1.47}_{-0.48}^{+1.05}$, which is one of the largest among known early-type galaxies. The ages and metallicities of the GCs, which show the same trend as the results based on Lick indices, are derived from full spectrum fitting (ULySS). About half of the GCs are an intermediate-age population whose mean age is ∼3.7 ± 1.9 Gyr, having a mean [Fe/H] value of −0.26. The other half are old and metal-poor. These results suggest that M85 experienced a wet merging event about 4 Gyr ago, forming a significant population of star clusters. The strong rotational feature of the GC system can be explained by an off-center major merging.

109

and

For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

110

, , , , and

Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at βi = βe = 0.25 and kinetic Alfvén turbulence at βi = βe = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density εo in the range 0 ≤ εo ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as εo, consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.

111

, , , , , , , , , et al

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0farcs3 resolution of EX Lup, the prototype of the EXor class of outbursting pre-main-sequence stars. The circumstellar disk of EX Lup is resolved for the first time in 1.3 mm continuum emission and in the J = 2–1 spectral line of three isotopologues of CO. At the spatial resolution and sensitivity achieved, the compact dust continuum disk shows no indications of clumps, fragments, or asymmetries above the 5σ level. Radiative transfer modeling constrains the characteristic radius of the dust disk to 23 au and the total dust mass to 1.0 × 10−4M (33 M), similar to other EXor sources. The 13CO and C18O line emissions trace the disk rotation and are used to constrain the disk geometry, kinematics, and a total gas disk mass of 5.1 × 10−4M. The 12CO emission extends out to a radius of 200 au and is asymmetric, with one side deviating from Keplerian rotation. We detect blueshifted, 12CO arc-like emission located 0farcs8 to the northwest and spatially disconnected from the disk emission. We interpret this extended structure as the brightened walls of a cavity excavated by an outflow, which are more commonly seen in FUor sources. Such outflows have also been seen in the borderline FU/EXor object V1647 Ori, but not toward EXor objects. Our detection provides evidence that the outflow phenomenon persists into the EXor phase, suggesting that FUor and EXor objects are a continuous population in which outflow activity declines with age, with transitional objects such as EX Lup and V1647 Ori.

112

, , and

We present a systematic coherent X-ray pulsation search in 11 low mass X-ray binaries (LMXBs). We select a relatively broad variety of LMXBs, including persistent and transient sources, spanning orbital periods between 0.3 and 17 hr. We use about 3.6 Ms of data collected by the Rossi X-Ray Timing Explorer and XMM-Newton and apply a semi-coherent search strategy to look for weak and persistent pulses in a wide spin frequency range. We find no evidence for X-ray pulsations in these systems and consequently set upper limits on the pulsed sinusoidal semi-amplitude below 1.6% for ten outbursting/persistent LMXBs and 6% for a quiescent system; the upper limits are further refined, by searching a narrower parameter space around the outliers, down to 0.14%–0.78% and 2.9%, respectively. These results suggest that weak pulsations might not form in (most) non pulsating LMXBs.

113

, , , , and

We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes (${{\rm{\Gamma }}}_{\mathrm{eff}}={2.2}_{-0.9}^{+0.9}$ and ${1.9}_{-0.8}^{+0.9}$) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

114

, , , , , , and

SDSS J082625.70+612515.10 (V = 11.4; [Fe/H] = −3.1) and SDSS J134144.60+474128.90 (V = 12.4; [Fe/H] = −3.2) were observed with the SDSS 2.5m telescope as part of the SDSS MARVELS spectroscopic pre-survey and identified as extremely metal-poor (EMP; [Fe/H] < −3.0) stars during the high-resolution follow-up using the Hanle Echelle Spectrograph (HESP) on the 2.0-m Himalayan Chandra Telescope. In this paper, the first science results using HESP, we present a detailed analysis of their chemical abundances. Both stars exhibit under-abundances in their neutron capture elements, while one of them (SDSS J134144.60+474128.90) is clearly enhanced in carbon. Lithium was also detected in this star at a level of about A(Li) = 1.95. The spectra were obtained over a span of 6–24 months, and indicate that both stars could be members of binary systems. We compare the elemental abundances derived for these two stars along with other carbon-enhanced metal-poor (CEMP) and EMP stars, in order to understand the nature of their parent supernovae. We find that CEMP-no stars and EMP-dwarfs show a very similar trend in their lithium abundances at various metallicities. We also find indications of CEMP-no stars having larger abundances of Cr and Co at given metallicities compared to EMP stars.

115

, , , , , , , and

The alignment between satellites and central galaxies has been studied in detail both in observational and theoretical works. The widely accepted fact is that satellites preferentially reside along the major axis of their central galaxy. However, the origin and large-scale environmental dependence of this alignment are still unknown. In an attempt to determine these variables, we use data constructed from Sloan Digital Sky Survey DR7 to investigate the large-scale environmental dependence of this alignment with emphasis on examining the alignment's dependence on the color of the central galaxy. We find a very strong large-scale environmental dependence of the satellite–central alignment (SCA) in groups with blue centrals. Satellites of blue centrals in knots are preferentially located perpendicular to the major axes of the centrals, and the alignment angle decreases with environment, namely, when going from knots to voids. The alignment angle strongly depends on the ${}^{0.1}(g-r)$ color of centrals. We suggest that the SCA is the result of a competition between satellite accretion within large-scale structure (LSS) and galaxy evolution inside host halos. For groups containing red central galaxies, the SCA is mainly determined by the evolution effect, while for blue central dominated groups, the effect of the LSS plays a more important role, especially in knots. Our results provide an explanation for how the SCA forms within different large-scale environments. The perpendicular case in groups and knots with blue centrals may also provide insight into understanding similar polar arrangements, such as the formation of the Milky Way and Centaurus A's satellite system.

116

and

Type 2 quasars are an important constituent of active galaxies, possibly representing the evolutionary precursors of traditionally studied type 1 quasars. We characterize the black hole (BH) mass (MBH) and Eddington ratio (Lbol/LEdd) for 669 type 2 quasars selected from the Sloan Digital Sky Survey, using BH masses estimated from the MBHσ* relation and bolometric corrections scaled from the extinction-corrected [O iii] λ5007 luminosity. When stellar velocity dispersions cannot be measured directly from the spectra, we estimate them from the core velocity dispersions of the narrow emission lines [O ii] λλ3726, 3729, [S ii] λλ6716, 6731, and [O iii] λ5007, which are shown to trace the gravitational potential of the stars. Energy input from the active nucleus still imparts significant perturbations to the gas kinematics, especially to high-velocity, blueshifted wings. Nonvirial motions in the gas become most noticeable in systems with high Eddington ratios. The BH masses of our sample of type 2 quasars range from MBH ≈ 106.5 to 1010.4M (median 108.2M). Type 2 quasars have characteristically large Eddington ratios (Lbol/LEdd ≈ 10−2.9–101.8; median 10−0.7), slightly higher than in type 1 quasars of similar redshift; the luminosities of ∼20% of the sample formally exceed the Eddington limit. The high Eddington ratios may be consistent with the notion that obscured quasars evolve into unobscured quasars.

117

, , , and

Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun's observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.

118

and

Protoplanetary disk simulations show that a single planet can excite more than one spiral arm, possibly explaining the recent observations of multiple spiral arms in some systems. In this paper, we explain the mechanism by which a planet excites multiple spiral arms in a protoplanetary disk. Contrary to previous speculations, the formation of both primary and additional arms can be understood as a linear process when the planet mass is sufficiently small. A planet resonantly interacts with epicyclic oscillations in the disk, launching spiral wave modes around the Lindblad resonances. When a set of wave modes is in phase, they can constructively interfere with each other and create a spiral arm. More than one spiral arm can form because such constructive interference can occur for different sets of wave modes, with the exact number and launching position of the spiral arms being dependent on the planet mass as well as the disk temperature profile. Nonlinear effects become increasingly important as the planet mass increases, resulting in spiral arms with stronger shocks and thus larger pitch angles. This is found to be common for both primary and additional arms. When a planet has a sufficiently large mass (≳3 thermal masses for (h/r)p = 0.1), only two spiral arms form interior to its orbit. The wave modes that would form a tertiary arm for smaller mass planets merge with the primary arm. Improvements in our understanding of the formation of spiral arms can provide crucial insights into the origin of observed spiral arms in protoplanetary disks.

119

and

We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio $0.04\leqslant {(h/r)}_{p}\leqslant 0.15$, whereas exterior to a planet's orbit multiple spiral arms can form only in cold disks with ${(h/r)}_{p}\lesssim 0.06$. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

120

, , , and

Resonant ion heating by high-frequency Alfvén waves has long been believed to be the primary dissipation mechanism for solar coronal heating, and these high-frequency Alfvén waves are considered to be generated via cascade from low-frequency Alfvén waves. In this study, we report an unusual harmonic Alfvén event from in situ observations by the Van Allen Probes in the magnetosphere, having an environment similar to that in the solar corona. The harmonic Alfvén waves, which propagate almost along the wave vector of the fundamental waves, are considered to be generated due to the interaction between quasi-parallel Alfvén waves and plasma density fluctuations with almost identical frequency. These high-frequency harmonic Alfvén waves can then cyclotron resonantly heat the heavy ions. Our observations provide an important insight into solar corona heating by Alfvén waves.

121

, , and

We analyze and discuss an example of prominence barbs observed on the limb on 2016 January 7 by the Hinode/Solar Optical Telescope in Ca ii and Hα, the Interface Region Imaging Spectrograph, with slit jaw images and Mg ii spectral data, and the Solar Dynamics Observatory's Atmospheric Imaging Assembly. In the recent literature there has been a debate concerning whether these features, sometimes referred to as "tornadoes," are rotating. Our data analysis provides no evidence for systematic rotation in the barbs. We do find line-of-sight motions in the barbs that vary with location and time. We also discuss observations of features moving along the barbs. These moving features are elongated parallel to the solar limb and tend to come in clusters of features moving along the same or similar paths in the plane of the sky during a period of 10 minutes to an hour, moving toward or away from the limb. The motion may have a component along the line of sight as well. The spectral data indicate that the features are Doppler shifted. We discuss possible explanations for these features.

122

, , , , and

We analyze a unique event with an M1.8 confined circular-ribbon flare on 2016 February 13, with successive formations of two circular ribbons at the same location. The flare had two distinct phases of UV and extreme ultraviolet emissions with an interval of about 270 s, of which the second peak was energetically more important. The first episode was accompanied by the eruption of a mini-filament and the fast elongation motion of a thin circular ribbon (CR1) along the counterclockwise direction at a speed of about 220 km s−1. Two elongated spine-related ribbons were also observed, with the inner ribbon co-temporal with CR1 and the remote brightenings forming ∼20 s later. In the second episode, another mini-filament erupted and formed a blowout jet. The second circular ribbon and two spine-related ribbons showed similar elongation motions with that during the first episode. The extrapolated three-dimensional coronal magnetic fields reveal the existence of a fan-spine topology, together with a quasi-separatrix layer (QSL) halo surrounding the fan plane and another QSL structure outlining the inner spine. We suggest that continuous null-point reconnection between the filament and ambient open field occurs in each episode, leading to the sequential opening of the filament and significant shifts of the fan plane footprint. For the first time, we propose a compound eruption model of circular-ribbon flares consisting of two sets of successively formed ribbons and eruptions of multiple filaments in a fan-spine-type magnetic configuration.

123

and

The persistent soft X-ray emission from the location of the most luminous supernova (SN) so far, ASASSN-15lh (or SN 2015L), with $L\sim {10}^{42}\,\mathrm{erg}\,{{\rm{s}}}^{-1}$, is puzzling. We show that it can be explained by radiation from electrons accelerated by the SN shock inverse-Compton scattering the intense UV photons. The non-detection in radio requires strong free–free absorption in the dense medium. In these interpretations, the circumstellar medium is derived to be a wind (n ∝ R−2) with mass-loss rate of $\dot{{M}}\gtrsim 3\times {10}^{-3}{{M}}_{\odot }({{v}}_{{\rm{w}}}/{10}^{3}\,{\rm{k}}{\rm{m}}\,{{\rm{s}}}^{-1})\,{{\rm{y}}{\rm{r}}}^{-1}$, and the initial velocity of the bulk SN ejecta is $\lesssim 0.02c$. These constraints imply a massive ejecta mass of $\gtrsim 60({E}_{0}/2\times {10}^{52}\,\mathrm{erg}){M}_{\odot }$ in ASASSN-15lh, and a strong wind ejected by the progenitor star within $\sim 8{({v}_{{\rm{w}}}/{10}^{3}\mathrm{km}{{\rm{s}}}^{-1})}^{-1}$ yr before explosion.

124

, , , , , , , , and

We studied the circumnuclear mid-IR emission in a sample of 19 local active galactic nuclei (AGNs) with high spatial resolution spectra using T-ReCS (Gemini) and CanariCam (GTC), together with Spitzer/IRS observations. We measured the flux and the equivalent width for the 11.3 μm PAH feature and the [S iv] line emission as a function of galactocentric distance. This allowed us to study the star formation (SF) at subkiloparsec scales from the nucleus for a large sample of nearby AGNs. The [S iv] line emission could be tracing the AGN radiation field within a few thousand times the sublimation radius (Rsub), but it often peaks at distances greater than 1000 Rsub. One possibility is that the SF is contributing to the [S iv] total flux. We found an 11.3 μm PAH emission deficit within the inner few tens of parsecs from the AGN. This deficit might be due to the destruction of the molecules responsible for this feature or the lack of SF at these distances. We found a sensible agreement in the expected shift of the relation of the AGN bolometric luminosity and the SF rate. This indicates that numerical models attributing the link between AGN activity and host galaxy growth to mergers are in agreement with our data, for most inner galaxy parts.

125

, , , and

Galaxy formation depends critically on the physical state of gas in the circumgalactic medium (CGM) and its interface with the intergalactic medium (IGM), determined by the complex interplay between inflow from the IGM and outflows from supernovae and/or AGN feedback. The average Lyα absorption profile around galactic halos represents a powerful tool to probe their gaseous environments. We compare predictions from Illustris and Nyx hydrodynamical simulations with the observed absorption around foreground quasars, damped Lyα systems, and Lyman-break galaxies. We show how large-scale BOSS and small-scale quasar pair measurements can be combined to precisely constrain the absorption profile over three decades in transverse distance $20\,\mathrm{kpc}\lesssim b\lesssim 20\,\mathrm{Mpc}$. Far from galaxies, $\gtrsim 2\,\mathrm{Mpc}$, the simulations converge to the same profile and provide a reasonable match to the observations. This asymptotic agreement arises because the ΛCDM model successfully describes the ambient IGM and represents a critical advantage of studying the mean absorption profile. However, significant differences between the simulations, and between simulations and observations, are present on scales $20\,\,\mathrm{kpc}\lesssim b\lesssim 2\,\mathrm{Mpc}$, illustrating the challenges of accurately modeling and resolving galaxy formation physics. It is noteworthy that these differences are observed as far out as $\sim 2\,\mathrm{Mpc}$, indicating that the "sphere of influence" of galaxies could extend to approximately ∼7 times the halo virial radius. Current observations are very precise on these scales and can thus strongly discriminate between different galaxy formation models. We demonstrate that the Lyα absorption profile is primarily sensitive to the underlying temperature–density relationship of diffuse gas around galaxies, and argue that it thus provides a fundamental test of galaxy formation models.

126

and

The majority of gas giants (planets of masses ≳102 M) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet's orbit slows down and eventually halts migration. A pressure bump outside the planet's orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.

127

, , , , , , , , , et al

The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i.e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1 Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.

128

, , , , , , , , , et al

The flat-spectrum radio quasar 1633+382 (4C 38.41) showed a significant increase of its radio flux density during the period 2012 March–2015 August, which correlates with γ-ray flaring activity. Multi-frequency simultaneous very long baseline interferometry (VLBI) observations were conducted as part of the interferometric monitoring of gamma-ray bright active galactic nuclei (iMOGABA) program and supplemented with additional radio monitoring observations with the OVRO 40 m telescope, the Boston University VLBI program, and the Submillimeter Array. The epochs of the maxima for the two largest γ-ray flares coincide with the ejection of two respective new VLBI components. Analysis of the spectral energy distribution indicates a higher turnover frequency after the flaring events. The evolution of the flare in the turnover frequency-turnover flux density plane probes the adiabatic losses in agreement with the shock-in-jet model. The derived synchrotron self-absorption magnetic fields, of the order of 0.1 mG, do not seem to change dramatically during the flares, and are much weaker, by a factor 104, than the estimated equipartition magnetic fields, indicating that the source of the flare may be associated with a particle-dominated emitting region.

129

, , , , and

We identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way (MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score. We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among the subhalo populations. Although the small size and specific baryonic physics prescription of our training set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.

130

, , , , , and

In this paper, we introduce ${\mathtt{PoMiN}}$, a lightweight N-body code based on the post-Minkowskian N-body Hamiltonian of Ledvinka et al., which includes general relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. ${\mathtt{PoMiN}}\,$ is written in ${\mathtt{C}}$ and uses a fourth-order Runge–Kutta integration scheme. ${\mathtt{PoMiN}}$ has also been written to handle an arbitrary number of particles (both massive and massless), with a computational complexity that scales as O(N2). We describe the methods we used to simplify and organize the Hamiltonian, and the tests we performed (convergence, conservation, and analytical comparison tests) to validate the code.

131

, , , , , , , and

Cometary studies suggest that the organic composition of the early Solar Nebula was rich in complex nitrile species such CH3CN. Recent ALMA detections in protoplanetary disks suggest that these species may be common during planet and comet formation, but connecting gas-phase measurements to cometary abundances first requires constraints on formation chemistry and distributions of these species. We present here the detection of seven spatially resolved transitions of CH3CN in the protoplanetary disk around the T-Tauri star TW Hya. Using a rotational diagram analysis, we find a disk-averaged column density of ${N}_{T}={1.45}_{-0.15}^{+0.19}\times {10}^{12}$ cm−2 and a rotational temperature of ${T}_{\mathrm{rot}}={32.7}_{-3.4}^{+3.9}$ K. A radially resolved rotational diagram shows the rotational temperature to be constant across the disk, suggesting that the CH3CN emission originates from a layer at z/r ∼ 0.3. Through comparison of the observations with predictions from a disk chemistry model, we find that grain-surface reactions likely dominate CH3CN formation and that in situ disk chemistry is sufficient to explain the observed CH3CN column density profile without invoking inheritance from the protostellar phase. However, the same model fails to reproduce a solar system cometary abundance of CH3CN relative to H2O in the midplane, suggesting that either vigorous vertical mixing or some degree of inheritance from interstellar ices occurred in the Solar Nebula.

132

and

We present a magnetohydrodynamic model of solar eruption based on the dynamic state transition from the quasi-static state to the eruptive state of an active region (AR) magnetic field. For the quasi-static state before an eruption, we consider the existence of a slow solar wind originating from an AR, which may continuously make the AR magnetic field deviate from mechanical equilibrium. In this model, we perform a three-dimensional magnetohydrodynamic simulation of AR 12158 producing a coronal mass ejection, where the initial magnetic structure of the simulation is given by a nonlinear force-free field derived from an observed photospheric vector magnetic field. We then apply a pressure-driven outflow to the upper part of the magnetic structure to achieve a quasi-static pre-eruptive state. The simulation shows that the eruptive process observed in this AR may be caused by the dynamic state transition of an AR magnetic field, which is essentially different from the destabilization of a static magnetic field. The dynamic state transition is determined from the shape evolution of the magnetic field line according to the κH-mechanism. This work demonstrates how the mechanism works to produce a solar eruption in the dynamic solar corona governed by the gravitational field and the continuous outflows of solar wind.

133

, , , , and

Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.

134

, , , , , , , , and

We present detailed multifrequency, multiepoch radio observations of GRB 140304A at z = 5.283 from 1 to 86 GHz and from 0.45 to 89 days. The radio and millimeter data exhibit unusual multiple spectral components, which cannot be simply explained by standard forward and reverse shock scenarios. Through detailed multiwavelength analysis spanning radio to X-rays, we constrain the forward shock parameters to Ek,iso ≈ 4.9 × 1054 erg, ${A}_{* }$ ≈ 2.6 × 10−2, ${\epsilon }_{{\rm{e}}}$ ≈ 2.5 × 10−2, ${\epsilon }_{{\rm{B}}}$ ≈ 5.9 × 10−2, p ≈ 2.6, and ${\theta }_{\mathrm{jet}}$ ≈ 1fdg1, yielding a beaming-corrected γ-ray and kinetic energy, ${E}_{\gamma }$ ≈ 2.3 × 1049 erg and ${E}_{{\rm{K}}}$ ≈ 9.5 × 1050 erg, respectively. We model the excess radio emission as due to a combination of a late-time reverse shock (RS) launched by a shell collision, which also produces a rebrightening in the X-rays at ≈0.26 days, and either a standard RS or diffractive interstellar scintillation (ISS). Under the standard RS interpretation, we invoke consistency arguments between the forward and reverse shocks to derive a deceleration time, tdec ≈ 100 s, the ejecta Lorentz factor, Γ(tdec) ≈ 300, and a low RS magnetization, RB ≈ 0.6. Our observations highlight both the power of radio observations in capturing RS emission and thus constraining the properties of GRB ejecta and central engines and the challenge presented by ISS in conclusively identifying RS emission in GRB radio afterglows.

135

and

Coronal helmet streamers show a continual tendency to expand outward and pinch off, giving rise to flux ropes that are observed in white light as "blobs" propagating outward along the heliospheric current/plasma sheet. The blobs form within the r ∼ 2–6 R heliocentric range of the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument, but the expected inward-moving counterparts are often not detected. Here we show that the height of blob formation varies as a function of the underlying photospheric field, with the helmet streamer loops expanding to greater heights when active regions (ARs) emerge underneath them. When the pinch-offs occur at r ∼ 3–4 R, diverging inward/outward tracks sometimes appear in height–time maps constructed from LASCO C2 running-difference images. When the underlying photospheric field is weak, the blobs form closer to the inner edge of the C2 field of view and only the outward tracks are clearly visible. Conversely, when the emergence of large ARs leads to a strengthening of the outer coronal field and an increase in the total white-light radiance (as during late 2014), the expanding helmet-streamer loops pinch off beyond r ∼ 4 R, triggering strong inflow streams whose outgoing counterparts are usually very faint. We deduce that the visibility of the blobs and inflows depends on the amount of material that the diverging components sweep up within the 2–6 R field of view. We also note that the rate of blob production tends to increase when a helmet streamer is "activated" by underlying flux emergence.

136

, , , , , , , , , et al

We report new interferometric images of cyclopropenylidene, c-C3H2, toward the young protocluster OMC-2 FIR 4. The observations were performed at 82 and 85 GHz with the NOrthern Extended Millimeter Array (NOEMA) as part of the project Seeds Of Life In Space (SOLIS). In addition, IRAM-30 m data observations were used to investigate the physical structure of OMC-2 FIR 4. We find that the c-C3H2 gas emits from the same region where previous SOLIS observations showed bright HC5N emission. From a non-LTE analysis of the IRAM-30 m data, the c-C3H2 gas has an average temperature of ∼40 K, a H2 density of ∼3 × 105 cm−3, and a c-C3H2 abundance relative to H2 of (7 ± 1) × 10−12. In addition, the NOEMA observations provide no sign of significant c-C3H2 excitation temperature gradients across the region (about 3–4 beams), with Tex in the range 8 ± 3 up to 16 ± 7 K. We thus infer that our observations are inconsistent with a physical interaction of the OMC-2 FIR 4 envelope with the outflow arising from OMC-2 FIR 3, as claimed by previous studies. The comparison of the measured c-C3H2 abundance with the predictions from an astrochemical PDR model indicates that OMC-2 FIR 4 is irradiated by an FUV field ∼1000 times larger than the interstellar one, and by a flux of ionizing particles ∼4000 times larger than the canonical value of 1 × 10−17 s−1 from the Galaxy cosmic rays, which is consistent with our previous HC5N observations. This provides an important and independent confirmation of other studies that one, or more, source inside the OMC-2 FIR 4 region emits energetic (≥10 MeV) particles.

137

, , , and

Distances and extinction values are usually degenerate. To refine the distance to the general Galactic Center region, a carefully determined extinction law (taking into account the prevailing systematic errors) is urgently needed. We collected data for 55 classical Cepheids projected toward the Galactic Center region to derive the near- to mid-infrared extinction law using three different approaches. The relative extinction values obtained are ${A}_{J}/{A}_{{K}_{{\rm{s}}}}=3.005,{A}_{H}/{A}_{{K}_{{\rm{s}}}}=1.717$, ${A}_{[3.6]}/{A}_{{K}_{{\rm{s}}}}=0.478,{A}_{[4.5]}/{A}_{{K}_{{\rm{s}}}}=0.341$, ${A}_{[5.8]}/{A}_{{K}_{{\rm{s}}}}=0.234,{A}_{[8.0]}/{A}_{{K}_{{\rm{s}}}}\,=0.321,{A}_{W1}/{A}_{{K}_{{\rm{s}}}}=0.506$, and ${A}_{W2}/{A}_{{K}_{{\rm{s}}}}=0.340$. We also calculated the corresponding systematic errors. Compared with previous work, we report an extremely low and steep mid-infrared extinction law. Using a seven-passband "optimal distance" method, we improve the mean distance precision to our sample of 55 Cepheids to 4%. Based on four confirmed Galactic Center Cepheids, a solar Galactocentric distance of R0 = 8.10 ± 0.19 ± 0.22 kpc is determined, featuring an uncertainty that is close to the limiting distance accuracy (2.8%) for Galactic Center Cepheids.

138

, , , , , , , and

We present single-epoch black hole mass (${M}_{\mathrm{BH}}$) calibrations based on the rest-frame ultraviolet (UV) and optical measurements of Mg ii 2798 Å and Hβ 4861 Å lines and the active galactic nucleus (AGN) continuum, using a sample of 52 moderate-luminosity AGNs at z ∼ 0.4 and z ∼ 0.6 with high-quality Keck spectra. We combine this sample with a large number of luminous AGNs from the Sloan Digital Sky Survey to increase the dynamic range for a better comparison of UV and optical velocity and luminosity measurements. With respect to the reference ${M}_{\mathrm{BH}}$ based on the line dispersion of Hβ and continuum luminosity at 5100 Å, we calibrate the UV and optical mass estimators by determining the best-fit values of the coefficients in the mass equation. By investigating whether the UV estimators show a systematic trend with Eddington ratio, FWHM of Hβ, Fe ii strength, or UV/optical slope, we find no significant bias except for the slope. By fitting the systematic difference of Mg ii-based and Hβ-based masses with the L3000/L5100 ratio, we provide a correction term as a function of the spectral index as ΔC = 0.24 (1 + αλ) + 0.17, which can be added to the Mg ii-based mass estimators if the spectral slope can be well determined. The derived UV mass estimators typically show >∼0.2 dex intrinsic scatter with respect to the Hβ-based ${M}_{\mathrm{BH}}$, suggesting that the UV-based mass has an additional uncertainty of ∼0.2 dex, even if high-quality rest-frame UV spectra are available.

139
The following article is Open access

and

We used spectropolarimetric observations of a sunspot in the active region NOAA 11809 in the Ca ii line at 854.2 nm taken with the SpectroPolarimeter for Optical and Infrared Regions at the Dunn Solar Telescope to infer thermodynamic parameters along 100 super-penumbral fibrils that harbor the inverse Evershed flow. The fibrils were identified in line-of-sight (LOS) velocity and line–core intensity maps. The chromospheric LOS velocity abruptly decreases from 3 to 15 km s−1 to zero at the inner footpoints of the fibrils that are located from the mid penumbra to about 1.4 spot radii. The spectra often show multiple absorption components, indicating spatially or vertically unresolved structures. Synthetic spectra with a 100% fill factor of a flow channel in the upper atmosphere yield strongly asymmetric profiles but no multiple separate components. The line–core intensity always peaks slightly closer to the umbra than the LOS velocity. Using the CAlcium Inversion using a Spectral ARchive code, we find that the fibrils make an angle of 30°–60° to the local vertical away from the umbra. The temperature near the downflow points is enhanced by 200 K at log $\tau \sim -2$ and up to 2000 K at log τ ∼ (−6) compared to the quiet Sun, without any signature in the low photosphere. Our results are consistent with a critical, i.e., sonic, or supersonic siphon flow along super-penumbral flux tubes in which accelerating plasma abruptly attains subcritical velocity through a standing shock in or near the penumbra.

140

, , , , and

W Ursa Majoris (W UMa)-type contact binary systems (CBs) are useful statistical distance indicators because of their large numbers. Here, we establish (orbital) period–luminosity relations (PLRs) in 12 optical to mid-infrared bands (GBVRIJHKsW1W2W3W4) based on 183 nearby W UMa-type CBs with accurate TychoGaia parallaxes. The 1σ dispersion of the PLRs decreases from optical to near- and mid-infrared wavelengths. The minimum scatter, 0.16 mag, implies that W UMa-type CBs can be used to recover distances to 7% precision. Applying our newly determined PLRs to 19 open clusters containing W UMa-type CBs demonstrates that the PLR and open cluster CB distance scales are mutually consistent to within 1%. Adopting our PLRs as secondary distance indicators, we compiled a catalog of 55,603 CB candidates, of which 80% have distance estimates based on a combination of optical, near-infrared, and mid-infrared photometry. Using Fourier decomposition, 27,318 high-probability W UMa-type CBs were selected. The resulting 8% distance accuracy implies that our sample encompasses the largest number of objects with accurate distances within a local volume with a radius of 3 kpc available to date. The distribution of W UMa-type CBs in the Galaxy suggests that in different environments, the CB luminosity function may be different: larger numbers of brighter (longer-period) W UMa-type CBs are found in younger environments.

141

, , , , , , , , , et al

We report on a broadband study of a complex X-ray source (1SAX J0618.0+2227) associated with the interaction site of the supernova remnant (SNR) IC 443 and ambient molecular cloud (MC) using NuSTAR, XMM-Newton, and Chandra observations. Its X-ray spectrum is composed of both thermal and nonthermal components. The thermal component can be equally well represented by either a thin plasma model with kT = 0.19 keV or a blackbody model with kT = 0.11 keV. The nonthermal component can be fit with either a power law with Γ ∼ 1.7 or a cutoff power law with Γ ∼ 1.5 and a cutoff energy at Ecut ∼ 18 keV. Using the newly obtained NuSTAR data set, we test three possible scenarios for isolated X-ray sources in the SNR–MC interaction site: (1) a pulsar wind nebula (PWN); (2) an SNR ejecta fragment; and (3) a shocked molecular clump. We conclude that this source is most likely composed of an SNR ejecta (or a PWN) and surrounding shocked molecular clumps. The nature of this hard X-ray source in the SNR–MC interaction site of IC 443 may shed light on unidentified X-ray sources with hard X-ray spectra in rich environments for star-forming regions, such as the Galactic center.

142
The following article is Open access

, , , , , , and

Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.

143

and

Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012−1013 cm−3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.

144

, , , , , , , , , et al

We present ALMA Band 6 12CO(2–1) line and rest-frame 232 GHz continuum observations of the nearby Compton-thick Seyfert galaxy NGC 5643 with angular resolutions 0farcs11–0farcs26 (9–21 pc). The CO(2–1) integrated line map reveals emission from the nuclear and circumnuclear region with a two-arm nuclear spiral extending ∼10'' on each side. The circumnuclear CO(2–1) kinematics can be fitted with a rotating disk, although there are regions with large residual velocities and/or velocity dispersions. The CO(2–1) line profiles of these regions show two different velocity components. One is ascribed to the circular component and the other to the interaction of the AGN outflow, as traced by the [O iii]λ5007 Å emission, with molecular gas in the disk a few hundred parsecs from the AGN. On nuclear scales, we detected an inclined CO(2–1) disk (diameter 26 pc, FWHM) oriented almost in a north–south direction. The CO(2–1) nuclear kinematics can be fitted with a rotating disk that appears to be tilted with respect to the large-scale disk. There are strong non-circular motions in the central 0farcs2–0farcs3 with velocities of up to 110 km s−1. In the absence of a nuclear bar, these motions could be explained as radial outflows in the nuclear disk. We estimate a total molecular gas mass for the nuclear disk of M(H2) = 1.1 × 107M and an H2 column density toward the location of the AGN of N(H2) ∼ 5 × 1023 cm−2, for a standard CO-to-H2 conversion factor. We interpret this nuclear molecular gas disk as the obscuring torus of NGC 5643 as well as the collimating structure of the ionization cone.

145

, , , , , , and

Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (OC) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system's precise orbital period (P = 792.3 days) and the light-travel-time amplitude (A = 468.9 s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3σ as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was $\dot{P}$ = 5.4 (±0.7) × 10−14 d d−1, which shows that the sdB is just before the end of the core helium-burning phase.

146

, , , , , , , , , et al

We present Keck Cosmic Web Imager spectroscopy of the four putative images of the lensed quasar candidate J014710+463040 recently discovered by Berghea et al. The data verify the source as a quadruply lensed, broad absorption-line quasar having ${z}_{{\rm{S}}}=2.377\,\pm \,0.007$. We detect intervening absorption in the Fe iiλλ2586, 2600, Mg iiλλ2796, 2803, and/or C ivλλ1548, 1550 transitions in eight foreground systems, three of which have redshifts consistent with the photometric-redshift estimate reported for the lensing galaxy (zL ≈ 0.57). The source images probe these absorbers over transverse physical scales of ≈0.3–22 kpc, permitting assessment of the variation in metal-line equivalent width ${W}_{{\rm{r}}}$ as a function of sight-line separation. We measure differences in ${W}_{{\rm{r}},2796}$ of <40% across most of the sight-line pairs subtending 8–22 kpc, suggestive of a high degree of spatial coherence for the Mg ii-absorbing material. ${W}_{{\rm{r}},2600}$ varies by >50% over the same scales across the majority of sight-line pairs, while C iv absorption exhibits a wide range in ${W}_{{\rm{r}},1548}$ differences of ≈5%–80% within transverse distances of ≲3 kpc. These spatial variations are consistent with those measured in intervening absorbers detected toward lensed quasars drawn from the literature, in which ${W}_{{\rm{r}},2796}$ and ${W}_{{\rm{r}},1548}$ vary by ≤20% in 35 ± 7% and 47 ± 6% of sight lines separated by <10 kpc, respectively. J014710+463040 is one of only a handful of z > 2 quadruply lensed systems for which all four source images are very bright (r = 15.4–17.7 mag) and are easily separated in ground-based seeing conditions. As such, it is an ideal candidate for higher-resolution spectroscopy probing the spatial variation in the kinematic structure and physical state of intervening absorbers.

147

, , , and

In this paper, we present the complete structure of a quasi-Keplerian thin accretion disk with an internal dynamo around a magnetized neutron star. We assume a full quasi-Keplerian disk with the azimuthal velocity deviating from the Keplerian fashion by a factor of ξ (0 < ξ < 2). In our approach, we vertically integrate the radial component of the momentum equation to obtain the radial pressure gradient equation for a thin quasi-Keplerian accretion disk. Our results show that, at large radial distance, the accretion disk behaves in a Keplerian fashion. However, close to the neutron star, pressure gradient force (PGF) largely modifies the disk structure, resulting into sudden dynamical changes in the accretion disk. The corotation radius is shifted inward (outward) for ξ > 1 (for ξ < 1), and the position of the inner edge with respect to the new corotation radius is also relocated accordingly, as compared to the Keplerian model. The resulting PGF torque couples with viscous torque (when ξ < 1) to provide a spin-down torque and a spin-up torque (when ξ > 1) while in the advective state. Therefore, neglecting the PGF, as has been the case in previous models, is a glaring omission. Our result has the potential to explain the observable dynamic consequences of accretion disks around magnetized neutron stars.

148

, , , , , and

In this paper, we report our second-part result for the M1.8 class flare on 2012 July 5, with an emphasis on the initiation process for the flare-associated filament eruption. The data set consists of high-resolution narrowband images in He i 10830 Å and broadband images in TiO 7057 Å taken at Big Bear Solar Observatory with the 1.6 m aperture Goode Solar Telescope. EUV images in different passbands observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory are used to distinguish hot plasma from cool plasma structures during the flare process. High-resolution 10830 Å images clearly show that, below the horizontal fibrils, which correspond to the filament's spine in full-disk Hα images, a sheared arch filament system (AFS) lies across the penumbra and surrounding satellite sunspots, between which continuous shearing motion is observed. Before the eruption, three microflares occurred successively and were followed by the appearance of three EUV hot channels. Two hot channels erupted, producing two flaring sites and two major peaks in GOES soft X-ray light curves; however, one hot channel's eruption failed. The 10830 Å imaging enables us to trace the first two hot channels to their very early stage, which is signified by the rising of the AFS after the first two precursors. Continuous flux emergence and localized flare-associated cancellation are observed under the AFS. In addition, EUV ejections were observed during the formation of the EUV hot channels. These observations support the fact that the hot channels are the result of magnetic reconnections during precursors.

149

, , , , and

We present two-dimensional particle-in-cell simulations of the fully kinetic collisionless magnetorotational instability (MRI) in weakly magnetized (high β) pair plasma. The central result of this numerical analysis is the emergence of a self-induced turbulent regime in the saturation state of the collisionless MRI, which can only be captured for large enough simulation domains. One of the underlying mechanisms for the development of this turbulent state is the drift-kink instability (DKI) of the current sheets resulting from the nonlinear evolution of the channel modes. The onset of the DKI can only be observed for simulation domain sizes exceeding several linear MRI wavelengths. The DKI and ensuing magnetic reconnection activate the turbulent motion of the plasma in the late stage of the nonlinear evolution of the MRI. At steady-state, the magnetic energy has an MHD-like spectrum with a slope of k−5/3 for  < 1 and k−3 for sub-Larmor scale ( > 1). We also examine the role of the collisionless MRI and associated magnetic reconnection in the development of pressure anisotropy. We study the stability of the system due to this pressure anisotropy, observing the development of mirror instability during the early-stage of the MRI. We further discuss the importance of magnetic reconnection for particle acceleration during the turbulence regime. In particular, consistent with reconnection studies, we show that at late times the kinetic energy presents a characteristic slope of epsilon−2 in the high-energy region.

150

, , , , , , , , , et al

We present high-resolution ALMA Band 6 and 7 observations of the tidally disrupted protoplanetary disks of the RW Aurigae binary. Our observations reveal tidal streams in addition to the previously observed tidal arm around RW Aur A. The observed configuration of tidal streams surrounding RW Aur A and B is incompatible with a single star–disk tidal encounter, suggesting that the RW Aurigae system has undergone multiple flyby interactions. We also resolve the circumstellar disks around RW Aur A and B, with CO radii of 58 au and 38 au consistent with tidal truncation, and 2.5 times smaller dust emission radii. The disks appear misaligned by 12° or 57°. Using new photometric observations from the American Association of Variable Star Observers (AAVSO) and the All Sky Automated Survey for SuperNovae (ASAS-SN) archives, we have also identified an additional dimming event of the primary that began in late 2017 and is currently ongoing. With over a century of photometric observations, we are beginning to explore the same spatial scales as ALMA.

151

, , , , , , , , , et al

Magnetic field plays a crucial role in shaping molecular clouds and regulating star formation, yet the complete information on the magnetic field is not well constrained owing to the limitations in observations. We study the magnetic field in the massive infrared dark cloud G035.39-00.33 from dust continuum polarization observations at 850 μm with SCUBA-2/POL-2 at JCMT for the first time. The magnetic field tends to be perpendicular to the densest part of the main filament (FM), whereas it has a less defined relative orientation in the rest of the structure, where it tends to be parallel to some diffuse regions. A mean plane-of-the-sky magnetic field strength of ∼50 μG for FM is obtained using the Davis–Chandrasekhar–Fermi method. Based on 13CO (1–0) line observations, we suggest a formation scenario of FM due to large-scale (∼10 pc) cloud–cloud collision. Using additional NH3 line data, we estimate that FM will be gravitationally unstable if it is only supported by thermal pressure and turbulence. The northern part of FM, however, can be stabilized by a modest additional support from the local magnetic field. The middle and southern parts of FM are likely unstable even if the magnetic field support is taken into account. We claim that the clumps in FM may be supported by turbulence and magnetic fields against gravitational collapse. Finally, we identified for the first time a massive (∼200 M), collapsing starless clump candidate, "c8," in G035.39-00.33. The magnetic field surrounding "c8" is likely pinched, hinting at an accretion flow along the filament.

152

, , , and

From a Chandra sample of active galactic nuclei (AGNs) in nearby galaxies, we find that for low-luminosity AGNs, either the intrinsic absorption column density, or the fraction of absorbed AGNs, positively scales with the Eddington ratio for Lbol/LEdd ≲ 10−2. Such a behavior, along with the softness of the X-ray spectrum at low luminosities, is in good agreement with the picture that they are powered by hot accretion flows surrounding supermassive black holes. Numerical simulations find that outflows are inevitable with hot accretion flows, and the outflow rate is correlated with the innermost accretion rate in the low-luminosity regime. This agrees well with our results, suggesting that the X-ray absorption originates from, or is associated with, the outflow material. Gas and dust on larger scales may also produce the observed correlation. Future correlation analyses may help differentiate the two scenarios.

153

, , , , , and

While brown dwarfs show similarities to stars early in their lives, their spin evolutions are much more akin to those of planets. We have used light curves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-forming region. Our sample spans masses from 0.02 to 0.08 M and has been characterized extensively in the past. To search for periods, we utilize three different methods (autocorrelation, periodogram, Gaussian processes). The median period for brown dwarfs with disks is twice as long as for those without (3.1 versus 1.6 days), a signature of rotational braking by the disk, albeit with small numbers. With an overall median period of 1.9 days, brown dwarfs in Taurus rotate slower than their counterparts in somewhat older (3–10 Myr) star-forming regions, consistent with spin-up of the latter due to contraction and angular momentum conservation, a clear sign that disk braking overall is inefficient and/or temporary in this mass domain. We confirm the presence of a linear increase of the typical rotation period as a function of mass in the substellar regime. The rotational velocities, when calculated forward to the age of the solar system, assuming angular momentum conservation, fit the known spin–mass relation for solar system planets and extra-solar planetary-mass objects. This spin–mass trend holds over six orders of magnitude in mass, including objects from several different formation paths. Our result implies that brown dwarfs by and large retain their primordial angular momentum through the first few Myr of their evolution.

154

, , , , , , and

Irregular time evolution of the radio emission generated in a B2-class microflare (SOL2017-01-25T10:15), occurring on 2017 January 25 in active region 12,628, is studied. The microflare was apparently initiated by an appearance of an s-shaped loop, observed in the EUV band. The radio emission is associated with the nonthermal electrons detected with Ramaty High Energy Solar Spectroscopic Imager, and originates simultaneously from two opposite footpoints of a magnetic fan structure beginning at a sunspot. According to the active region geometry, the footpoints are situated in the meridional direction, and hence are observed by RATAN-600 simultaneously. The radio emission intensity signal, as well as the left-hand and right-hand circular polarization signals in the low-frequency band (3–4 GHz) show good correlation with each other, with the average characteristic time of the variation 1.4 ± 0.3 s. The polarization signal shows a time variation with the characteristic time of about 0.7 ± 0.2 s. The irregular quasi-periodic pulsations of the radio emission are likely to be caused by the superposition of the signals generated at the local electron plasma frequencies by the interaction of nonthermal electrons with the plasma at the footpoints. In this scenario, the precipitation rate of the nonthermal electrons at the opposite footpoints could be modulated by the superposition of fundamental and second harmonic modes of sausage oscillations, resulting in the observed different characteristic times of the intensity and polarization signals. However, other mechanisms, e.g., the oscillatory regime of loop coalescence or magnetic null point oscillation could not be rigorously excluded.

155

, , , , , , , and

Heavy ions are markers of the physical processes responsible for the density and temperature distribution throughout the fine-scale magnetic structures that define the shape of the solar corona. One of their properties, whose empirical determination has remained elusive, is the "freeze-in" distance (Rf) where they reach fixed ionization states that are adhered to during their expansion with the solar wind. We present the first empirical inference of Rf for ${\mathrm{Fe}}^{{10}^{+}}$ and ${\mathrm{Fe}}^{{13}^{+}}$ derived from multi-wavelength imaging observations of the corresponding Fe xi (${\mathrm{Fe}}^{{10}^{+}}$) 789.2 nm and Fe xiv (${\mathrm{Fe}}^{{13}^{+}}$) 530.3 nm emission acquired during the 2015 March 20 total solar eclipse. We find that the two ions freeze-in at different heliocentric distances. In polar coronal holes (CHs) Rf is around 1.45 R for ${\mathrm{Fe}}^{{10}^{+}}$ and below 1.25 R for ${\mathrm{Fe}}^{{13}^{+}}$. Along open field lines in streamer regions, Rf ranges from 1.4 to 2 R for ${\mathrm{Fe}}^{{10}^{+}}$ and from 1.5 to 2.2 R for ${\mathrm{Fe}}^{{13}^{+}}$. These first empirical Rf values: (1) reflect the differing plasma parameters between CHs and streamers and structures within them, including prominences and coronal mass ejections; (2) are well below the currently quoted values derived from empirical model studies; and (3) place doubt on the reliability of plasma diagnostics based on the assumption of ionization equilibrium beyond 1.2 R.

156

, , , , , , and

The red-giant branch bump provides valuable information for the investigation of the internal structure of low-mass stars. Because current models are unable to accurately predict the occurrence and efficiency of mixing processes beyond convective boundaries, one can use the luminosity of the bump—a diagnostic of the maximum extension of the convective envelope during the first-dredge up—as a calibrator for such processes. By combining asteroseismic and spectroscopic constraints, we expand the analysis of the bump to masses and metallicities beyond those previously accessible using globular clusters. Our data set comprises nearly 3000 red-giant stars observed by Kepler and with APOGEE spectra. Using statistical mixture models, we are able to detect the bump in the average seismic parameters νmax and $\langle {\rm{\Delta }}\nu \rangle $, and show that its observed position reveals general trends with mass and metallicity in line with expectations from models. Moreover, our analysis indicates that standard stellar models underestimate the depth of efficiently mixed envelopes. The inclusion of significant overshooting from the base of the convective envelope, with an efficiency that increases with decreasing metallicity, allows us to reproduce the observed location of the bump. Interestingly, this trend was also reported in previous studies of globular clusters.

157
The following article is Open access

, , and

Based on Voyager 1 observations, some anomalous cosmic rays (ACRs) may have crossed the heliopause and escaped into the interstellar medium, providing a mechanism of energy transfer between the inner and outer heliosheaths that is not included in conventional magnetohydrodynamics (MHD) models. In this paper, we study the effect of energetic particles' escape through the heliopause on the size and shape of the heliosphere using a simple model that includes diffusive transport of cosmic rays. We show that the presence of ACRs significantly changes the heliosphere structure, including the location of the heliopause and termination shock. It was found that the heliopause would contract for certain values of the ACR diffusion coefficients when the diffusive particles' pressure is comparable to the pressure of the plasma background. The difference in Voyager 1 and 2 observations of energetic particles during their respective termination shock crossings is interpreted here as due to the differences in diffusion environments during the different phases of the solar cycle. The shorter period of enhanced ACR intensities upstream of the shock measured by Voyager 2 may have been caused by weaker radial diffusive transport compared with the time of Voyager 1 crossing. We conclude that ACR diffusive effects could be prominent and should be included in MHD models of the heliosphere.

158

, , and

Downflows at supersonic speeds have been observed in the transition region (TR) above sunspots for more than three decades. These downflows are often seen in different TR spectral lines above sunspots. We have performed a statistical investigation of these downflows using a large sample that was missing previously. The Interface Region Imaging Spectrograph (IRIS) has provided a wealth of observational data of sunspots at high spatial and spectral resolutions in the past few years. We have identified 60 data sets obtained with IRIS raster scans. Using an automated code, we identified the locations of strong downflows within these sunspots. We found that around 80% of our sample shows supersonic downflows in the Si iv 1403 Å line. These downflows mostly appear in the penumbral regions, though some of them are found in the umbrae. We also found that almost half of these downflows show signatures in chromospheric lines. Furthermore, a detailed spectral analysis was performed by selecting a small spectral window containing the O iv 1400/1401 Å and Si iv 1403 Å lines. Six Gaussian functions were simultaneously fitted to these three spectral lines and their satellite lines associated with the supersonic downflows. We calculated the intensity, Doppler velocity, and line width for these lines. Using the O iv 1400/1401 Å line ratio, we find that the downflow components are around one order of magnitude less dense than the regular components. Results from our statistical analysis suggest that these downflows may originate from the corona and that they are independent of the background TR plasma.

159

, , , , , , , , , et al

Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at ${\boldsymbol{z}}\gt 6$, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

160
The following article is Open access

, , , , , , and

Gamma-ray Burst (GRB) collimation has been inferred with the observations of achromatic steepening in GRB light curves, known as jet breaks. Identifying a jet break from a GRB afterglow light curve allows a measurement of the jet opening angle and true energetics of GRBs. In this paper, we re-investigate this problem using a large sample of GRBs that have an optical jet break that is consistent with being achromatic in the X-ray band. Our sample includes 99 GRBs from 1997 February to 2015 March that have optical and, for Swift GRBs, X-ray light curves that are consistent with the jet break interpretation. Out of the 99 GRBs we have studied, 55 GRBs are found to have temporal and spectral behaviors both before and after the break, consistent with the theoretical predictions of the jet break models, respectively. These include 53 long/soft (Type II) and 2 short/hard (Type I) GRBs. Only 1 GRB is classified as the candidate of a jet break with energy injection. Another 41 and 3 GRBs are classified as the candidates with the lower and upper limits of the jet break time, respectively. Most jet breaks occur at 90 ks, with a typical opening angle θj = (2.5 ± 1.0)°. This gives a typical beaming correction factor ${f}_{b}^{-1}\sim 1000$ for Type II GRBs, suggesting an even higher total GRB event rate density in the universe. Both isotropic and jet-corrected energies have a wide span in their distributions: log(Eγ,iso/erg) = 53.11 with σ = 0.84; log(EK,iso/erg) = 54.82 with σ = 0.56; log(Eγ/erg) = 49.54 with σ = 1.29; and log(EK/erg) = 51.33 with σ = 0.58. We also investigate several empirical correlations (Amati, Frail, Ghirlanda, and Liang–Zhang) previously discussed in the literature. We find that in general most of these relations are less tight than before. The existence of early jet breaks and hence small opening angle jets, which were detected in the Swfit era, is most likely the source of scatter. If one limits the sample to jet breaks later than 104 s, the Liang–Zhang relation remains tight and the Ghirlanda relation still exists. These relations are derived from Type II GRBs, and Type I GRBs usually deviate from them.

161

We analyze recent high-resolution photospheric small-scale dynamo simulations that were computed with the MURaM radiative MHD code. We focus our analysis on newly forming downflow lanes in exploding granules, as they show how weakly magnetized regions in the photosphere (the center of granules) evolve into strongly magnetized regions (downflow lanes). We find that newly formed downflow lanes initially exhibit mostly a laminar converging flow that amplifies the vertical magnetic field embedded in the granule from a few 10 G to field strengths exceeding 800 G. This results in extended magnetic sheets that have a length comparable to granular scales. Field amplification by turbulent shear first happens a few 100 km beneath the visible layers of the photosphere. Shallow recirculation transports the resulting turbulent field into the photosphere within minutes, after which the newly formed downflow lane shows a mix of strong magnetic sheets and turbulent field components. We stress in particular the role of shallow and deep recirculation for the organization and strength of magnetic field in the photosphere and discuss the photospheric and sub-photospheric energy conversion associated with the small-scale dynamo process. While the energy conversion through the Lorentz force depends only weakly on the saturation field strength (and therefore deep or shallow recirculation), it is strongly dependent on the magnetic Prandtl number. We discuss the potential of these findings for further constraining small-scale dynamo models through high-resolution observations.

162
The following article is Open access

, , , and

The column density probability distribution function (N-PDF) of Giant Molecular Clouds (GMCs) has been used as a diagnostic of star formation. Simulations and analytic predictions have suggested that the N-PDF is composed of a low-density lognormal component and a high-density power-law component tracing turbulence and gravitational collapse, respectively. In this paper, we study how various properties of the true 2D column density distribution create the shape, or "anatomy," of the PDF. We test our ideas and analytic approaches using both a real, observed PDF based on Herschel observations of dust emission and a simulation that uses the ENZO code. Using a dendrogram analysis, we examine the three main components of the N-PDF: the lognormal component, the power-law component, and the transition point between these two components. We find that the power-law component of an N-PDF is the summation of N-PDFs of power-law substructures identified by the dendrogram algorithm. We also find that the analytic solution to the transition point between lognormal and power-law components proposed by Burkhart et al. is applicable when tested on observations and simulations, within the uncertainties. Based on the resulting anatomy of the N-PDF, we suggest applying the N-PDF analysis in combination with the dendrogram algorithm to obtain a more complete picture of the global and local environments and their effects on the density structures.

163
The following article is Open access

, , , , , , , , , and

Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth γ-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt γ-ray emission to the afterglow with a photon index from Γγ = 1.36 to Γ ≈ 1.75. There is no obvious evolution of the SED during the afterglow. The multiwavelength light curves from γ-ray to optical can be well modeled with an external shock by considering energy injection, and a time-dependent microphysics model with ${\epsilon }_{B}\propto {t}^{{\alpha }_{B}}$ for the emission at early times, $T\lt {T}_{0}+157\,{\rm{s}}$. Therefore, we conclude that both the prompt γ-ray emission and afterglow of GRB 120729A have the same external shock physical origin. Our model indicates that the epsilonB evolution can be described as a broken power-law function with αB,1 = 0.18 ± 0.04 and αB,2 = 0.84 ± 0.04. We also systematically investigate single-pulse GRBs in the Swift era, finding that only a small fraction of GRBs (GRBs 120729A, 051111, and 070318) are likely to originate from an external shock for both the prompt γ-ray emission and afterglow.

164

, , , , and

We report new observations of SL2S J021737–051329, a lens system consisting of a bright arc at z = 1.84435, magnified ∼17× by a massive galaxy at z = 0.65. SL2S0217 is a low-mass (M < 109M), low-metallicity (Z ∼ 1/20 Z) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for C iv λλ1548, 1550, He ii λ1640, O iiiλλ1661, 1666, Si iiiλλ1883, 1892, and C iiiλλ1907, 1909. (2) Double-peaked Lyα emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sight line to the lensed galaxy. The relative emission-line strengths can be reproduced with a very high ionization, low-metallicity starburst with binaries, with the exception of He ii, which indicates that an additional ionization source is needed. We rule out large contributions from active galactic nuclei and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early universe.

165

, , , , , , , , , and

We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

166

, , , , , , , , , et al

The Orion Nebula Cluster toward the H ii region M42 is the most outstanding young cluster at the smallest distance (410 pc) among the rich high-mass stellar clusters. By newly analyzing the archival molecular data of the 12CO(J = 1–0) emission at 21'' resolution, we identified at least three pairs of complementary distributions between two velocity components at 8 and 13 km s−1. We present a hypothesis that the two clouds collided with each other and triggered formation of the high-mass stars, mainly toward two regions including the nearly 10 O stars in M42 and the B star, NU Ori, in M43. The timescale of the collision is estimated to be ∼0.1 Myr by a ratio of the cloud size and velocity corrected for projection, which is consistent with the age of the youngest cluster members less than 0.1 Myr. The majority of the low-mass cluster members were formed prior to the collision in the last Myr. We discuss the implications of the present hypothesis and the scenario of high-mass star formation by comparing with the other eight cases of triggered O-star formation via cloud–cloud collision.

167

, , , , , , and

The open cluster M67 offers a unique opportunity to measure rotation periods for solar-age stars across a range of masses, potentially filling a critical gap in the understanding of angular momentum loss in older main sequence stars. The observation of M67 by NASA K2 Campaign 5 provided light curves with high enough precision to make this task possible, albeit challenging, as the pointing instability, 75 day observation window, crowded field, and typically low-amplitude signals mean that determining accurate rotation periods on the order of 25–30 days is inherently difficult. Lingering, non-astrophysical signals with power at ≥25 days found in a set of Campaign 5 A and F stars compounds the problem. To achieve a quantitative understanding of the best-case scenario limits for reliable period detection imposed by these inconveniences, we embarked on a comprehensive set of injection tests, injecting 120,000 sinusoidal signals with periods ranging from 5 to 35 days and amplitudes from 0.05% to 3.0% into real Campaign 5 M67 light curves processed using two different pipelines. We attempted to recover the signals using a normalized version of the Lomb–Scargle periodogram and setting a detection threshold. We find that, while the reliability of detected periods is high, the completeness (sensitivity) drops rapidly with increasing period and decreasing amplitude, maxing at a 15% recovery rate for the solar case (i.e., 25 day period, 0.1% amplitude). This study highlights the need for caution in determining M67 rotation periods from Campaign 5 data, but this can be extended to other clusters observed by K2 (and soon, TESS).

168
The following article is Open access

, , , , and

The production site of gamma-rays in a blazar jet is an unresolved problem. We present a method to locate a gamma-ray emission region in the framework of a one-zone emission model. From measurements of the core-shift effect, the relation between the magnetic field strengths (B') in the radio cores of the jet and the distances (R) of these radio cores from the central supermassive black hole (SMBH) can be inferred. Therefore, once the magnetic field strength in the gamma-ray emission region (${B}_{\mathrm{diss}}^{{\prime} }$) is obtained, one can use the relation of B'–R to derive the distance (Rdiss) of the gamma-ray emission region from the SMBH. Here, we evaluate the lower limit of ${B}_{\mathrm{diss}}^{{\prime} }$ by using the criteria that the optical variability timescale tvar should be longer than or equal to the synchrotron radiation cooling timescale of the electrons that emit optical photons. We test the method with the observations of PSK 1510-089 and BL Lacertae, and derive ${R}_{\mathrm{diss}}\lt 0.15{\delta }_{{\rm{D}}}^{1/3}{(1+A)}^{2/3}$ pc for PSK 1510-089 with tvar ∼ a few hours and ${R}_{\mathrm{diss}}\lt 0.003{\delta }_{{\rm{D}}}^{1/3}{(1+A)}^{2/3}$ pc for BL Lacertae with tvar ∼ a few minutes. Here, δD is the Doppler factor and A is the Compton dominance (i.e., the ratio of the Compton to the synchrotron peak luminosities).

169

and

The temporal recurrence of micro-flare events is studied for a time interval before and after of major solar flares. Our sample is based on the X-ray flare observations by the Geostationary Operational Environmental Satellite (GOES) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The analyzed data contain 1330/301 M-class and X-class GOES/RHESSI energetic solar flares and 4062/4119 GOES/RHESSI micro-flares covering the period elapse since 2002. The temporal analysis of recurrence, by Fast Fourier Transform, of the micro-flares, shows multiple significant periods. Based on the GOES and RHESSI data, the temporal analysis also demonstrates that multiple periods manifest simultaneously in both statistical samples without any significant shift over time. In the GOES sample, the detected significant periods are: 11.33, 5.61, 3.75, 2.80, and 2.24 minutes. The RHESSI data show similar significant periods at 8.54, 5.28, 3.66, 2.88, and 2.19 minutes. The periods are interpreted as signatures of standing oscillations, with the longest period (P1) being the fundamental and others being higher harmonic modes. The period ratio of the fundamental and higher harmonics (P1/PN) is also analyzed. The standing modes may be signatures of global oscillations of the entire solar atmosphere encompassing magnetized plasma from the photosphere to the corona in active regions.

170

and

Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.

171

, , , and

In the search for life around cool stars, the presence of atmospheric oxygen is a prominent biosignature, as it may indicate oxygenic photosynthesis (OP) on the planetary surface. On Earth, most oxygenic photosynthesizing organisms (OPOs) use photons between 400 and 750 nm, which have sufficient energy to drive the photosynthetic reaction that generates O2 from H2O and CO2. OPOs around cool stars may evolve similar biological machinery capable of producing oxygen from water. However, in the habitable zones (HZs) of the coolest M dwarf stars, the flux of 400–750 nm photons may be just a few percent that of Earth's. We show that the reduced flux of 400–750 nm photons around M dwarf stars could result in Earth-like planets being growth limited by light, unlike the terrestrial biosphere, which is limited by nutrient availability. We consider stars with photospheric temperatures between 2300 and 4200 K and show that such light-limited worlds could occur at the outer edge of the HZ around TRAPPIST-1-like stars. We find that even if OP can use photons longer than 750 nm, there would still be insufficient energy to sustain the Earth's extant biosphere throughout the HZ of the coolest stars. This is because such stars emit largely in the infrared and near-infrared, which provide sufficient energy to make the planet habitable, but limits the energy available for OP. TRAPPIST-1f and g may fall into this category. Biospheres on such planets, potentially limited by photon availability, may generate small biogenic signals, which could be difficult for future observations to detect.

172

, , , , , and

H2O maser disks with Keplerian rotation in active galactic nuclei offer a clean way to determine accurate black hole mass and the Hubble constant. An important assumption made in using a Keplerian H2O maser disk for measuring black hole mass and the Hubble constant is that the disk mass is negligible compared to the black hole mass. A simple and useful model of Huré et al. can be used to test this assumption. In that work, the authors apply a linear disk model to a position–dynamical mass diagram and re-analyze position–velocity data from H2O maser disks associated with active galactic nuclei. They claim that a maser disk with nearly perfect Keplerian rotation could have a disk mass comparable to the black hole mass. This would imply that ignoring the effects of disk self-gravity can lead to large systematic errors in the measurement of black hole mass and the Hubble constant. We examine their methods and find that their large estimated disk masses of Keplerian disks are likely the result of their use of projected instead of three-dimensional position and velocity information. To place better constraints on the disk masses of Keplerian maser systems, we incorporate disk self-gravity into a three-dimensional Bayesian modeling program for maser disks and also evaluate constraints based on the physical conditions for disks that support water maser emission. We find that there is little evidence that disk masses are dynamically important at the ≲1% level compared to the black holes.

173
The following article is Open access

, , , , , and

We present a new millimeter CO-line observation toward supernova remnant (SNR) CTB 87, which was regarded purely as a pulsar wind nebula (PWN), and an optical investigation of a coincident surrounding superbubble. The CO observation shows that the SNR delineated by the radio emission is projectively covered by a molecular cloud (MC) complex at ${V}_{\mathrm{LSR}}=-60$ to $-54\,\mathrm{km}\,{{\rm{s}}}^{-1}$. Both the symmetric axis of the radio emission and the trailing X-ray PWN appear projectively to be along a gap between two molecular gas patches at −58 to $-57\,\mathrm{km}\,{{\rm{s}}}^{-1}$. Asymmetric broad profiles of 12CO lines peaked at $-58\,\mathrm{km}\,{{\rm{s}}}^{-1}$ are found at the eastern and southwestern edges of the radio emission. This represents a kinematic signature consistent with an SNR–MC interaction. We also find that a superbubble, ∼37' in radius, appears to surround the SNR from H i 21 cm (${V}_{\mathrm{LSR}}\sim -61$ to $-68\,\mathrm{km}\,{{\rm{s}}}^{-1}$), WISE mid-IR, and optical extinction data. We build a multi-band photometric stellar sample of stars within the superbubble region and find 82 OB star candidates. The likely peak distance in the stars' distribution seems consistent with the distance previously suggested for CTB 87. We suggest the arc-like radio emission is mainly a relic of the part of the blast wave that propagates into the MC complex and is now in a radiative stage while the other part of the blast wave has been expanding into the low-density region in the superbubble. This scenario naturally explains the lack of X-ray emission related to the ejecta and blast wave. The SNR–MC interaction also favors a hadronic contribution to the γ-ray emission from the CTB 87 region.

174

, , , and

We explore the common-carrier hypothesis for the 6196 and 6614 Å diffuse interstellar bands (DIBs). The observed DIB spectra are sharpened using a spectral deconvolution algorithm. This reveals finer spectral features that provide tighter constraints on candidate carriers. We analyze a deconvolved λ6614 DIB spectrum and derive spectroscopic constants that are then used to model the λ6196 spectra. The common-carrier spectroscopic constants enable quantitative fits to the contrasting λ6196 and λ6614 spectra from two sightlines. Highlights of our analysis include (1) sharp cutoffs for the maximum values of the rotational quantum numbers, Jmax = Kmax, (2) the λ6614 DIB consisting of a doublet and a red-tail component arising from different carriers, (3) the λ6614 doublet and λ6196 DIBs sharing a common carrier, (4) the contrasting shapes of the λ6614 doublet and λ6196 DIBs arising from different vibration–rotation Coriolis coupling constants that originate from transitions from a common ground state to different upper electronic state degenerate vibrational levels, and (5) the different widths of the two DIBs arising from different effective rotational temperatures associated with principal rotational axes that are parallel and perpendicular to the highest-order symmetry axis. The analysis results suggest a puckered oblate symmetric top carrier with a dipole moment aligned with the highest-order symmetry axis. An example candidate carrier consistent with these specifications is corannulene (C20H10), or one of its symmetric ionic or dehydrogenated forms, whose rotational constants are comparable to those obtained from spectral modeling of the DIB profiles.

175

, , and

We study the direct gas-phase oxygen abundance using the well-detected auroral line [O iii]λ4363 in the stacked spectra of a sample of local analogs of high-redshift galaxies. These local analogs share the same location as z ∼ 2 star-forming galaxies on the [O iii]λ5007/Hβ versus [N ii]λ6584/Hα Baldwin–Phillips–Terlevich diagram. This type of analog has the same ionized interstellar medium (ISM) properties as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances ($7.8\lt 12+\mathrm{log}({\rm{O}}/{\rm{H}})\lt 8.4$) and the N2 (log([N ii]λ6584/Hα))/O3N2 (log(([O iii]λ5007/Hβ)/([N ii]λ6584/Hα))) indices in our local analogs. We find significant systematic offsets between the metallicity calibrations for our local analogs of high-redshift galaxies and those derived from the local H ii regions and a sample of local reference galaxies selected from the Sloan Digital Sky Survey (SDSS). The N2 and O3N2 metallicities will be underestimated by 0.05–0.1 dex relative to our calibration, if one simply applies the local metallicity calibration in previous studies to high-redshift galaxies. Local metallicity calibrations also cause discrepancies of metallicity measurements in high-redshift galaxies using the N2 and O3N2 indicators. In contrast, our new calibrations produce consistent metallicities between these two indicators. We also derive metallicity calibrations for R23 (log(([O iii]λλ4959,5007+[O ii]λλ3726,3729)/Hβ)), O32(log([O iii]λλ4959,5007/[O ii]λλ3726,3729)), $\mathrm{log}($[O iii]λ5007/Hβ), and log([Ne iii]λ3869/[O ii]λ3727) indices in our local analogs, which show significant offset compared to those in the SDSS reference galaxies. By comparing with MAPPINGS photoionization models, the different empirical metallicity calibration relations in the local analogs and the SDSS reference galaxies can be shown to be primarily due to the change of ionized ISM conditions. Assuming that temperature structure variations are minimal and ISM conditions do not change dramatically from z ∼ 2 to z ∼ 5, these empirical calibrations can be used to measure relative metallicities in galaxies with redshifts up to z ∼ 5.0 in ground-based observations.