A publishing partnership

Table of contents

Volume 744

Number 1, 2012 January 1

Previous issue Next issue

1
The following article is Free article

, , , , , , , , , et al

This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction, and time with sensitivity to neutrino flares lasting between 20 μs and a year duration from astrophysical sources. Searches that integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters, and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are "untriggered" in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between 2008 April 5 and 2009 May 20. The triggered searches also use data taken by the 22-string configuration of IceCube operating between 2007 May 31 and 2008 April 5. The results from all four searches are compatible with a fluctuation of the background.

2
The following article is Free article

, , , and

We quantify the active galactic nucleus (AGN) contribution to the mid-infrared (mid-IR) and the total infrared (IR, 8–1000 μm) emission in a complete volume-limited sample of 53 local luminous infrared galaxies (LIRGs, LIR = 1011–1012L). We decompose the Spitzer Infrared Spectrograph low-resolution 5–38 μm spectra of the LIRGs into AGN and starburst components using clumpy torus models and star-forming galaxy templates, respectively. We find that 50% (25/50) of local LIRGs have an AGN component detected with this method. There is good agreement between these AGN detections through mid-IR spectral decomposition and other AGN indicators, such as the optical spectral class, mid-IR spectral features, and X-ray properties. Taking all the AGN indicators together, the AGN detection rate in the individual nuclei of LIRGs is ∼62%. The derived AGN bolometric luminosities are in the range Lbol(AGN) = (0.4–50) × 1043 erg s−1. The AGN bolometric contribution to the IR luminosities of the galaxies is generally small, with 70% of LIRGs having Lbol[AGN]/LIR ⩽ 0.05. Only ≃ 8% of local LIRGs have a significant AGN bolometric contribution Lbol[AGN]/LIR > 0.25. From the comparison of our results with literature results of ultraluminous infrared galaxies (LIR = 1012–1013L), we confirm that in the local universe the AGN bolometric contribution to the IR luminosity increases with the IR luminosity of the galaxy/system. If we add up the AGN bolometric luminosities we find that AGNs only account for $5\%^{+8\%}_{-3\%}$ of the total IR luminosity produced by local LIRGs (with and without AGN detections). This proves that the bulk of the IR luminosity of local LIRGs is due to star formation activity. Taking the newly determined IR luminosity density of LIRGs in the local universe, we then estimate an AGN IR luminosity density of ΩAGNIR = 3 × 105L Mpc−3 in LIRGs.

3
The following article is Free article

and

We provide an exhaustive analysis of the Integrated Sachs–Wolfe (ISW) effect in the context of coupled dark energy cosmologies where a component of massive neutrinos is also present. We focus on the effects of both the coupling between dark matter and dark energy and of the neutrino mass on the cross-correlation between galaxy/quasar distributions and ISW effect. We provide a simple expression to appropriately rescale the galaxy bias when comparing different cosmologies. Theoretical predictions of the cross-correlation function are then compared with observational data. We find that, while it is not possible to distinguish among the models at low redshifts, discrepancies between coupled models and ΛCDM increase with z. In spite of this, current data alone does not seem able to distinguish between coupled models and ΛCDM. However, we show that upcoming galaxy surveys will permit tomographic analysis that will allow us to better discriminate among the models. We discuss the effects on cross-correlation measurements of ignoring galaxy bias evolution, b(z), and magnification bias correction and provide fitting formulae for b(z) for the cosmologies considered. We compare three different tomographic schemes and investigate how the expected signal-to-noise ratio, S/N, of the ISW–LSS cross-correlation changes when increasing the number of tomographic bins. The dependence of S/N on the area of the survey and the survey shot noise is also discussed.

4
The following article is Free article

, , , , , , , , , and

We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 ± 0.02 days, a semi-amplitude of 51.1 ± 1.4 m s−1, an eccentricity of 0.73 ± 0.02, and a derived minimum mass of MPsin i = 0.77 ± 0.02 MJup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 ± 2fdg0; consequently, the planet's closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 ± 0.02 years, an orbital eccentricity of 0.12 ± 0.06, and a semi-amplitude of 40.4 ± 1.3 m s−1. The minimum mass is MPsin i = 2.29 ± 0.16 MJup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 ± 3.8 days and an eccentricity of 0.26 ± 0.14. The semi-amplitude of 14.2 ± 2.7 m s−1 implies a minimum mass of 0.48 ± 0.09 MJup. The radial velocities (RVs) of HD 164509 also exhibit a residual linear trend of −5.1 ± 0.7 m s−1 year−1, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to submillimagnitude levels on their RV periods. This provides strong support for planetary reflex motion as the cause of the RV variations.

5
The following article is Free article

, , , and

A thin dark thread is observed in a UV/EUV solar jet in the 171 Å, 193 Å, and 211 Å, and partially in 304 Å. The dark thread appears to originate in the chromosphere but its temperature does not appear to lie within the passbands of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. We therefore implement solar magnetoseismology to estimate the plasma parameters of the dark thread. A propagating kink (transverse) wave is observed to travel along the dark thread. The wave is tracked over a range of ∼7000 km by placing multiple slits along the axis of the dark thread. The phase speed and amplitude of the wave are estimated and magnetoseismological theory is employed to determine the plasma parameters. We are able to estimate the plasma temperature, density gradient, magnetic field gradient, and sub-resolution expansion of the dark thread. The dark thread is found to be cool, T ≲ 3 × 104, with both strong density and magnetic field gradients. The expansion of the flux tube along its length is ∼300–400 km.

6
The following article is Free article

, , , , , and

SONYC—Substellar Objects in Nearby Young Clusters—is a program to investigate the frequency and properties of young substellar objects with masses down to a few times that of Jupiter. Here we present a census of very low mass objects in the ∼1 Myr old cluster NGC 1333. We analyze near-infrared spectra taken with Fiber Multi-Object Spectrograph/Subaru for 100 candidates from our deep, wide-field survey and find 10 new likely brown dwarfs with spectral types of M6 or later. Among them, there are three with ≳M9 and one with early L spectral type, corresponding to masses of 0.006 to ≲ 0.02 M, so far the lowest mass objects identified in this cluster. The combination of survey depth, spatial coverage, and extensive spectroscopic follow-up makes NGC 1333 one of the most comprehensively surveyed clusters for substellar objects. In total, there are now 51 objects with spectral type M5 or later and/or effective temperature of 3200 K or cooler identified in NGC 1333; 30–40 of them are likely to be substellar. NGC 1333 harbors about half as many brown dwarfs as stars, which is significantly more than in other well-studied star-forming regions, thus raising the possibility of environmental differences in the formation of substellar objects. The brown dwarfs in NGC 1333 are spatially strongly clustered within a radius of ∼1 pc, mirroring the distribution of the stars. The disk fraction in the substellar regime is <66%, lower than for the total population (83%) but comparable to the brown dwarf disk fraction in other 2–3 Myr old regions.

7
The following article is Free article

, , , , , , , , , et al

The X-ray source CXOXBJ142607.6+353351 (CXOJ1426+35), which was identified in a 172 ks Chandra image in the Boötes field, shows double-peaked rest-frame optical/UV emission lines, separated by 0farcs69 (5.5 kpc) in the spatial dimension and by 690 km s−1 in the velocity dimension. The high excitation lines and emission line ratios indicate both systems are ionized by an active galactic nucleus (AGN) continuum, and the double-peaked profile resembles that of candidate dual AGNs. At a redshift of z = 1.175, this source is the highest redshift candidate dual AGN yet identified. However, many sources have similar emission line profiles for which other interpretations are favored. We have analyzed the substantial archival data available in this field as well as acquired near-infrared (NIR) adaptive optics (AO) imaging and NIR slit spectroscopy. The X-ray spectrum is hard, implying a column density of several 1023 cm−2. Though heavily obscured, the source is also one of the brightest in the field, with an absorption-corrected 2–10 keV luminosity of ∼1045 erg s−1. Outflows driven by an accretion disk may produce the double-peaked lines if the central engine accretes near the Eddington limit. However, we may be seeing the narrow line regions of two AGNs following a galactic merger. While the AO image reveals only a single source, a second AGN would easily be obscured by the significant extinction inferred from the X-ray data. Understanding the physical processes producing the complex emission line profiles seen in CXOJ1426+35 and related sources is important for interpreting the growing population of dual AGN candidates.

8
The following article is Free article

, , and

Combining a particle–particle, particle–cluster, and cluster–cluster agglomeration model with an aggregate charging model, the coagulation and charging of dust particles in plasma environments relevant for protoplanetary disks have been investigated, including the effect of electron depletion in high dust density environments. The results show that charged aggregates tend to grow by adding small particles and clusters to larger particles and clusters, and that cluster–cluster aggregation is significantly more effective than particle–cluster aggregation. Comparisons of the grain structure show that with increasing aggregate charge the compactness factor, ϕσ, decreases and has a narrower distribution, indicating a fluffier structure. Neutral aggregates are more compact, with larger ϕσ, and exhibit a larger variation in fluffiness. Overall, increased aggregate charge leads to larger, fluffier, and more massive aggregates.

9
The following article is Free article

, , and

We present observations and a dynamical analysis of the comet-like main-belt object, (596) Scheila. V-band photometry obtained on UT 2010 December 12 indicates that Scheila's dust cloud has a scattering cross-section ∼1.4 times larger than that of the nucleus, corresponding to a dust mass of Md ∼ 3 × 107 kg. VR color measurements indicate that both the nucleus and dust are redder than the Sun, with no significant color differences between the dust cloud's northern and southern plumes. We also undertake an ultimately unsuccessful search for CN emission, where we find CN and H2O production rates of QCN < 9 × 1023 s−1 and $Q_{\rm H_2O}<10^{27}$ s−1. Numerical simulations indicate that Scheila is dynamically stable for >100 Myr, suggesting that it is likely native to its current location. We also find that it does not belong to a dynamical asteroid family of any significance. We consider sublimation-driven scenarios that could produce the appearance of multiple plumes of dust emission, but reject them as being physically implausible. Instead, we concur with previous studies that the unusual morphology of Scheila's dust cloud is most simply explained by a single oblique impact, meaning that this object is likely not a main-belt comet but is instead the second disrupted asteroid after P/2010 A2 (LINEAR) to be discovered.

10
The following article is Free article

, , , , , , , , , et al

Type IIn supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well-observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that object selection was not influenced by target SN properties. Therefore, these events are representative of the observed population of SNe IIn. We find that a narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous feature of SNe IIn. Our light curves show a relatively long rise time (>20 days) followed by a slow decline stage (0.01–0.15 mag day−1), and a typical V-band peak magnitude of MV = −18.4 ± 1.0 mag. We measure the progenitor star wind velocities (600–1400 km s−1) for the SNe in our sample and derive pre-explosion mass-loss rates (0.026–0.12 M yr−1). We compile similar data for SNe IIn from the literature and discuss our results in the context of this larger sample. Our results indicate that typical SNe IIn arise from progenitor stars that undergo luminous-blue-variable-like mass loss shortly before they explode.

11
The following article is Free article

, , , and

Photochemical models of Titan's atmosphere predict that three-body association reactions are the main production route for several major hydrocarbons. The kinetic rate constants of these reactions strongly depend on density and are therefore only important in Titan's lower atmosphere. However, radiative association reactions do not depend on pressure. The possible existence of large rates at low density suggests that association reactions could significantly affect the chemistry of Titan's upper atmosphere and better constraints for them are required. The kinetic parameters of these reactions are extremely difficult to constrain by experimental measurements as the low pressure of Titan's upper atmosphere cannot be reproduced in the laboratory. However, in the recent years, theoretical calculations of kinetics parameters have become more and more reliable. We therefore calculated several radical–radical and radical–molecule association reaction rates using transition state theory. The calculations indicate that association reactions are fast even at low pressure for adducts having as few as four C atoms. These drastic changes have however only moderate consequences for Titan's composition. Locally, mole fractions can vary by as much as one order of magnitude but the column-integrated production and condensation rates of hydrocarbons change only by a factor of a few. We discuss the impact of these results for the organic chemistry. It would be very interesting to check the impact of these new rate constants on other environments, such as giant and extrasolar planets as well as the interstellar medium.

12
The following article is Free article

, , , and

Although several dozen double white dwarfs (DWDs) have been observed, for many the exact nature of the evolutionary channel(s) by which they form remains uncertain. The canonical explanation calls for the progenitor binary system to undergo two subsequent mass-transfer events, both of which are unstable and lead to a common envelope (CE). However, it has been shown that if both CE events obey the standard αCE-prescription (parameterizing energy loss), it is not possible to reproduce all of the observed systems. The γ-prescription was proposed as an alternative to this description, instead parameterizing the fraction of angular momentum carried away in dynamical-timescale mass loss. However, this too has proven problematic, and does not provide a clear physical mechanism. In this paper, we consider in detail the first episode of mass transfer in binary systems with initially low companion masses, with a primary mass in the range 1.0–1.3 M and an initial mass ratio between the secondary and primary stars of 0.83–0.92. In these systems, the first episode of dramatic mass loss may be stable, non-conservative mass transfer. This strips the donor's envelope and dramatically raises the mass ratio; the considered progenitor binary systems can then evolve into DWDs after passing through a single CE during the second episode of mass loss. We find that such a mechanism reproduces the properties of the observed DWD systems which have an older component with M ≲ 0.46 M and mass ratios between the younger and older WDs of q ⩾ 1.

13
The following article is Free article

, , , , and

We present an analysis of the co-added and individual 0.7–40 keV spectra from seven Suzaku observations of the Sy 1.5 galaxy NGC 5548 taken over a period of eight weeks. We conclude that the source has a moderately ionized, three-zone warm absorber, a power-law continuum, and exhibits contributions from cold, distant reflection. Relativistic reflection signatures are not significantly detected in the co-added data, and we place an upper limit on the equivalent width of a relativistically broad Fe Kα line at EW ⩽ 26 eV at 90% confidence. Thus NGC 5548 can be labeled as a "weak" type 1 active galactic nucleus (AGN) in terms of its observed inner disk reflection signatures, in contrast to sources with very broad, strong iron lines such as MCG–6-30-15, which are likely much fewer in number. We compare physical properties of NGC 5548 and MCG–6-30-15 that might explain this difference in their reflection properties. Though there is some evidence that NGC 5548 may harbor a truncated inner accretion disk, this evidence is inconclusive, so we also consider light bending of the hard X-ray continuum emission in order to explain the lack of relativistic reflection in our observation. If the absence of a broad Fe Kα line is interpreted in the light-bending context, we conclude that the source of the hard X-ray continuum lies at radii rs ≳ 100 rg. We note, however, that light-bending models must be expanded to include a broader range of physical parameter space in order to adequately explain the spectral and timing properties of average AGNs, rather than just those with strong, broad iron lines.

14
The following article is Free article

, , and

The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15–1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s−1 up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands"—one cooler and downflowing, the other hotter and stationary—is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg vii was used to show that the electron density at around 0.8 MK falls from 3.2 × 109 cm−3 at the loop base, to 5.0 × 108 cm−3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg vii (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s−1 in Fe xii λ195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s−1 at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

15
The following article is Free article

, , , , , , and

The Allen Telescope Array was used to monitor Mars between 2010 March 9 and June 2, over a total of approximately 30 hr, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 2006 June 8. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research. This 1024 channel spectrometer calculates the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three-month period of observations, dust activity occurred on Mars in the form of small-scale dust storms; however, no signals indicating lightning discharge were detected. Frequent signals in the kurtstrum that contain spectral peaks with an approximate 10 Hz fundamental were seen at both 3.2 and 8.0 GHz, but were the result of narrowband RFI with harmonics spread over a broad frequency range.

16
The following article is Free article

, , and

Carbon-rich evolved stars from the asymptotic giant branch to the planetary nebula phase are characterized by a rich and complex carbon chemistry in their circumstellar envelopes. A peculiar object is the preplanetary nebula SMP LMC 11, whose Spitzer Infrared Spectrograph spectrum shows remarkable and diverse molecular absorption bands. To study how the molecular composition in this object compares to our current understanding of circumstellar carbon chemistry, we modeled this molecular absorption. We find high abundances for a number of molecules, perhaps most notably benzene. We also confirm the presence of propyne (CH3C2H) in this spectrum. Of all the cyanopolyynes, only HC3N is evident; we can detect at best a marginal presence of HCN. From comparisons to various chemical models, we can conclude that SMP LMC 11 must have an unusual circumstellar environment (a torus rather than an outflow).

17
The following article is Free article

, , , , , , , , , et al

With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]–[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]–[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ∼5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%–5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information and are ideally suited for tracing stellar mass, as will be the focus in a companion paper.

18
The following article is Free article

, , , , , , , , , et al

A large number of cometary dust particles were captured with low-density silica aerogel during the NASA Stardust mission. The dust particles penetrated into the aerogel and formed various track shapes. To estimate the properties of the dust particles, such as density and size, based on the morphology of the tracks, we carried out systematic experiments testing impacts into low-density aerogel at 6 km s−1 using projectiles of various sizes and densities. We found that the maximum track diameter and the ratio of the track length to the maximum track diameter in aerogel are good indicators of projectile size and density, respectively. Based on these results, we estimated the size and density of individual dust particles from comet 81P/Wild 2. The average density of the "fluffy" dust particles and the bulk density of all dust particles were obtained as 0.35 ± 0.07 and 0.49 ± 0.18 g cm−3, respectively. These statistical data provided the content of monolithic and coarse grains in the Stardust particles, ∼30 wt%. Combining this result with some mid-infrared observational data, we found that the content of crystalline silicates is ∼50 wt% or more of non-volatile material.

19
The following article is Free article

, , , , , , , , , et al

Using CHARA and VLTI near-infrared spectro-interferometry with hectometric baseline lengths (up to 330 m) and with high spectral resolution (up to λ/Δλ = 12, 000), we studied the gas distribution and kinematics around two classical Be stars. The combination of high spatial and spectral resolution achieved allows us to constrain the gas velocity field on scales of a few stellar radii and to obtain, for the first time in optical interferometry, a dynamical mass estimate using the position–velocity analysis technique known from radio astronomy. For our first target star, β Canis Minoris, we model the H+K-band continuum and Brγ-line geometry with a near-critical rotating stellar photosphere and a geometrically thin equatorial disk. Testing different disk rotation laws, we find that the disk is in Keplerian rotation (v(r)∝r−0.5 ± 0.1) and derive the disk position angle (140° ± 1fdg7), inclination (38fdg5 ± 1°), and the mass of the central star (3.5 ± 0.2 M). As a second target star, we observed the prototypical Be star ζ Tauri and spatially resolved the Brγ emission as well as nine transitions from the hydrogen Pfund series (Pf 14-22). Comparing the spatial origin of the different line transitions, we find that the Brackett (Brγ), Pfund (Pf 14-17), and Balmer (Hα) lines originate from different stellocentric radii (Rcont < RPf < RBrγR), which we can reproduce with an LTE line radiative transfer computation. Discussing different disk-formation scenarios, we conclude that our constraints are inconsistent with wind compression models predicting a strong outflowing velocity component, but support viscous decretion disk models, where the Keplerian-rotating disk is replenished with material from the near-critical rotating star.

20
The following article is Free article

, , , , , , , , , et al

We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S4MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6–9 μm features relative to the 11.3 μm feature and weak 8.6 and 17.0 μm features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies. Based on studies of PAH destruction, we argue that a size distribution shifted toward smaller PAHs cannot be the result of processing in the interstellar medium, but instead reflects differences in the formation of PAHs at low metallicity. Finally, we discuss the implications of our observations for our understanding of the PAH life-cycle in low-metallicity galaxies—namely that the observed deficit of PAHs may be a consequence of PAHs forming with smaller average sizes and therefore being more susceptible to destruction under typical interstellar medium conditions.

21
The following article is Free article

, , and

Detailed hydrodynamic simulations of active galactic nucleus feedback have been performed including the effects of radiative and mechanical momentum and energy input on the interstellar medium (ISM) of typical elliptical galaxies. We focus on the observational properties of the models in the soft and hard X-ray bands: nuclear X-ray luminosity; global X-ray luminosity and temperature of the hot ISM; and temperature and X-ray brightness profiles before, during, and after outbursts. After ∼10 Gyr, the bolometric nuclear emission LBH is very sub-Eddington (l = LBH/LEdd ∼ 10−4), and within the range observed, though larger than typical values. Outbursts last for ≈107 yr, and the duty cycle of nuclear activity is a few ×  (10−3 to 10−2), over the last 6 Gyr. The ISM thermal luminosity LX oscillates in phase with the nuclear luminosity, with broader peaks. This behavior helps statistically reproduce the observed large LX variation. The average gas temperature is within the observed range, in the upper half of those observed. In quiescence, the temperature profile has a negative gradient; thanks to past outbursts, the brightness profile lacks the steep shape of cooling flow models. After outbursts, disturbances are predicted in the temperature and brightness profiles (analyzed by unsharp masking). Most significantly, during major accretion episodes, a hot bubble of shocked gas is inflated at the galaxy center (within ≈100 pc); the bubble would be conical in shape in real galaxies and would be radio-loud. Its detection in X-rays is within current capabilities, though it would likely remain unresolved. The ISM resumes its smooth appearance on a timescale of ≈200 Myr; the duty cycle of perturbations in the ISM is of the order of 5%–10%. While showing general agreement between the models and real galaxies, this analysis indicates that additional physical input may still be required including moving to two-dimensional or three-dimensional simulations, input of relativistic jets, or allowance for a confining medium.

22
The following article is Free article

, , , , , , , , , and

The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the Hubble Space Telescope Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H2 observed on the line of sight through the AA Tauri circumstellar disk. CO AX absorption bands are observed against the far-UV continuum. The CO absorption is characterized by log10(N(12CO)) = 17.5 ± 0.5 cm−2 and Trot(CO) = 500+500−200 K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect 13CO in absorption with an isotopic ratio of ∼20. We do not observe H2 absorption against the continuum; however, hot H2 (v > 0) is detected in absorption against the Lyα emission line. We measure the column densities in eight individual rovibrational states, determining a total log10(N(H2)) = 17.9+0.6−0.3 cm−2 with a thermal temperature of T(H2) = 2500+800−700 K. The high temperature of the molecules, the relatively small H2 column density, and the high inclination of the AA Tauri disk suggest that the absorbing gas resides in an inner disk atmosphere. If the H2 and CO are cospatial within a molecular layer ∼0.6 AU thick, this region is characterized by  ∼ 105 cm−3 with an observed 〈CO/H2〉 ratio of ∼0.4. We also find evidence for a departure from a purely thermal H2 distribution, suggesting that excitation by continuum photons and H2 formation may be altering the level populations in the molecular gas.

23
The following article is Free article

, , , and

We report astrometric results of phase-referencing very long baseline interferometry observations of 43 GHz SiO maser emission toward the red hypergiant VY Canis Majoris (VY CMa) using the Very Long Baseline Array (VLBA). We measured a trigonometric parallax of 0.83 ± 0.08 mas, corresponding to a distance of 1.20+0.13−0.10 kpc. Compared to previous studies, the spatial distribution of SiO masers has changed dramatically, while its total extent remains similar. The internal motions of the maser spots are up to 1.4 mas yr−1, corresponding to 8 km s−1, and show a tendency for expansion. After modeling the expansion of maser spots, we derived an absolute proper motion for the central star of μx = −2.8 ± 0.2 and μy = 2.6 ± 0.2 mas yr−1 eastward and northward, respectively. Based on the maser distribution from the VLBA observations, and the relative position between the radio photosphere and the SiO maser emission at 43 GHz from the complementary Very Large Array observations, we estimate the absolute position of VY CMa at mean epoch 2006.53 to be αJ2000 = 07h22m58fs3259 ± 0fs0007, δJ2000 = −25°46'03farcs063 ± 0farcs010. The position and proper motion of VY CMa from the VLBA observations differ significantly with values measured by the Hipparcos satellite. These discrepancies are most likely associated with inhomogeneities and dust scattering the optical light in the circumstellar envelope. The absolute proper motion measured with VLBA suggests that VY CMa may be drifting out of the giant molecular cloud to the east of it.

24
The following article is Free article

, , and

Sgr A* is embedded within the nuclear cluster, which consists of a mixture of evolved and young populations of stars dominating the light over a wide range of angular scales. Here we present Hubble Space Telescope/NICMOS data to study the surface brightness distribution of stellar light within the inner 10'' of Sgr A* at 1.45 μm, 1.7 μm, and 1.9 μm. We use these data to independently examine the surface brightness distribution that had been measured previously with NICMOS and to determine whether there is a drop in the surface density of stars very near Sgr A*. Our analysis confirms that a previously reported drop in the surface brightness within 0farcs8 of Sgr A* is an artifact of bright and massive stars near that radius. We also show that the surface brightness profile within 5'' or ∼0.2 pc of Sgr A* can be fitted with broken power laws. The power laws are consistent with previous measurements, in that the profile becomes shallower at small radii. For radii >0farcs7, the slope is β = −0.34 ± 0.04, where Σ is ∝rβ and becomes flatter at smaller radii with β = −0.13 ± 0.04. Modeling of the surface brightness profile gives a stellar density that increases roughly as r−1 within the inner 1'' of Sgr A*. This slope confirms earlier measurements in that it is not consistent with that expected from an old, dynamically relaxed stellar cluster with a central supermassive black hole. Assuming that the diffuse emission is not contaminated by a faint population of young stars down to the 17.1 mag limit of our imaging data at 1.70μm, the shallow cusp profile is not consistent with a decline in stellar density in the inner arcsecond. In addition, converting our measured diffuse light profile to a stellar mass profile, with the assumption that the light is dominated by K0 dwarfs, the enclosed stellar mass within radius r ≲ 0.1 pc of Sgr A* is ≈3.2 × 104 M(r/0.1 pc)2.1.

25
The following article is Free article

, , , , , and

We present three-dimensional (3D) kinematics of Sagittarius (Sgr) trailing tidal debris in six fields located 70°–130° along the stream from the Sgr dwarf galaxy core. The data are from our proper-motion (PM) survey of Kapteyn's Selected Areas, in which we have measured accurate PMs to faint magnitudes in ∼40' × 40' fields evenly spaced across the sky. The radial velocity (RV) signature of Sgr has been identified among our follow-up spectroscopic data in four of the six fields and combined with mean PMs of spectroscopically confirmed members to derive space motions of Sgr debris based on ∼15–64 confirmed stream members per field. These kinematics are compared to predictions of the Law & Majewski model of Sgr disruption; we find reasonable agreement with model predictions in RVs and PMs along Galactic latitude. However, an upward adjustment of the local standard of rest velocity (ΘLSR) from its standard 220 km s−1 to at least 232 ± 14 km s−1 (and possibly as high as 264 ± 23 km s−1) is necessary to bring 3D model debris kinematics and our measurements into agreement. Satisfactory model fits that simultaneously reproduce known position, distance, and RV trends of the Sgr tidal streams, while significantly increasing ΘLSR, could only be achieved by increasing the Galactic bulge and disk mass while leaving the dark matter halo fixed to the best-fit values from Law & Majewski. We derive low-resolution spectroscopic abundances along this stretch of the Sgr stream and find a constant [Fe/H] ∼ −1.15 (with ∼0.5 dex scatter in each field—typical for dwarf galaxy populations) among the four fields with reliable measurements. A constant metallicity suggests that debris along the ∼60° span of this study was all stripped from Sgr on the same orbital passage.

26
The following article is Free article

, , , , , , , , , et al

We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days ∼300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate 56Ni masses for our targets (0.5–14 × 10−2M) from the bolometric light curve of each of days ∼150–300 using SN 1987A as a standard (7.5 × 10−2M). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm−3) and SNe 2003gd and 2004et have densities more typical of the interstellar medium (∼1 cm−3). We analyze the sample as a whole in the context of physical properties derived in prior work. The 56Ni mass appears well correlated with progenitor mass with a slope of 0.31 × 10−2, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The dust mass does not appear to be correlated with progenitor mass.

27
The following article is Free article

, , , and

Most of the leading explosion scenarios for Type Ia supernovae involve the nuclear incineration of a white dwarf star through a detonation wave. Several scenarios have been proposed as to how this detonation may actually occur, but the exact mechanism and environment in which it takes place remain unknown. We explore the effects of an off-center initiated detonation on the spatial distribution of the nucleosynthetic yield products in a toy model—a pre-expanded near Chandrasekhar-mass white dwarf. We find that a single-point near edge-lit detonation results in asymmetries in the density and thermal profiles, notably the expansion timescale, throughout the supernova ejecta. We demonstrate that this asymmetry of the thermodynamic trajectories should be common to off-center detonations where a small amount of the star is burned prior to detonation. The sensitivity of the yields on the expansion timescale results in an asymmetric distribution of the elements synthesized as reaction products. We tabulate the shift in the center of mass of the various elements produced in our model supernova and find an odd–even pattern for elements past silicon. Our calculations show that off-center single-point detonations in carbon–oxygen white dwarfs are marked by significant composition asymmetries in their remnants which bear potentially observable signatures in both velocity and coordinate space, including an elemental nickel mass fraction that varies by a factor of 2–3 from one side of the remnant to the other.

28
The following article is Free article

, , , , , , , , , and

The large number of high-J lines of C18O available via the Herschel Space Observatory provide an unprecedented ability to model the total CO column density in hot cores. Using the emission from all the observed lines (up to J = 15–14), we sum the column densities in each individual level to obtain the total column after correcting for the population in the unobserved states. With additional knowledge of source size, VLSR, and line width, and both local thermodynamic equilibrium (LTE) and non-LTE modeling, we have determined the total C18O column densities in the Extended Ridge, Outflow/Plateau, Compact Ridge, and Hot Core components of Orion KL to be 1.4 × 1016 cm−2, 3.5 × 1016 cm−2, 2.2 × 1016 cm−2, and 6.2 × 1016 cm−2, respectively. We also find that the C18O/C17O abundance ratio varies from 1.7 in the Outflow/Plateau, 2.3 in the Extended Ridge, 3.0 in the Hot Core, and to 4.1 in the Compact Ridge. This is in agreement with models in which regions with higher ultraviolet radiation fields selectively dissociate C17O, although care must be taken when interpreting these numbers due to the size of the uncertainties in the C18O/C17O abundance ratio.

29
The following article is Free article

The ability to subtract foreground contamination from low-frequency observations is crucial to reveal the underlying 21 cm signal. The traditional line-of-sight methods can deal with the removal of diffuse emission and unresolved point sources, but not bright point sources. In this paper, we introduce a foreground cleaning technique in Fourier space, which allows us to handle all such foregrounds simultaneously and thus sidestep any special treatments to bright point sources. Its feasibility is tested with a simulated data cube for the 21 CentiMeter Array experiment. This data cube includes more realistic models for the 21 cm signal, continuum foregrounds, detector noise, and frequency-dependent instrumental response. We find that a combination of two weighting schemes can be used to protect the frequency coherence of foregrounds: the uniform weighting in the uv plane and the inverse-variance weighting in the spectral fitting. The visibility spectrum is therefore well approximated by a quartic polynomial along the line of sight. With this method, we demonstrate that the huge foreground contamination can be cleaned out effectively with residuals on the order of ∼10 mK, while the spectrally smooth component of the cosmological signal is also removed, bringing about a systematic underestimate in the extracted power spectrum primarily on large scales.

30
The following article is Free article

NASA's Small Explorer Mission GEMS (Gravity and Extreme Magnetism SMEX), scheduled for launch in 2014, will have the sensitivity to detect and measure the linear polarization properties of the 0.5 keV and 2–10 keV X-ray emission of a considerable number of galactic and extragalactic sources. The prospect of sensitive X-ray polarimetry justifies a closer look at the polarization properties of the basic emission mechanisms. In this paper, we present analytical and numerical calculations of the linear polarization properties of inverse Compton scattered radiation. We describe a generally applicable formalism that can be used to numerically compute the polarization properties in the Thomson and Klein–Nishina regimes. We use the code to perform for the first time a detailed comparison of numerical results and the earlier analytical results derived by Bonometto et al. for scatterings in the Thomson regime. Furthermore, we use the numerical formalism to scrutinize the polarization properties of synchrotron self-Compton (SSC) emission, and of inverse Compton radiation emitted in the Klein–Nishina regime. We conclude with a discussion of the scientific potential of future GEMS observations of blazars. The GEMS mission will be able to confirm the synchrotron origin of the low-energy emission component from high-frequency-peaked BL Lac objects. Furthermore, the observations have the potential to decide between an SSC and external-Compton origin of the high-energy emission component from flat spectrum radio quasars and low-frequency-peaked BL Lac objects.

31
The following article is Free article

, , and

We point out that the remarkable linearity of the ultra-steep radio spectra of high-redshift radio galaxies reflects a previously reported general trend for powerful radio galaxies, according to which the spectral curvature is less for sources having steeper spectra (measured near rest-frame 1 GHz). We argue based on existing theoretical and observational evidence that it is premature to conclude that the particle acceleration mechanism in sources having straight, ultra-steep radio spectra gives rise to an ultra-steep injection spectrum of the radiating electrons. In empirical support for this we show that the estimated injection spectral indices available for a representative sample of 35 compact steep spectrum radio sources are not correlated with their rest-frame (intrinsic) rotation measures, which are known to be typically large, indicating a dense environment, as is also the case for high-z radio galaxies.

32
The following article is Free article

and

A wide variety of astrophysical phenomena involve the flow of turbulent magnetized gas with relativistic velocity or energy density. Examples include gamma-ray bursts, active galactic nuclei, pulsars, magnetars, micro-quasars, merging neutron stars, X-ray binaries, some supernovae, and the early universe. In order to elucidate the basic properties of the relativistic magnetohydrodynamical (RMHD) turbulence present in these systems, we present results from numerical simulations of fully developed driven turbulence in a relativistically warm, weakly magnetized and mildly compressible ideal fluid. We have evolved the RMHD equations for many dynamical times on a uniform grid with 10243 zones using a high-order Godunov code. We observe the growth of magnetic energy from a seed field through saturation at ∼1% of the total fluid energy. We compute the power spectrum of velocity and density-weighted velocity U = ρ1/3v and conclude that the inertial scaling is consistent with a slope of −5/3. We compute the longitudinal and transverse velocity structure functions of order p up to 11 and discuss their possible deviation from the expected scaling for non-relativistic media. We also compute the scale-dependent distortion of coherent velocity structures with respect to the local magnetic field, finding a weaker scale dependence than is expected for incompressible non-relativistic flows with a strong mean field.

33
The following article is Free article

, , , , , , , , , et al

We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nançay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (∼4σ) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034−0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

34
The following article is Free article

, , and

Since the discovery of the first eight gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope, this population has been steadily expanding. Four of the more recent detections, PSR J0034−0534, PSR J1939+2134 (B1937+21; the first MSP ever discovered), PSR J1959+2048 (B1957+20; the first discovery of a black widow system), and PSR J2214+3000, exhibit a phenomenon not present in the original discoveries: nearly phase-aligned radio and gamma-ray light curves (LCs). To account for the phase alignment, we explore models where both the radio and gamma-ray emission originate either in the outer magnetosphere near the light cylinder or near the polar caps. Using a Markov Chain Monte Carlo technique to search for best-fit model parameters, we obtain reasonable LC fits for the first three of these MSPs in the context of "altitude-limited" outer gap (alOG) and two-pole caustic (alTPC) geometries (for both gamma-ray and radio emission). These models differ from the standard outer gap (OG)/two-pole caustic (TPC) models in two respects: the radio emission originates in caustics at relatively high altitudes compared to the usual conal radio beams, and we allow both the minimum and maximum altitudes of the gamma-ray and radio emission regions to vary within a limited range (excluding the minimum gamma-ray altitude of the alTPC model, which is kept constant at the stellar radius, and that of the alOG model, which is set to the position-dependent null charge surface altitude). Alternatively, phase-aligned solutions also exist for emission originating near the stellar surface in a slot gap scenario ("low-altitude slot gap" (laSG) models). We find that the alTPC models provide slightly better LC fits than the alOG models, and both of these give better fits than the laSG models (for the limited range of parameters considered in the case of the laSG models). Thus, our fits imply that the phase-aligned LCs are likely of caustic origin, produced in the outer magnetosphere, and that the radio emission for these pulsars may come from close to the light cylinder. In addition, we were able to constrain the minimum and maximum emission altitudes with typical uncertainties of ∼30% of the light cylinder radius. Our results therefore describe a third gamma-ray MSP subclass, in addition to the two previously found by Venter et al.: those with LCs fit by standard OG/TPC models and those with LCs fit by pair-starved polar cap models.

35
The following article is Free article

, , , , , and

We investigate the K- and L-band dayside emission of the hot-Jupiter HD 189733b with three nights of secondary eclipse data obtained with the SpeX instrument on the NASA Infrared Telescope Facility. The observations for each of these three nights use equivalent instrument settings and the data from one of the nights have previously been reported by Swain et al. We describe an improved data analysis method that, in conjunction with the multi-night data set, allows increased spectral resolution (R ∼ 175) leading to high-confidence identification of spectral features. We confirm the previously reported strong emission at ∼3.3 μm and, by assuming a 5% vibrational temperature excess for methane, we show that non-LTE emission from the methane ν3 branch is a physically plausible source of this emission. We consider two possible energy sources that could power non-LTE emission and additional modeling is needed to obtain a detailed understanding of the physics of the emission mechanism. The validity of the data analysis method and the presence of strong 3.3 μm emission are independently confirmed by simultaneous, long-slit, L-band spectroscopy of HD 189733b and a comparison star.

36
The following article is Free article

and

The plateaus observed in about one half of the early X-ray afterglows are the most puzzling feature in gamma-ray bursts (GRBs) detected by Swift. By analyzing the temporal and spectral indices of a large X-ray plateau sample, we find that 55% can be explained by external, forward shock synchrotron emission produced by a relativistic ejecta coasting in a ρ∝r−2, wind-like medium; no energy injection into the shock is needed. After the ejecta collects enough medium and transitions to the adiabatic, decelerating blast wave phase, it produces the post-plateau decay. For those bursts consistent with this model, we find an upper limit for the initial Lorentz factor of the ejecta, Γ0 ⩽ 46(epsilone/0.1)−0.24(epsilonB/0.01)0.17; the isotropic equivalent total ejecta energy is Eiso ∼ 1053(epsilone/0.1)−1.3(epsilonB/0.01)−0.09(tb/104 s) erg, where epsilone and epsilonB are the fractions of the total energy at the shock downstream that are carried by electrons and the magnetic field, respectively, and tb is the end of the plateau. Our finding supports Wolf–Rayet stars as the progenitor stars of some GRBs. It raises intriguing questions about the origin of an intermediate-Γ0 ejecta, which we speculate is connected to the GRB jet emergence from its host star. For the remaining 45% of the sample, the post-plateau decline is too rapid to be explained in the coasting-in-wind model, and energy injection appears to be required.

37
The following article is Free article

, , and

We present long-term optical spectroscopic observations on the Be/X-ray binary A0535+26 from 1992 to 2010. Combined with the public V-band photometric data, we find that each giant X-ray outburst occurred in a fading phase of the optical brightness. The anti-correlation between the optical brightness and the Hα intensity during our 2009 observations indicates a mass ejection event had taken place before the 2009 giant X-ray outburst, which might cause the formation of a low-density region in the inner part of the disk. The similar anti-correlation observed around 1996 September indicates the occurrence of the mass ejection, which might trigger the subsequent disk loss event in A0535+26.

38
The following article is Free article

, , , , , , , , , et al

Supernova (SN) 2009ig was discovered 17 hr after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost SNe for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of an SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta—the ejecta velocity measured in our earliest spectra (v ≈ −23, 000  km s−1 for Si ii λ6355) is the highest yet measured in an SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13 ± 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all SNe Ia at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe.

39
The following article is Free article

, , , and

We present a spherically symmetric, core-collapse model of SNR RX J1713.7−3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration. High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated interstellar medium behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV–TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a ≫100 M shell or cloud. If the supernova remnant is interacting with a much larger mass ≳ 104M, pion decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 104M pion-decay scenario highly unlikely for SNR RX J1713.7−3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV–TeV emission, the efficient production of CR ions is an essential part of our leptonic model.

40
The following article is Free article

, , , , , , , , , et al

We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at 250, 350, and 500 μm (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope (BLAST); and at 1380 and 2030  μm (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope (ACT). The overlapping observations cover 8.6 deg2 in an area relatively free of Galactic dust near the south ecliptic pole. The ACT bands are sensitive to radiation from the cosmic microwave background, to the Sunyaev–Zel'dovich effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline and also detect correlations between the ACT and BLAST maps at over 25σ significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at  4σ, and using a model for the DSFG evolution and number counts, we successfully fit all of our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.

41
The following article is Free article

, , , , , , , , , et al

We present a catalog of 25 definite and 11 probable strong galaxy–galaxy gravitational lens systems with lens redshifts 0.4 ≲ z ≲ 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy–galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

42
The following article is Free article

, , , , , , , , , et al

We present the largest sample to date of giant molecular clouds (GMCs) in a substantial spiral galaxy other than the Milky Way. We map the distribution of molecular gas with high resolution and image fidelity within the central 5 kpc of the spiral galaxy NGC 6946 in the 12CO (J = 1–0) transition. By combining observations from the Nobeyama Radio Observatory 45 m single dish telescope and the Combined Array for Research in Millimeter Astronomy interferometer, we are able to obtain high image fidelity and accurate measurements of LCO compared with previous purely interferometric studies. We resolve individual GMCs, measure their luminosities and virial masses, and derive XCO—the conversion factor from CO measurements to H2 masses—within individual clouds. On average, we find that XCO = 1.2 × 1020 cm−2 (K km s−1)−1, which is consistent within our uncertainties with previously derived Galactic values as well as the value we derive for Galactic GMCs above our mass sensitivity limit. The properties of our GMCs are largely consistent with the trends observed for molecular clouds detected in the Milky Way disk, with the exception of six clouds detected within ∼400 pc of the center of NGC 6946, which exhibit larger velocity dispersions for a given size and luminosity, as has also been observed at the Galactic center.

43
The following article is Free article

, , , and

This paper presents an analysis of the local peculiar velocity field based on the Wiener Filter (WF) reconstruction method. We used our currently available catalog of distance measurements containing 1797 galaxies within 3000 km s−1: Cosmicflows-1. The WF method is used to recover the full three-dimensional peculiar velocity field from the observed map of radial velocities and to recover the underlying linear density field. The velocity field within a data zone of 3000 km s−1 is decomposed into a local component that is generated within the data zone and a tidal one that is generated by the mass distribution outside that zone. The tidal component is characterized by a coherent flow toward the Norma–Hydra–Centaurus (Great Attractor) region, while the local component is dominated by a flow toward the Virgo Cluster and away from the Local Void. A detailed analysis shows that the local flow is predominantly governed by the Local Void and the Virgo Cluster plays a lesser role. The analysis procedure was tested against a mock catalog. It is demonstrated that the WF accurately recovers the input velocity field of the mock catalog on the scale of the extraction of distances and reasonably recovers the velocity field on significantly larger scales. The Bayesian WF reconstruction is carried out within the ΛCDM WMAP5 framework. The WF reconstruction draws particular attention to the importance of voids in proximity to our neighborhood. The prominent structure of the Local Supercluster is wrapped in a horseshoe collar of under density with the Local Void as a major component.

44
The following article is Free article

, , , , , , , , , et al

We consider the effects of non-constant star formation histories (SFHs) on Hα and GALEX far-ultraviolet (FUV) star formation rate (SFR) indicators. Under the assumption of a fully populated Chabrier initial mass function (IMF), we compare the distribution of Hα-to-FUV flux ratios from ∼1500 simple, periodic model SFHs with observations of 185 galaxies from the Spitzer Local Volume Legacy survey. We find a set of SFH models that are well matched to the data, such that more massive galaxies are best characterized by nearly constant SFHs, while low-mass systems experience burst amplitudes of ∼30 (i.e., an increase in the SFR by a factor of 30 over the SFR during the inter-burst period), burst durations of tens of Myr, and periods of ∼250 Myr; these SFHs are broadly consistent with the increased stochastic star formation expected in systems with lower SFRs. We analyze the predicted temporal evolution of galaxy stellar mass, R-band surface brightness, Hα-derived SFR, and blue luminosity, and find that they provide a reasonable match to observed flux distributions. We find that our model SFHs are generally able to reproduce both the observed systematic decline and increased scatter in Hα-to-FUV ratios toward low-mass systems, without invoking other physical mechanisms. We also compare our predictions with those from the Integrated Galactic IMF theory with a constant SFR. We find that while both predict a systematic decline in the observed ratios, only the time variable SFH models are capable of producing the observed population of low-mass galaxies (M* ≲ 107M) with normal Hα-to-FUV ratios. These results demonstrate that a variable IMF alone has difficulty explaining the observed scatter in the Hα-to-FUV ratios. We conclude by considering the limitations of the model SFHs and discuss the use of additional empirical constraints to improve future SFH modeling efforts.

45
The following article is Free article

, , , , , and

Modeling the late inspiral and mergers of supermassive black holes (BHs) is central to understanding accretion processes and the conditions under which electromagnetic (EM) emission accompanies gravitational waves (GWs). We use fully general relativistic hydrodynamics simulations to investigate how EM signatures correlate with BH spins, mass ratios, and the gaseous environment in this final phase of binary evolution. In all scenarios, we find some form of characteristic EM variability whose detailed pattern depends on the spins and binary mass ratios. Binaries in hot accretion flows exhibit a flare followed by a sudden drop in luminosity associated with the plunge and merger, as well as quasi-periodic oscillations correlated with the GWs during the inspiral. Conversely, circumbinary disk systems are characterized by a low luminosity of variable emission, suggesting challenging prospects for their detection.

46
The following article is Free article

and

We present a multi-frequency study of radio relics associated with the galaxy clusters A4038, A1664, and A786. Radio images, integrated spectra, spectral index maps, and fits to the integrated spectra in the framework of the adiabatic compression model are presented. Images of the relic in A4038 at 150, 240, and 606 MHz with the Giant Meterwave Radio Telescope have revealed extended ultra-steep spectrum (α ∼ −1.8 to −2.7) emission of extent 210 × 80 kpc2. The model of passively evolving radio lobes compressed by a shock fits the integrated spectrum best. The relic with a circular morphology at the outskirts of the cluster A1664 has an integrated spectral index of ∼ − 1.10 ± 0.06 and is best fit by the model of radio lobes lurking for ∼4 × 107 yr. The relic near A786 has a curved spectrum and is best fit by a model of radio lobes lurking for ∼3 × 107 yr. At 4.7 GHz, a compact radio source, possibly the progenitor of the A786 relic, is detected near the center of the radio relic. The A786 radio relic is thus likely a lurking radio galaxy rather than a site of cosmological shock as has been considered in earlier studies.

47
The following article is Free article

, , , and

We present the results of our X-ray, UV, and optical monitoring campaign of the first gravitationally lensed active galactic nucleus (AGN) from late 2009 to mid-2010. The trailing (B) image of the AGN 0957+561 shows the intrinsic continuum variations that were predicted in advance based on observations of the leading (A) image in the gr optical bands. This multiwavelength variability of the B image allows us to carry out a reverberation mapping analysis in the radio-loud AGN 0957+561 at redshift z = 1.41. We find that the U-band and r-band light curves are highly correlated with the g-band record, leading and trailing it by 3 ± 1 days (U band) and 4 ± 1 days (r band). These 1σ measurements are consistent with a scenario in which flares originated in the immediate vicinity of the supermassive black hole are thermally reprocessed in a standard accretion disk at ∼10–20 Schwarzschild radii from the central dark object. We also report that the light curve for the X-ray emission with power-law spectrum is delayed with respect to those in the Ugr bands by ∼32 days. Hence, the central driving source cannot be a standard corona emitting the observed power-law X-rays. This result is also supported by X-ray reprocessing simulations and the absence of X-ray reflection features in the spectrum of 0957+561. We plausibly interpret the lack of reflection and the 32 day delay as evidence for a power-law X-ray source in the base of the jet at a typical height of ∼200 Schwarzschild radii. A central EUV source would drive the variability of 0957+561.

48
The following article is Free article

, , and

It is well known that two-ribbon flares observed in Hα and ultraviolet (UV) wavelengths mostly exhibit compact and localized hard X-ray (HXR) sources. In this paper, we present comprehensive analysis of a two-ribbon flare observed in UV 1600 Å by Transition Region and Coronal Explorer and in HXRs by Reuven Ramaty High Energy Solar Spectroscopic Imager. HXR (25–100 keV) imaging observations show two kernels of size (FWHM) 15'' moving along the two UV ribbons. We find the following results. (1) UV brightening is substantially enhanced wherever and whenever the compact HXR kernel is passing, and during the HXR transit across a certain region, the UV count light curve in that region is temporally correlated with the HXR total flux light curve. After the passage of the HXR kernel, the UV light curve exhibits smooth monotonical decay. (2) We measure the apparent motion speed of the HXR sources and UV ribbon fronts, and decompose the motion into parallel and perpendicular motions with respect to the magnetic polarity inversion line (PIL). It is found that HXR kernels and UV fronts exhibit similar apparent motion patterns and speeds. The parallel motion dominates during the rise of the HXR emission, and the perpendicular motion starts and dominates at the HXR peak, the apparent motion speed being 10–40 km s−1. (3) We also find that UV emission is characterized by a rapid rise correlated with HXRs, followed by a long decay on timescales of 15–30 minutes. The above analysis provides evidence that UV brightening is primarily caused by beam heating, which also produces thick-target HXR emission. The thermal origin of UV emission cannot be excluded, but would produce weaker heating by one order of magnitude. The extended UV ribbons in this event are most likely a result of sequential reconnection along the PIL, which produces individual flux tubes (post-flare loops), subsequent non-thermal energy release and heating in these flux tubes, and then the very long cooling time of the transition region at the feet of these flux tubes.

49
The following article is Free article

, , , , , , , , , and

We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes 182,183,184,186W and 179,180Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the 182W/184W and 183W/184W ratios, with deficits in 182W and 183W with respect to 184W. The 186W/184W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar 182W/184W, 183W/184W, and 186W/184W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their 182W/184W, 183W/184W, and 179Hf/180Hf isotopic compositions, although a small adjustment in the s-process production of 183W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the 186W/184W ratios observed in the SiC grains, even when the current 185W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e.g., the formation of the 13C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the 22Ne neutron source) may affect current s-process predictions.

50
The following article is Free article

, , , , , and

We present observations of sunspot evolution associated with the first X-class flare of the present solar cycle 24, which occurred in AR 11158 on 2011 February 15. The active region consisted of four emerging bipoles that showed complicated sunspot motion. The preceding spot of a bipole underwent the fastest movement. It not only passed through the following end of another bipole, thus causing a shearing motion, but also merged with the same-polarity spots and formed a single, larger umbra. This led to the formation of a δ configuration with an S-shaped neutral line, above which an extreme ultraviolet filament channel and a sigmoid formed and erupted to produce the flare. Along with the development of a clockwise (CW) spiral penumbra-filament pattern, the merged spot started rapid CW rotation around its umbral center 20 hr before the flare. The rotation persisted throughout the flare but stopped sharply about 1 hr after the flare ended, maintaining the twisted penumbra-filament pattern. The moving spot also caused continuous flux cancellation; in particular, its outer penumbra directly collided with small opposite-polarity spots only 100 minutes before the flare. When the shearing and rotational motions are main contributors to the energy buildup and helicity injection for the flare, the cancellation and collision might act as a trigger. Our observations support the idea that the rotation can be attributed to the emergence of twisted magnetic fields, as proposed in recent theories. Finally, the cause of its sudden halt is discussed.

51
The following article is Free article

and

We analyze the ''microscale fluctuations'' of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or "pink noise" spectrum on scales from 1 to 100 days, and it has a broad multifractal spectrum f(α) with 0.57 ⩽ α ⩽ 1.39. The time series of increments SD(t + τ) − SD(t) has a pink noise spectrum with α' = 0.88 ± 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 ± 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The "turbulence" observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of "turbulence" in the heliosheath.

52
The following article is Free article

, , , , , , , , and

We use three-dimensional hydrodynamical simulations to study the rapid infall phase of the common envelope (CE) interaction of a red giant branch star of mass equal to 0.88 M and a companion star of mass ranging from 0.9 down to 0.1 M. We first compare the results obtained using two different numerical techniques with different resolutions, and find very good agreement overall. We then compare the outcomes of those simulations with observed systems thought to have gone through a CE. The simulations fail to reproduce those systems in the sense that most of the envelope of the donor remains bound at the end of the simulations and the final orbital separations between the donor's remnant and the companion, ranging from 26.8 down to 5.9 R, are larger than the ones observed. We suggest that this discrepancy vouches for recombination playing an essential role in the ejection of the envelope and/or significant shrinkage of the orbit happening in the subsequent phase.

53
The following article is Free article

, , , and

Recently published Spitzer Space Telescope observations of the classical Cepheid archetype δ Cephei revealed an extended dusty nebula surrounding this star and its hot companion HD 213307. At far-infrared wavelengths, the emission resembles a bow shock aligned with the direction of space motion of the star, indicating that δ Cephei is undergoing mass loss through a stellar wind. Here we report H i 21 cm line observations with the Very Large Array (VLA) to search for neutral atomic hydrogen associated with this wind. Our VLA data reveal a spatially extended H i nebula (∼13' or 1 pc across) surrounding the position of δ Cephei. The nebula has a head-tail morphology, consistent with circumstellar ejecta shaped by the interaction between a stellar wind and the interstellar medium (ISM). We directly measure a mass of circumstellar atomic hydrogen $M_{\rm H\,\mathsc{i}}\approx 0.07 \,M_{\odot }$, although the total H i mass may be larger, depending on the fraction of circumstellar material that is hidden by Galactic contamination within our band or that is present on angular scales too large to be detected by the VLA. It appears that the bulk of the circumstellar gas has originated directly from the star, although it may be augmented by material swept from the surrounding ISM. The H i data are consistent with a stellar wind with an outflow velocity Vo = 35.6 ± 1.2 km s−1 and a mass-loss rate of ${\dot{M}}\approx (1.0\pm 0.8)\times 10^{-6} \,M_{\odot }$ yr−1. We have computed theoretical evolutionary tracks that include mass loss across the instability strip and show that a mass-loss rate of this magnitude, sustained over the preceding Cepheid lifetime of δ Cephei, could be sufficient to resolve a significant fraction of the discrepancy between the pulsation and evolutionary masses for this star.

54
The following article is Free article

, , , , , , , , , et al

PDS 144 is a pair of Herbig Ae stars that are separated by 5farcs35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83° inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N—the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 ± 2 pc with an age of 5–10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7° ± 6° on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73° ± 7°. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25° ± 9°. This degree of misalignment is similar to that seen in T Tauri wide binaries.

55
The following article is Free article

and

Accretion from disks onto young stars is thought to follow magnetic field lines from the inner disk edge to the stellar surface. The accretion flow thus depends on the geometry of the magnetic field. This paper extends previous work by constructing a collection of orthogonal coordinate systems, including the corresponding differential operators, where one coordinate traces the magnetic field lines. This formalism allows for an (essentially) analytic description of the geometry and the conditions required for the flow to pass through sonic points. Using this approach, we revisit the problem of magnetically controlled accretion flow in a dipole geometry, and then generalize the treatment to consider magnetic fields with multiple components, including dipole, octupole, and split monopole contributions. This approach can be generalized further to consider more complex magnetic field configurations. Observations indicate that accreting young stars have substantial dipole and octupole components, and that accretion flow is transonic. If the effective equation of state for the fluid is too stiff, however, the flow cannot pass smoothly through the sonic points in steady state. For a multipole field of order ℓ, we derive a general constraint on the polytropic index, n > ℓ + 3/2, required for steady transonic flow to reach free-fall velocities. For octupole fields, inferred on surfaces of T Tauri stars, the index n > 9/2, so that the flow must be close to isothermal. The inclusion of octupole field components produces higher densities at the stellar surface and smaller areas for the hot spots, which occur at higher latitudes; the magnetic truncation radius is smaller (larger) for octupole components that are aligned (anti-aligned) with the stellar dipole. This contribution thus increases our understanding of magnetically controlled accretion for young stellar objects and can be applied to a variety of additional astrophysical problems.

56
The following article is Free article

, , , and

We study the outflow activity, photometric variability, and morphology of three very young stellar objects in the Serpens NW star-forming region: OO Serpentis, EC 37 (V370 Ser), and EC 53 (V371 Ser). High spatial resolution Keck/NIRC2 laser guide star adaptive optics images obtained in 2007 and 2009 in broadband K and in a narrowband filter centered on the 1–0 S(1) emission line of H2 allow us to identify the outflows from all three objects. We also present new, seeing-limited data on the photometric evolution of the OO Ser reflection nebula and re-analyze previously published data. We find that OO Ser declined in brightness from its outburst peak in 1995 to about 2003, but that this decline has recently stopped and actually reversed itself in some areas of the reflection nebula. The morphology and proper motions of the shock fronts MHO 2218 near EC 37 suggest that they all originate in EC 37 and that this is an outflow seen nearly along its axis. We identify an H2 jet emerging from the cometary nebula EC 53. The star illuminating EC 53 is periodically variable with a period of 543 days and has a close-by, non-variable companion at a projected distance of 92 AU. We argue that the periodic variability is the result of accretion instabilities triggered by another very close, not directly observable, binary companion and that EC 53 can be understood in the model of a multiple system developing into a hierarchical configuration.

57
The following article is Free article

, , and

We examine the significance of a planar arrangement in the spatial distribution of the Milky Way (MW) globular clusters (GCs). We find that, when separated on the basis of horizontal branch morphology and metallicity, the outermost canonical young halo (YH) GC sample (at galactocentric radii in excess of 10 kpc) exhibits an anisotropic distribution that may be equated to a plane (24 ± 4) kpc thick (rms) and inclined at 8° ± 5° to the polar axis of the MW disk. To quantify the significance of this plane we determine the fraction of times that an isotropic distribution replicates the observed distribution in Monte Carlo trials. The plane is found to remain significant at the >95% level outside a galactocentric radius of 10 kpc, inside this radius the spatial distribution is apparently isotropic. In contrast, the spatial distribution of the old halo sample outside 10 kpc is well matched by an isotropic distribution. The plane described by the outer YH GCs is indistinguishable in orientation from that presented by the satellite galaxies of the MW. Simulations have shown that the planar arrangement of satellites can arise as filaments of the surrounding large-scale structure feed into the MW's potential. We therefore propose that our results are direct observational evidence for the accreted origin of the outer YH GC population. This conclusion confirms numerous lines of evidence that have similarly indicated an accreted origin for this set of clusters from the inferred cluster properties.

58
The following article is Free article

, , , , , , , , , et al

We use Hubble Space Telescope (HST) and ground-based imaging to study the multiple populations of 47 Tucanae (47 Tuc), combining high-precision photometry with calculations of synthetic spectra. Using filters covering a wide range of wavelengths, our HST photometry splits the main sequence into two branches, and we find that this duality is repeated in the subgiant and red giant regions, and on the horizontal branch. We calculate theoretical stellar atmospheres for main-sequence stars, assuming different chemical composition mixtures, and we compare their predicted colors through the HST filters with our observed colors. We find that we can match the complex of observed colors with a pair of populations, one with primeval abundance and another with enhanced nitrogen and a small helium enhancement, but with depleted C and O. We confirm that models of red giant and red horizontal branch stars with that pair of compositions also give colors that fit our observations. We suggest that the different strengths of molecular bands of OH, CN, CH, and NH, falling in different photometric bands, are responsible for the color splits of the two populations. Near the cluster center, in each portion of the color–magnitude diagram the population with primeval abundances makes up only ∼20% of the stars, a fraction that increases outward, approaching equality in the outskirts of the cluster, with a fraction ∼30% averaged over the whole cluster. Thus the second, He/N-enriched population is more concentrated and contributes the majority of the present-day stellar content of the cluster. We present evidence that the color–magnitude diagram of 47 Tuc consists of intertwined sequences of the two populations, whose separate identities can be followed continuously from the main sequence up to the red giant branch, and thence to the horizontal branch. A third population is visible only in the subgiant branch, where it includes ∼8% of the stars.

59
The following article is Free article

, , , , , , , , and

For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass–radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass–radius and mass–pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass–radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently "Earth-like," likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass–radius curves for H2O and CH4, suggesting an "icy" composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass–radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5+1.2− 1.0 TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These pressures are accessible by planar shock and ramp-loading experiments at large laser facilities. The center of HAT-P-2b is probably around 210 TPa, in the range of planned National Ignition Facility experiments, and that of CoRoT-3b around 1900 TPa.

60
The following article is Free article

, , , , , , , , , et al

The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux Fλ ≈ 1.0 × 10−14 erg cm−2 s−1 Å−1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%–2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September–2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne viii in the intergalactic medium, and observed the He ii reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

61
The following article is Free article

, , and

Experimental results from infrared spectroscopy and mass spectrometry provide compelling evidence that UV irradiation of the neutral polycyclic aromatic hydrocarbon (PAH) 9,10–dihydroanthracene (DHA), trapped in solid argon (12 K), results in efficient (i.e., 90% yield) conversion to anthracene and molecular hydrogen. A number of dissociation pathways involving single or double hydrogen loss are investigated computationally. Among these, two mechanisms are most credible for a one-photon dissociation process involving UV photons <5.5 eV. For the lowest-energy pathway (2.3 eV), a simultaneous lengthening of the C–H bonds of H9 and H10 gives rise to an anthracene–H2 complex. A higher-energy mechanism (3.4 eV) involves an initial lengthening of the H9 C–H bond, followed by this hydrogen "grabbing" H10, and forming H2. The high yield of this photolysis reaction suggests that similar reactions may take place for other neutral PAHs, with implications for the formation of molecular hydrogen in regions of low UV exposure, such as in dark clouds.

62
The following article is Free article

, , , , and

Along with H2, HD has been found to play an important role in the cooling of the primordial gas for the formation of the first stars and galaxies. It has also been observed in a variety of cool molecular astrophysical environments. The rate of cooling by HD molecules requires knowledge of collisional rate coefficients with the primary impactors, H, He, and H2. To improve knowledge of the collisional properties of HD, we present rate coefficients for the He–HD collision system over a range of collision energies from 10−5 to 5 × 103 cm−1. Fully quantum mechanical scattering calculations were performed for initial HD rovibrational states of j = 0 and 1 for v = 0–17 which utilized accurate diatom rovibrational wave functions. Rate coefficients of all Δv = 0, −1, and −2 transitions are reported. Significant discrepancies with previous calculations, which adopted a small basis and harmonic HD wave functions for excited vibrational levels, were found for the highest previously considered vibrational state of v = 3. Applications of the He–HD rate coefficients in various astrophysical environments are briefly discussed.

63
The following article is Free article

, , , and

We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of M* > 6.3 × 1010M in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decrease of the stellar velocity dispersions since redshift z ≈ 2. At present 25 out of 40 galaxies are quiescent with structural parameters (sizes and velocity dispersions) in agreement with local early-type galaxies. At z = 2 all simulated galaxies with M* ≳ 1011M (11 out of 40) at z = 2 are compact with projected half-mass radii of ≈0.77 (±0.24) kpc and line-of-sight velocity dispersions within the projected half-mass radius of ≈262 (±28) km s−1 (3 out of 11 are already quiescent). Similar to observed compact early-type galaxies at high redshift, the simulated galaxies are clearly offset from the local mass–size and mass–velocity dispersion relations. Toward redshift zero the sizes increase by a factor of ∼5–6, following R1/2∝(1 + z)α with α = −1.44 for quiescent galaxies (α = −1.12 for all galaxies). The velocity dispersions drop by about one-third since z ≈ 2, following σ1/2∝(1 + z)β with β = 0.44 for the quiescent galaxies (β = 0.37 for all galaxies). The simulated size and dispersion evolution is in good agreement with observations and results from the subsequent accretion and merging of stellar systems at z ≲ 2, which is a natural consequence of the hierarchical structure formation. A significant number of the simulated massive galaxies (7 out of 40) experience no merger more massive than 1:4 (usually considered as major mergers). On average, the dominant accretion mode is stellar minor mergers with a mass-weighted mass ratio of 1:5. We therefore conclude that the evolution of massive early-type galaxies since z ≈ 2 and their present-day properties are predominantly determined by frequent "minor" mergers of moderate mass ratios and not by major mergers alone.

64
The following article is Free article

, , and

We report on Cyg X-1 observations performed by the SPI telescope on board the INTEGRAL mission and distributed over more than 6 years. We investigate the variability of the intensity and spectral shape of this peculiar source in the hard X-ray domain, and more particularly up to the MeV region. We first study the total averaged spectrum which presents the best signal-to-noise ratio (4 Ms of data). Then, we refine our results by building mean spectra by periods and gathering those of similar hardness. Several spectral shapes are observed with important changes in the curvature between 20 and 200 keV, even at the same luminosity level. In all cases, the emission decreases sharply above 700 keV, with flux values above 1 MeV (or upper limits) well below the recently reported polarized flux, while compatible with the MeV emission detected some years ago by the Compton Gamma-ray Observatory/COMPTEL. Finally, we take advantage of the spectroscopic capability of the instrument to seek for spectral features in the 500 keV region with negative results for any significant annihilation emission on 2 ks and day timescales, as well as in the total data set.

65
The following article is Free article

A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter α), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that, in either case, photospheric sunspot magnetic fields are closer to satisfying the nonlinear force-free field approximation.

66
The following article is Free article

, , , , , and

On 2009 September 21, a filament eruption and the associated coronal mass ejection (CME) were observed by the Solar Terrestrial Relations Observatory (STEREO) spacecraft. The CME originated from the southern hemisphere and showed a deflection of about 15° toward the heliospheric current sheet (HCS) during the propagation in the COR1 field of view. The CME source region was near the central meridian, but no on-disk CME signatures could be seen from the Earth. The aim of this paper is to provide a physical explanation for the strong deflection of the CME observed on 2009 September 21. The two-sided view of the STEREO spacecraft allows us to reconstruct the three-dimensional travel path of the CME and the evolution of the CME source region. The observations are combined with a magnetohydrodynamic simulation, starting from a magnetic field configuration closely resembling the extrapolated potential field for that date. By applying localized shearing motions, a CME is initiated in the simulation, showing a similar non-radial evolution, structure, and velocity as the observed event. The CME gets deflected toward the current sheet of the larger northern helmet streamer due to an imbalance in the magnetic pressure and tension forces and finally gets into the streamer. This study shows that during solar minima, even CMEs originating from high latitude can be easily deflected toward the HCS, eventually resulting in geoeffective events. How rapidly they undergo this latitudinal migration depends on the strength of both the large-scale coronal magnetic field and the magnetic flux of the erupting filament.

67
The following article is Free article

and

We explore the physics of shock evolution and particle acceleration in non-relativistic collisionless shocks using hybrid simulations. We analyze a wide range of physical parameters relevant to the acceleration of cosmic rays (CRs) in astrophysical shock scenarios. We show that there are fundamental differences between high and low Mach number shocks in terms of the electromagnetic turbulence generated in the pre-shock zone; dominant modes are resonant with the streaming CRs in the low Mach number regime, while both resonant and non-resonant modes are present for high Mach numbers. Energetic power-law tails for ions in the downstream plasma account for up to 15% of the incoming upstream flow energy, distributed over ∼5% of the particles in a power law with slope −2 ± 0.2 in energy. Quasi-parallel shocks with θ ⩽ 45° are good ion accelerators, while power laws are greatly suppressed for quasi-perpendicular shocks, θ > 45°. The efficiency of conversion of flow energy into the energy of accelerated particles peaks at θ = 15°–30° and MA = 6, and decreases for higher Mach numbers, down to ∼2% for MA = 31. Accelerated particles are produced by diffusive shock acceleration (DSA) and by shock drift acceleration (SDA) mechanisms, with the SDA contribution to the overall energy gain increasing with magnetic inclination. We also present a direct comparison between hybrid and fully kinetic particle-in-cell results at early times. In supernova remnant (SNR) shocks, particle acceleration will be significant for low Mach number quasi-parallel flows (MA < 30, θ < 45). This finding underscores the need for an effective magnetic amplification mechanism in SNR shocks.

68
The following article is Free article

, , , , , and

We present the results of near- to mid-infrared slit spectroscopic observations (2.55–13.4 μm) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the infrared camera on board AKARI. The target positions are selected to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are detected toward all the targets and ionized gas signatures; hydrogen recombination lines and ionic forbidden lines are detected toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photodissociation regions, whereas Group B consists of H ii regions. In Group A, the band ratios of I3.3 μm/I11.3 μm, I6.2 μm/I11.3 μm, I7.7 μm/I11.3 μm, and I8.6 μm/I11.3 μm show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms of the polycyclic aromatic hydrocarbon (PAH) model and attribute the difference to the destruction of small PAHs and an increase in the recombination due to the high electron density in Group B. In the present study, the 3.3 μm band provides crucial information on the size distribution and/or the excitation conditions of PAHs and plays a key role in the distinction of Group A from B. The results suggest the possibility of the diagram of I3.3 μm/I11.3 μm versus I7.7 μm/I11.3 μm as an efficient diagnostic tool to infer the physical conditions of the interstellar medium.

69
The following article is Free article

, , , and

Recent observations of Type Ia supernovae (SNe Ia) suggest that some of the progenitor white dwarfs (WDs) had masses up to 2.4–2.8 M, highly exceeding the Chandrasekhar mass limit. We present a new single degenerate model for SN Ia progenitors, in which the WD mass possibly reaches 2.3–2.7 M. Three binary evolution processes are incorporated: optically thick winds from mass-accreting WDs, mass stripping from the binary companion star by the WD winds, and WDs being supported by differential rotation. The WD mass can increase by accretion up to 2.3 (2.7) M from the initial value of 1.1 (1.2) M, consistent with high-luminosity SNe Ia, such as SN 2003fg, SN 2006gz, SN 2007if, and SN 2009dc. There are three characteristic mass ranges of exploding WDs. In the extreme massive case, differentially rotating WDs explode as an SN Ia soon after the WD mass exceeds 2.4 M because of a secular instability at T/|W| ∼ 0.14. For the mid-mass range of MWD = 1.5–2.4 M, it takes some time (spinning-down time) until carbon is ignited to induce an SN Ia explosion after the WD mass has reached maximum, because it needs a loss or redistribution of angular momentum. For the lower mass case of rigidly rotating WDs, MWD = 1.38–1.5 M, the spinning-down time depends on the timescale of angular momentum loss from the WD. The difference in the spinning-down time may produce the "prompt" and "tardy" components. We also suggest that the very bright super-Chandrasekhar mass SNe Ia are born in a low-metallicity environment.

70
The following article is Free article

, , , , , , , , and

Weak intrinsic magnetic dipole moments of tidally locked close-in giant exoplanets ("hot Jupiters") have been shown in previous studies to be unable to provide an efficient magnetospheric protection for their expanding upper atmospheres against the stellar plasma flow, which should lead to significant non-thermal atmosphere mass loss. The present work provides a more complete view of the magnetosphere structure of "hot Jupiters," based on a paraboloid magnetospheric model (PMM). Besides the intrinsic planetary magnetic dipole, the PMM considers among the main magnetic field sources also the electric current system of the magnetotail, magnetopause currents, and the ring current of a magnetodisk. Due to the outflow of ionized particles from the hydrodynamically expanding upper atmosphere, "hot Jupiters" may have extended magnetodisks. The magnetic field produced by magnetodisk ring currents dominates above the contribution of an intrinsic magnetic dipole of a "hot Jupiter" and finally determines the size and shape of the whole magnetosphere. A slower-than-the-dipole-type decrease of the magnetic field with the distance forms the essential specifics of magnetodisk-dominated magnetospheres of "hot Jupiters." This results in their 40%–70% larger scales compared to those traditionally estimated by only the planetary dipole taken into account. Therefore, the formation of magnetodisks has to be included in the studies of the stellar wind plasma interaction with close-in exoplanets, as well as magnetospheric protection for planetary atmospheres against non-thermal escape due to erosion by the stellar plasma flow.

71
The following article is Free article

, , , and

Using three-dimensional magnetohydrodynamic simulations, we investigate general properties of a blast wave shock interacting with interstellar clouds. The pre-shock cloudy medium is generated as a natural consequence of the thermal instability that simulates realistic clumpy interstellar clouds and their diffuse surrounding. The shock wave that sweeps the cloudy medium generates a turbulent shell through the vorticity generations that are induced by shock–cloud interactions. In the turbulent shell, the magnetic field is amplified as a result of turbulent dynamo action. The energy density of the amplified magnetic field can locally grow comparable to the thermal energy density, particularly at the transition layers between clouds and the diffuse surrounding. In the case of a young supernova remnant (SNR) with a shock velocity ≳ 103 km s−1, the corresponding strength of the magnetic field is approximately 1 mG. The propagation speed of the shock wave is significantly stalled in the clouds because of the high density, while the shock maintains a high velocity in the diffuse surrounding. In addition, when the shock wave hits the clouds, reflection shock waves are generated that propagate back into the shocked shell. From these simulation results, many observational characteristics of the young SNR RX J1713.7−3946 that is suggested to be interacting with molecular clouds can be explained as follows. The reflection shocks can accelerate particles in the turbulent downstream region where the magnetic field strength reaches 1 mG, which causes short-time variability of synchrotron X-rays. Since the shock velocity is stalled locally in the clouds, the temperature in the shocked cloud is suppressed far below 1 keV. Thus, thermal X-ray line emission would be faint even if the SNR is interacting with molecular clouds. We also find that the photon index of the π0-decay gamma rays generated by cosmic-ray protons can be 1.5 (corresponding energy flux is νFν∝ν0.5) because the penetration depth of high-energy particles into the clumpy clouds depends on their energy. This suggests that, if we rely only on the spectral study, the hadronic gamma-ray emission is indistinguishable from the leptonic inverse Compton emission. We propose that the spatial correlation of the gamma-ray, X-ray, and CO line-emission regions can be conclusively used to understand the origin of gamma rays from RX J1713.7−3946.

72
The following article is Free article

, , , , and

By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly we determine the Alfvén speed and the magnetic field strength in the inner corona at a heliocentric distance of ∼1.4 Rs. The basic measurements are the shock standoff distance (ΔR) ahead of the CME flux rope, the radius of curvature of the flux rope (Rc), and the shock speed. We first derive the Alfvénic Mach number (M) using the relationship, ΔR/Rc = 0.81[(γ−1) M2 + 2]/[(γ+1)(M2 − 1)], where γ is the only parameter that needed to be assumed. For γ = 4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of ∼300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived from the radio dynamic spectrum was found to be consistent with that derived from the theory of fast-mode MHD shocks. From the measured shock speed and the derived Mach number, we found the Alfvén speed to increase from ∼140 km s−1 to 460 km s−1 over the distance range 1.2–1.5 Rs. By deriving the upstream plasma density from the emission frequency of the associated type II radio burst, we determined the coronal magnetic field to be in the range 1.3–1.5 G. The derived magnetic field values are consistent with other estimates in a similar distance range. This work demonstrates that the EUV imagers, in the presence of radio dynamic spectra, can be used as coronal magnetometers.

73
The following article is Free article

, , and

Ambipolar diffusion (AD) is believed to be a crucial process for redistributing magnetic flux in the dense molecular gas that occurs in regions of star formation. We carry out numerical simulations of this process in regions of low ionization using the heavy-ion approximation. The simulations are for regions of strong field (plasma β = 0.1) and mildly supersonic turbulence (${\cal M}=3$, corresponding to an Alfvén Mach number of 0.67). The velocity power spectrum of the neutral gas changes from an Iroshnikov–Kraichnan spectrum in the case of ideal MHD to a Burgers spectrum in the case of a shock-dominated hydrodynamic system. The magnetic power spectrum shows a similar behavior. We use a one-dimensional radiative transfer code to post-process our simulation results; the simulated emission from the CS J = 2–1 and H13CO+J = 1–0 lines shows that the effects of AD are observable in principle. Linewidths of ions are observed to be less than those of neutrals, and we confirm previous suggestions that this is due to AD. We show that AD is unlikely to affect the Chandrasekhar–Fermi method for inferring field strengths unless the AD is stronger than generally observed. Finally, we present a study of the enhancement of AD by turbulence, finding that AD is accelerated by factor 2–4.5 for non-self-gravitating systems with the level of turbulence we consider.

74
The following article is Free article

and

We simulate mergers between galaxies containing collisionally relaxed nuclei around massive black holes (MBHs). Our galaxies contain four mass groups, representative of old stellar populations; a primary goal is to understand the distribution of stellar-mass black holes (BHs) after the merger. Mergers are followed using direct-summation N-body simulations, assuming a mass ratio of 1:3 and two different orbits. Evolution of the binary MBH is followed until its separation has shrunk by a factor of 20 below the hard-binary separation. During the galaxy merger, large cores are carved out in the stellar distribution, with radii several times the influence radius of the massive binary. Much of the pre-existing mass segregation is erased during this phase. We follow the evolution of the merged galaxies for approximately three central relaxation times after coalescence of the massive binary; both standard and top-heavy mass functions are considered. The cores that were formed in the stellar distribution persist, and the distribution of the stellar-mass BHs evolves against this essentially fixed background. Even after one central relaxation time, these models look very different from the relaxed, multi-mass models that are often assumed to describe the distribution of stars and stellar remnants near a massive BH. While the stellar BHs do form a cusp on roughly a relaxation timescale, the BH density can be much smaller than in those models. We discuss the implications of our results for the extreme-mass-ratio inspiral problem and for the existence of Bahcall–Wolf cusps.

75
The following article is Free article

Due to the very broad range of the scales available for the development of turbulence in space and astrophysical plasmas, the energy at the resonant scales of wave–particle interaction often constitutes only a tiny fraction of the total magnetic turbulent energy. Despite the high efficiency of resonant wave–particle interaction, one may therefore question whether resonant interaction really is the determining interaction process between particles and turbulent fields. By evaluating and comparing resonant and nonresonant effects in the frame of a quasilinear calculation, the dominance of resonance is here put to the test. By doing so, a basic test of the classical resonant quasilinear diffusive result for the pitch-angle scattering of charged energetic particles is also performed.

76
The following article is Free article

and

We use a sample of galaxies from the Two Micron All Sky Survey Extended Source Catalog to refine a matched filter method of finding galaxy clusters that takes into account each galaxy's position, magnitude, and redshift if available. The matched filter postulates a radial density profile, luminosity function, and line-of-sight velocity distribution for cluster galaxies. We use this method to search for clusters in the galaxy catalog, which is complete to an extinction-corrected K-band magnitude of 13.25 and has spectroscopic redshifts for roughly 40% of the galaxies, including nearly all brighter than K = 11.25. We then use a stacking analysis to determine the average luminosity function, radial distribution, and velocity distribution of cluster galaxies in several richness classes, and use the results to update the parameters of the matched filter before repeating the cluster search. We also investigate the correlations between a cluster's richness and its velocity dispersion and core radius using these relations to refine priors that are applied during the cluster search process. After the second cluster search iteration, we repeat the stacking analysis. We find a cluster galaxy luminosity function that fits a Schechter form, with parameters MK* − 5log h = −23.64 ± 0.04 and α = −1.07 ± 0.03. We can achieve a slightly better fit to our luminosity function by adding a Gaussian component on the bright end to represent the brightest cluster galaxy population. The radial number density profile of galaxies closely matches a projected Navarro–Frenk–White profile at intermediate radii, with deviations at small radii due to well-known cluster centering issues and outside the virial radius due to correlated structure. The velocity distributions are Gaussian in shape, with velocity dispersions that correlate strongly with richness.

77
The following article is Free article

, , , and

We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time–distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the SolarDynamicsObservatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

78
The following article is Free article

, , and

We present the first field topology analysis based on nonlinear force-free field (NLFFF) models of a long-lasting coronal sigmoid observed in 2007 February with the X-Ray Telescope on Hinode. The NLFFF models are built with the flux rope insertion method and give the three-dimensional coronal magnetic field as constrained by observed coronal loop structures and photospheric magnetograms. Based on these models, we have computed horizontal maps of the current and the squashing factor Q for 25 different heights in the corona for all six days of the evolution of the region. We use the squashing factor to quantify the degree of change of the field line linkage and to identify prominent quasi-separatrix layers (QSLs). We discuss the major properties of these QSL maps and devise a way to pick out important QSLs since our calculation cannot reach high values of Q. The complexity in the QSL maps reflects the high degree of fragmentation of the photospheric field. We find main QSLs and current concentrations that outline the flux rope cavity and that become characteristically S-shaped during the evolution of the sigmoid. We note that, although intermittent bald patches exist along the length of the sigmoid during its whole evolution, the flux rope remains stable for several days. However, shortly after the topology of the field exhibits hyperbolic flux tubes (HFT) on February 7 and February 12 the sigmoid loses equilibrium and produces two B-class flares and associated coronal mass ejections (CMEs). The location of the most elevated part of the HFT in our model coincides with the inferred locations of the two flares. Therefore, we suggest that the presence of an HFT in a coronal magnetic configuration may be an indication that the system is ready to erupt. We offer a scenario in which magnetic reconnection at the HFT drives the system toward the marginally stable state. Once this state is reached, loss of equilibrium occurs via the torus instability, producing a CME.

79
The following article is Free article

, , and

The band-limited coronagraph is a nearly ideal concept that theoretically enables perfect cancellation of all the light of an on-axis source. Over the past several years, several prototypes have been developed and tested in the laboratory, and more emphasis is now on developing optimal technologies that can efficiently deliver the expected high-contrast levels of such a concept. Following the development of an early near-IR demonstrator, we present and discuss the results of a second-generation prototype using halftone-dot technology. We report improvement in the accuracy of the control of the local transmission of the manufactured prototype, which was measured to be less than 1%. This advanced H-band band-limited device demonstrated excellent contrast levels in the laboratory, down to ∼10−6 at farther angular separations than 3λ/D over 24% spectral bandwidth. These performances outperform the ones of our former prototype by more than an order of magnitude and confirm the maturity of the manufacturing process. Current and next-generation high-contrast instruments can directly benefit from such capabilities. In this context, we experimentally examine the ability of the band-limited coronagraph to withstand various complex telescope apertures.

80
The following article is Free article

, , , , , , , , , et al

We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7−0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7−0.1 and the TeV unidentified source HESS J1804−216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7−0.1 and a lesser part located outside the western boundary of G8.7−0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV–100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7−0.1, and the molecular clouds, the decay of π0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804−216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7−0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.