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Dahiana Mojena Medinaa, José Luis Jorcano, Pablo Acedo

and Raghied Mohammed Helmy Atta

14.1 Introduction 14-1

14.2 Material characterization for the FEM calculation 14-3

14.2.1 Relative permittivity 14-3

14.2.2 Electrical conductivity 14-3

14.3 Experimental models 14-4

14.3.1 Analytic model 14-4

14.3.2 Simulation model 14-6

14.4 Sensor design, manufacturing, and communication 14-8

14.5 Characterization measurement 14-9

14.6 Results and discussion 14-10

14.7 Conclusions 14-14

References 14-15

15 Flexible and transparent ‘self-adhesive’ thin film strain,
impact, force, pressure, and temperature sensors:
an experimental study

15-1

Shreyas P Bhat, B Pavithra and M M Nayak

15.1 Introduction 15-1

15.2 Methodology 15-3

15.2.1 Thin film strain sensor philosophy 15-3

15.2.2 Choice of flexible substrate 15-5

15.2.3 Thin film deposition method 15-6

15.2.4 Choice of the transparent sensing layer 15-11

15.3 Self-adhesive thin film strain sensor 15-14

15.3.1 Fabrication process 15-14

15.3.2 Transfer of the self-adhesive sensor 15-15

15.3.3 Testing of the transparent TFSSs 15-17

15.4 Conclusion 15-27

References 15-27

Printed and Flexible Sensor Technology

xii



16 Fabrication and characterization of CeO2 thin film based
oxygen sensors

16-1

N Ramshanker, Kolla Lakshmi Ganapathi, M S Bhat and S Mohan

16.1 Introduction 16-1

16.2 Experimental details 16-4

16.2.1 Sensor film (CeO2) deposition and characterization 16-5

16.2.2 Sensor fabrication and characterization 16-6

16.2.3 Electrical sensitivity measurement 16-7

16.3 Results and discussion 16-7

16.3.1 Physical properties 16-8

16.3.2 Gas sensing characteristics 16-8

16.3.3 Compositional properties of CeO2 thin films 16-10

16.3.4 Structural properties 16-13

16.4 Conclusion 16-17

References 16-17

17 Humidity detection in low ppm using printable flexible sensors 17-1
Md Rahat Mahboob, Shakeb A Khan and Tarikul Islam

17.1 Introduction 17-1

17.2 Background 17-2

17.3 Working of the sensor 17-4

17.3.1 A parallel plate capacitor with polyimide as the
dielectric sensing film

17-4

17.3.2 A parallel plate capacitor with metal oxide (γ-Al2O3)
as a dielectric sensing film

17-5

17.3.3 A parallel plate capacitor with hybrid dielectric layers
of γ-Al2O3 and polyimide films

17-6

17.4 Sensing material and pore morphology 17-7

17.4.1 Preparation of γ-Al2O3 film using the sol–gel method 17-7

17.4.2 Pore morphology studies of the porous γ-Al2O3 film 17-8

17.5 Fabrication of the sensor 17-9

17.5.1 Fabrication procedure of sensor A 17-9

17.5.2 Fabrication procedure of sensor B 17-9

17.6 Electrical characteristics of the sensor 17-10

17.7 Results and discussion 17-12

17.8 Conclusion 17-16

References 17-17

Printed and Flexible Sensor Technology

xiii



18 Printable and flexible sensor for droplet detection 18-1
Zubair Hassan Zargar and Tarikul Islam

18.1 Introduction 18-1

18.2 Droplet detection methodologies 18-3

18.2.1 Droplet detection by optical methods 18-3

18.2.2 Droplet detection by electrical methods 18-4

18.3 Limitations of current electrical sensors and the need for
cross-capacitive sensors for droplet detection

18-6

18.4 The Thompson–Lampard theorem 18-7

18.5 The fabrication of printable and flexible cross-capacitive sensors for
droplet detection

18-11

18.5.1 Detection principle 18-11

18.5.2 Sensor fabrication 18-12

18.5.3 Determination of the response characteristics of the sensor 18-13

18.5.4 Interfacing of the sensor 18-13

18.6 Experimental results 18-15

18.6.1 Detection of droplet volume and speed 18-15

18.6.2 Determination of the dielectric constant and conductivity 18-17

18.6.3 Repeatability and drift study 18-18

18.7 Conclusion 18-19

References 18-20

19 Flexible and conformal antennas for wireless
communication and sensing applications

19-1

Raheel M Hashmi, B Mohamadzade and A S M Sayem

19.1 Introduction 19-1

19.2 Realizing flexible and conformal antennas 19-5

19.2.1 Characterization of materials 19-5

19.2.2 Fabrication process 19-8

19.2.3 Test and validation 19-9

19.3 Examples of flexible and conformal antennas 19-10

19.3.1 Ultrawideband flexible antennas 19-12

19.3.2 Transparent flexible antennas 19-14

19.4 Future wearable electronics: higher frequencies and flexible antennas 19-19

19.5 Conclusion 19-19

References 19-20

Printed and Flexible Sensor Technology

xiv



Preface

The intervention of sensing systems within the modern world has revolutionized the
quality of human life. Almost every aspect of day-to-day activities in today’s world
involves the implementation of sensors in some way. Their presence has not only
made our lives easier, but has also allowed humanity to progress on a technological
level. The sensing systems as we use them today are being developed and
characterized mostly in academic and industrial contexts. Following the sensorial
pyramid, different kinds of prototypes have been fabricated, varying in terms of
their processed materials, operating principles, and respective applications. Each of
these prototypes is being specialized to have high efficiency in terms of sensitivity
and robustness for the targeted application. The advancement in technology has
allowed highly functionalized equipment to be developed that can be mass-produced
for point-of-care sensing systems. Among the sensors that are currently available,
the flexible sensors have been able to perform in a much more dynamic manner in
comparison to the conventional MEMS-based silicon sensors. The additional
wearable nature of flexible sensors has allowed them to be used for ubiquitous
monitoring purposes. These flexible sensors have been fabricated using a range of
printing techniques, each of which has the capability to form high-quality thin-film
sensors. These prototypes have revolutionized the world of flexible sensors due to
their simple fabrication techniques, quick roll-to-roll production, and simple
operating mechanisms. The choice of printing technique primarily depends on the
specifications of the sensors, which in turn depend on their applications.

In recent times, with the conjugation of nanotechnology and printing techniques,
these flexible sensors have increased their dynamicity for real-time applications. The
developed printed and flexible sensors have been exploited successfully in biomed-
ical, industrial, and environmental applications. With the advent of nanotechnology
these printed flexible sensors have attained further heights with respect to their
performance. Nanomaterials have been included in various forms using the
available printing mechanisms to enhance the resultant functionality. 1D and 2D
conductive materials have been utilized thoroughly to enhance the sensitivity and
selectivity of prototypes. Flexible printed sensors have allowed us to further
formalize entire systems to determine the interfacing circuits for conditioning and
transmitting the sensed data. Market surveys have also presented a great need for
these sensors, not only to increase the multifunctional nature of the sensing systems
but improve their impact on the chosen application. The exponential increase of
these printed flexible sensors in the near future can be justified by the need in
automated systems for detection in sectors of prioritized significance.

This book contains a structured overview of the fabrication techniques of the
various printed flexible sensors that have been formulated and devised. It also
contains some of the significant applications of these printed flexible sensors,
conducted in controlled and real-time scenarios. This book contains chapters
contributed by experts in their respective fields who have studied and operated
printed flexible sensors via designing and employing them. It also presents the

xv



technological growth in the field of printed flexible sensors by presenting current
trends. Each of the presented works will not only allow the reader to obtain an
understanding of this field but will also assist the reader to improvise and innovate
something of their own. This book is organized in the following manner.

Chapter 1 presents an overview of the sensors and fabrication techniques that are
currently available. It also presents a brief overview of the sectors in which these
prototypes have been deployed. This is followed by chapter 2, which exemplifies the
utilization of printed flexible sensors for a range of research-based applications. It
also categorizes the applications, providing the advantages and reliability related to
each of them. Chapter 3 highlights the work done on the fabrication of printed
flexible sensors in terms of their issues and resolution. It deals with the fabrication of
printed flexible sensors via highlighting some of the challenges related to their
fabrication techniques and possible corresponding solutions. Chapter 4 showcases
the potential of 3D wax printing technology to create sophisticated biomedical
devices. It also explains the application of printable devices for point-of-care testing
and various biosensing purposes and details some recommendations and future
directions for improving sensing accuracy and robustness. Chapter 5 summarizes
some of the laser induced graphene preparation methods and their broad-spectrum
applications, in particular in electrochemical and biosensing. It also focuses on the
future outlook and research gaps in the reported literature. Chapter 6 provides an
overview of the significant development in wearable microfluidic devices in terms of
their fabrication and characterization. It also shows different categories for its use in
physical property and body fluid sampling, manipulation, and detection. Chapter 7
reviews the recent developments in assembly techniques, including printing processes
for forming films or networks of single-walled carbon nanotubes (SWNTs). The
challenges related to the processing and performance of SWNTs, along with the
potential research that can be performed with SWNTs, are also presented. Chapter 8
presents the fabrication and implementation of flexible strain sensors using graphene
and its composites. It analyzes the capability of the remarkable material graphene in
developing high-quality flexible strain sensors. Chapter 9 presents an overall review
of screen-printed electrochemical and impedance biosensors. This is achieved by
presenting different cases involving the estimation of environmental contaminants,
food toxins, protein molecules, bacteria, and viruses. Chapter 10 deals with the
properties of cellulose paper and its use for flexible electronic device applications. It
explains the design and technology of flexible electronics produced using cellulose
paper. Chapter 11 explains the synthesis and characterization methods for printing/
fabricating graphene-based implantable electrodes for various neural recording and
stimulation processes. This is followed by chapter 12 which shows the work done on
screen-printed electrode-based sensors for the detection of biological and chemical
species. It highlights the potential of electrochemical methods of screen-printed
electrodes for accurate measurements of trace level biochemical species in a sample
solution using a rapid and cheap analysis method. Chapter 13 provides a brief
overview of the role of 3D printing in microfluidic enzymatic biofuel cells, along
with related recent work in upcoming research areas. Chapter 14 presents the work
done on the use of an array of interdigitated electrodes for developing novel

Printed and Flexible Sensor Technology
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incontinence sensing systems. These devices consist of simulation using ANSYS
finite element analysis (FEA) and printing of the conductive polymer PEDOT:PSS
on PET substrates. Chapter 15 presents an experimental study carried out to develop
a transparent thin-film strain sensor (TFSS) using an unconventional substrate (PET
with a pre-applied thin pressure-sensitive adhesive layer) and to investigate its
response to static and dynamic strain environments. Insights into the fabrication of
high figure of merit transparent thin films at room temperature and the methodology
to develop a transparent TFSS, along with its performance evaluation, are described
in this chapter. Chapter 16 reports the work done on high-performance radio
frequency (RF) magnetron sputtered cerium oxide (CeO2) thin-film-based oxygen
sensors by optimizing the film thickness. Chapter 17 presents the fabrication of a
metal oxide (MOX) trace moisture sensor on a flexible substrate. The sensors are
parallel-plate capacitors with nanoporous alumina hydrophilic sensing films, deposited
on polyimide using the solution method. Chapter 18 discusses the importance of
droplet detection and the need for improvements in sensor geometry for precise and
accurate detection of microdroplets. A novel type of printable and flexible sensor is
introduced for droplet detection, which utilizes the capacitive transduction principle
and the detection is contactless, thus increasing the lifetime of the detection system.
Chapter 19 focuses on flexible and conformal antennas for wireless communication
and sensing applications.

The chapters contributed to this book have been written with the utmost care and
detail in order to present the work in a simple and efficient manner. The valuable
research ideas imparted by the contributing authors have allowed us to present the
high-quality research taking place in the microelectronics industries. Each of the
presented research works will help the reader understand the functionality of printed
flexible sensing systems at both the basic and advanced levels. The compilation of
this interesting and useful book would not have been possible without the priceless
contribution of the authors and their willingness to participate in this journey.

Subhas Chandra Mukhopadhyay
School of Engineering
Macquarie University

Sydney, NSW 2109, Australia
Subhas.Mukhopadhyay@mq.edu.au

Anindya Nag
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Printed and Flexible Sensor Technology
Fabrication and applications

Subhas Chandra Mukhopadhyay and Anindya Nag

Chapter 1

Printed and flexible sensors: a review of
products and techniques

Subhas Chandra Mukhopadhyay, Anindya Nag and Chinthaka Gooneratne

Sensors are playing an increasingly important role in our day-to-day lives and are
helping us to lead safer and more secure lifestyles. Different types of sensors are used
in different spheres in our lives, including healthcare, environmental monitoring,
industrial applications, and many other fields. Printing is not a new technique in the
sensor industry, in fact some types of sensors have always been printed. However,
with the development of new and high quality materials and the advancement of
technologies, a new generation of printed sensors is now emerging from various
research and development activities with a wide range of applications. In recent
times flexible sensors have emerged as another new paradigm of sensor research and
application. This chapter will review the different available sensor products and will
discuss the techniques used to fabricate such sensors.

1.1 Introduction
Humans are blessed with five excellent sensing organs—the eyes, ears, nose, tongue,
and skin—along with the control centre, the brain, to organize and respond to all
activities. To make our lives safer and more comfortable, the exploration, design,
and development of different types of sensors are never-ending. Printing technology
in the field of sensors began many decades ago and with time it has become smart,
efficient, and productive. It allows many sensors to be printed within one fabrication
step. Various types of sensors are manufactured partially by screen printing, in
which the transducer is a printed layer of either a polymeric or ceramic material.
This technology has been used in the sensor industry for many years. Progress in
printed electronics now enables more sensors to be printed in their entirety. Since
sensors have a much simpler structure than other electronic components such
displays or logic circuits, the manufacturing learning curve is therefore less steep
compared to many other printed electronics applications. In most cases, these new
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printed sensors can be fabricated on plastic substrates with the advantages of
mechanical flexibility, thinness, and light weight [1–4]. Printed sensors are eco-
friendly in nature and have the ability to fit onto various small, differently shaped
electronic devices for different applications. Printed sensors eliminate the use of
silicon and metal oxides, instead, with the help of innovative printing technologies,
printed sensors can be manufactured on various flexible substrates such as paper,
plastics, and foils [1–4].

Printed sensors and sensing devices find applications in various industries,
including the automotive industry, environmental testing, consumer electronics,
medical devices, smart packaging, building automation, and industrial equipment
[1, 2]. The demand from some fields, in particular from smart packaging, is expected
to grow at a high rate owing to the ability of sensors to enable manufacturers to keep
track of inventory. The growing adoption of printed sensors in this industry to
enhance the quality, visibility, hygiene, and safety of a product is anticipated to
enhance the market growth of printed sensors. Printed sensors are being used
increasingly in the food and beverage industries to monitor the temperature, gas,
and humidity of sensitive products. With time many new exciting and challenging
applications will find use for flexible and printed sensors.

Planar printed sensors can be of different shape, structure, and fabrication to
cater for a certain application. In the early 2000s different types of sensors, mainly
meander and mesh type configurations, were designed and developed [5–12]. The
size and configuration were modelled and the experimental performance was
evaluated. Planar printed sensors have been applied in many applications, for
example, the determination of the quality of meat, in particular protein and fat
content, is reported in [13], and consistent performance in the design of saxophone
reeds is reported in [14]. The processing of leather, making use of planar electro-
magnetic sensors of interdigital type, is reported in [15] and the determination of the
contamination of nitrate in water is described in [16]. The report in [17] describes the
measurement and performance evaluation of novel planar interdigital sensors for
different chemicals related to food poisoning. The contamination of phthalate leaching
from plastic bottles is reported in [18]. The operating mechanism and preliminary
results of using printed interdigital sensors to detect the leakage of liquefied petroleum
gas are reported in [19] and the effects of particle size, composition, and coating layer
thickness on its performance are reported in [20]. During the last few years, flexible
sensors have been fabricated for different applications. Laser-ablated metallized PET
films for tactile sensing are reported in [21], and a laser-induced graphene sensor has
been designed and fabricated for salinity testing [22]. Printed sensors based on flexible
materials as well as silicon based fabrication to detect water contamination and
environmental monitoring are reported in [23] and [24], respectively.

A significant amount of research on printed and flexible materials is taking place
in different parts of the world and many sensors are being developed. Although there
remain many challenges, such as developing sensors with very small sized and
adequate mechanical strength, selective detection, environmental friendliness, long
lifetimes, and so on, the investigation of smart technology, new materials, and novel
applications will continue in future.
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1.2 Major manufacturers
Currently, many companies are involved in the design and development of printed
and flexible sensors. Some of the major global players are included in the following
with a short description, some elements of which have been quoted from their
websites. There are also other manufacturers who are involved in the design,
development, and production of printed and flexible sensors.

1.2.1 Interlink Electronics

Founded in the mid-1980s, ‘Interlink Electronics has evolved into a leading provider
of printed electronics, HMI devices, and sensor solutions’ [25]. The company offers
‘a full range of standard products as well as the ability to create custom solutions by
leveraging the expertise in prototyping, materials science, firmware and software
development, sensor fusion, system integration, and manufacturing’ [25]. The
company has developed sensor applications for numerous and diverse industries,
such as the automotive, medical, industrial, and robotics fields. Interlink is also
active within the burgeoning Internet of Things (IoT) sector, adopting the essential
role of a full-service system integrator for IoT applications due to their membership
in the LoRa Alliance ecosystem.

1.2.2 Tekscan

‘Tekscan technology encompasses sensor technology, data acquisition electronics,
and processing and analysis software. FlexiForce force sensors are ultra-thin and
flexible printed circuits, which can be easily integrated into force measurement
applications’ [26].

1.2.3 PST Sensors

‘Founded in 2010, PST Sensors is a Cape Town based technology company focussed
on printed electronics and sensors. The letters PST stand for Printed Silicon
Technology which forms the company’s innovative base, and the word Sensors
represents the team’s passion for providing cutting edge temperature sensing
solutions far beyond today’s approaches’ [27].

1.2.4 GSI Technologies

Established in the 1980s, the company has ‘40 years of experience with precision
printing, use conductive inks to create durable, high-performance RFID antennae,
electrodes, medical diagnostic sensors, drug delivery patches, organic photovoltaics,
electro-chromatic and thermo-chromatic displays, smart cards, and many other
applications across various industries. GSI is a leading provider of medical
diagnostic electrodes, RFID antennas, printed heaters, printed sensors, EL lamps,
and many other printed electronic applications’ [28].
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1.2.5 KWJ Engineering

KWJ Engineering ‘builds products for detecting and monitoring a variety of gases
including carbon monoxide, ozone, hydrogen sulfide, and other environmental
pollutants. The developed instruments and modules are used in many industries
including Smart Cities, Smart Homes, Personal Wearables, and IoT applications’ [29].

1.2.6 Peratech Holdco

‘Force-sensing HMI/MMI Solutions Company, founded in 1996 and inventor/
developer of proprietary of Quantum Tunnelling Composites materials, providing
next-generation Touch/Force-Sensing solutions. QTC® materials today are custom
developed screen-printable inks, in both opaque and clear formulations, printing at
only a few microns thick. These new incarnations of the material replace the legacy
sheet materials, opening up many new opportunities for the technology as the key
enabler. Peratech QTC® technology has been integrated in over one million devices,
in areas such as smartphones, electronic whiteboards, cordless drills and even NASA
robots’ [30].

1.2.7 ISORG

‘The company’s core technology successfully integrates printed photodiodes on
different substrates to enable large-area image sensors for the smartphone and
security markets and extended applications in medical x-ray imaging, non-destruc-
tive testing and stock management. The company has strong knowledge in
integration of printing-based photodiode on different substrate (glass, polyamide
i.e. PI, …) allows us to do image sensor of different size and shape dedicated to
several applications’ [31].

1.2.8 Fujifilm

‘Starting in the 1980s, the use of digital technologies spread across a wide range of
industries. From the beginning, Fujifilm was a digital pioneer, rapidly generating
major digital advances in the fields of medicine, photography, printing, and more.

In the field of medicine, Fujifilm developed Fuji Computed Radiography (FCR),
the world’s first digital x-ray diagnostic system. In the field of photography, Fujifilm
developed the DS-1P, the world’s first digital camera, as well as the world’s first
digital minilab. In the field of printing, Fujifilm developed highly innovative
computer-to-plate (CTP) systems.

To create all of these fundamental technologies, Fujifilm have developed strong
fundamental technologies in electrical engineering, electronics, image analysis,
imaging, and software. The core technologies that arose from these efforts remain
one of Fujifilm’s key strengths today’ [32].

1.2.9 Canatu

‘Canatu’s solutions have brought the design freedom and user experience to the next
level for 3D shaped touch devices. Canatu develops and manufactures innovative
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3D formable and stretchable films and touch sensors, which are integrated into
plastic, glass, textile or leather enabling 3D touch displays, smart switches and other
intuitive user interfaces in automotive and consumer electronics’ [33].

1.2.10 PolyIC

‘PolyIC develops and markets products based on the platform technology printed
electronics: In the course of this PolyIC focusses on individually manufactured
transparent and flexible metal-mesh touch sensors. Touch sensors based on the
PolyTC® technology offer transparent, conductive and flexible possibilities for
touch screens and capacitive keys in any variants. The highlight is the possibility to
combine decoration and function to achieve a maximum of design flexibility’ [34].

1.2.11 MC10

‘MC10’s proprietary BioStamp® system wearable health tech creates comfortable,
discreet sensors that can be applied anywhere on the body for targeted data
collection. The wearable sensors are wireless and rechargeable via the included
Link Hub. A dedicated mobile phone plus Link Application designed for remote
data collection guides users through sensor application, prescribed activities, and
eCOA’ [35].

1.2.12 QUAD Industries

‘Quad Industries uses its expertise in high-precision, fully automated screen printing-
techniques to integrate functionality directly on various lightweight and flexible
materials such as plastics, textiles, TPU and on paper. This allows the integration
of a wide range of electronics—sensors, connectivity, heating—in any object,
irrespective of its shape, size or material. Printed electronics not only enhance
flexibility, they are also less harmful to the environment and more cost-effective to
manufacture’ [36].

1.2.13 Terabee

‘Terabee develops and manufactures a wide range of sensor modules, including 2D
infrared LED time-of-flight distance sensors, 3D time-of-flight depth cameras, and
thermal cameras’ [37]. The developed ‘products are easy to use, compact, lightweight
and offer great performance over a wide range’ [37].

These major market players are involved in strategies, such as acquisitions, new
product launches, and partnerships, to expand their reach in the market. For
example, Thin Film Electronics ASA signed a distribution agreement with
CymMetrik, China. This agreement focuses on sales expansion in India, China,
and Taiwan. The printed sensors market ecosystem comprises raw material vendors,
manufacturers, and end users. Some of the raw material vendors include T+ink,
FlexEnable, Palo Alto Research Center, Brewer Science, and DuPont.
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1.3 Materials for printed and flexible sensors
Manufacturing cost is an important consideration, but other than the cost of
fabrication there are many other factors which need to be considered for the
selection of materials for different parts of printed and flexible sensors. The size,
mechanical strength, long-term performance, resistance to harsh environments,
repeatability, reusability, and non-toxic and non-hazardous nature are the main
requirements for the materials used in fabricating sensors.

Traditional printed sensors are based on silicon technology—an oxidized silicon
wafer is spin coated with photoresist. A photoresist is a light-sensitive material used
in several industrial processes, such as photolithography and photoengraving, to
form a patterned coating on a surface. Different chemicals are used to give a
material the desired permanent property variations. Materials such as poly(methyl
methacrylate) (PMMA), poly(methyl glutarimide) (PMGI), phenol formaldehyde
resin (DNQ/Novolac), and SU-8 are used. The materials are all applied as a liquid
and are generally spin-coated to ensure uniformity of thickness.

Dry film stands alone amongst the other types in that the coating already exists as
a uniform thickness, semi-solid film coated onto a polyester substrate and the user
applies that substrate to the workpiece in question using lamination.

Gold sputtering is usually adopted on the side opposite to the sensing surface and
it acts as a ground plane for single-sided measurement. The duration of sputtering
depends on the density of the material sputtered and the thickness of the sputtered
layer.

For flexible printed sensors the electrodes are usually printed on a substrate
material. Different types of materials are currently available to be used as substrate
materials. Although polydimethylsiloxane (PDMS) is extremely popular in research
and development, other materials are also used. The comparative advantages and
disadvantages of the different materials used as substrates are shown in table 1.1
[38–41].

Table 1.1. Comparative advantages and disadvantages of different substrate materials.

Polydimethylsiloxane
(PDMS)

Polyethylene
terephthalate (PET) Polyimide (PI)

Advantages • Inert
• Non-toxic
• Non-flammable
• Hydrophobic

• Inexpensive
• Good chemical

resistance
• High resistance to

temperature
• High flexibility

• High flexibility
• Good chemical and

thermal resistance
• High mechanical

toughness

Disadvantages • Difficult to integrate
electrodes

• Deposition needs to be carried
out directly on its surface

• Very susceptible to
heat degradation

• Poor impact
strength

• Expensive
• Poor resistance to

alkalis
• Low impact strength
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The electrodes in flexible sensors are usually made of different materials, the most
common among them are graphene, carbon nanotubes, aluminium, etc. The relative
advantages and disadvantages of these materials are provided in table 1.2 [38–42].

The most common plastic substrates are polycarbonate (PC), polyethylene
terephthalate (PET), polyethylene naphthalene (PEN), polyarylethersulfone (PES),
polyamideimide (PAI), polyimide (PI), and polyethylene (PE).

1.4 Printing technologies
Many technologies are available and under development for printed and flexible
sensors. In this section a few technologies will be described in brief. Some of the
techniques will be used in combination to produce a printed sensor.

1.4.1 Thick-film technology

Thick-film technology is a common method used by many industries ‘to produce
electronic devices such as surface mount devices (SMD), hybrid integrated circuits,
heating elements and sensors’ [43, 44]. ‘The complete method involves deposition of
several successive layers of conductors, resistors and dielectric layers onto an
electrically insulating substrate using a screen-printing process. The whole thick-
film process usually consists of the following stages: lasering of substrates [45],
preparation of ink [46], screen printing [47], drying/curing [48], firing [49], abrasive
trimming [50] and laser trimming [51].

1.4.2 Thin film technology

Wikipedia defines a thin film as ‘a layer of material ranging from fractions of a
nanometer (monolayer) to several micrometers in thickness. The controlled synthesis
of materials as thin films (a process referred to as deposition) is a fundamental step in
many applications’. Thin film sensors ‘are produced by directly depositing material

Table 1.2. Comparative advantages and disadvantages of different electrode materials.

CNTs Graphene Aluminum

Advantages • Better dispersion
with a mixed
polymer

• Better
compatibility

• Higher flexibility

• High surface-to-volume ratio
• Excellent electrical conductivity
• High carrier mobility and density
• High thermal conductivity

• Corrosion
resistant

• Strong in low
temperatures

Disadvantages • Low purity
• Short lift time
• Expensive growth

process

• Does not have a band gap
• High quality graphene is expensive and

requires a complex process
• Graphene exhibits some toxic qualities

• Growth of an
oxide layer

• More expensive
than steel

• Abrasive to
tooling
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onto fixtures in a vacuum deposition chamber by a process known as sputtering. A
sputtering system allows for process control so that films may be produced with a
high degree of repeatability’ [52–54].

1.4.3 Inkjet printing

According to Wikipedia, the ‘concept of inkjet printing originated in the 20th
century, and the technology was first extensively developed in the early 1950s. The
world first inkjet printer was invented by Ichiro Endo, who worked for Canon in
Japan. In the late 1970s, inkjet printers that could reproduce digital images
generated by computers were developed, mainly by Epson, Hewlett-Packard (HP)
and Canon. In the worldwide consumer market, four manufacturers account for the
majority of inkjet printer sales: Canon, HP, Epson and Brother’ [55]. Inkjet printing
is a type of digital or non-contact printing that recreates a digital image by
propelling droplets of ink onto paper and plastic substrates [55].

1.4.4 Photolithography

Lithography is derived from the Greek words litho for stone and graph for drawing.
Photolithography, also called optical lithography or ultra-violet (UV) lithography, is
a process used in microfabrication to pattern parts on a thin film or the bulk of a
substrate [56]. It uses light to transfer a geometric pattern from a photomask onto a
photosensitive chemical photoresist on the substrate. The steps involved in the
photolithographic process are wafer cleaning; barrier layer formation; photoresist
application; soft baking; mask alignment; exposure and development; and hard-
baking [57].

1.4.5 Masked photolithography

A photomask is made by exposing, or writing, the designer’s pattern onto a resist
coated chrome mask blank [58]. The latent image in the resist is then developed to
form the required pattern. This resist image acts as a mask during the etching
process. The pattern is transferred into the chrome film when the resist layer is
removed. ‘Photolithography uses three basic preparation steps to transfer a pattern
from a mask to a wafer: coat, develop, expose. The pattern is transferred into the
wafer’s surface layer during a subsequent process. In some cases, the resist pattern
can also be used to define the pattern for a deposited thin film. The wafer is exposed
by UV (ultraviolet) from a light source traveling through the mask to the resist. A
chemical reaction occurs between the resist and the light. Only those areas not
protected by the mask undergo a chemical reaction’ [58].

1.4.6 Maskless photolithography

The process of maskless photolithography, which does not use an intermediate static
mask, utilizes methods that transfer the information directly onto the substrate.
There are some advantages as well as disadvantages to this method compared to
masked photolithography, which are detailed in [58, 59]. A key advantage of
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maskless lithography is the ability to change the lithography patterns from one run
to the next, without incurring the cost of generating a new photomask [60].

1.4.7 Screen printing

The complete process of screen printing is explained in detail in [61]. Screen printing
is a multidimensional process, and it becomes complex when micro- to nano-level
electronics devices are to be printed precisely on a flexible or bendable substrates.
The properties of substrates, such as surface roughness and chemical, mechanical,
thermal, optical, thermo-mechanical, electrical, and magnetic properties, have to be
studied in detail. The correct properties need to be chosen for optimum utilization.
In the case of screen printed antennas, consistency in maintaining the required
‘planarity’ of the flexible or non-flexible underlying substrate will be of utmost
importance.

1.4.8 Sputtering

According to Intlvac ‘[s]puttering can be described in a number of ways:
cathodic sputtering, diode sputtering, RF or DC sputtering, ion-beam sputter-
ing, reactive sputtering—but all of these are essentially describing the same
physical process. Sputtering is a thin-film manufacturing process widely used across
many industries including semiconductor processing, precision optics, and surface
finishing. Sputtered thin films have excellent uniformity, density and adhesion
making them ideal for multiple applications.

The target (source) material and substrate (destination) are placed into a vacuum
chamber and a voltage is applied between them so that the target is the cathode and
the substrate is attached to the anode. A plasma is created by ionizing a sputtering
gas, usually an inert gas such as argon or xenon. Inert gases are typically employed
as the sputtering gas because they tend not to react with the target material or
combine with any process gases and because they produce higher sputtering and
deposition rates due to their high molecular weight.

The sputtering process occurs when the target material is bombarded with the
sputtering gas and the resulting energy transfer causes target particles to escape,
travel and deposit on the substrate as a film. For the sputtering process to produce
an effective coating, a number of criteria must be met. First, ions of sufficient energy
must be created and directed towards the surface of the target to eject atoms from
the material. The interaction of the ions and the target are determined by the
velocity and energy of the ions. Since ions are charged particles, electric and
magnetic fields can control these parameters. The process begins when a stray
electron near the cathode is accelerated towards the anode and collides with a
neutral gas atom converting it to a positively charged ion’ [62, 63].

1.4.9 Direct laser writing

Prem Prabhakaran at l3dw.com defines direct laser writing (DLW) as ‘3D printing
for the microscopic world. This techniques goes beyond the smallest shapes and sizes
that can be accomplished by garden variety 3D printing. The highest resolution that

Printed and Flexible Sensor Technology

1-9

https://l3dw.com


can be achieved by DLW is typically [in the] few micron to sub-micron range. To put
this into perspective, the average human hair has a cross section of 70–100 μm so we
can imagine [...] the 3D structures [sitting] nicely [...] by the dozen across the cross-
section of a hair. This technique allows 3D drawing of complex shapes with fine
features (μ to few nm). The complexity of shapes that can be achieved by this
technique are limited only by [the] photochemistry of [the] materials used for
fabrication, and the limits of the optical setup’ [64].

1.4.10 Direct dry printing of carbon nanotubes

As Binghao Liang et al explain ‘in the direct dry printing of carbon nanotubes, a
porous CNT block [is] used as both the seal and the ink; and Ecoflex film...serve[s] as
an object substrate. Well-designed CNT patterns can be easily fabricated on the
polymer substrate by engraving the target pattern on the CNT seal before the
stamping process. Moreover, the CNT film can be directly used to fabricate [an]
ultrathin (300 μm) strain sensor. This strain sensor possesses high sensitivity with a
gauge factor (GF) up to 9960 at 85% strain, high stretchability (>200%) and
repeatability (>5000 cycles)’ [65].

1.4.11 Hybrid printed electronics

According to Holstcentre ‘The hybrid printed electronics technology opens new
possibilities for electronics applications. Combining printed circuits and devices with
traditional electronic components like LEDs and chips, it enables large-area, flexible
and freeform applications that can be manufactured in high volumes using roll-to-
roll printing and assembly processes’ [66, 67].

1.5 Conclusion
The chapter has described the progress of printed and flexible sensors over the last
few decades. The demand for small sizes, smart devices, high performance, and
critical applications is keeping the research and development of the field exciting.
Many different sensors have been reported and a lot of work is in progress. With
time new sensors will be available for use and will help us to live a better, healthier,
and more comfortable life. New challenges, such as COVID-19, will be faced by
humanity in the future and researchers will find ways to tackle these problems and
find appropriate solutions.

Acknowledgement
Funded by the German Research Foundation (DFG, Deutsche Forschungs-
gemeinschaft) as part of Germany’s Excellence Strategy—EXC 2050/1—Project
ID 390696704—Cluster of Excellence ‘Centre for Tactile Internet with Human-in-
the-Loop’ (CeTI) of Technische Universität Dresden.

Printed and Flexible Sensor Technology

1-10



References
[1] Global Market Insights Printed sensors market Size, COVID-19 impact analysis, regional

outlook, application development potential, price trends, competitive market share &
forecast, 2021–2027 Report GMI1621 https://gminsights.com/industry-analysis/printed-
sensors-market

[2] https://marketwatch.com/press-release/global-printed-flexible-sensors-market-size-share-growth-
analysis-forecast-to-2025-2019-11–26?mod=mw_quote_news

[3] Transparency Market Research 2021 Printed and flexible sensors market—global industry
analysis, size, share, growth, trends and forecast 2019–2029 Report TMRGL270 https://
transparencymarketresearch.com/printed-and-flexible-sensors-market.html

[4] https://idtechex.com/en/research-report/printed-and-flexible-sensors-2017–2027-technologies-
players-forecasts/504

[5] Mukhopadhyay S C, Yamada S and Iwahara M 2002 Inspection of electroplated materials—
performance comparison with planar meander and mesh type magnetic sensor Int. J. Appl.
Electromagnet. Mech. 15 323–29

[6] Mukhopadhyay S C, Yamada S and Iwahara M 2002 Evaluation of near-surface material
properties using planar type mesh coils with post-processing from neural network model Int.
J. Appl. Electromagnet. Mech. 23 181–9

[7] Mukhopadhyay S C 2002 Quality inspection of electroplated materials using planar type
micro-magnetic sensors with post processing from neural network model IEE Proc.—Sci.
Meas. Technol. 149 165–71

[8] Mukhopadhyay S C, Yamada S and Iwahara M 2002 Experimental determination of optimum
coil pitch for a planar mesh type micro-magnetic sensor IEEE Trans. Magn. 38 3380–2

[9] Mukhopadhyay S C, Gooneratne C P, Sen Gupta G and Yamada S 2005 Characterization
and comparative evaluation of novel planar electromagnetic sensors IEEE Trans. Magn. 41
3658–60

[10] Mukhopadhyay S C 2005 Novel planar electromagnetic sensors: modeling and performance
evaluation Sensors 5 546–79

[11] Mukhopadhyay S C 2004 A novel planar mesh type micro-electromagnetic sensor: part I—
model formulation IEEE Sensors J. 4 301–7

[12] Mukhopadhyay S C 2004 A novel planar mesh type micro-electromagnetic sensor: part II—
estimation of system properties IEEE Sensors J. 4 308–12

[13] Mukhopadhyay S C and Gooneratne C P 2007 A novel planar-type biosensor for non-
invasive meat inspection IEEE Sensors J. 7 1340–6

[14] Mukhopadhyay S C, Woolley J D M, Sen Gupta G and Demidenko S 2007 Saxophone reed
inspection employing planar electromagnetic sensors IEEE Trans. Instrum. Meas. 56 2492–503

[15] Mukhopadhyay S C, Deb Choudhury S, Allsop T, Kasturi V and Norris G E 2008
Assessment of pelt quality in leather making using a novel non-invasive sensing approach
J. Biochem. Biophys. Methods 70 809–15

[16] Yunus M A and Mukhopadhyay S C 2011 Novel planar electromagnetic sensors for
detection of nitrates and contamination in natural water sources IEEE Sensors J. 11 1440–7

[17] Rahman M S A, Mukhopadhyay S C, Yu P L, Chuang C H and Haji-Sheikh M 2011
Measurements and performance evaluation of novel interdigital sensors for different
chemicals related to food poisoning IEEE Sensors J. 11 2957–65

Printed and Flexible Sensor Technology

1-11

https://www.gminsights.com/industry-analysis/printed-sensors-market
https://www.gminsights.com/industry-analysis/printed-sensors-market
https://www.marketwatch.com/press-release/global-printed-flexible-sensors-market-size-share-growth-analysis-forecast-to-2025-2019-11-26?mod=mw_quote_news
https://www.marketwatch.com/press-release/global-printed-flexible-sensors-market-size-share-growth-analysis-forecast-to-2025-2019-11-26?mod=mw_quote_news
https://www.transparencymarketresearch.com/printed-and-flexible-sensors-market.html
https://www.transparencymarketresearch.com/printed-and-flexible-sensors-market.html
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://doi.org/10.3233/JAE-2002-461
https://doi.org/10.1049/ip-smt:20020340
https://doi.org/10.1109/TMAG.2002.802285
https://doi.org/10.1109/TMAG.2005.854792
https://doi.org/10.1109/TMAG.2005.854792
https://doi.org/10.3390/s5120546
https://doi.org/10.1109/JSEN.2004.827206
https://doi.org/10.1109/JSEN.2004.827205
https://doi.org/10.1109/JSEN.2007.903335
https://doi.org/10.1109/TIM.2007.908253
https://doi.org/10.1016/j.jbbm.2007.07.003
https://doi.org/10.1109/JSEN.2010.2091953
https://doi.org/10.1109/JSEN.2011.2154327


[18] Zia A I, Syaifudin Abdul Rahman M, Mukhopadhyay S C, Pak-Lam Y, Al-Bahadly I H,
Gooneratne C P, Kosel J and Liao T-S 2013 Technique for rapid detection of phthalates in
water and beverages J. Food Eng. 116 515–23

[19] Nag A, Zia A I, Li X, Mukhopadhyay S C and Kosel J 2016 Novel sensing approach for
LPG leakage detection: part I: operating mechanism and preliminary results IEEE Sensors J.
16 996–1003

[20] Nag A, Zia A I, Xie L, Mukhopadhyay S C and Kosel J 2016 Novel sensing approach for
LPG leakage detection: part II: effects of particle size, composition and coating layer
thickness IEEE Sensors J. 16 1088–94

[21] Nag A, Mukhopadhyay S C and Kosel J 2017 Tactile sensing from laser-ablated metallized
PET films IEEE Sensors J. 17 7–13

[22] Nag A, Mukhopadhyay S C and Kosel J 2017 Sensing system for salinity testing using laser-
induced graphene sensor Sens. Actuators A 264 107–16

[23] Alahi M E E, Xie L, Mukhopadhyay S and Burkitt L 2017 A temperature compensated
smart nitrate-sensor for agricultural industry IEEE Trans. Ind. Electron. 64 7333–41

[24] Azmi A, Azman A A, Kaman K K, Ibrahim S, Mukhopadhyay S C, Nawawi S W and
Yunus M A M 2017 Electromagnetic sensing array to detect water contamination IEEE
Sensors J. 17 5244–51

[25] https://interlinkelectronics.com/
[26] https://tekscan.com/
[27] PST Sensors
[28] https://www.gsitech.com/
[29] KWJ Engineering
[30] Peratech
[31] ISORG
[32] Fujifilm
[33] Canatu
[34] Poly IC
[35] mc10
[36] QUAD Industries
[37] Terabee
[38] Yongzhao X, Xiduo H, Kundu S, Nag A, Afsarimanesh N, Sapra S, Mukhopadhyay S C

and Han T 2019 Silicon-based sensors for biomedical applications: a review Sensors 19 2908
[39] Han T, Nag A, Simorangkir R B V B, Afsarimanesh N, Liu H, Mukhopadhyay S C, Xu Y,

Zhadobov M and Sauleau R 2019 Multifunctional flexible sensor based on laser-induced
graphene Sensors 19 3477

[40] Han T, Nag A, Afsarimanesh N, Mukhopadhyay S C, Kundu S and Yongzhao X 2019
Laser-assisted printed flexible sensors: a review Sensors 19 1462

[41] Nag A, Alahi M E E, Feng S and Mukhopadhyay S C 2019 IoT-based sensing system for
phosphate detection using graphite/PDMS sensors Sens. Actuators A 286 43–50

[42] Nag A, Simorangkir B V B R, Valentin E, BJorninen T, Ukkonen L, Hashmi M R and
Mukhopadhyay S C 2018 A transparent strain sensor based on PDMS-embedded conductive
fabric for wearable sensing applications IEEE Access 6 71020–27

[43] Wikipedia
[44] Thick Film Technologies

Printed and Flexible Sensor Technology

1-12

https://doi.org/10.1016/j.jfoodeng.2012.12.024
https://doi.org/10.1109/JSEN.2015.2496400
https://doi.org/10.1109/JSEN.2015.2496550
https://doi.org/10.1109/JSEN.2016.2617878
https://doi.org/10.1016/j.sna.2017.08.008
https://doi.org/10.1109/TIE.2017.2696508
https://doi.org/10.1109/JSEN.2017.2720701
https://www.interlinkelectronics.com/
https://www.tekscan.com/
https://www.gsitech.com/
https://doi.org/10.3390/s19132908
https://doi.org/10.3390/s19163477
https://doi.org/10.3390/s19061462
https://doi.org/10.1016/j.sna.2018.12.020
https://doi.org/10.1109/ACCESS.2018.2881463


[45] Nag A, Mukhopadhyay S C and Kosel J 2016 Flexible carbon nanotube nanocomposite
sensor for multiple physiological parameter monitoring Sens. Actuators A 251 148–55

[46] Edberg J, Brooke R, Hosseinaei O, Fall A, Wijeratne K and Sandberg M 2020 Laser-
induced graphitization of a forest-based ink for use in flexible and printed electronics npj
Flex. Electron. 4 1–10

[47] Maddipatla D, Narakathu B B and Atashbar M 2020 Recent progress in manufacturing
techniques of printed and flexible sensors: a review Biosensors 10 199

[48] Chlaihawi A A, Narakathu B B, Emamian S, Bazuin B J and Atashbar M Z 2018
Development of printed and flexible dry ECG electrodes Sens. Bio-sens. Res. 2 9–15

[49] Kassem O., Saadaoui M., Rieu M. and Viricelle J.P. 2019 A novel approach to a fully inkjet
printed SnO2-based gas sensor on a flexible foil J. Mater. Chem. C 7 12343–53

[50] Cardoso R M, Castro S V, Silva M N, Lima A P, Santana M H, Nossol E, Silva R A,
Richter E M, Paixao T R and Munoz R A 2019 3D-printed flexible device combining
sampling and detection of explosives Sens. Actuators B 292 308–13

[51] Harper A F, Diemer P J and Jurchescu O D 2019 Contact patterning by laser printing for
flexible electronics on paper npj Flex. Electron. 3 1–6

[52] Wikipedia
[53] AZO Sensors
[54] https://grc.nasa.gov/WWW/sensors/PhySen/docs/TM-107418.pdf
[55] Wikipedia
[56] https://en.wikipedia.org/wiki/Photolithography
[57] https://lnf-wiki.eecs.umich.edu/wiki/Lithography_processing
[58] Nag A, Zia A I, Mukhopadhyay S C and Kosel J 2015 Performance enhancement of

electronic sensor through mask-less lithography Proc. of the Ninth Int. Conf. on Sensing
Technology (Auckland, New Zealand) (Piscataway, NJ: IEEE) pp 406–11

[59] Nag A, Zia A I, Babu A and Mukhopadhyay S C 2015 Printed electronics: present and
future opportunities Proc. of the Ninth Int. Conf. on Sensing Technology (Auckland, New
Zealand) (Piscataway, NJ: IEEE) pp 412–17

[60] https://en.wikipedia.org/wiki/Maskless_lithography
[61] Reid Print Technologies
[62] Intlvac Thin Film
[63] Nanografi
[64] Direct Laser Writing
[65] Liang B, Zang Z, Chen W, Lu D, Yang L, Yang R, Zhu H, Tang Z and Gui X 2019 Direct

patterning of carbon nanotube via stamp contact printing process for stretchable and
sensitive sensing devices Nano-Micro Lett. 11 92

[66] Hybrid Printed Electronics
[67] Holst Centre

Printed and Flexible Sensor Technology

1-13

https://doi.org/10.1016/j.sna.2016.10.023
https://doi.org/10.1038/s41528-020-0080-2
https://doi.org/10.1016/j.sbsr.2018.05.001
https://doi.org/10.1039/C9TC04170B
https://doi.org/10.1016/j.snb.2019.04.126
https://doi.org/10.1038/s41528-019-0055-3
https://www.grc.nasa.gov/WWW/sensors/PhySen/docs/TM-107418.pdf
https://en.wikipedia.org/wiki/Photolithography
https://lnf-wiki.eecs.umich.edu/wiki/Lithography_processing
https://en.wikipedia.org/wiki/Maskless_lithography
https://doi.org/10.1007/s40820-019-0323-8


Full list of references

Chapter 1

[1] Global Market Insights Printed sensors market Size, COVID-19 impact analysis, regional
outlook, application development potential, price trends, competitive market share &
forecast, 2021–2027 Report GMI1621 https://gminsights.com/industry-analysis/printed-
sensors-market

[2] https://marketwatch.com/press-release/global-printed-flexible-sensors-market-size-share-
growth-analysis-forecast-to-2025-2019-11–26?mod=mw_quote_news

[3] Transparency Market Research 2021 Printed and flexible sensors market—global industry
analysis, size, share, growth, trends and forecast 2019–2029 Report TMRGL270 https://
transparencymarketresearch.com/printed-and-flexible-sensors-market.html

[4] https://idtechex.com/en/research-report/printed-and-flexible-sensors-2017–2027-technologies-
players-forecasts/504

[5] Mukhopadhyay S C, Yamada S and Iwahara M 2002 Inspection of electroplated materials—
performance comparison with planar meander and mesh type magnetic sensor Int. J. Appl.
Electromagnet. Mech. 15 323–29

[6] Mukhopadhyay S C, Yamada S and Iwahara M 2002 Evaluation of near-surface material
properties using planar type mesh coils with post-processing from neural network model Int.
J. Appl. Electromagnet. Mech. 23 181–9

[7] Mukhopadhyay S C 2002 Quality inspection of electroplated materials using planar type
micro-magnetic sensors with post processing from neural network model IEE Proc.—Sci.
Meas. Technol. 149 165–71

[8] Mukhopadhyay S C, Yamada S and Iwahara M 2002 Experimental determination of
optimum coil pitch for a planar mesh type micro-magnetic sensor IEEE Trans. Magn. 38
3380–2

[9] Mukhopadhyay S C, Gooneratne C P, Sen Gupta G and Yamada S 2005 Characterization
and comparative evaluation of novel planar electromagnetic sensors IEEE Trans. Magn. 41
3658–60

[10] Mukhopadhyay S C 2005 Novel planar electromagnetic sensors: modeling and performance
evaluation Sensors 5 546–79

[11] Mukhopadhyay S C 2004 A novel planar mesh type micro-electromagnetic sensor: part I—
model formulation IEEE Sensors J. 4 301–7

[12] Mukhopadhyay S C 2004 A novel planar mesh type micro-electromagnetic sensor: part II—
estimation of system properties IEEE Sensors J. 4 308–12

[13] Mukhopadhyay S C and Gooneratne C P 2007 A novel planar-type biosensor for non-
invasive meat inspection IEEE Sensors J. 7 1340–6

[14] Mukhopadhyay S C, Woolley J D M, Sen Gupta G and Demidenko S 2007 Saxophone reed
inspection employing planar electromagnetic sensors IEEE Trans. Instrum. Meas. 56
2492–503

[15] Mukhopadhyay S C, Deb Choudhury S, Allsop T, Kasturi V and Norris G E 2008
Assessment of pelt quality in leather making using a novel non-invasive sensing approach J.
Biochem. Biophys. Methods 70 809–15

[16] Yunus M A and Mukhopadhyay S C 2011 Novel planar electromagnetic sensors for
detection of nitrates and contamination in natural water sources IEEE Sensors J. 11 1440–7

Printed and Flexible Sensor Technology

https://www.gminsights.com/industry-analysis/printed-sensors-market
https://www.gminsights.com/industry-analysis/printed-sensors-market
https://www.marketwatch.com/press-release/global-printed-flexible-sensors-market-size-share-growth-analysis-forecast-to-2025-2019-11-26?mod=mw_quote_news
https://www.marketwatch.com/press-release/global-printed-flexible-sensors-market-size-share-growth-analysis-forecast-to-2025-2019-11-26?mod=mw_quote_news
https://www.transparencymarketresearch.com/printed-and-flexible-sensors-market.html
https://www.transparencymarketresearch.com/printed-and-flexible-sensors-market.html
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://doi.org/10.3233/JAE-2002-461
https://doi.org/10.1049/ip-smt:20020340
https://doi.org/10.1109/TMAG.2002.802285
https://doi.org/10.1109/TMAG.2002.802285
https://doi.org/10.1109/TMAG.2005.854792
https://doi.org/10.1109/TMAG.2005.854792
https://doi.org/10.3390/s5120546
https://doi.org/10.1109/JSEN.2004.827206
https://doi.org/10.1109/JSEN.2004.827205
https://doi.org/10.1109/JSEN.2007.903335
https://doi.org/10.1109/TIM.2007.908253
https://doi.org/10.1109/TIM.2007.908253
https://doi.org/10.1016/j.jbbm.2007.07.003
https://doi.org/10.1109/JSEN.2010.2091953


[17] Rahman M S A, Mukhopadhyay S C, Yu P L, Chuang C H and Haji-Sheikh M 2011
Measurements and performance evaluation of novel interdigital sensors for different
chemicals related to food poisoning IEEE Sensors J. 11 2957–65

[18] Zia A I, Syaifudin Abdul Rahman M, Mukhopadhyay S C, Pak-Lam Y, Al-Bahadly I H,
Gooneratne C P, Kosel J and Liao T-S 2013 Technique for rapid detection of phthalates in
water and beverages J. Food Eng. 116 515–23

[19] Nag A, Zia A I, Li X, Mukhopadhyay S C and Kosel J 2016 Novel sensing approach for
LPG leakage detection: part I: operating mechanism and preliminary results IEEE Sensors J.
16 996–1003

[20] Nag A, Zia A I, Xie L, Mukhopadhyay S C and Kosel J 2016 Novel sensing approach for
LPG leakage detection: part II: effects of particle size, composition and coating layer
thickness IEEE Sensors J. 16 1088–94

[21] Nag A, Mukhopadhyay S C and Kosel J 2017 Tactile sensing from laser-ablated metallized
PET films IEEE Sensors J. 17 7–13

[22] Nag A, Mukhopadhyay S C and Kosel J 2017 Sensing system for salinity testing using laser-
induced graphene sensor Sens. Actuators A 264 107–16

[23] Alahi M E E, Xie L, Mukhopadhyay S and Burkitt L 2017 A temperature compensated
smart nitrate-sensor for agricultural industry IEEE Trans. Ind. Electron. 64 7333–41

[24] Azmi A, Azman A A, Kaman K K, Ibrahim S, Mukhopadhyay S C, Nawawi S W and
Yunus M A M 2017 Electromagnetic sensing array to detect water contamination IEEE
Sensors J. 17 5244–51

[25] https://interlinkelectronics.com/
[26] https://tekscan.com/
[27] PST Sensors https://www.pstsensors.com/
[28] https://www.gsitech.com/
[29] KWJ Engineering https://www.kwjengineering.com/
[30] Peratech https://www.peratech.com/about.html
[31] ISORG https://www.isorg.fr/
[32] Fujifilm https://www.fujifilmusa.com/about/holdings/index.html
[33] Canatu https://canatu.com/
[34] Poly IC http://polyic.com/
[35] mc10 https://mc10inc.com/
[36] QUAD Industries https://quad-ind.com/printed-electronics/
[37] Terabee https://terabee.com/
[38] Yongzhao X, Xiduo H, Kundu S, Nag A, Afsarimanesh N, Sapra S, Mukhopadhyay S C

and Han T 2019 Silicon-based sensors for biomedical applications: a review Sensors 19 2908
[39] Han T, Nag A, Simorangkir R B V B, Afsarimanesh N, Liu H, Mukhopadhyay S C, Xu Y,

Zhadobov M and Sauleau R 2019 Multifunctional flexible sensor based on laser-induced
graphene Sensors 19 3477

[40] Han T, Nag A, Afsarimanesh N, Mukhopadhyay S C, Kundu S and Yongzhao X 2019
Laser-assisted printed flexible sensors: a review Sensors 19 1462

[41] Nag A, Alahi M E E, Feng S and Mukhopadhyay S C 2019 IoT-based sensing system for
phosphate detection using graphite/PDMS sensors Sens. Actuators A 286 43–50

[42] Nag A, Simorangkir B V B R, Valentin E, BJorninen T, Ukkonen L, Hashmi M R and
Mukhopadhyay S C 2018 A transparent strain sensor based on PDMS-embedded conductive
fabric for wearable sensing applications IEEE Access 6 71020–27

[43] Wikipedia https://en.wikipedia.org/wiki/Thick-film_technology

Printed and Flexible Sensor Technology

https://doi.org/10.1109/JSEN.2011.2154327
https://doi.org/10.1016/j.jfoodeng.2012.12.024
https://doi.org/10.1109/JSEN.2015.2496400
https://doi.org/10.1109/JSEN.2015.2496550
https://doi.org/10.1109/JSEN.2016.2617878
https://doi.org/10.1016/j.sna.2017.08.008
https://doi.org/10.1109/TIE.2017.2696508
https://doi.org/10.1109/JSEN.2017.2720701
https://www.interlinkelectronics.com/
https://www.tekscan.com/
https://www.pstsensors.com/
https://www.gsitech.com/
https://www.kwjengineering.com/
https://www.peratech.com/about.html
https://www.isorg.fr/
https://www.fujifilmusa.com/about/holdings/index.html
https://canatu.com/
https://polyic.com/
https://mc10inc.com/
https://quad-ind.com/printed-electronics/
https://terabee.com/
https://doi.org/10.3390/s19132908
https://doi.org/10.3390/s19163477
https://doi.org/10.3390/s19061462
https://doi.org/10.1016/j.sna.2018.12.020
https://doi.org/10.1109/ACCESS.2018.2881463
https://en.wikipedia.org/wiki/Thick-film_technology


[44] Thick Film Technologies http://www.thickfilmtech.com/
[45] Nag A, Mukhopadhyay S C and Kosel J 2016 Flexible carbon nanotube nanocomposite

sensor for multiple physiological parameter monitoring Sens. Actuators A 251 148–55
[46] Edberg J, Brooke R, Hosseinaei O, Fall A, Wijeratne K and Sandberg M 2020 Laser-

induced graphitization of a forest-based ink for use in flexible and printed electronics npj
Flex. Electron. 4 1–10

[47] Maddipatla D, Narakathu B B and Atashbar M 2020 Recent progress in manufacturing
techniques of printed and flexible sensors: a review Biosensors 10 199

[48] Chlaihawi A A, Narakathu B B, Emamian S, Bazuin B J and Atashbar M Z 2018
Development of printed and flexible dry ECG electrodes Sens. Bio-sens. Res. 2 9–15

[49] Kassem O., Saadaoui M., Rieu M. and Viricelle J.P. 2019 A novel approach to a fully inkjet
printed SnO2-based gas sensor on a flexible foil J. Mater. Chem. C 7 12343–53

[50] Cardoso R M, Castro S V, Silva M N, Lima A P, Santana M H, Nossol E, Silva R A,
Richter E M, Paixao T R and Munoz R A 2019 3D-printed flexible device combining
sampling and detection of explosives Sens. Actuators B 292 308–13

[51] Harper A F, Diemer P J and Jurchescu O D 2019 Contact patterning by laser printing for
flexible electronics on paper npj Flex. Electron. 3 1–6

[52] Wikipedia https://en.wikipedia.org/wiki/Thin_film
[53] AZO Sensors https://azosensors.com/article.aspx?ArticleID=1430
[54] https://grc.nasa.gov/WWW/sensors/PhySen/docs/TM-107418.pdf
[55] Wikipedia https://en.wikipedia.org/wiki/Inkjet_printing
[56] https://en.wikipedia.org/wiki/Photolithography
[57] https://lnf-wiki.eecs.umich.edu/wiki/Lithography_processing
[58] Nag A, Zia A I, Mukhopadhyay S C and Kosel J 2015 Performance enhancement of

electronic sensor through mask-less lithography Proc. of the Ninth Int. Conf. on Sensing
Technology (Auckland, New Zealand) (Piscataway, NJ: IEEE), pp 406–11

[59] Nag A, Zia A I, Babu A and Mukhopadhyay S C 2015 Printed electronics: present and
future opportunities Proc. of the Ninth Int. Conf. on Sensing Technology (Auckland, New
Zealand) (Piscataway, NJ: IEEE), pp 412–17

[60] https://en.wikipedia.org/wiki/Maskless_lithography
[61] Reid Print Technologies http://reidprinttechnologies.com.au/flexible-printed-antennas-uhf-

prototype-dipole-coaxial-2-2/
[62] Intlvac Thin Film https://intlvac.com/News-Blog/ArticleID/5/What-is-Sputtering
[63] Nanografi https://nanografi.com/blog/sputtering-process-types-and-uses/
[64] Direct Laser Writing https://l3dw.com/an-introduction-to-direct-laser-writing-dlw/
[65] Liang B, Zang Z, Chen W, Lu D, Yang L, Yang R, Zhu H, Tang Z and Gui X 2019 Direct

patterning of carbon nanotube via stamp contact printing process for stretchable and
sensitive sensing devices Nano-Micro Lett. 11 92

[66] Hybrid Printed Electronics https://hybridprintedelectronics.nl/en
[67] Holst Centre https://holstcentre.com/technologies/hybrid-printed-electronics/

Chapter 2

[1] Hampel D 1980 Application of very large scale integrated (VLSI) circuits to smart sensors
Proc. SPIE 252 2–9

[2] Breckenridge R and Katzberg S 1980 Smart sensors for the 80s—the status of smart sensors
Sensor Systems for the 80s Conf. 1917

Printed and Flexible Sensor Technology

https://www.thickfilmtech.com/
https://doi.org/10.1016/j.sna.2016.10.023
https://doi.org/10.1038/s41528-020-0080-2
https://doi.org/10.1016/j.sbsr.2018.05.001
https://doi.org/10.1039/C9TC04170B
https://doi.org/10.1016/j.snb.2019.04.126
https://doi.org/10.1038/s41528-019-0055-3
https://en.wikipedia.org/wiki/Thin_film
https://azosensors.com/article.aspx?ArticleID=1430
https://www.grc.nasa.gov/WWW/sensors/PhySen/docs/TM-107418.pdf
https://en.wikipedia.org/wiki/Inkjet_printing
https://en.wikipedia.org/wiki/Photolithography
https://lnf-wiki.eecs.umich.edu/wiki/Lithography_processing
https://en.wikipedia.org/wiki/Maskless_lithography
https://reidprinttechnologies.com.au/flexible-printed-antennas-uhf-prototype-dipole-coaxial-2-2/
https://reidprinttechnologies.com.au/flexible-printed-antennas-uhf-prototype-dipole-coaxial-2-2/
https://intlvac.com/News-Blog/ArticleID/5/What-is-Sputtering
https://nanografi.com/blog/sputtering-process-types-and-uses/
https://l3dw.com/an-introduction-to-direct-laser-writing-dlw/
https://doi.org/10.1007/s40820-019-0323-8
https://hybridprintedelectronics.nl/en
https://holstcentre.com/technologies/hybrid-printed-electronics/


[3] Nag A, Zia A I, Li X, Mukhopadhyay S C and Kosel J 2015 Novel sensing approach for
LPG leakage detection: part I—operating mechanism and preliminary results IEEE Sensors
J. 16 996–1003

[4] Beebe D J, Hsieh A S, Denton D D and Radwin R G 1995 A silicon force sensor for robotics
and medicine Sens. Actuators A 50 55–65

[5] Pérez R, Chaillet N, Domanski K, Janus P and Grabiec P 2006 Fabrication, modeling and
integration of a silicon technology force sensor in a piezoelectric micro-manipulator Sens.
Actuators A 128 367–75

[6] Alahi M E E, Nag A, Mukhopadhyay S C and Burkitt L 2018 A temperature-compensated
graphene sensor for nitrate monitoring in real-time application Sens. Actuators A 269 79–90

[7] Mourzina Y G, Ermolenko Y E, Yoshinobu T, Vlasov Y, Iwasaki H and Schöning M J 2003
Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of
nitrate and sulphate ions Sensors Actuators B 91 32–8

[8] Barhoumi L et al 2017 Silicon nitride capacitive chemical sensor for phosphate ion detection
based on copper phthalocyanine–acrylate-polymer Electroanalysis 29 1586–95

[9] Xu Y et al 2019 Silicon-based sensors for biomedical applications: a review Sensors 19 2908
[10] Harraz F A 2014 Porous silicon chemical sensors and biosensors: a review Sens. Actuators B

202 897–912
[11] Kumar S S and Pant B 2014 Design principles and considerations for the ‘ideal’silicon

piezoresistive pressure sensor: a focused review Microsyst. Technol. 20 1213–47
[12] Becker L 2006 Influence of IR sensor technology on the military and civil defense Proc. SPIE

6127 61270s
[13] Skorobogatov S and Woods C 2012 Breakthrough silicon scanning discovers backdoor in

military chip International Workshop on Cryptographic Hardware and Embedded Systems
(Berlin: Springer), pp 23–40

[14] Bisogni M G, Guerra A D and Belcari N 2019 Medical applications of silicon photo-
multipliers Nucl. Instrum. Methods A 926 118–28

[15] Åstrand A P 2012 A flexible resonance sensor system for detection of cancer tissue:
evaluation on silicon Thesis Umeå University

[16] Ishido H, Takahashi H, Nakai A, Takahata T, Matsumoto K and Shimoyama I 2015 6-axis
force/torque sensor for spike pins of sports shoes 2015 28th IEEE Int. Conf. on Micro
Electro Mechanical Systems (MEMS) (Piscataway, NJ: IEEE), pp 257–60

[17] Lightman K 2016 Silicon gets sporty IEEE Spectr. 53 48–53
[18] Nag A, Mukhopadhyay S C and Kosel J 2016 Flexible carbon nanotube nanocomposite

sensor for multiple physiological parameter monitoring Sens. Actuators A 251 148–55
[19] Han T, Nag A, Mukhopadhyay S C and Xu Y 2019 Carbon nanotubes and its gas-sensing

applications: a review Sens. Actuators A 291 107–43
[20] Nag A, Mitra A and Mukhopadhyay S C 2018 Graphene and its sensor-based applications:

a review Sens. Actuators A 270 177–94
[21] Mehmood A et al 2020 Graphene based nanomaterials for strain sensor application—a

review J. Environ. Chem. Eng. 8 103743
[22] Nag A, Afasrimanesh N, Feng S and Mukhopadhyay S C 2018 Strain induced graphite/

PDMS sensors for biomedical applications Sens. Actuators A 271 257–69
[23] Lei K F, Lee K-F and Lee M-Y 2012 Development of a flexible PDMS capacitive pressure

sensor for plantar pressure measurement Microelectron. Eng. 99 1–5

Printed and Flexible Sensor Technology

https://doi.org/10.1109/JSEN.2015.2496400
https://doi.org/10.1016/0924-4247(96)80085-9
https://doi.org/10.1016/j.sna.2006.01.042
https://doi.org/10.1016/j.sna.2017.11.022
https://doi.org/10.1016/S0925-4005(03)00063-7
https://doi.org/10.1002/elan.201700005
https://doi.org/10.3390/s19132908
https://doi.org/10.1016/j.snb.2014.06.048
https://doi.org/10.1007/s00542-014-2215-7
https://doi.org/10.1016/j.nima.2018.10.175
https://doi.org/10.1109/MSPEC.2016.7420400
https://doi.org/10.1016/j.sna.2016.10.023
https://doi.org/10.1016/j.sna.2019.03.053
https://doi.org/10.1016/j.sna.2017.12.028
https://doi.org/10.1016/j.jece.2020.103743
https://doi.org/10.1016/j.sna.2018.01.044
https://doi.org/10.1016/j.mee.2012.06.005


[24] Nag A, Feng S, Mukhopadhyay S, Kosel J and Inglis D 2018 3D printed mould-based
graphite/PDMS sensor for low-force applications Sens. Actuators A 280 525–34

[25] Nag A, Mukhopadhyay S C and Kosel J 2016 Tactile sensing from laser-ablated metallized
PET films IEEE Sensors J. 17 7–13

[26] Li S et al 2018 The room temperature gas sensor based on Polyaniline@ flower-like WO3

nanocomposites and flexible PET substrate for NH3 detection Sens. Actuators B 259 505–13
[27] Yaqoob U, Phan D-T, Uddin A I and Chung G-S 2015 Highly flexible room temperature

NO2 sensor based on MWCNTs-WO3 nanoparticles hybrid on a PET substrate Sens.
Actuators B 221 760–68

[28] Han T et al 2019 Gold/polyimide-based resistive strain sensors Electronics 8 565
[29] Yi Y, Ali S and Wang B 2019 An inkjet-printed strain sensor with a carbon-silverpolyimide

topology 2019 IEEE Int. Conf. on Flexible and Printable Sensors and Systems (FLEPS)
(Piscataway, NJ: IEEE), pp 1–3

[30] Qin Y et al 2015 Lightweight, superelastic, and mechanically flexible graphene/polyimide
nanocomposite foam for strain sensor application ACS Nano 9 8933–41

[31] Ramírez J, Rodriquez D, Urbina A D, Cardenas AM and Lipomi D J 2019 Combining high
sensitivity and dynamic range: wearable thin-film composite strain sensors of graphene,
ultrathin palladium, and PEDOT:PSS ACS Appl. Nano Mater. 2 2222–29

[32] Bali C, Brandlmaier A, Ganster A, Raab O, Zapf J and Hübler A 2016 Fully inkjet-printed
flexible temperature sensors based on carbon and PEDOT:PSS Mater. Today Proc. 3 739–45

[33] Seekaew Y, Lokavee S, Phokharatkul D, Wisitsoraat A, Kerdcharoen T and Wongchoosuk
C 2014 Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia
detection Org. Electron. 15 2971–81

[34] Gong S et al 2014 A wearable and highly sensitive pressure sensor with ultrathin gold
nanowires Nat. Commun. 5 1–8

[35] Hu C, Bai X, Wang Y, Jin W, Zhang X and Hu S 2012 Inkjet printing of nanoporous gold
electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen
sensors using ionic liquid electrolytes Anal. Chem. 84 3745–50

[36] Xu M et al 2017 A novel flexible electrochemical glucose sensor based on gold nanoparticles/
polyaniline arrays/carbon cloth electrode Sens. Actuators B 252 1187–93

[37] Lamanna L et al 2019 Flexible and transparent aluminum-nitride-based surface-acoustic-
wave device on polymeric polyethylene naphthalate Adv. Electron. Mater. 5 1900095

[38] Meng X, Yang J, Liu Z, Lu W, Sun Y and Dai Y 2020 Non-contact, fibrous cellulose
acetate/aluminum flexible electronic-sensor for humidity detecting Compos. Commun. 20
100347

[39] Ueno N, Akiyama M, Ikeda K and Tateyama H 2002 A foil type flexible pressure sensor
using nitelide aluminum thin film Trans. Soc. Instrum. Control Eng. 38 427–32

[40] Bandgar D, Navale S, Naushad M, Mane R, Stadler F and Patil V 2015 Ultra-sensitive
polyaniline–iron oxide nanocomposite room temperature flexible ammonia sensor RSC Adv.
5 68964–71

[41] Wang Z, Yang S, Miao S, Shi Q, He T and Lee C 2019 A motion-balanced sensor based on
the triboelectricity of nano-iron suspension and flexible polymer Nanomaterials 9 690

[42] Villagrossi E, Cenati C, Pedrocchi N, Beschi M and Tosatti L M 2017 Flexible robot-based
cast iron deburring cell for small batch production using single-point laser sensor Int. J. Adv.
Manuf. Technol. 92 1425–38

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.sna.2018.08.028
https://doi.org/10.1109/JSEN.2016.2617878
https://doi.org/10.1016/j.snb.2017.11.081
https://doi.org/10.1016/j.snb.2015.06.137
https://doi.org/10.3390/electronics8050565
https://doi.org/10.1021/acsnano.5b02781
https://doi.org/10.1021/acsanm.9b00174
https://doi.org/10.1016/j.matpr.2016.02.005
https://doi.org/10.1016/j.orgel.2014.08.044
https://doi.org/10.1038/ncomms4132
https://doi.org/10.1021/ac3003243
https://doi.org/10.1016/j.snb.2017.07.147
https://doi.org/10.1002/aelm.201900095
https://doi.org/10.9746/sicetr1965.38.427
https://doi.org/10.1039/C5RA11512D
https://doi.org/10.3390/nano9050690
https://doi.org/10.1007/s00170-017-0232-2


[43] Zhang Y et al 2020 A flexible non-enzymatic glucose sensor based on copper nanoparticles
anchored on laser-induced graphene Carbon 156 506–13

[44] Yang Y-J et al 2008 An integrated flexible temperature and tactile sensing array using PI-
copper films Sens. Actuators A 143 143–53

[45] Liu C et al 2018 3D printing technologies for flexible tactile sensors toward wearable
electronics and electronic skin Polymers 10 629

[46] Sajid M, Gul J Z, Kim S W, Kim H B, Na K H and Choi K H 2018 Development of 3D-
printed embedded temperature sensor for both terrestrial and aquatic environmental
monitoring robots 3D Print. Addit. Manuf. 5 160–69

[47] Muth J T et al 2014 Embedded 3D printing of strain sensors within highly stretchable
elastomers Adv. Mater. 26 6307–12

[48] Nag A, Menzies B and Mukhopadhyay S C 2018 Performance analysis of flexible printed
sensors for robotic arm applications Sens. Actuators A 276 226–36

[49] Han T et al 2019 Multifunctional flexible sensor based on laser-induced graphene Sensors 19
3477

[50] Nag A and Mukhopadhyay S C 2018 Fabrication and implementation of printed sensors for
taste sensing applications Sens. Actuators A 269 53–61

[51] Lee C G et al 2018 Stretchable strain sensors fabricated by screen printing of silver paste on
the surface modified transparent elastomeric polyurethane films Mater. Sci. Appl. 9 1008

[52] Moorthi A, Narakathu B, Reddy A, Eshkeiti A, Bohra H and Atashbar M 2012 A novel
flexible strain gauge sensor fabricated using screen printing 2012 Sixth Int. Conf. on Sensing
Technology (ICST) (Piscataway, NJ: IEEE), pp 765–8

[53] Chang W-Y, Fang T-H, Lin H-J, Shen Y-T and Lin Y-C 2009 A large area flexible array
sensors using screen printing technology J. Disp. Technol. 5 178–83

[54] Le D D, Nguyen T N N, Doan D C T, Dang T M D and Dang M C 2016 Fabrication of
interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing
Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 025002

[55] Kisic M, Blaz N, Zlebic C, Zivanov L and Damnjanovic M 2015 Flexible inkjet printed
sensor for liquid level monitoring 2015 38th International Spring Seminar on Electronics
Technology (ISSE) (Piscataway, NJ: IEEE), pp 472–76

[56] Cruz S, Dias D, Viana J C and Rocha L A 2015 Inkjet printed pressure sensing platform for
postural imbalance monitoring IEEE Trans. Instrum. Meas. 64 2813–20

[57] Bariya M et al 2018 Roll-to-roll gravure printed electrochemical sensors for wearable and
medical devices ACS Nano 12 6978–87

[58] Park J, Nam D, Park S and Lee D 2018 Fabrication of flexible strain sensors via roll-to-roll
gravure printing of silver ink Smart Mater. Struct. 27 085014

[59] Maddipatla D, Narakathu B, Turkani V, Bazuin B and Atashbar M 2018 A gravure printed
flexible electrochemical sensor for the detection of heavy metal compoundsProceedings 2 950

[60] Nag A et al 2018 A transparent strain sensor based on PDMS-embedded conductive fabric
for wearable sensing applications IEEE Access 6 71020–27

[61] Nag A, Mukhopadhyay S C and Kosel J 2017 Wearable flexible sensors: a review IEEE
Sensors J. 17 3949–60

[62] Hassannejad H, Matrella G, Ciampolini P, De Munari I, Mordonini M and Cagnoni S 2017
Automatic diet monitoring: a review of computer vision and wearable sensor-based methods
Int. J. Food Sci. Nutr. 68 656–70

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.carbon.2019.10.006
https://doi.org/10.1016/j.sna.2007.10.077
https://doi.org/10.3390/polym10060629
https://doi.org/10.1089/3dp.2017.0092
https://doi.org/10.1002/adma.201400334
https://doi.org/10.1016/j.sna.2018.04.031
https://doi.org/10.3390/s19163477
https://doi.org/10.3390/s19163477
https://doi.org/10.1016/j.sna.2017.11.023
https://doi.org/10.4236/msa.2018.913073
https://doi.org/10.1109/JDT.2008.2004862
https://doi.org/10.1088/2043-6262/7/2/025002
https://doi.org/10.1109/TIM.2015.2433611
https://doi.org/10.1021/acsnano.8b02505
https://doi.org/10.1088/1361-665X/aacbb8
https://doi.org/10.1109/ACCESS.2018.2881463
https://doi.org/10.1109/JSEN.2017.2705700
https://doi.org/10.1080/09637486.2017.1283683


[63] Chen H, Xue M, Mei Z, Bambang Oetomo S and Chen W 2016 A review of wearable sensor
systems for monitoring body movements of neonates Sensors 16 2134

[64] Printed and flexible sensors 2017–27: technologies, players, forecasts https://www.idtechex.
com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-fore-
casts/504 (Accessed: 28 Sept)

[65] Printed and flexible sensors market worldwide https://www.databridgemarketresearch.com/
reports/global-flexible-sensors-market (Accessed: 28 Sept 2020)

[66] Markets and Markets 2016 Printed sensors market worth Report SE 4468 https://
marketsandmarkets.com/PressReleases/printed-flexible-sensor.asp

[67] Esticast Printed and flexible sensor market revenue Report Esticast https://esticastresearch.
com/media-release/printed-and-flexible-sensor-market/

[68] Khan S, Lorenzelli L and Dahiya R S 2014 Technologies for printing sensors and electronics
over large flexible substrates: a review IEEE Sensors J. 15 3164–85

[69] Han T, Nag A, Afsarimanesh N, Mukhopadhyay S C, Kundu S and Xu Y 2019 Laser-
assisted printed flexible sensors: a review Sensors 19 1462

[70] Abellán-Llobregat A et al 2017 A stretchable and screen-printed electrochemical sensor for
glucose determination in human perspiration Biosens. Bioelectron. 91 885–91

[71] Moya A, Gabriel G, Villa R and del Campo F J 2017 Inkjet-printed electrochemical sensors
Curr. Opin. Electrochem. 3 29–39

[72] Afsarimanesh N, Mukhopadhyay S C and Kruger M 2017 Molecularly imprinted polymer-
based electrochemical biosensor for bone loss detection IEEE Trans. Biomed. Eng. 65
1264–71

[73] Maddipatla D 2016 Development of fully printed and flexible strain, pressure and electro-
chemical sensors Thesis Western Michigan University, Kalamazoo, MI

[74] Lee H, Seong B, Moon H and Byun D 2015 Directly printed stretchable strain sensor based
on ring and diamond shaped silver nanowire electrodes RSC Adv. 5 28379–84

[75] Eshkeiti A et al 2014 A novel self-supported printed flexible strain sensor for monitoring
body movement and temperature SENSORS, 2014 (Piscataway, NJ: IEEE), pp 1615–18

[76] Nag A, Mukhopadhyay S and Kosel J 2017 Influence of temperature and humidity on
carbon based printed flexible sensors 2017 Eleventh Int. Conf. on Sensing Technology
(ICST) (Piscataway, NJ: IEEE), pp 1–6

[77] Aliane A et al 2014 Enhanced printed temperature sensors on flexible substrate
Microelectron. J. 45 1621–26

[78] Harada S, Kanao K, Yamamoto Y, Arie T, Akita S and Takei K 2014 Fully printed flexible
fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin
ACS Nano 8 12851–57

[79] Khan N I, Maddaus A G and Song E 2018 A low-cost inkjet-printed aptamer-based
electrochemical biosensor for the selective detection of lysozyme Biosensors 8 7

[80] Wang Y et al 2014 Wearable and highly sensitive graphene strain sensors for human motion
monitoring Adv. Funct. Mater. 24 4666–70

[81] Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V and Dominguez R B 2019
Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-
enzymatic hydrogen peroxide detection Sens. Actuators B 301 127101

[82] Luo R-B, Li H-B, Du B, Zhou S-S and Chen Y-H 2019 A printed and flexible NO2 sensor
based on a solid polymer electrolyte Front. Chem. 7 286

Printed and Flexible Sensor Technology

https://doi.org/10.3390/s16122134
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://www.idtechex.com/en/research-report/printed-and-flexible-sensors-2017-2027-technologies-players-forecasts/504
https://www.databridgemarketresearch.com/reports/global-flexible-sensors-market
https://www.databridgemarketresearch.com/reports/global-flexible-sensors-market
https://marketsandmarkets.com/PressReleases/printed-flexible-sensor.asp 
https://marketsandmarkets.com/PressReleases/printed-flexible-sensor.asp 
https://esticastresearch.com/media-release/printed-and-flexible-sensor-market/
https://esticastresearch.com/media-release/printed-and-flexible-sensor-market/
https://doi.org/10.1109/JSEN.2014.2375203
https://doi.org/10.3390/s19061462
https://doi.org/10.1016/j.bios.2017.01.058
https://doi.org/10.1016/j.coelec.2017.05.003
https://doi.org/10.1109/TBME.2017.2744667
https://doi.org/10.1109/TBME.2017.2744667
https://doi.org/10.1039/C5RA01519G
https://doi.org/10.1016/j.mejo.2014.08.011
https://doi.org/10.1021/nn506293y
https://doi.org/10.3390/bios8010007
https://doi.org/10.1002/adfm.201400379
https://doi.org/10.1016/j.snb.2019.127101
https://doi.org/10.3389/fchem.2019.00286


[83] Devaraj H et al 2020 Highly elastic and flexible multi-layered carbon black/elastomer
composite based capacitive sensor arrays for soft robotics Meas.: Sens. 2–4 100004

[84] Gul J Z, Sajid M and Choi K H 2020 Retraction: 3D printed highly flexible strain sensor
based on TPU–graphene composite for feedback from high speed robotic applications J.
Mater. Chem. C 8 2597–7

[85] Nag A, Mukhopadhyay S C and Kosel J 2017 Sensing system for salinity testing using laser-
induced graphene sensors Sens. Actuators A 264 107–16

[86] Nag A, Alahi M E E, Feng S and Mukhopadhyay S C 2019 IoT-based sensing system for
phosphate detection using graphite/PDMS sensors Sens. Actuators A 286 43–50

[87] Dankoco M, Tesfay G, Bènevent E and Bendahan M 2016 Temperature sensor realized by
inkjet printing process on flexible substrate Mater. Sci. Eng. B 205 1–5

[88] Manjakkal L, Sakthivel B, Gopalakrishnan N and Dahiya R 2018 Printed flexible electro-
chemical pH sensors based on CuO nanorods Sens. Actuators B 263 50–8

[89] Radhakrishnan S and Mathiyarasu J 2019 Graphene–carbon nanotubes modified electro-
chemical sensors Graphene-based Electrochemical Sensors for Biomolecules (Amsterdam:
Elsevier), pp 187–205

[90] Huang Q, Lin X, Tong L and Tong Q-X 2020 Graphene quantum dots/multiwalled carbon
nanotubes composite-based electrochemical sensor for detecting dopamine release from
living cells ACS Sustain. Chem. Eng. 8 1644–50

[91] Shi J et al 2017 Graphene welded carbon nanotube crossbars for biaxial strain sensors
Carbon 123 786–93

[92] Pan S et al 2020 A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS
RSC Adv. 10 11225–32

Chapter 3

[1] Wei Z 1970 A study on column-parallel ADCs using DMOS capacitors J. Solid-State
Circuits 5 250–54

[2] Pandey A, Yadav D, Singh R and Nath V 1970 Design of ultra low power CMOS
temperature sensor for space applications Int. J. Adv. Res. Electr. Electron. Instrum. Energy
2 4117–25

[3] Sze S M 1994 Semiconductor Sensors (New York: Wiley)
[4] Jaaniso R and Tan O K 2013 Semiconductor Gas Sensors (Amsterdam: Elsevier)
[5] Xu Y et al 2019 Silicon-based sensors for biomedical applications: a review Sensors 19 2908
[6] 2020 Advantages and disadvantages of silicon detectors Nuclear Power for Everyone

https://nuclear-power.net/nuclear-engineering/radiation-detection/semiconductor-detectors/
silicon-based-semiconductor-detectors/advantages-and-disadvantages-of-silicon-detectors/
(Accessed: 17 Aug. 2020)

[7] Pramanik C, Saha H and Gangopadhyay U 2006 Design optimization of a high perform-
ance silicon MEMS piezoresistive pressure sensor for biomedical applications J.
Micromech. Microeng. 16 2060

[8] Errachid A, Ivorra A, Aguilo J, Villa R, Zine N and Bausells J 2001 New technology for
multi-sensor silicon needles for biomedical applications Sens. Actuators B 78 279–84

[9] Gabriel G et al 2007 Manufacturing and full characterization of silicon carbide-based
multi-sensor micro-probes for biomedical applications Microelectron. J. 38 406–15

Printed and Flexible Sensor Technology

https://doi.org/10.1039/D0TC90027C
https://doi.org/10.1016/j.sna.2017.08.008
https://doi.org/10.1016/j.sna.2018.12.020
https://doi.org/10.1016/j.mseb.2015.11.003
https://doi.org/10.1016/j.snb.2018.02.092
https://doi.org/10.1021/acssuschemeng.9b06623
https://doi.org/10.1016/j.carbon.2017.08.006
https://doi.org/10.1039/D0RA00327A
https://doi.org/10.3390/s19132908
https://www.nuclear-power.net/nuclear-engineering/radiation-detection/semiconductor-detectors/silicon-based-semiconductor-detectors/advantages-and-disadvantages-of-silicon-detectors/
https://www.nuclear-power.net/nuclear-engineering/radiation-detection/semiconductor-detectors/silicon-based-semiconductor-detectors/advantages-and-disadvantages-of-silicon-detectors/
https://doi.org/10.1088/0960-1317/16/10/019
https://doi.org/10.1016/S0925-4005(01)00826-7
https://doi.org/10.1016/j.mejo.2006.11.008


[10] Nag A, Zia A I, Li X, Mukhopadhyay S C and Kosel J 2015 Novel sensing approach for
LPG leakage detection: part I—operating mechanism and preliminary results IEEE Sensors
J. 16 996–1003

[11] Zia A I et al 2013 Technique for rapid detection of phthalates in water and beverages J.
Food Eng. 116 515–23

[12] Zia A I, Mukhopadhyay S C, Yu P-L, Al-Bahadly I H, Gooneratne C P and Kosel J 2015
Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution
Biosens. Bioelectron. 67 342–49

[13] Alahi M E E, Xie L, Mukhopadhyay S and Burkitt L 2017 A temperature compensated
smart nitrate-sensor for agricultural industry IEEE Trans. Ind. Electron. 64 7333–41

[14] Alahi M E E, Mukhopadhyay S C and Burkitt L 2018 Imprinted polymer coated
impedimetric nitrate sensor for real-time water quality monitoring Sens. Actuators B 259
753–61

[15] Barhoumi L et al 2017 Silicon nitride capacitive chemical sensor for phosphate ion
detection based on copper phthalocyanine–acrylate-polymer Electroanalysis 29 1586–95

[16] Nag A, Zia A I, Mukhopadhyay S and Kosel J 2015 Performance enhancement of
electronic sensor through mask-less lithography 2015 9th Int. Conf. on Sensing Technology
(ICST) (Piscataway, NJ: IEEE), pp 374–9

[17] Grayson A C R et al 2004 A BioMEMS review: MEMS technology for physiologically
integrated devices Proc. IEEE 92 6–21

[18] Bryzek J 1996 Impact of MEMS technology on society Sens. Actuators A 56 1–9
[19] Khumpuang S, Maekawa H and Hara S 2013 Photolithography for minimal fab system

IEEJ Trans. Sens. Micromach. 133 272–77
[20] Altomare L, Gadegaard N, Visai L, Tanzi M C and Fare S 2010 Biodegradable micro-

grooved polymeric surfaces obtained by photolithography for skeletal muscle cell orienta-
tion and myotube development Acta Biomater. 6 1948–57

[21] Rossi V A and Carpenter M A 2020 Reusable polystyrene wafer coating as an antiadhesive
layer for PDMS thin film production Mater. Lett. 262 127045

[22] Ogi T, Modesto-Lopez L B, Iskandar F and Okuyama K 2007 Fabrication of a large area
monolayer of silica particles on a sapphire substrate by a spin coating method Colloids Surf.
A 297 71–8

[23] Gao C et al 2010 22 nm silicon nanowire gas sensor fabricated by trilayer nanoimprint and
wet etching Microelectron. Eng. 87 927–30

[24] Rangelow I, Skocki S and Dumania P 1994 Plasma etching for micromechanical sensor
applications Microelectron. Eng. 23 365–68

[25] Al-Salman H S and Abdullah M 2015 Preparation of ZnO nanostructures by RF-
magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing
application Measurement 59 248–57

[26] Rydosz A, Szkudlarek A, Ziabka M, Domanski K, Maziarz W and Pisarkiewicz T 2015
Performance of Si-doped WO3 thin films for acetone sensing prepared by glancing angle
DC magnetron sputtering IEEE Sensors J. 16 1004–12

[27] Nag A, Mukhopadhyay S C and Kosel J 2016 Flexible carbon nanotube nanocomposite
sensor for multiple physiological parameter monitoring Sens. Actuators A 251 148–55

[28] Nag A, Menzies B and Mukhopadhyay S C 2018 Performance analysis of flexible printed
sensors for robotic arm applications Sens. Actuators A 276 226–36

Printed and Flexible Sensor Technology

https://doi.org/10.1109/JSEN.2015.2496400
https://doi.org/10.1016/j.jfoodeng.2012.12.024
https://doi.org/10.1016/j.bios.2014.08.050
https://doi.org/10.1109/TIE.2017.2696508
https://doi.org/10.1016/j.snb.2017.12.104
https://doi.org/10.1016/j.snb.2017.12.104
https://doi.org/10.1002/elan.201700005
https://doi.org/10.1109/JPROC.2003.820534
https://doi.org/10.1016/0924-4247(96)01284-8
https://doi.org/10.1541/ieejsmas.133.272
https://doi.org/10.1016/j.actbio.2009.12.040
https://doi.org/10.1016/j.matlet.2019.127045
https://doi.org/10.1016/j.colsurfa.2006.10.027
https://doi.org/10.1016/j.mee.2009.11.173
https://doi.org/10.1016/0167-9317(94)90174-0
https://doi.org/10.1016/j.measurement.2014.08.011
https://doi.org/10.1109/JSEN.2015.2496212
https://doi.org/10.1016/j.sna.2016.10.023
https://doi.org/10.1016/j.sna.2018.04.031


[29] Lei K F, Lee K-F and Lee M-Y 2012 Development of a flexible PDMS capacitive pressure
sensor for plantar pressure measurement Microelectron. Eng. 99 1–5

[30] Nag A, Mukhopadhyay S C and Kosel J 2016 Tactile sensing from laser-ablated metallized
PET films IEEE Sensors J. 17 7–13

[31] Yaqoob U, Phan D-T, Uddin A I and Chung G-S 2015 Highly flexible room temperature
NO2 sensor based on MWCNTs-WO3 nanoparticles hybrid on a PET substrate Sens.
Actuators B 221 760–68

[32] Li S et al 2018 The room temperature gas sensor based on Polyaniline@ flower-like WO3

nanocomposites and flexible PET substrate for NH3 detection Sens. Actuators B 259 505–13
[33] Nag A, Mukhopadhyay S C and Kosel J 2017 Sensing system for salinity testing using

laser-induced graphene sensors Sens. Actuators A 264 107–16
[34] Han T et al 2019 Gold/polyimide-based resistive strain sensors Electronics 8 565
[35] Qin Y et al 2015 Lightweight, superelastic, and mechanically flexible graphene/polyimide

nanocomposite foam for strain sensor application ACS Nano 9 8933–41
[36] Fang P, Qiu X, Wirges W, Gerhard R and Zirkel L 2010 Polyethylene-naphthalate (PEN)

ferroelectrets: cellular structure, piezoelectricity and thermal stability IEEE Trans. Dielectr.
Electr. Insul. 17 1079–87

[37] Lamanna L et al 2019 Flexible and transparent aluminum-nitride-based surface-acoustic-
wave device on polymeric polyethylene naphthalate Adv. Electron. Mater. 5 1900095

[38] Sekitani T et al 2009 Organic nonvolatile memory transistors for flexible sensor arrays
Science 326 1516–19

[39] Latessa G, Brunetti F, Reale A, Saggio G and Di Carlo A 2009 Piezoresistive behaviour of
flexible PEDOT:PSS based sensors Sens. Actuators B 139 304–9

[40] Seekaew Y, Lokavee S, Phokharatkul D, Wisitsoraat A, Kerdcharoen T and Wongchoosuk
C 2014 Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia
detection Org. Electron. 15 2971–81

[41] Wang Z et al 2014 Facile preparation of highly water-stable and flexible PEDOT:PSS
organic/inorganic composite materials and their application in electrochemical sensors
Sens. Actuators B 196 357–69

[42] Han T, Nag A, Mukhopadhyay S C and Xu Y 2019 Carbon nanotubes and its gas-sensing
applications: a review Sens. Actuators A 291 107–43

[43] Jeong H Y et al 2010 Flexible room-temperature NO2 gas sensors based on carbon
nanotubes/reduced graphene hybrid films Appl. Phys. Lett. 96 213105

[44] Tadakaluru S, Thongsuwan W and Singjai P 2014 Stretchable and flexible high-strain
sensors made using carbon nanotubes and graphite films on natural rubber Sensors 14
868–76

[45] Nag A, Mitra A and Mukhopadhyay S C 2018 Graphene and its sensor-based applications:
a review Sens. Actuators A 270 177–94

[46] Shao Y, Wang J, Wu H, Liu J, Aksay I A and Lin Y 2010 Graphene based electrochemical
sensors and biosensors: a review Electroanalysis 22 1027–36

[47] Young R J, Kinloch I A, Gong L and Novoselov K S 2012 The mechanics of graphene
nanocomposites: a review Compos. Sci. Technol. 72 1459–76

[48] Cai W, Lai T, Du H and Ye J 2014 Electrochemical determination of ascorbic acid,
dopamine and uric acid based on an exfoliated graphite paper electrode: a high perform-
ance flexible sensor Sens. Actuators B 193 492–500

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.mee.2012.06.005
https://doi.org/10.1109/JSEN.2016.2617878
https://doi.org/10.1016/j.snb.2015.06.137
https://doi.org/10.1016/j.snb.2017.11.081
https://doi.org/10.1016/j.sna.2017.08.008
https://doi.org/10.3390/electronics8050565
https://doi.org/10.1021/acsnano.5b02781
https://doi.org/10.1109/TDEI.2010.5539678
https://doi.org/10.1002/aelm.201900095
https://doi.org/10.1126/science.1179963
https://doi.org/10.1016/j.snb.2009.03.063
https://doi.org/10.1016/j.orgel.2014.08.044
https://doi.org/10.1016/j.snb.2014.02.035
https://doi.org/10.1016/j.sna.2019.03.053
https://doi.org/10.1063/1.3432446
https://doi.org/10.3390/s140100868
https://doi.org/10.3390/s140100868
https://doi.org/10.1016/j.sna.2017.12.028
https://doi.org/10.1002/elan.200900571
https://doi.org/10.1016/j.compscitech.2012.05.005
https://doi.org/10.1016/j.snb.2013.12.004


[49] Bessonov A, Kirikova M, Haque S, Gartseev I and Bailey M J 2014 Highly reproducible
printable graphite strain gauges for flexible devices Sens. Actuators A 206 75–80

[50] Shih W-P et al 2010 Flexible temperature sensor array based on a graphite-polydimethylsi-
loxane composite Sensors 10 3597–610

[51] Gong S et al 2014 A wearable and highly sensitive pressure sensor with ultrathin gold
nanowires Nat. Commun. 5 1–8

[52] Zhu B et al 2019 Hierarchically structured vertical gold nanowire array-based wearable
pressure sensors for wireless health monitoring ACS Appl. Mater. Interfaces 11 29014–21

[53] Yao S and Zhu Y 2014 Wearable multifunctional sensors using printed stretchable
conductors made of silver nanowires Nanoscale 6 2345–52

[54] Nag A, Afasrimanesh N, Feng S and Mukhopadhyay S C 2018 Strain induced graphite/
PDMS sensors for biomedical applications Sens. Actuators A 271 257–69

[55] Nag A et al 2018 A transparent strain sensor based on PDMS-embedded conductive fabric
for wearable sensing applications IEEE Access 6 71020–27

[56] Rahman M S A, Mukhopadhyay S C and Yu P-L 2014 Novel planar interdigital sensors
Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation (Berlin:
Springer), pp 11–35

[57] Luo N, Ding J, Zhao N, Leung B H and Poon C C 2014 Mobile health: design of flexible
and stretchable electrophysiological sensors for wearable healthcare systems 2014 11th Int.
Conf. on Wearable and Implantable Body Sensor Networks (Piscataway, NJ: IEEE), pp 87–91

[58] Kim D H et al 2012 Thin, flexible sensors and actuators as ‘instrumented’ surgical sutures
for targeted wound monitoring and therapy Small 8 3263–68

[59] Culha U, Wani U, Nurzaman S G, Clemens F and Iida F 2014 Motion pattern
discrimination for soft robots with morphologically flexible sensors 2014 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (Piscataway, NJ: IEEE), pp 567–72

[60] Bakytbekov A, Nguyen T Q, Huynh C, Salama K N and Shamim A 2018 Fully printed 3D
cube-shaped multiband fractal rectenna for ambient RF energy harvesting Nano Energy 53
587–95

[61] Hota M K, Jiang Q, Mashraei Y, Salama K N and Alshareef H N 2017 Fractal
electrochemical microsupercapacitors Adv. Electron. Mater. 3 1700185

[62] Mashraei Y, Sivashankar S, Buttner U and Salama K N 2016 Integration of fractal
biosensor in a digital microfluidic platform IEEE Sensors J. 16 8775–83

[63] Nag A, Mukhopadhyay S C and Kosel J 2017 Wearable flexible sensors: a review IEEE
Sensors J. 17 3949–60

[64] Chung M, Fortunato G and Radacsi N 2019 Wearable flexible sweat sensors for healthcare
monitoring: a review J. R. Soc. Interface 16 20190217

[65] Chang W-Y, Fang T-H, Lin H-J, Shen Y-T and Lin Y-C 2009 A large area flexible array
sensors using screen printing technology J. Disp. Technol. 5 178–83

[66] Moorthi A, Narakathu B, Reddy A, Eshkeiti A, Bohra H and Atashbar M 2012 A novel
flexible strain gauge sensor fabricated using screen printing 2012 Sixth Int. Conf. on Sensing
Technology (ICST) (Piscataway, NJ: IEEE), pp 765–8

[67] Pyo S et al 2014 Development of a flexible three-axis tactile sensor based on screen-printed
carbon nanotube-polymer composite J. Micromech. Microeng. 24 075012

[68] Huang L, Huang Y, Liang J, Wan X and Chen Y 2011 Graphene-based conducting inks for
direct inkjet printing of flexible conductive patterns and their applications in electric circuits
and chemical sensors Nano Res. 4 675–84

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.sna.2013.11.034
https://doi.org/10.3390/s100403597
https://doi.org/10.1038/ncomms4132
https://doi.org/10.1021/acsami.9b06260
https://doi.org/10.1039/c3nr05496a
https://doi.org/10.1016/j.sna.2018.01.044
https://doi.org/10.1109/ACCESS.2018.2881463
https://doi.org/10.1002/smll.201200933
https://doi.org/10.1016/j.nanoen.2018.09.022
https://doi.org/10.1016/j.nanoen.2018.09.022
https://doi.org/10.1002/aelm.201700185
https://doi.org/10.1109/JSEN.2016.2578440
https://doi.org/10.1109/JSEN.2017.2705700
https://doi.org/10.1098/rsif.2019.0217
https://doi.org/10.1109/JDT.2008.2004862
https://doi.org/10.1088/0960-1317/24/7/075012
https://doi.org/10.1007/s12274-011-0123-z


[69] Dankoco M, Tesfay G, Bènevent E and Bendahan M 2016 Temperature sensor realized by
inkjet printing process on flexible substrate Mater. Sci. Eng.: B 205 1–5

[70] Wang C-T, Huang K-Y, Lin D T, Liao W-C, Lin H-W and Hu Y-C 2010 A flexible
proximity sensor fully fabricated by inkjet printing Sensors 10 5054–62

[71] Han T, Kundu S, Nag A and Xu Y 2019 3D printed sensors for biomedical applications: a
review Sensors 19 1706

[72] Guo S Z, Qiu K, Meng F, Park S H and McAlpine M C 2017 3D printed stretchable tactile
sensors Adv. Mater. 29 1701218

[73] Liu C et al 2018 3D printing technologies for flexible tactile sensors toward wearable
electronics and electronic skin Polymers 10 629

[74] Han T, Nag A, Afsarimanesh N, Mukhopadhyay S C, Kundu S and Xu Y 2019 Laser-
assisted printed flexible sensors: a review Sensors 19 1462

[75] Fonseca M A, Allen M G, Kroh J and White J 2006 Flexible wireless passive pressure
sensors for biomedical applications Tech. Dig. Solid-State Sensor, Actuator, and
Microsystems Workshop (Hilton Head 2006) pp 37–42

[76] Alahi M E E, Nag A, Mukhopadhyay S C and Burkitt L 2018 A temperature-compensated
graphene sensor for nitrate monitoring in real-time application Sens. Actuators, A 269 79–90

[77] Wang H et al 2019 Stamp-assisted gravure printing of micro-supercapacitors with general
flexible substrates 2019 IEEE 32nd Int. Conf. on Micro Electro Mechanical Systems
(MEMS) (Piscataway, NJ: IEEE), pp 950–3

[78] Pavinatto F J, Paschoal C W and Arias A C 2015 Printed and flexible biosensor for
antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer
Biosens. Bioelectron. 67 553–59

[79] Bariya M et al 2018 Roll-to-roll gravure printed electrochemical sensors for wearable and
medical devices ACS Nano 12 6978–87

[80] Briand D, Molina-Lopez F, Quintero A V, Ataman C, Courbat J and de Rooij N F 2011
Why going towards plastic and flexible sensors? Procedia Eng. 25 8–15

[81] Aleksandrova D 2020 Five benefits of flexible electronics for displays and sensors
FlexEnable https://flexenable.com/blog/five-benefits-of-flexible-electronics-for-displays-and-
sensors/ (Accessed: 17 Aug. 2020)

[82] Global flexible sensors market—industry trends and forecast to 2026 https://databridge-
marketresearch.com/reports/global-flexible-sensors-market (Accessed: 17 Aug. 2020)

[83] Ngo H-D et al 2018 A novel low cost wireless incontinence sensor system (screen-printed
flexible sensor system) for wireless urine detection in incontinence materials Proceedings 2
716

[84] Barmpakos D, Segkos A, Tsamis C and Kaltsas G 2017 A disposable flexible humidity
sensor directly printed on paper for medical applications J. Phys.: Conf. Ser. 931 012003

[85] Zirkl M et al 2010 Fully printed, flexible, large area organic optothermal sensors for
human–machine-interfaces Procedia Eng. 5 725–29

[86] Chlaihawi A et al 2016 Novel screen printed flexible magnetoelectric thin film sensor
Procedia Eng. 168 684–87

[87] Transparency Market Research 2019 Printed and flexible sensors market—global industry
analysis, size, share, growth, trends and forecast 2019–2029 Report TMRGL270 https://
transparencymarketresearch.com/printed-and-flexible-sensors-market.html#

[88] Allied Market Research Printed and flexible sensors market 2020 https://alliedmarketre-
search.com/printed-and-flexible-sensors-market (Accessed: 17 Aug. 2020)

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.mseb.2015.11.003
https://doi.org/10.3390/s100505054
https://doi.org/10.3390/s19071706
https://doi.org/10.1002/adma.201701218
https://doi.org/10.3390/polym10060629
https://doi.org/10.3390/s19061462
https://doi.org/10.1016/j.sna.2017.11.022
https://doi.org/10.1016/j.bios.2014.09.039
https://doi.org/10.1021/acsnano.8b02505
https://doi.org/10.1016/j.proeng.2011.12.004
https://www.flexenable.com/blog/five-benefits-of-flexible-electronics-for-displays-and-sensors/
https://www.flexenable.com/blog/five-benefits-of-flexible-electronics-for-displays-and-sensors/
https://www.databridgemarketresearch.com/reports/global-flexible-sensors-market
https://www.databridgemarketresearch.com/reports/global-flexible-sensors-market
https://doi.org/10.1016/j.proeng.2010.09.211
https://doi.org/10.1016/j.proeng.2016.11.247
https://transparencymarketresearch.com/printed-and-flexible-sensors-market.html#
https://transparencymarketresearch.com/printed-and-flexible-sensors-market.html#
https://www.alliedmarketresearch.com/printed-and-flexible-sensors-market
https://www.alliedmarketresearch.com/printed-and-flexible-sensors-market


[89] Trending news: printed and flexible sensors market growth, size, analysis and trends to
2025: Canatu Oy, Fujifilm Holding Corporation, ISORG 2020 https://3wnews.org/uncate-
gorised/2110872/trending-news-printed-flexible-sensors-market-growth-size-analysis-and-
trends-to-2025-canatu-oy-fujifilm-holding-corporation-isorg/

[90] Visual Arts Cork History of screen printing Encyclopedia of Art Education http://visual-
arts-cork.com/printmaking/screen-printing.htm#:∼:text=History%20of%20Screen%
20Printing,began%20to%20pick%20up%20popularity (Accessed: 17 Aug. 2020)

[91] Metters J P, Kadara R O and Banks C E 2011 New directions in screen printed
electroanalytical sensors: an overview of recent developments Analyst 136 1067–76

[92] Liu X, Yao Y, Ying Y and Ping J 2019 Recent advances in nanomaterial-enabled screen-
printed electrochemical sensors for heavy metal detection TrAC, Trends Anal. Chem. 115
187–202

[93] Abellán-Llobregat A et al 2017 A stretchable and screen-printed electrochemical sensor for
glucose determination in human perspiration Biosens. Bioelectron. 91 885–91

[94] Khan S, Ali S and Bermak A 2019 Recent developments in printing flexible and wearable
sensing electronics for healthcare applications Sensors 19 1230

[95] Honeychurch K C 2012 Screen-printed electrochemical sensors and biosensors for mon-
itoring metal pollutants Insci. J. 2 1–51

[96] Tian B et al 2019 All-printed, low-cost, tunable sensing range strain sensors based on Ag
nanodendrite conductive inks for wearable electronics J. Mater. Chem. C 7 809–18

[97] Bose A et al 2019 Highly sensitive screen printed strain gauge for micro-strain detection
2019 IEEE Int. Conf. on Flexible and Printable Sensors and Systems (FLEPS) (Piscataway,
NJ: IEEE), pp 1–3

[98] Lee C G et al 2018 Stretchable strain sensors fabricated by screen printing of silver paste on
the surface modified transparent elastomeric polyurethane films Mater. Sci. Appl. 9 1008

[99] Albrecht A, Salmeron J F, Becherer M, Lugli P and Rivadeneyra A 2019 Screen-printed
chipless wireless temperature sensor IEEE Sensors J. 19 12011–15

[100] Aliane A et al 2014 Enhanced printed temperature sensors on flexible substrate
Microelectron. J. 45 1621–26

[101] Knoll M, Offenzeller C, Mayrhofer B, Jakoby B and Hilber W 2018 A screen printed
thermocouple-array on a flexible substrate for condition monitoring Proceedings 2 803

[102] A very brief history of industrial inkjet printing https://screenweb.com/content/a-very-brief-
history-industrial-inkjet-printing (Accessed: 17 Aug. 2020)

[103] DuraFast A brief history of inkjet printer technology DuraFast https://blog.durafastlabel.
com/a-brief-history-of-inkjet-printer-technology/ (Accessed: 17 Aug. 2020)

[104] Hu C, Bai X, Wang Y, Jin W, Zhang X and Hu S 2012 Inkjet printing of nanoporous gold
electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical
oxygen sensors using ionic liquid electrolytes Anal. Chem. 84 3745–50

[105] Pu Z, Wang R, Wu J, Yu H, Xu K and Li D 2016 A flexible electrochemical glucose sensor
with composite nanostructured surface of the working electrode Sens. Actuators B 230
801–9

[106] Moya A, Gabriel G, Villa R and del Campo F J 2017 Inkjet-printed electrochemical sensors
Curr. Opin. Electrochem. 3 29–39

[107] Casiraghi C et al 2018 Inkjet printed 2D-crystal based strain gauges on paper Carbon 129
462–67

Printed and Flexible Sensor Technology

https://3wnews.org/uncategorised/2110872/trending-news-printed-flexible-sensors-market-growth-size-analysis-and-trends-to-2025-canatu-oy-fujifilm-holding-corporation-isorg/
https://3wnews.org/uncategorised/2110872/trending-news-printed-flexible-sensors-market-growth-size-analysis-and-trends-to-2025-canatu-oy-fujifilm-holding-corporation-isorg/
https://3wnews.org/uncategorised/2110872/trending-news-printed-flexible-sensors-market-growth-size-analysis-and-trends-to-2025-canatu-oy-fujifilm-holding-corporation-isorg/
http://visual-arts-cork.com/printmaking/screen-printing.htm#:<:text=History%20of%20Screen%20Printing,began%20to%20pick%20up%20popularity
http://visual-arts-cork.com/printmaking/screen-printing.htm#:<:text=History%20of%20Screen%20Printing,began%20to%20pick%20up%20popularity
http://visual-arts-cork.com/printmaking/screen-printing.htm#:<:text=History%20of%20Screen%20Printing,began%20to%20pick%20up%20popularity
https://doi.org/10.1039/c0an00894j
https://doi.org/10.1016/j.trac.2019.03.021
https://doi.org/10.1016/j.trac.2019.03.021
https://doi.org/10.1016/j.bios.2017.01.058
https://doi.org/10.3390/s19051230
https://doi.org/10.5640/insc.020101
https://doi.org/10.1039/C8TC04753G
https://doi.org/10.4236/msa.2018.913073
https://doi.org/10.1109/JSEN.2019.2940836
https://doi.org/10.1016/j.mejo.2014.08.011
https://www.screenweb.com/content/a-very-brief-history-industrial-inkjet-printing
https://www.screenweb.com/content/a-very-brief-history-industrial-inkjet-printing
https://blog.durafastlabel.com/a-brief-history-of-inkjet-printer-technology/
https://blog.durafastlabel.com/a-brief-history-of-inkjet-printer-technology/
https://doi.org/10.1021/ac3003243
https://doi.org/10.1016/j.snb.2016.02.115
https://doi.org/10.1016/j.snb.2016.02.115
https://doi.org/10.1016/j.coelec.2017.05.003
https://doi.org/10.1016/j.carbon.2017.12.030
https://doi.org/10.1016/j.carbon.2017.12.030


[108] Eshkeiti A et al 2014 A novel self-supported printed flexible strain sensor for monitoring
body movement and temperature SENSORS, 2014 IEEE (Piscataway, NJ: IEEE), pp
1615–18

[109] Chang X et al 2018 ZnO nanorods/carbon black-based flexible strain sensor for detecting
human motions J. Alloys Compd. 738 111–17

[110] Bali C, Brandlmaier A, Ganster A, Raab O, Zapf J and Hübler A 2016 Fully inkjet-printed
flexible temperature sensors based on carbon and PEDOT: PSS Mater. Today Proc. 3
739–45

[111] Birol H, Maeder T, Jacq C and Ryser P 2004 3-D structuration of LTCC for sensor micro-
fluidic applications European Microelectronics and Packaging Symp. pp 366–71

[112] Kanbach H, Wilde J, Kriebel F and Meusel E 2000 3D Si-on-Si stack packaging Solder.
Surf. Mount Technol. 12 35–9 .

[113] Stromberg L R et al 2019 Stamped multilayer graphene laminates for disposable in-field
electrodes: application to electrochemical sensing of hydrogen peroxide and glucose
Microchim. Acta 186 533

[114] Demuru S, Haque R, Joho M O, Bionaz A, van der Wal P and Briand D 2019 3D-
integration of printed electrochemical sensors in pet microfluidics for biochemical sensing
20th Int. Conf. on Solid-State Sensors, Actuators and Microsystems and Eurosensors 33
(Piscataway, NJ: IEEE), pp 2464–7

[115] Tan C, Nasir M Z M, Ambrosi A and Pumera M 2017 3D printed electrodes for detection
of nitroaromatic explosives and nerve agents Anal. Chem. 89 8995–9001

[116] Nag A, Feng S, Mukhopadhyay S, Kosel J and Inglis D 2018 3D printed mould-based
graphite/PDMS sensor for low-force applications Sens. Actuators, A 280 525–34

[117] Gul J Z, Sajid M and Choi K H 2020 Retraction: 3D printed highly flexible strain sensor
based on TPU–graphene composite for feedback from high speed robotic applications J.
Mater. Chem. C 8 2597

[118] Le T et al 2015 A novel strain sensor based on 3D printing technology and 3D antenna
design 2015 IEEE 65th Electronic Components and Technology Conf. (ECTC)
(Piscataway, NJ: IEEE), pp 981–6

[119] Wang Z et al 2018 3D-printed graphene/polydimethylsiloxane composites for stretchable
and strain-insensitive temperature sensors ACS Appl. Mater. Interfaces 11 1344–52

[120] Ali S, Hassan A, Hassan G, Bae J and Lee C H 2016 All-printed humidity sensor based on
graphene/methyl-red composite with high sensitivity Carbon 105 23–32

[121] Kim K, Park J, Suh J-H, Kim M, Jeong Y and Park I 2017 3D printing of multiaxial force
sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments Sens.
Actuators A 263 493–500

[122] Lin J et al 2014 Laser-induced porous graphene films from commercial polymers Nat.
Commun. 5 1–8

[123] Ye R et al 2017 Laser-induced graphene formation on wood Adv. Mater. 29 1702211
[124] Luong D X et al 2019 Laser-induced graphene composites as multifunctional surfaces ACS

Nano 13 2579–86
[125] You R, Liu Y Q, Hao Y L, Han D D, Zhang Y L and You Z 2020 Laser fabrication of

graphene-based flexible electronics Adv. Mater. 32 1901981
[126] Ye R, James D K and Tour J M 2019 Laser-induced graphene: from discovery to

translation Adv. Mater. 31 1803621

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.jallcom.2017.12.094
https://doi.org/10.1016/j.matpr.2016.02.005
https://doi.org/10.1016/j.matpr.2016.02.005
https://doi.org/10.1007/s00604-019-3639-7
https://doi.org/10.1021/acs.analchem.7b01614
https://doi.org/10.1016/j.sna.2018.08.028
https://doi.org/10.1039/D0TC90027C
https://doi.org/10.1021/acsami.8b16139
https://doi.org/10.1016/j.carbon.2016.04.013
https://doi.org/10.1016/j.sna.2017.07.020
https://doi.org/10.1038/ncomms6714
https://doi.org/10.1002/adma.201702211
https://doi.org/10.1021/acsnano.8b09626
https://doi.org/10.1002/adma.201901981
https://doi.org/10.1002/adma.201803621


[127] Garland N T et al 2018 Flexible laser-induced graphene for nitrogen sensing in soil ACS
Appl. Mater. Interfaces 10 39124–33

[128] Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V and Dominguez R B 2019
Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-
enzymatic hydrogen peroxide detection Sens. Actuators B 301 127101

[129] Zhang Y et al 2020 A flexible non-enzymatic glucose sensor based on copper nanoparticles
anchored on laser-induced graphene Carbon 156 506–13

[130] Jeong S-Y, Ma Y-W, Lee J-U, Je G-J and Shin B-S 2019 Flexible and highly sensitive strain
sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser Sensors
19 4867

[131] Tian H et al 2014 Scalable fabrication of high-performance and flexible graphene strain
sensors Nanoscale 6 699–705

[132] Tao L-Q et al 2017 An intelligent artificial throat with sound-sensing ability based on laser
induced graphene Nat. Commun. 8 1–8

[133] Gandla S et al 2020 Highly linear and stable flexible temperature sensors based on laser-
induced carbonization of polyimide substrates for personal mobile monitoring Adv. Mater.
Technol. 5 2000014

[134] Bobinger M R et al 2019 Flexible and robust laser-induced graphene heaters photo-
thermally scribed on bare polyimide substrates Carbon 144 116–26

[135] Tao L-Q et al 2016 A flexible 360-degree thermal sound source based on laser induced
graphene Nanomaterials 6 112

[136] Huang Q and Zhu Y 2019 Printing conductive nanomaterials for flexible and stretchable
electronics: a review of materials, processes, and applications Adv. Mater. Technol. 4
1800546

[137] Narakathu B, Reddy S, Atashbar M, Rebrosova E, Rebros M and Joyce M 2011 A novel
gravure printed impedance based flexible electrochemical sensor SENSORS, 2011 IEEE
(Piscataway, NJ: IEEE), pp 577–80

[138] Maddipatla D, Narakathu B, Turkani V, Bazuin B and Atashbar M 2018 A gravure
printed flexible electrochemical sensor for the detection of heavy metal compounds
Proceedings 2 950

[139] Reddy A, Narakathu B, Atashbar M, Rebros M, Rebrosova E and Joyce M 2011 Gravure
printed electrochemical biosensor Procedia Eng. 25 956–59

[140] Park J, Nam D, Park S and Lee D 2018 Fabrication of flexible strain sensors via roll-to-roll
gravure printing of silver ink Smart Mater. Struct. 27 085014

[141] Maddipatla D 2016 Development of fully printed and flexible strain, pressure and electro-
chemical sensors MSEng Thesis Western Michigan University, Kalmazoo, MI

[142] Parameswaran C and Gupta D 2019 Large area flexible pressure/strain sensors and arrays
using nanomaterials and printing techniques Nano Converg. 6 1–23

[143] Reddy A, Narakathu B, Atashbar M, Rebros M, Rebrosova E and Joyce M 2011 Fully
printed flexible humidity sensor Procedia Eng. 25 120–23

[144] Turkani V S et al 2019 A highly sensitive printed humidity sensor based on a functionalized
MWCNT/HEC composite for flexible electronics application Nanoscale Adv. 1 2311–22

[145] Zhang X et al 2019 Novel printed carbon nanotubes based resistive humidity sensors 2019
IEEE Int. Conf. on Flexible and Printable Sensors and Systems (FLEPS) (Piscataway, NJ:
IEEE), pp 1–3

Printed and Flexible Sensor Technology

https://doi.org/10.1021/acsami.8b10991
https://doi.org/10.1016/j.snb.2019.127101
https://doi.org/10.1016/j.carbon.2019.10.006
https://doi.org/10.3390/s19224867
https://doi.org/10.1039/C3NR04521H
https://doi.org/10.1038/ncomms14579
https://doi.org/10.1002/admt.202000014
https://doi.org/10.1016/j.carbon.2018.12.010
https://doi.org/10.3390/nano6060112
https://doi.org/10.1002/admt.201800546
https://doi.org/10.1002/admt.201800546
https://doi.org/10.1016/j.proeng.2011.12.235
https://doi.org/10.1088/1361-665X/aacbb8
https://doi.org/10.1186/s40580-019-0198-x
https://doi.org/10.1016/j.proeng.2011.12.030
https://doi.org/10.1039/C9NA00179D


[146] Andò B, Baglio S, Bulsara A R, Emery T, Marletta V and Pistorio A 2017 Low-cost inkjet
printing technology for the rapid prototyping of transducers Sensors 17 748

[147] Pearson A 2018 Disadvantages of 3D printing 3DInsider https://3dinsider.com/3d-printing-
disadvantages/ (Accessed: 17 Aug. 2020)

[148] Campbell T A and Ivanova O S 2013 3D printing of multifunctional nanocomposites Nano
Today 8 119–20

[149] Sato Y, Tsukamoto M, Shinonaga T and Kawa T 2016 Femtosecond laser-induced
periodic nanostructure creation on PET surface for controlling of cell spreading Appl.
Phys. A 122 184

[150] Lum R 1976 Laser-induced decomposition of PVC J. Appl. Polym. Sci. 20 1635–49
[151] Narakathu B et al 2012 A novel fully printed and flexible capacitive pressure sensor

SENSORS, 2012 IEEE (Piscataway, NJ: IEEE), pp 1–4

Chapter 4

[1] Ejeian F et al 2018 Biosensors for wastewater monitoring: a review Biosens. Bioelectron.
118 66–79

[2] Bhalla N, Jolly P, Formisano N and Estrela P 2016 Introduction to biosensors Essays
Biochem. 60 1–8

[3] Nag A, Mukhopadhyay S C and Kosel J 2019 Printed Flexible Sensors: Fabrication,
Characterization and Implementation vol 33 (Berlin: Springer)

[4] Huerta-Nuñez L F E et al 2019 A biosensor capable of identifying low quantities of breast
cancer cells by electrical impedance spectroscopy Sci. Rep. 9 6419

[5] Khan H, Razmjou A, Ebrahimi Warkiani M, Kottapalli A and Asadnia M 2018 Sensitive
and flexible polymeric strain sensor for accurate human motion monitoring Sensors 18 418

[6] Grieshaber D, MacKenzie R, Vörös J and Reimhult E 2008 Electrochemical biosensors—
sensor principles and architectures Sensors 8 1400–58

[7] Ranjan R, Esimbekova E N and Kratasyuk V A 2017 Rapid biosensing tools for cancer
biomarkers Biosens. Bioelectron. 87 918–30

[8] Ejeian F et al 2019 Design and applications of MEMS flow sensors: a review Sens.
Actuators A 295 483–502

[9] Mehrotra P 2016 Biosensors and their applications–a review J. Oral Biol, Craniofac. Res. 6
153–59

[10] Wang J 2006 Electrochemical biosensors: towards point-of-care cancer diagnostics Biosens.
Bioelectron. 21 1887–92

[11] Yu Y, Nyein H Y Y, Gao W and Javey A 2020 Flexible electrochemical bioelectronics: the
rise of in situ bioanalysis Adv. Mater. 32 1902083

[12] Windmiller J R and Wang J 2013 Wearable electrochemical sensors and biosensors: a
review Electroanalysis 25 29–46

[13] Kivimäki L, Hakalahti L, Mäkelä I, Ylikunnari M, Keränen M and Takkinen K 2009
Printable biosensor surface Report VTT Technical Research Centre of Finland

[14] Sajad A M et al 2020 Development of an ultra-sensitive and flexible piezoresistive flow
sensor using vertical graphene nanosheets Nano-Micro Letters 12 109

[15] Patel B A, Anastassiou C A and O’Hare D 2006 Biosensor design and interfacing Body
Sensor Networks (Berlin: Springer), pp 41–87

[16] Akyazi T, Basabe-Desmonts L and Benito-Lopez F 2018 Review on microfluidic paper-
based analytical devices towards commercialisation Anal. Chim. Acta 1001 1–17

Printed and Flexible Sensor Technology

https://doi.org/10.3390/s17040748
https://3dinsider.com/3d-printing-disadvantages/
https://3dinsider.com/3d-printing-disadvantages/
https://doi.org/10.1016/j.nantod.2012.12.002
https://doi.org/10.1007/s00339-016-9716-4
https://doi.org/10.1002/app.1976.070200621
https://doi.org/10.1016/j.bios.2018.07.019
https://doi.org/10.1042/EBC20150001
https://doi.org/10.1038/s41598-019-42776-9
https://doi.org/10.3390/s18020418
https://doi.org/10.1016/j.bios.2016.09.061
https://doi.org/10.1016/j.sna.2019.06.020
https://doi.org/10.1016/j.jobcr.2015.12.002
https://doi.org/10.1016/j.jobcr.2015.12.002
https://doi.org/10.1016/j.bios.2005.10.027
https://doi.org/10.1002/adma.201902083
https://doi.org/10.1002/elan.201200349
https://doi.org/10.1016/j.aca.2017.11.010


[17] Izzah Binti Mohammad A R M, Liang K, Asadnia M and Chen V 2019 MOF-based
enzymatic microfluidic biosensor via surface patterning and biomineralization ACS Appl.
Mater. Interfaces 11 1807–20

[18] Li J, Rossignol F and Macdonald J 2015 Inkjet printing for biosensor fabrication:
combining chemistry and technology for advanced manufacturing Lab Chip. 15 2538–58

[19] Duocastella M, Fernández-Pradas J, Morenza J, Zafra D and Serra P 2010 Novel laser
printing technique for miniaturized biosensors preparation Sens. Actuators B 145 596–600

[20] Raoufi M A et al 2020 Fabrication of unconventional inertial microfluidic channels using
wax 3D printing Soft Matter 16 2448–59

[21] Kottapalli A G P, Asadnia M, Miao J and Triantafyllou M 2015 Soft polymer membrane
micro-sensor arrays inspired by the mechanosensory lateral line on the blind cavefish J.
Intell. Mater. Syst. Struct. 26 38–46

[22] Palenzuela C L M and Pumera M 2018 (Bio)analytical chemistry enabled by 3D printing:
sensors and biosensors TrAC, Trends Anal. Chem. 103 110–18

[23] Bazaz S R et al 2020 3D printing of inertial microfluidic devices Sci. Rep. 10 1–14
[24] Razavi Bazaz S et al 2019 Microfluidics: rapid softlithography using 3D-printed molds Adv.

Mater. Technol. 4 1970056
[25] Syed M S, Rafeie M, Henderson R, Vandamme D, Asadnia M and Warkiani M E 2017 A

3D-printed mini-hydrocyclone for high throughput particle separation: application to
primary harvesting of microalgae Lab Chip 17 2459–69

[26] Hagihghi R, Razmjou A, Orooji Y, Warkiani M E and Asadnia M 2020 A miniaturized
piezoresistive flow sensor for real-time monitoring of intravenous infusion J. Biomed.
Mater. Res. B 108 568–76

[27] Syed M S et al 2018 Selective separation of microalgae cells using inertial microfluidics
Bioresour. Technol. 252 91–9

[28] Asadnia M, Kottapalli A G P, Miao J, Warkiani M E and Triantafyllou M S 2015 Artificial
fish skin of self-powered micro-electromechanical systems hair cells for sensing hydro-
dynamic flow phenomena J. R. Soc. Interface 12 20150322

[29] Asadnia M et al 2013 High temperature characterization of PZT (0.52/0.48) thin-film
pressure sensors J. Micromech. Microeng. 24 015017

[30] Amir Razmjou M A, Hosseini E, Habibnejad Korayem A and Chen V 2019 Design
principles of ion selective nanostructured membranes for the extraction of lithium ions Nat.
Commun. 10 5793

[31] Wang Y, Xu H, Zhang J and Li G 2008 Electrochemical sensors for clinic analysis Sensors
8 2043–81

[32] Asadnia M et al 2016 Mercury (II) selective sensors based on AlGaN/GaN transistors Anal.
Chim. Acta 943 1–7

[33] Anik Ü 2017 Electrochemical medical biosensors for POC applications Medical Biosensors
for Point of Care (POC) Applications (Amsterdam: Elsevier), pp 275–92

[34] Asadnia M et al 2017 Ca2+ detection utilising AlGaN/GaN transistors with ion-selective
polymer membranes Anal. Chim. Acta 987 105–10

[35] Mahmud M et al 2020 Recent progress in sensing nitrate, nitrite, phosphate, and
ammonium in aquatic environment Chemosphere 259 127492

[36] Borisov S M and Wolfbeis O S 2008 Optical biosensors Chem. Rev. 108 423–61

Printed and Flexible Sensor Technology

https://doi.org/10.1021/acsami.8b16837
https://doi.org/10.1039/C5LC00235D
https://doi.org/10.1016/j.snb.2009.11.055
https://doi.org/10.1039/C9SM02067E
https://doi.org/10.1177/1045389X14521702
https://doi.org/10.1016/j.trac.2018.03.016
https://doi.org/10.1002/admt.201970056
https://doi.org/10.1039/C7LC00294G
https://doi.org/10.1002/jbm.b.34412
https://doi.org/10.1016/j.biortech.2017.12.065
https://doi.org/10.1098/rsif.2015.0322
https://doi.org/10.1088/0960-1317/24/1/015017
https://doi.org/10.1038/s41467-019-13648-7
https://doi.org/10.3390/s8042043
https://doi.org/10.1016/j.aca.2016.08.045
https://doi.org/10.1016/j.aca.2017.07.066
https://doi.org/10.1016/j.chemosphere.2020.127492
https://doi.org/10.1021/cr068105t


[37] Asadnia M, Kottapalli A G P, Shen Z, Miao J and Triantafyllou M 2013 Flexible and
surface-mountable piezoelectric sensor arrays for underwater sensing in marine vehicles
IEEE Sensors J. 13 3918–25

[38] Yamanaka K, Vestergaard M. d. C. and Tamiya E 2016 Printable electrochemical
biosensors: a focus on screen-printed electrodes and their application Sensors 16 1761

[39] Hayat A, Haider W, Rolland M and Marty J-L 2013 Electrochemical grafting of long
spacer arms of hexamethyldiamine on a screen printed carbon electrode surface: application
in target induced ochratoxin A electrochemical aptasensor Analyst 138 2951–57

[40] Tudorache M and Bala C 2007 Biosensors based on screen-printing technology, and their
applications in environmental and food analysis Anal. Bioanal.Chem. 388 565–78

[41] Tortorich R P, Shamkhalichenar H and Choi J-W 2018 Inkjet-printed and paper-based
electrochemical sensors Appl. Sci. 8 288

[42] Dungchai W, Chailapakul O and Henry C S 2009 Electrochemical detection for paper-
based microfluidics Anal. Chem. 81 5821–26

[43] Yang J et al 2014 fluidic electrochemical biosensing platform with enzyme paper and
enzymeless electrodes Sens. Actuators B 203 44–53

[44] Razmjou A et al 2017 Preparation of iridescent 2D photonic crystals by using a mussel-
inspired spatial patterning of ZIF-8 with potential applications in optical switch and
chemical sensor ACS Appl. Mater. Interfaces 9 38076–80

[45] Liu C et al 2018 3D printing technologies for flexible tactile sensors toward wearable
electronics and electronic skin Polymers 10 629

[46] Khosravani M R and Reinicke T 2020 3D-printed sensors: current progress and future
challenges Sens. Actuators A 305 111916

[47] Hull C W and Lewis C W 1991 Methods and apparatus for production of three-dimen-
sional objects by stereolithography US patent US4999143A

[48] Melchels F P, Feijen J and Grijpma D W 2010 A review on stereolithography and its
applications in biomedical engineering Biomaterials 31 6121–30

[49] Han T, Kundu S, Nag A and Xu Y 2019 3D printed sensors for biomedical applications: a
review Sensors 19 1706

[50] Vanderburgh J, Sterling J A and Guelcher S A 2017 3D printing of tissue engineered
constructs for in vitro modeling of disease progression and drug screening Ann. Biomed.
Eng. 45 164–79

[51] Crump S S 1989 Apparatus and method for creating three-dimensional objects US patent
US5121329A

[52] Zein I, Hutmacher D W, Tan K C and Teoh S H 2002 Fused deposition modeling of novel
scaffold architectures for tissue engineering applications Biomaterials 23 1169–85

[53] Khalil S, Nam J and Sun W 2005 Multi-nozzle deposition for construction of 3D
biopolymer tissue scaffolds Rapid Prototyp. J. 11 9–17

[54] Hutmacher D W, Schantz T, Zein I, Ng K W, Teoh S H and Tan K C 2001 Mechanical
properties and cell cultural response of polycaprolactone scaffolds designed and fabricated
via fused deposition modeling J. Biomed. Mater. Res. 55 203–16

[55] Gothait H 2001 Apparatus and method for three dimensional model printing US patent
US6259962B1

[56] Quan H, Zhang T, Xu H, Luo S, Nie J and Zhu X 2020 Photo-curing 3D printing technique
and its challenges Bioact. Mater. 5 110–15

Printed and Flexible Sensor Technology

https://doi.org/10.1109/JSEN.2013.2259227
https://doi.org/10.3390/s16101761
https://doi.org/10.1039/c3an00158j
https://doi.org/10.1007/s00216-007-1293-0
https://doi.org/10.3390/app8020288
https://doi.org/10.1021/ac9007573
https://doi.org/10.1016/j.snb.2014.06.077
https://doi.org/10.1021/acsami.7b13618
https://doi.org/10.3390/polym10060629
https://doi.org/10.1016/j.sna.2020.111916
https://doi.org/10.1016/j.biomaterials.2010.04.050
https://doi.org/10.3390/s19071706
https://doi.org/10.1007/s10439-016-1640-4
https://doi.org/10.1016/S0142-9612(01)00232-0
https://doi.org/10.1002/1097-4636(200105)55:2%3C203::AID-JBM1007%3E3.0.CO;2-7
https://doi.org/10.1016/j.bioactmat.2019.12.003


[57] Dirkzwager R M, Liang S and Tanner J A 2016 Development of aptamer-based point-of-
care diagnostic devices for malaria using three-dimensional printing rapid prototyping ACS
Sens. 1 420–26

[58] Lee W et al 2014 Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic
flow assay Anal. Chem. 86 6683–88

[59] Lee W et al 2015 3D-printed microfluidic device for the detection of pathogenic bacteria
using size-based separation in helical channel with trapezoid cross-section Sci. Rep. 5 7717

[60] Tang C, Vaze A and Rusling J 2017 Automated 3D-printed unibody immunoarray for
chemiluminescence detection of cancer biomarker proteins Lab Chip 17 484–89

[61] Chan H N et al 2016 Simple, cost-effective 3D printed microfluidic components for
disposable, point-of-care colorimetric analysis ACS Sens. 1 227–34

[62] Dias A A et al 2016 Based enzymatic reactors for batch injection analysis of glucose on 3D
printed cell coupled with amperometric detection Sens. Actuators B 226 196–203

[63] Gowers S A et al 2015 3D printed microfluidic device with integrated biosensors for online
analysis of subcutaneous human microdialysate Anal. Chem. 87 7763–70

[64] Mannoor M S et al 2013 3D printed bionic ears Nano Lett. 13 2634–39
[65] Cardoso R M et al 2020 3D-printed graphene/polylactic acid electrode for bioanalysis:

biosensing of glucose and simultaneous determination of uric acid and nitrite in biological
fluids Sens. Actuators B 307 127621

[66] Carrilho E, Martinez A W and Whitesides G M 2009 Understanding wax printing: a simple
micropatterning process for paper-based microfluidics Anal. Chem. 81 7091–95

[67] Rayleigh L 1878 On the instability of jets Proc. Lond. Math. Soc. 1 4–13
[68] Zoltan S 1974 Pulsed droplet ejecting system US patent US3683212A
[69] Daly R, Harrington T S, Martin G D and Hutchings I M 2015 Inkjet printing for

pharmaceutics—a review of research and manufacturing Int. J. Pharm. 494 554–67
[70] Martin G D, Hoath S D and Hutchings I M 2008 Inkjet printing-the physics of

manipulating liquid jets and drops J. Phys.: Conf. Ser. 105 012001
[71] De Gans B J, Duineveld P C and Schubert U S 2004 Inkjet printing of polymers: state of the

art and future developments Adv. Mater. 16 203–13
[72] Kipphan H 2001 Handbook of Print Media: Technologies and Production Methods (Berlin:

Springer)
[73] Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D and Piana C 2005 An

amperometric glucose biosensor prototype fabricated by thermal inkjet printing Biosens.
Bioelectron. 20 2019–26

[74] Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B and Di Biase M 2007 An
HRP-based amperometric biosensor fabricated by thermal inkjet printing Sens. Actuators B
126 252–57

[75] Määttänen A et al 2013 A low-cost paper-based inkjet-printed platform for electrochemical
analyses Sens. Actuators B 177 153–62

[76] Li M, Tian J, Al-Tamimi M and Shen W 2012 Paper-based blood typing device that reports
patient’s blood type in writing Angew. Chem. 124 5593–97

[77] Taleat Z, Khoshroo A and Mazloum-Ardakani M 2014 Screen-printed electrodes for
biosensing: a review (2008–2013) Microchim. Acta 181 865–91

[78] Gilbert L, Browning S, Jenkins A T and Hart J P 2010 Studies towards an amperometric
phosphate ion biosensor for urine and water analysis Microchim. Acta 170 331–36

Printed and Flexible Sensor Technology

https://doi.org/10.1021/acssensors.5b00175
https://doi.org/10.1021/ac501436d
https://doi.org/10.1038/srep07717
https://doi.org/10.1039/C6LC01238H
https://doi.org/10.1021/acssensors.5b00100
https://doi.org/10.1016/j.snb.2015.11.040
https://doi.org/10.1021/acs.analchem.5b01353
https://doi.org/10.1021/nl4007744
https://doi.org/10.1016/j.snb.2019.127621
https://doi.org/10.1021/ac901071p
https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1016/j.ijpharm.2015.03.017
https://doi.org/10.1088/1742-6596/105/1/012001
https://doi.org/10.1002/adma.200300385
https://doi.org/10.1016/j.bios.2004.09.022
https://doi.org/10.1016/j.snb.2006.12.015
https://doi.org/10.1016/j.snb.2012.10.113
https://doi.org/10.1002/ange.201201822
https://doi.org/10.1007/s00604-014-1181-1
https://doi.org/10.1007/s00604-010-0316-2


[79] Gilbert L, Jenkins A T A, Browning S and Hart J P 2011 Development of an amperometric,
screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of
biomedical and environmental samples Sens. Actuators B 160 1322–27

[80] Ballesta-Claver J, Ortega I D, Valencia-Mirón M and Capitán-Vallvey L 2011 Disposable
luminol copolymer-based biosensor for uric acid in urine Anal. Chim. Acta 702 254–61

[81] Markas A 1994 Novel, reagentless, amperometric biosensor for uric acid based on a
chemically modified screen-printed carbon electrode coated with cellulose acetate and
uricase Analyst 119 833–40

[82] Kanyong P, Pemberton R, Jackson S and Hart J P 2012 Development of a sandwich
format, amperometric screen-printed uric acid biosensor for urine analysis Anal. Biochem.
428 39–43

[83] Ahmar H, Tabani H, Koruni M H, Davarani S S H and Fakhari A R 2014 A new platform
for sensing urinary morphine based on carrier assisted electromembrane extraction followed
by adsorptive stripping voltammetric detection on screen-printed electrode Biosens.
Bioelectron. 54 189–94

[84] Ditcham W, Palmer C, Warren K, Monaghan C, Kappelle W and Matson P 2009
Development of an immunoassay to measure progesterone using printed biosensors, and
its application to the assessment of ovarian function in the numbat (Myrmecobius fasciatus)
J. Immunoas. Immunochem. 30 232–43

[85] Omidfar K, Dehdast A, Zarei H, Sourkohi B K and Larijani B 2011 Development of urinary
albumin immunosensor based on colloidal AuNP and PVA Biosens. Bioelectron. 26 4177–83

[86] Kumar V et al 2017 Creatinine–iron complex and its use in electrochemical measurement of
urine creatinine IEEE Sensors J. 18 830–36

[87] Wang T, Cook C and Derby B 2009 Fabrication of a glucose biosensor by piezoelectric
inkjet printing 2009 Third Int. Conf. on Sensor Technologies and Applications pp 82–5

[88] Crouch E, Cowell D C, Hoskins S, Pittson R W and Hart J P 2005 Amperometric, screen-
printed, glucose biosensor for analysis of human plasma samples using a biocomposite
water-based carbon ink incorporating glucose oxidase Anal. Biochem. 347 17–23

[89] Zhang F et al 2017 Over 20% PCE perovskite solar cells with superior stability achieved by
novel and low-cost hole-transporting materials Nano Energy 41 469–75

[90] Li G, Liao J, Hu G, Ma N and Wu P 2005 Study of carbon nanotube modified biosensor
for monitoring total cholesterol in blood Biosens. Bioelectron. 20 2140–44

[91] Luo P, Xie G, Liu Y, Xu H, Deng S and Song F 2008 Electrochemical detection of blood
alcohol concentration using a disposable biosensor based on screen-printed electrode
modified with Nafion and gold nanoparticles Clin. Chem. Lab. Med. 46 1641–47

[92] O’Reilly E, Kelly M, Morrin A, Smyth M R and Killard A J 2011 Chronocoulometric
determination of urea in human serum using an inkjet printed biosensor Anal. Chim. Acta
697 98–102

[93] Piermarini S et al 2013 Uricase biosensor based on a screen-printed electrode modified with
Prussian blue for detection of uric acid in human blood serum Sens. Actuators B 179 170–74

[94] Li N, Chow A M, Ganesh H V, Ratnam M, Brown I R and Kerman K 2019 Diazonium-
modified screen-printed electrodes for immunosensing growth hormone in blood samples
Biosensors 9 88

[95] Sprules S D, Hart J P, Wring S A and Pittson R 1995 A reagentless, disposable biosensor for
lactic acid based on a screen-printed carbon electrode containing Meldola’s blue and coated
with lactate dehydrogenase, NAD+ and cellulose acetate Anal. Chim. Acta 304 17–24

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.snb.2011.09.069
https://doi.org/10.1016/j.aca.2011.06.054
https://doi.org/10.1039/an9941900833
https://doi.org/10.1016/j.ab.2012.05.027
https://doi.org/10.1016/j.bios.2013.10.035
https://doi.org/10.1080/15321810902782921
https://doi.org/10.1016/j.bios.2011.04.022
https://doi.org/10.1109/JSEN.2017.2777913
https://doi.org/10.1016/j.ab.2005.08.011
https://doi.org/10.1016/j.nanoen.2017.09.035
https://doi.org/10.1016/j.bios.2004.09.005
https://doi.org/10.1515/CCLM.2008.308
https://doi.org/10.1016/j.aca.2011.04.036
https://doi.org/10.1016/j.snb.2012.10.090
https://doi.org/10.3390/bios9030088
https://doi.org/10.1016/0003-2670(94)00565-4


[96] Lin P-Y et al 2012 Detection of alpha-methylacyl-CoA racemase (AMACR), a biomarker
of prostate cancer, in patient blood samples using a nanoparticle electrochemical biosensor
Biosensors 2 377–87

[97] Schaffar B P 2002 Thick film biosensors for metabolites in undiluted whole blood and
plasma samples Anal. Bioanal.Chem. 372 254–60

[98] Wang Y, Xu H, Yang X, Luo Z, Zhang J and Li G 2012 All-solid-state blood calcium
sensors based on screen-printed poly (3, 4-ethylenedioxythiophene) as the solid contact
Sens. Actuators B 173 630–35

[99] Xu H, Yang X, Wang Y, Zheng J, Luo Z and Li G 2010 Disposable blood potassium
sensors based on screen-printed thick film electrodes Meas. Sci. Technol. 21 055802

[100] Wang C-C et al 2016 A paper-based ‘pop-up’ electrochemical device for analysis of beta-
hydroxybutyrate Anal. Chem. 88 6326–33

[101] Piermarini S, Volpe G, Federico R, Moscone D and Palleschi G 2010 Detection of biogenic
amines in human saliva using a screen-printed biosensor Anal. Lett. 43 1310–16

[102] Claver J B, Mirón M V and Capitán-Vallvey L 2009 Disposable electrochemiluminescent
biosensor for lactate determination in saliva Analyst 134 1423–32

[103] Mahosenaho M, Caprio F, Micheli L, Sesay A M, Palleschi G and Virtanen V 2010 A
disposable biosensor for the determination of alpha-amylase in human saliva Microchim.
Acta 170 243–49

[104] Kwan R C, Leung H, Hon P Y, Cheung H C, Hirota K and Renneberg R 2005 Amperometric
biosensor for determining human salivary phosphate Anal. Biochem. 343 263–67

[105] Viswanathan S, Rani C, Anand A V and Ho J.-A. 2009 Disposable electrochemical
immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT
screen-printed electrode Biosens. Bioelectron. 24 1984–89

[106] Zangheri M et al 2015 A simple and compact smartphone accessory for quantitative
chemiluminescence-based lateral flow immunoassay for salivary cortisol detection Biosens.
Bioelectron. 64 63–8

[107] Roda A, Guardigli M, Calabria D, Calabretta M M, Cevenini L and Michelini E 2014 A
3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral
fluid and sweat Analyst 139 6494–501

[108] Colozza N et al 2019 A wearable origami-like paper-based electrochemical biosensor for
sulfur mustard detection Biosens. Bioelectron. 129 15–23

[109] Huang G-W, Feng Q-P, Xiao H-M, Li N and Fu S-Y 2016 Rapid laser printing of paper-
based multilayer circuits ACS Nano 10 8895–903

[110] Ray T R et al 2019 Bio-integrated wearable systems: a comprehensive review Chem. Rev.
119 5461–533

[111] Windmiller J R, Bandodkar A J, Valdés-Ramírez G, Parkhomovsky S, Martinez A G and
Wang J 2012 Electrochemical sensing based on printable temporary transfer tattoos Chem.
Commun. 48 6794–96

[112] Tai L C et al 2018 Methylxanthine drug monitoring with wearable sweat sensors Adv.
Mater. 30 1707442

[113] Bariya M et al 2018 Roll-to-roll gravure printed electrochemical sensors for wearable and
medical devices ACS Nano 12 6978–87

[114] Voskerician G, Liu C-C and Anderson J M 2005 Electrochemical characterization and
in vivo biocompatibility of a thick-film printed sensor for continuous in vivo monitoring
IEEE Sensors J. 5 1147–58

Printed and Flexible Sensor Technology

https://doi.org/10.3390/bios2040377
https://doi.org/10.1007/s00216-001-1186-6
https://doi.org/10.1016/j.snb.2012.07.064
https://doi.org/10.1088/0957-0233/21/5/055802
https://doi.org/10.1021/acs.analchem.6b00568
https://doi.org/10.1080/00032710903518724
https://doi.org/10.1039/b821922b
https://doi.org/10.1007/s00604-010-0360-y
https://doi.org/10.1016/j.ab.2005.05.021
https://doi.org/10.1016/j.bios.2008.10.006
https://doi.org/10.1016/j.bios.2014.08.048
https://doi.org/10.1039/C4AN01612B
https://doi.org/10.1016/j.bios.2019.01.002
https://doi.org/10.1021/acsnano.6b04830
https://doi.org/10.1021/acs.chemrev.8b00573
https://doi.org/10.1039/c2cc32839a
https://doi.org/10.1002/adma.201707442
https://doi.org/10.1021/acsnano.8b02505
https://doi.org/10.1109/JSEN.2005.857877


[115] Wang P, Sun G, Ge L, Ge S, Yu J and Yan M 2013 Photoelectrochemical lab-on-paper
device based on molecularly imprinted polymer and porous Au–paper electrode Analyst 138
4802–11

[116] Chen Z, Wright C, Dincel O, Chi T-Y and Kameoka J 2020 A low-cost paper glucose
sensor with molecularly imprinted polyaniline electrode Sensors 20 1098

[117] Rana A et al 2020 Graphitic carbon nitride as an amplification platform on an electro-
chemical paper-based device for the detection of norovirus-specific DNA Sensors 20 2070

[118] Wang X, Deng W, Shen L, Yan M and Yu J 2016 A 3D electrochemical immunodevice
based on an Au paper electrode and using Au nanoflowers for amplification New J. Chem.
40 2835–42

[119] Chaiyo S et al 2018 Non-enzymatic electrochemical detection of glucose with a disposable
paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite
Biosens. Bioelectron. 102 113–20

[120] Adkins J A, Noviana E and Henry C S 2016 Development of a quasi-steady flow
electrochemical paper-based analytical device Anal. Chem. 88 10639–47

[121] Punjiya M, Moon C H, Matharu Z, Nejad H R and Sonkusale S 2018 A three-dimensional
electrochemical paper-based analytical device for low-cost diagnostics Analyst 143 1059–64

[122] Walgama C, Nguyen M P, Boatner L M, Richards I and Crooks R M 2020 Hybrid paper
and 3D-printed microfluidic device for electrochemical detection of Ag nanoparticle labels
Lab Chip 20 1648–57

[123] Paschoalino W J et al 2019 Emerging considerations for the future development of
electrochemical paper-based analytical devices ChemElectroChem 6 10–30

[124] Yamada K, Henares T G, Suzuki K and Citterio D 2015 Paper-based inkjet-printed
microfluidic analytical devices Angew. Chem. Int. Ed. 54 5294–310

[125] Singh M, Haverinen H M, Dhagat P and Jabbour G E 2010 Inkjet printing—process and
its applications Adv. Mater. 22 673–85

[126] Sharafeldin M, Jones A and Rusling J F 2018 3D-printed biosensor arrays for medical
diagnostics Micromachines 9 394

Chapter 5

[1] Novoselov K S et al 2007 Electronic properties of graphene Phys. Status Solidi Basic Res.
244 4106–11

[2] Marengo M, Marinaro G and Kosel J 2017 Flexible temperature and flow sensor from
laser-induced graphene Proc. IEEE Sensors (Piscataway, NJ: IEEE), pp 1–3

[3] Papageorgiou D G, Kinloch I A and Young R J 75 Mechanical properties of graphene and
graphene-based nanocomposites Prog. Mater. Sci. 90 75–127, 2017

[4] Wang F et al 2018 Laser-induced graphene: preparation, functionalization and applications
Mater. Technol. 33 340–56

[5] Rewatkar P, Kothuru A and Goel S 2020 PDMS-based microfluidic glucose biofuel cell
integrated with optimized laser-induced flexible graphene bioelectrodes IEEE Trans.
Electron Devices 67 1832–8

[6] Nicholl R J T et al 2015 The effect of intrinsic crumpling on the mechanics of free-standing
graphene Nat. Commun. 6 1–7

[7] Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and
intrinsic strength of monolayer graphene Science 321 385–88

Printed and Flexible Sensor Technology

https://doi.org/10.1039/c3an00694h
https://doi.org/10.1039/c3an00694h
https://doi.org/10.3390/s20041098
https://doi.org/10.3390/s20072070
https://doi.org/10.1039/C5NJ03222A
https://doi.org/10.1016/j.bios.2017.11.015
https://doi.org/10.1021/acs.analchem.6b03010
https://doi.org/10.1039/C7AN01837A
https://doi.org/10.1039/D0LC00276C
https://doi.org/10.1002/celc.201800677
https://doi.org/10.1002/anie.201411508
https://doi.org/10.1002/adma.200901141
https://doi.org/10.3390/mi9080394
https://doi.org/10.1002/pssb.200776208
https://doi.org/10.1016/j.pmatsci.2017.07.004
https://doi.org/10.1080/10667857.2018.1447265
https://doi.org/10.1109/TED.2020.2971480
https://doi.org/10.1038/ncomms9789
https://doi.org/10.1126/science.1157996


[8] Zandiatashbar A et al 2014 Effect of defects on the intrinsic strength and stiffness of
graphene Nat. Commun. 5 1–9

[9] Zhang P et al 2014 Fracture toughness of graphene Nat. Commun. 5 1–7
[10] Alemour B, Yaacob M H, Lim H N and Hassan M R 2018 Review of electrical properties

of graphene conductive composites Int. J. Nanoelectron. Mater. 11 371–98
[11] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Intrinsic and extrinsic

performance limits of graphene devices on SiO2 Nat. Nanotechnol. 3 206–9
[12] Berry V 2013 Impermeability of graphene and its applications Carbon 62 1–10
[13] Sheehy D E and Schmalian J 2009 Optical transparency of graphene as determined by the

fine-structure constant Phys. Rev. B 80 2–5
[14] Peigney A, Laurent C, Flahaut E, Bacsa R R and Rousset A 2001 Specific surface area of

carbon nanotubes and bundles of carbon nanotubes Carbon 39 507–14
[15] Mamleyev E R et al 2019 Laser-induced hierarchical carbon patterns on polyimide

substrates for flexible urea sensors NPJ Flex. Electron. 3 2
[16] Lin J et al 2014 Laser-induced porous graphene films from commercial polymers Nat.

Commun. 5 1–8
[17] Larciprete R, Fabris S, Sun T, Lacovig P, Baraldi A and Lizzit S 2011 Dual path

mechanism in the thermal reduction of graphene oxide J. Am. Chem. Soc. 133 17315–21
[18] Paquin F, Rivnay J, Salleo A, Stingelin N and Silva C 2015 Multi-phase semicrystalline

microstructures drive exciton dissociation in neat plastic semiconductors J. Mater. Chem. C
3 10715–22

[19] Moon I K, Lee J and Lee H 2011 Highly qualified reduced graphene oxides: the best
chemical reduction Chem. Commun. 47 9681–3

[20] Gao X, Jang J and Nagase S 2010 Hydrazine and thermal reduction of graphene oxide:
reaction mechanisms, product structures, and reaction design J. Phys. Chem. C 114 832–42

[21] Park S, An J, Potts J R, Velamakanni A, Murali S and Ruoff R S 2011 Hydrazine-
reduction of graphite- and graphene oxide Carbon 49 3019–23

[22] Ye R, James D K and Tour J M 2019 Laser-induced graphene: from discovery to
translation Adv. Mater. 31 1–15

[23] Tour J M 2014 Top-down versus bottom-up fabrication of graphene-based electronics
Chem. Mater. 26 163–71

[24] Li X et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper
foils Science 324 1312–4

[25] Geim A K 2011 Nobel lecture: random walk to graphene Rev. Mod. Phys. 83 851–62
[26] Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M and Zheng Z 2016 Production of

two-dimensional nanomaterials via liquid-based direct exfoliation Small 12 272–93
[27] Abdelkader A M, Cooper A J, Dryfe R AW and Kinloch I A 2015 How to get between the

sheets: a review of recent works on the electrochemical exfoliation of graphene materials
from bulk graphite Nanoscale 7 6944–56

[28] Kurra N, Jiang Q, Nayak P and Alshareef H N 2019 Laser-derived graphene: a three-
dimensional printed graphene electrode and its emerging applications Nano Today 24 81–102

[29] Xu M, Fujita D, Sagisaka K, Watanabe E and Hanagata N 2011 Production of extended
single-layer graphene ACS Nano 5 1522–8

[30] Jiang C et al 2019 A multifunctional and highly flexible triboelectric nanogenerator based
on MXene-enabled porous film integrated with laser-induced graphene electrode Nano
Energy 66 104121

Printed and Flexible Sensor Technology

https://doi.org/10.1038/ncomms4186
https://doi.org/10.1038/ncomms4782
https://doi.org/10.1038/nnano.2008.58
https://doi.org/10.1016/j.carbon.2013.05.052
https://doi.org/10.1103/PhysRevB.80.193411
https://doi.org/10.1016/S0008-6223(00)00155-X
https://doi.org/10.1038/s41528-018-0047-8
https://doi.org/10.1038/ncomms6714
https://doi.org/10.1021/ja205168x
https://doi.org/10.1039/C5TC02043C
https://doi.org/10.1039/c1cc13312h
https://doi.org/10.1021/jp909284g
https://doi.org/10.1016/j.carbon.2011.02.071
https://doi.org/10.1002/adma.201803621
https://doi.org/10.1021/cm402179h
https://doi.org/10.1126/science.1171245
https://doi.org/10.1103/RevModPhys.83.851
https://doi.org/10.1002/smll.201502207
https://doi.org/10.1039/C4NR06942K
https://doi.org/10.1016/j.nantod.2018.12.003
https://doi.org/10.1021/nn103428k
https://doi.org/10.1016/j.nanoen.2019.104121


[31] Kurra N, Sagade A A and Kulkarni G U 2011 Ultrafast direct ablative patterning of
HOPG by single laser pulses to produce graphene ribbons Adv. Funct. Mater. 21 3836–42

[32] Wakaya F, Kurihara T, Yurugi N, Abo S, Abe M and Takai M 2015 Maskless laser
processing of graphene Microelectron. Eng. 141 203–6

[33] El-Kady M F, Strong V, Dubin S and Kaner R B 2012 Laser scribing of high-performance
and flexible graphene-based electrochemical capacitors Science 335 1326–30

[34] Lin S Y et al 2017 High-performance graphene-based flexible heater for wearable
applications RSC Adv. 7 27001–6

[35] Wang D Y et al 2016 High performance flexible strain sensor based on self-locked
overlapping graphene sheets Nanoscale 8 20090–5

[36] Arul R, Oosterbeek R N, Robertson J, Xu G, Jin J and Simpson M C 2016 The mechanism
of direct laser writing of graphene features into graphene oxide films involves photo-
reduction and thermally assisted structural rearrangement Carbon 99 423–31

[37] Mohammad M A et al 2016 Tunable graphene oxide reduction and graphene patterning at
room temperature on arbitrary substrates Carbon 109 173–81

[38] Fatt Teoh H, Tao Y, Soon Tok E, Wei Ho G and Haur Sow C 2012 Direct laser-enabled
graphene oxide-reduced graphene oxide layered structures with micropatterning J. Appl.
Phys. 112 064309

[39] Tao L Q et al 2017 An intelligent artificial throat with sound-sensing ability based on laser
induced graphene Nat. Commun. 8 1–8

[40] Rahimi R, Ochoa M, Yu W and Ziaie B 2015 Highly stretchable and sensitive unidirec-
tional strain sensor via laser carbonization ACS Appl. Mater. Interfaces 7 4463–70

[41] Lamberti A et al 2017 All-SPEEK flexible supercapacitor exploiting laser-induced graphe-
nization 2D Mater. 4 035012

[42] Chyan Y, Ye R, Li Y, Singh S P, Arnusch C J and Tour J M 2018 Laser-induced graphene
by multiple lasing: toward electronics on cloth, paper, and food ACS Nano 12 2176–83

[43] Ye R et al 2018 Laser-induced conversion of Teflon into fluorinated nanodiamonds or
fluorinated graphene ACS Nano 12 1083–8

[44] Park J B et al 2011 Fast growth of graphene patterns by laser direct writing Appl. Phys.
Lett. 98 16–9

[45] Ye R et al 2017 Laser-induced graphene formation on wood Adv. Mater. 29 1–7
[46] Huang T et al 2013 The effects of low power density CO2 laser irradiation on graphene

properties Appl. Surf. Sci. 273 502–6
[47] Kiisk V, Kahro T, Kozlova J, Matisen L and Alles H 2013 Nanosecond laser treatment of

graphene Appl. Surf. Sci. 276 133–7
[48] Kothuru A, Hanumanth Rao C, Puneeth S B, Salve M, Amreen K and Goel S 2020 Laser-

induced flexible electronics (LIFE) for resistive, capacitive and electrochemical sensing
applications IEEE Sens. J. 20 7392–9

[49] Peng Z et al 2015 Flexible boron-doped laser-induced graphene microsupercapacitors ACS
Nano 9 5868–75

[50] Ye R et al 2015 In situ formation of metal oxide nanocrystals embedded in laser-induced
graphene ACS Nano 9 9244–51

[51] Li Y et al 2017 Laser-induced graphene in controlled atmospheres: from superhydrophilic
to superhydrophobic surfaces Adv. Mater. 29 1–8

[52] Li L et al 2016 High-performance pseudocapacitive microsupercapacitors from laser-
induced graphene Adv. Mater. 28 838–45

Printed and Flexible Sensor Technology

https://doi.org/10.1002/adfm.201100832
https://doi.org/10.1016/j.mee.2015.03.049
https://doi.org/10.1126/science.1216744
https://doi.org/10.1039/C7RA03181E
https://doi.org/10.1039/C6NR07620C
https://doi.org/10.1016/j.carbon.2015.12.038
https://doi.org/10.1016/j.carbon.2016.08.005
https://doi.org/10.1063/1.4752752
https://doi.org/10.1038/ncomms14579
https://doi.org/10.1021/am509087u
https://doi.org/10.1088/2053-1583/aa790e
https://doi.org/10.1021/acsnano.7b08539
https://doi.org/10.1021/acsnano.7b05877
https://doi.org/10.1063/1.3569720
https://doi.org/10.1002/adma.201702211
https://doi.org/10.1016/j.apsusc.2013.02.069
https://doi.org/10.1016/j.apsusc.2013.03.047
https://doi.org/10.1109/JSEN.2020.2977694
https://doi.org/10.1021/acsnano.5b00436
https://doi.org/10.1021/acsnano.5b04138
https://doi.org/10.1002/adma.201700496
https://doi.org/10.1002/adma.201503333


[53] Zhang J, Ren M, Li Y and Tour J M 2018 In situ synthesis of efficient water oxidation
catalysts in laser-induced graphene ACS Energy Lett. 3 677–83

[54] Singh S P, Li Y, Zhang J, Tour J M and Arnusch C J 2018 Sulfur-doped laser-induced
porous graphene derived from polysulfone-class polymers and membranes ACS Nano 12
289–97

[55] Lu Z et al 2019 Ionic liquid/poly-L-cysteine composite deposited on flexible and hierarch-
ical porous laser-engraved graphene electrode for high-performance electrochemical anal-
ysis of lead ion Electrochim. Acta 295 514–23

[56] Nguyen P and Berry V 2012 Graphene interfaced with biological cells: opportunities and
challenges J. Phys. Chem. Lett. 3 1024–9

[57] Sharma S, Ganeshan S K, Pattnaik P K, Kanungo S and Chappanda K N 2020 Laser
induced flexible graphene electrodes for electrochemical sensing of hydrazine Mater. Lett.
262 127150

[58] Zhang C, Ping J and Ying Y 2020 Evaluation of trans-resveratrol level in grape wine using
laser-induced porous graphene-based electrochemical sensor Sci. Total Environ. 714 136687

[59] de Araujo W R, Frasson C M R, Ameku W A, Silva J R, Angnes L and Paixão T R L C
2017 Single-step reagentless laser scribing fabrication of electrochemical paper-based
analytical devices Angew. Chemie—Int. Ed. 56 15113–7

[60] Lin S et al 2018 A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-
laser scribed graphene substrate Biosens. Bioelectron. 110 89–96

[61] Tehrani F and Bavarian B 2016 Facile and scalable disposable sensor based on laser
engraved graphene for electrochemical detection of glucose Sci. Rep. 6 1–10

[62] Zhang Z, Song M, Hao J, Wu K, Li C and Hu C 2018 Visible light laser-induced graphene
from phenolic resin: a new approach for directly writing graphene-based electrochemical
devices on various substrates Carbon 127 287–96

[63] Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V and Dominguez R B 2019
Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-
enzymatic hydrogen peroxide detection Sens. Actuators B 301 127101

[64] Zhang Y et al 2019 Laser-induced graphene-based non-enzymatic sensor for detection of
hydrogen peroxide Electroanalysis 31 1334–41

[65] Yoon H, Nah J, Kim J, Xuan X and Park J 2019 Laser-induced graphene stamp for high
performance electrochemical sensing applications Proc. IEEE Int. Conf. Micro Electro
Mech. Syst. pp 537–40

[66] Chang T L and Chen Z C 2015 Surface patterning of multilayer graphene by ultraviolet
laser irradiation in biomolecule sensing devices Appl. Surf. Sci. 359 543–9

[67] Wan Z, Nguyen N T, Gao Y and Li Q 2020 Laser induced graphene for biosensors Sustain.
Mater. Technol. 25 e00205

[68] Vanegas D C et al 2018 Laser scribed graphene biosensor for detection of biogenic amines
in food samples using locally sourced materials Biosensors 8 42

[69] Hui X, Xuan X, Kim J and Park J Y 2019 A highly flexible and selective dopamine sensor
based on Pt–Au nanoparticle-modified laser-induced graphene Electrochim. Acta 328
135066

[70] Nayak P, Kurra N, Xia C and Alshareef H N 2016 Highly efficient laser scribed graphene
electrodes for on-chip electrochemical sensing applications Adv. Electron. Mater. 2 1600185

[71] Ge L, Hong Q, Li H and Li F 2019 A laser-induced TiO2-decorated graphene photo-
electrode for sensitive photoelectrochemical biosensing Chem. Commun. 55 4945–8

Printed and Flexible Sensor Technology

https://doi.org/10.1021/acsenergylett.8b00042
https://doi.org/10.1021/acsnano.7b06263
https://doi.org/10.1021/acsnano.7b06263
https://doi.org/10.1016/j.electacta.2018.10.176
https://doi.org/10.1021/jz300033g
https://doi.org/10.1016/j.matlet.2019.127150
https://doi.org/10.1016/j.scitotenv.2020.136687
https://doi.org/10.1002/anie.201708527
https://doi.org/10.1016/j.bios.2018.03.019
https://doi.org/10.1038/srep27975
https://doi.org/10.1016/j.carbon.2017.11.014
https://doi.org/10.1016/j.snb.2019.127101
https://doi.org/10.1002/elan.201900043
https://doi.org/10.1016/j.apsusc.2015.10.128
https://doi.org/10.1016/j.susmat.2020.e00205
https://doi.org/10.3390/bios8020042
https://doi.org/10.1016/j.electacta.2019.135066
https://doi.org/10.1016/j.electacta.2019.135066
https://doi.org/10.1002/aelm.201600185
https://doi.org/10.1039/C9CC00889F


[72] Nasraoui S et al 2019 Investigation of laser induced graphene electrodes modified
by MWNT/AuNPs for detection of nitrite 16th Int. Multi-Conf. Syst. Signals Devices pp
615–20

[73] Rahimi R, Ochoa M, Tamayol A, Khalili S, Khademhosseini A and Ziaie B 2017 Highly
stretchable potentiometric pH sensor fabricated via laser carbonization and machining of
carbon−polyaniline composite ACS Appl. Mater. Interfaces 9 9015–23

[74] Xu G, Jarjes Z A, Desprez V, Kilmartin P A and Travas-Sejdic J 2018 Sensitive, selective,
disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed
graphene, Biosens. Bioelectron. 107 184–91

[75] Fenzl C, Nayak P, Hirsch T, Otto S, Alshareef H N and Baeumner A J 2017 Laser-scribed
graphene electrodes for aptamer-based biosensing ACS Sens. 2 616–20

[76] Garland N T et al 2018 Flexible laser-induced graphene for nitrogen sensing in soil ACS
Appl. Mater. Interfaces 10 39124–33

[77] You Z et al 2020 Laser-induced noble metal nanoparticle–graphene composites enabled
flexible biosensor for pathogen detection Biosens. Bioelectron. 150 111896

[78] Soares R R A et al 2020 Laser-induced graphene electrochemical immunosensors for rapid
and label-free monitoring of Salmonella enterica in chicken broth ACS Sensors 5 1900–11

[79] Stanford M G, Yang K, Chyan Y, Kittrell C and Tour J M 2019 Laser-induced graphene
for flexible and embeddable gas sensors ACS Nano 13 3474–82

[80] Dosi M, Lau I, Zhuang Y, Simakov D S A, Fowler M W and Pope M A 2019
Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused
laser-induced graphene ACS Appl. Mater. Interfaces 11 6166–73

[81] Wang Y, Niu Z, Chen J, Zhai Y, Xu Y and Luo S 2019 Freestanding laser induced
graphene paper based liquid sensors Carbon 153 472–80

[82] Tian Q, Yan W, Li Y and Ho D 2020 Bean pod-inspired ultrasensitive and self-healing
pressure sensor based on laser-induced graphene and polystyrene microsphere sandwiched
structure ACS Appl. Mater. Interfaces 12 9710–7

[83] Chhetry A, Sharifuzzaman M, Yoon H, Sharma S, Xuan X and Park J Y 2019 MoS2-
decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable
piezoresistive strain sensor ACS Appl. Mater. Interfaces 11 22531–42

[84] Dallinger A, Keller K, Fitzek H and Greco F 2020 Stretchable and skin-conformable
conductors based on polyurethane/laser-induced graphene ACS Appl. Mater. Interfaces 12
19855–65

[85] Jeong S Y, Ma Y W, Lee J U, Je G J and Shin B S 2019 Flexible and highly sensitive strain
sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser Sensors
19 1–12

[86] Fu X-Y, Chen Z-D, Han D-D, Zhang Y-L, Xia H and Sun H-B 2020 Laser fabrication of
graphene-based supercapacitors Photon. Res. 8 04000577

[87] Lee S H, Kim K Y and Yoon J R 2020 Binder- and conductive additive-free laser-induced
graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors NPG Asia Mater. 12 28

[88] Zhou C et al 2019 Laser-induced bi-metal sulfide/graphene nanoribbon hybrid frameworks
for high-performance all-in-one fiber supercapacitors J. Power Sources 438 227044

[89] Kim K Y, Choi H, Van Tran C and Bin In J 2019 Simultaneous densification and nitrogen
doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications J.
Power Sources 441 227199

Printed and Flexible Sensor Technology

https://doi.org/10.1021/acsami.6b16228
https://doi.org/10.1016/j.bios.2018.02.031
https://doi.org/10.1021/acsami.8b10991
https://doi.org/10.1016/j.bios.2019.111896
https://doi.org/10.1021/acssensors.9b02345
https://doi.org/10.1021/acsnano.8b09622
https://doi.org/10.1021/acsami.8b22310
https://doi.org/10.1016/j.carbon.2019.07.054
https://doi.org/10.1021/acsami.9b18873
https://doi.org/10.1021/acsami.0c03148
https://doi.org/10.1021/acsami.0c03148
https://doi.org/10.3390/s19224867
https://doi.org/10.1038/s41427-020-0204-0
https://doi.org/10.1016/j.jpowsour.2019.227044
https://doi.org/10.1016/j.jpowsour.2019.227199


[90] Wang W et al 2020 Tailoring the surface morphology and nanoparticle distribution of laser-
induced graphene/Co3O4 for high-performance flexible microsupercapacitors Appl. Surf.
Sci. 504 144487

[91] Lee Y A et al 2020 Attachable micropseudocapacitors using highly swollen laser-induced-
graphene electrodes Chem. Eng. J. 386 123972

[92] Liu H et al 2020 Laser-induced and KOH-activated 3D graphene: a flexible activated
electrode fabricated via direct laser writing for in-plane micro-supercapacitors Chem. Eng.
J. 393 124672

[93] Kavinkumar T, Kavitha P, Naresh N, Manivannan S, Muneeswaran M and Neppolian B
2019 High performance flexible solid-state symmetric supercapacitors based on laser
induced porous reduced graphene oxide-graphene oxide hybrid nanostructure devices
Appl. Surf. Sci. 480 671–9

[94] Hawes G F, Yilman D, Noremberg B S and Pope M A 2019 Supercapacitors fabricated via
laser-induced carbonization of biomass-derived poly(furfuryl alcohol)/graphene oxide
composites ACS Appl. Nano Mater. 2 6312–24

[95] Cho E C et al 2020 PEDOT-modified laser-scribed graphene films as binder- and metallic
current collector-free electrodes for large-sized supercapacitors Appl. Surf. Sci. 518 146193

[96] Peng Z, Lin J, Ye R, Samuel E L G and Tour J M 2015 Flexible and stackable laser-
induced graphene supercapacitors ACS Appl. Mater. Interfaces 7 3414–9

[97] Cai J, Lv C and Watanabe A 2016 Cost-effective fabrication of high-performance flexible
all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further
surface treatment J. Mater. Chem. A 4 1671–9

[98] Gao W et al 2011 Direct laser writing of micro-supercapacitors on hydrated graphite oxide
films Nat. Nanotechnol. 6 496–500

[99] El-Kady M F and Kaner R B 2013 Scalable fabrication of high-power graphene micro-
supercapacitors for flexible and on-chip energy storage Nat. Commun. 4 1475

[100] Ye X, Long J, Lin Z, Zhang H, Zhu H and Zhong M 2014 Direct laser fabrication of large-
area and patterned graphene at room temperature Carbon 68 784–90

[101] Li M et al 2018 Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous
graphene framework for high-performance energy storage devices Nano Res. 11 2836–46

[102] Hwang J Y et al 2015 Direct preparation and processing of graphene/RuO2 nanocomposite
electrodes for high-performance capacitive energy storage Nano Energy 18 57–70

[103] Li R Z et al 2016 High-rate in-plane micro-supercapacitors scribed onto photo paper using:
in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes Energy Environ.
Sci. 9 1458–67

[104] Moosavifard S E, Shamsi J, Altafi M K and Moosavifard Z S 2016 All-solid state, flexible,
high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4 nano-
sheets Chem. Commun. 52 13140–3

[105] Wang S et al 2017 High-performance stacked in-plane supercapacitors and supercapacitor
array fabricated by femtosecond laser 3D direct writing on polyimide sheets Electrochim.
Acta 241 153–61

[106] Zhang J, Zhang G, Zhou T and Sun S 2020 Recent developments of planar micro-
supercapacitors: fabrication, properties, and applications Adv. Funct. Mater. 30 1–21

[107] Zhang W, Lei Y, Ming F, Jiang Q, Costa P M F J and Alshareef H N 2018 Lignin laser
lithography: a direct-write method for fabricating 3D graphene electrodes for micro-
supercapacitors Adv. Energy Mater. 8 1–9

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.apsusc.2019.144487
https://doi.org/10.1016/j.cej.2019.123972
https://doi.org/10.1016/j.cej.2020.124672
https://doi.org/10.1016/j.apsusc.2019.02.231
https://doi.org/10.1021/acsanm.9b01284
https://doi.org/10.1016/j.apsusc.2020.146193
https://doi.org/10.1021/am509065d
https://doi.org/10.1039/C5TA09450J
https://doi.org/10.1038/nnano.2011.110
https://doi.org/10.1038/ncomms2446
https://doi.org/10.1016/j.carbon.2013.11.069
https://doi.org/10.1007/s12274-017-1914-7
https://doi.org/10.1016/j.nanoen.2015.09.009
https://doi.org/10.1039/C5EE03637B
https://doi.org/10.1039/C6CC07053A
https://doi.org/10.1016/j.electacta.2017.04.138
https://doi.org/10.1002/adfm.201910000
https://doi.org/10.1002/aenm.201801840


[108] Zhang J, Ren M, Wang L, Li Y, Yakobson B I and Tour J M 2018 Oxidized laser-induced
graphene for efficient oxygen electrocatalysis Adv. Mater. 30 1–7

[109] Tiliakos A, Trefilov A M I, Tanasă E, Balan A and Stamatin I 2020 Laser-induced
graphene as the microporous layer in proton exchange membrane fuel cells Appl. Surf. Sci.
504 144096

Chapter 6

[1] Del Ben F et al 2016 A method for detecting circulating tumor cells based on the
measurement of single-cell metabolism in droplet-based microfluidics Angew. Chem. Int.
Ed. Engl. 55 8581–4

[2] Zilionis R et al 2017 Single-cell barcoding and sequencing using droplet microfluidics Nat.
Protoc. 12 44–73

[3] Haandbæk N, Bürgel S C, Rudolf F, Heer F and Hierlemann A 2016 Characterization of
single yeast cell phenotypes using microfluidic impedance cytometry and optical imaging
ACS Sens. 1 1020–7

[4] Gawad S, Schild L and Renaud P H 2001 Micromachined impedance spectroscopy flow
cytometer for cell analysis and particle sizing Lab Chip 1 76–82

[5] Kost G J, Tran N K and Louie R F 2008 Point-of-care testing: principles, practice, and
critical-emergency-disaster medicine Encyclopedia of Analytical Chemistry: Applications,
Theory and Instrumentation (New York: Wiley)

[6] Chortos A, Liu J and Bao Z 2016 Pursuing prosthetic electronic skin Nat. Mater. 15 937–50
[7] Lipomi D J et al 2011 Skin-like pressure and strain sensors based on transparent elastic

films of carbon nanotubes Nat. Nanotechnol. 6 788–92
[8] Kim D H et al 2011 Epidermal electronics Science 333 838–43
[9] He S et al 2020 A comprehensive review of the use of sensors for food intake detection Sens.

Actuators, A 112318
[10] Georgiou K et al 2018 Can wearable devices accurately measure heart rate variability? A

systematic review Folia Med. 60 7–20
[11] Zheng Y-L, Yan B P, Zhang Y-T and Poon C C 2014 An armband wearable device for

overnight and cuff-less blood pressure measurement IEEE Trans. Biomed. Eng. 61 2179–86
[12] Harrison D J, Manz A, Fan Z, Luedi H and Widmer H M 1992 Capillary electrophoresis

and sample injection systems integrated on a planar glass chip Anal. Chem. 64 1926–32
[13] Mannoor M S et al 2012 Graphene-based wireless bacteria detection on tooth enamel Nat.

Commun. 3 763
[14] Windmiller J R and Wang J 2013 Wearable electrochemical sensors and biosensors: a

review Electroanalysis 25 29–46
[15] Stoppa M and Chiolerio A 2014 Wearable electronics and smart textiles: a critical review

Sensors 14 11957–92
[16] Liu H, Li Q, Wang L, Mao Y and Wu C 2016 Effect of SnO2 and Sb-doped SnO2 on the

structure and electrical conductivity of epichlorohydrin rubber Polym. Compos. 8 2411–6
[17] Farhat O et al 2015 Growth of vertically aligned ZnO nanorods on Teflon as a novel

substrate for low-power flexible light sensors Appl. Phys. A 119 1197–201
[18] Comina G, Suska A and Filippini D 2014 PDMS lab-on-a-chip fabrication using 3D

printed templates Lab Chip 14 424–30
[19] El-Saftawy A, Elfalaky A, Ragheb M and Zakhary S 2014 Electron beam induced surface

modifications of PET film Radiat. Phys. Chem. 102 96–102

Printed and Flexible Sensor Technology

https://doi.org/10.1002/adma.201707319
https://doi.org/10.1016/j.apsusc.2019.144096
https://doi.org/10.1002/anie.201602328
https://doi.org/10.1038/nprot.2016.154
https://doi.org/10.1021/acssensors.6b00286
https://doi.org/10.1039/b103933b
https://doi.org/10.1038/nmat4671
https://doi.org/10.1038/nnano.2011.184
https://doi.org/10.1126/science.1206157
https://doi.org/10.2478/folmed-2018-0012
https://doi.org/10.1109/TBME.2014.2318779
https://doi.org/10.1021/ac00041a030
https://doi.org/10.1038/ncomms1767
https://doi.org/10.1002/elan.201200349
https://doi.org/10.3390/s140711957
https://doi.org/10.1002/pc.23423
https://doi.org/10.1007/s00339-015-9177-1
https://doi.org/10.1039/C3LC50956G
https://doi.org/10.1016/j.radphyschem.2014.04.025


[20] Huang X, Pu Z, Feng M, Tong L and Liu X 2013 BaTiO3@MWCNTs core/shell nanotubes
embedded PEN nanocomposite films with high thermal stability and high permittivity
Mater. Lett. 96 139–42

[21] Chameswary J and Sebastian M T 2014 Development of butyl rubber–rutile composites for
flexible microwave substrate applications Ceram. Int. 40 7439–48

[22] Kim N et al 2014 Highly conductive PEDOT:PSS nanofibrils induced by solution-processed
crystallization Adv. Mater. 26 2268–72

[23] Cong H-P, Ren X-C, Wang P and Yu S-H 2013 Flexible graphene–polyaniline composite
paper for high-performance supercapacitor Energy Environ. Sci. 6 1185–91

[24] Lou C et al 2016 Flexible graphene electrodes for prolonged dynamic ECG monitoring
Sensors 16 1833

[25] Jung S, Ji T and Varadan V K 2006 Point-of-care temperature and respiration monitoring
sensors for smart fabric applications Smart Mater. Struct. 15 1872

[26] Nag A, Mukhopadhyay S C and Kosel J 2016 Flexible carbon nanotube nanocomposite
sensor for multiple physiological parameter monitoring Sens. Actuators A 251 148–55

[27] Nag A, Afasrimanesh N, Feng S and Mukhopadhyay S C 2018 Strain induced graphite/
PDMS sensors for biomedical applications Sens. Actuators A 271 257–69

[28] Shih W-P et al 2010 Flexible temperature sensor array based on a graphite–polydimethyl-
siloxane composite Sensors 10 3597–610

[29] Feng S 2015 Investigations of paper-based lab-on-chips for on-diaper point-of-care screen-
ing of urinary tract infections Master’s thesis Chinese Academy of Sciences

[30] Yager P et al 2006 Microfluidic diagnostic technologies for global public health Nature 442
412

[31] Martinez A W, Phillips S T, Butte M J and Whitesides G M 2007 Patterned paper as a
platform for inexpensive, low-volume, portable bioassays Angew. Chem. Int. Ed. 46 1318–20

[32] Mu X et al 2015 A paper-based skin patch for the diagnostic screening of cystic fibrosis
Chem. Commun. 51 6365–8

[33] Curto V F et al 2012 Concept and development of an autonomous wearable micro-fluidic
platform for real time pH sweat analysis Sens. Actuators B 175 263–70

[34] Simorangkir R B, Feng S, Sayem A S, Esselle K P and Yang Y 2018 PDMS-embedded
conductive fabric: a simple solution for fabricating PDMS-based wearable antennas with
robust performance 2018 12th Int. Symp. on Medical Information and Communication
Technology (ISMICT) (Piscataway, NJ: IEEE), pp 1–3

[35] Morris D et al 2009 Bio-sensing textile based patch with integrated optical detection system
for sweat monitoring Sens. Actuators B 139 231–6

[36] Mostafalu P et al 2016 A toolkit of thread-based microfluidics, sensors, and electronics for
3D tissue embedding for medical diagnostics Microsyst. Nanoeng. 2 16039

[37] Xiao G et al 2019 A wearable, cotton thread/paper-based microfluidic device coupled with
smartphone for sweat glucose sensing Cellulose 26 4553–62

[38] Fedlheim D L and Foss C A 2001 Metal Nanoparticles: Synthesis, Characterization, and
Applications (Boca Raton, FL: CRC Press)

[39] Endo M, Iijima S and Dresselhaus M S 2013 Carbon Nanotubes (Amsterdam: Elsevier)
[40] Cai J et al 2014 Graphene nanoribbon heterojunctions Nat. Nanotechnol. 9 896–900
[41] Sharon M et al 1998 Spongy carbon nanobeads—a new material Carbon 36 507–11
[42] Wang Z L 2013 Metal and Semiconductor Nanowires: Nanowires and Nanobelts: Materials,

Properties and Devices vol 1 (Berlin: Springer)

Printed and Flexible Sensor Technology

https://doi.org/10.1016/j.matlet.2013.01.022
https://doi.org/10.1016/j.ceramint.2013.12.091
https://doi.org/10.1002/adma.201304611
https://doi.org/10.1039/c2ee24203f
https://doi.org/10.3390/s16111833
https://doi.org/10.1088/0964-1726/15/6/042
https://doi.org/10.1016/j.sna.2016.10.023
https://doi.org/10.1016/j.sna.2018.01.044
https://doi.org/10.3390/s100403597
https://doi.org/10.1038/nature05064
https://doi.org/10.1038/nature05064
https://doi.org/10.1002/anie.200603817
https://doi.org/10.1039/C5CC00717H
https://doi.org/10.1016/j.snb.2012.02.010
https://doi.org/10.1016/j.snb.2009.02.032
https://doi.org/10.1038/micronano.2016.39
https://doi.org/10.1007/s10570-019-02396-y
https://doi.org/10.1038/nnano.2014.184
https://doi.org/10.1016/S0008-6223(98)00060-8


[43] Saetia K et al 2014 Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for
flexible chemiresistive sensor applications Adv. Funct. Mater. 24 492–502

[44] Zhou Y et al 2014 Selective and sensitive colorimetric sensor of mercury (II) based on gold
nanoparticles and 4-mercaptophenylboronic acid Sens. Actuators B 196 106–11

[45] McFarland A D and Van Duyne R P 2003 Single silver nanoparticles as real-time optical
sensors with zeptomole sensitivity Nano Lett. 3 1057–62

[46] Datta S S et al 2014 25th anniversary article: double emulsion templated solid micro-
capsules: mechanics and controlled release Adv. Mater. 26 2205–18

[47] Taccola S et al 2013 Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle
composite thin films and application as conformable humidity sensors ACS Appl. Mater.
Interfaces 5 6324–32

[48] Zhang Y et al 2013 Electrochemical deposition of nickel nanoparticles on reduced graphene
oxide film for nonenzymatic glucose sensing Electroanalysis 25 959–66

[49] Popczun E J, Read C G, Roske C W, Lewis N S and Schaak R E 2014 Highly active
electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles
Angew. Chem. 126 5531–4

[50] Asad M, Sheikhi M H, Pourfath M and Moradi M 2015 High sensitive and selective
flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs Sens. Actuators B
210 1–8

[51] Tiwari P M, Vig K, Dennis V A and Singh S R 2011 Functionalized gold nanoparticles and
their biomedical applications Nanomaterials 1 31–63

[52] Wang X et al 2010 Bandgap-like strong fluorescence in functionalized carbon nanoparticles
Angew. Chem. 122 5438–42

[53] Mochalin V N and Gogotsi Y 2009 Wet chemistry route to hydrophobic blue fluorescent
nanodiamond JACS 131 4594–5

[54] Cao L et al 2007 Carbon dots for multiphoton bioimaging JACS 129 11318–9
[55] Guo Z, Pereira T, Choi O, Wang Y and Hahn H T 2006 Surface functionalized alumina

nanoparticle filled polymeric nanocomposites with enhanced mechanical properties J.
Mater. Chem. 16 2800–8

[56] Amstad E, Textor M and Reimhult E 2011 Stabilization and functionalization of iron oxide
nanoparticles for biomedical applications Nanoscale 3 2819–43

[57] Hu S-L et al 2009 One-step synthesis of fluorescent carbon nanoparticles by laser irradiation
J. Mater. Chem. 19 484–8

[58] Bae S et al 2010 Roll-to-roll production of 30-inch graphene films for transparent electrodes
Nat. Nanotechnol. 5 574

[59] Lee S H, Bae K H, Kim S H, Lee K R and Park T G 2008 Amine-functionalized gold
nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers Int. J.
Pharm. 364 94–101

[60] Lipka J et al 2010 Biodistribution of PEG-modified gold nanoparticles following intra-
tracheal instillation and intravenous injection Biomaterials 31 6574–81

[61] Cho W-S et al 2010 Size-dependent tissue kinetics of PEG-coated gold nanoparticles
Toxicol. Appl. Pharmacol. 245 116–23

[62] Wangoo N, Bhasin K, Mehta S and Suri C R 2008 Synthesis and capping of water-
dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies J.
Colloid Interface Sci. 323 247–54

Printed and Flexible Sensor Technology

https://doi.org/10.1002/adfm.201302344
https://doi.org/10.1016/j.snb.2014.01.060
https://doi.org/10.1021/nl034372s
https://doi.org/10.1002/adma.201305119
https://doi.org/10.1021/am4013775
https://doi.org/10.1002/elan.201200479
https://doi.org/10.1002/ange.201402646
https://doi.org/10.1016/j.snb.2014.12.086
https://doi.org/10.3390/nano1010031
https://doi.org/10.1002/ange.201000982
https://doi.org/10.1021/ja9004514
https://doi.org/10.1021/ja073527l
https://doi.org/10.1039/b603020c
https://doi.org/10.1039/c1nr10173k
https://doi.org/10.1039/B812943F
https://doi.org/10.1038/nnano.2010.132
https://doi.org/10.1016/j.ijpharm.2008.07.027
https://doi.org/10.1016/j.biomaterials.2010.05.009
https://doi.org/10.1016/j.taap.2010.02.013
https://doi.org/10.1016/j.jcis.2008.04.043


[63] Javier D J, Nitin N, Levy M, Ellington A and Richards-Kortum R 2008 Aptamer-targeted
gold nanoparticles as molecular-specific contrast agents for reflectance imaging
Bioconjugate Chem. 19 1309–12

[64] HyeáJang H and SuáHan M 2010 A functionalized gold nanoparticles-assisted universal
carrier for antisense DNA Chem. Commun. 46 4151–3

[65] Hu W, Zhang S N, Niu X, Liu C and Pei Q 2014 An aluminum nanoparticle–acrylate
copolymer nanocomposite as a dielectric elastomer with a high dielectric constant J. Mater.
Chem. C 2 1658–66

[66] Herzer N, Hoeppener S and Schubert U S 2010 Fabrication of patterned silane based self-
assembled monolayers by photolithography and surface reactions on silicon-oxide sub-
strates Chem. Commun. 46 5634–52

[67] Khumpuang S, Maekawa H and Hara S 2013 Photolithography for minimal fab system
IEEJ Trans. Sens. Micromach. 133 272–7

[68] Harris D J, Hu H, Conrad J C and Lewis J A 2007 Patterning colloidal films via
evaporative lithography Phys. Rev. Lett. 98 148301

[69] Nag A, Zia A I, Li X, Mukhopadhyay S C and Kosel J 2016 Novel sensing approach for
LPG leakage detection: part I—operating mechanism and preliminary results IEEE Sensors
J. 16 996–1003

[70] Lee H S and Yoon J-B 2005 A simple and effective lift-off with positive photoresist J.
Micromech. Microeng. 15 2136

[71] Sugiura S et al 2007 Photoresponsive polymer gel microvalves controlled by local light
irradiation Sens. Actuators A 140 176–84

[72] Zhuang D and Edgar J 2005 Wet etching of GaN, AlN, and SiC: a review Mater. Sci. Eng.
R 48 1–46

[73] Powell R A 2012 Dry Etching for Microelectronics (Amsterdam: Elsevier)
[74] Nag A, Mukhopadhyay S and Kosel J 2016 Transparent biocompatible sensor patches for

touch sensitive prosthetic limbs 10th Int. Conf. on Sensing Technology (ICST) (Piscataway,
NJ: IEEE), pp 1–6

[75] Bariya M et al 2018 Roll-to-roll gravure printed electrochemical sensors for wearable and
medical devices ACS Nano 12 6978–87

[76] Ohta S et al 2013 All-solid-state lithium ion battery using garnet-type oxide and Li3BO3

solid electrolytes fabricated by screen-printing J. Power Sources 238 53–6
[77] Khan S, Lorenzelli L and Dahiya R 2014 Bendable piezoresistive sensors by screen printing

MWCNT/PDMS composites on flexible substrates 10th Conf. on PhD Research in
Microelectronics and Electronics (PRIME) (Piscataway, NJ: IEEE), pp 1–4

[78] Simorangkir R B, Yang Y, Esselle K P and Zeb B A et al 2017 A method to realize robust
flexible electronically tunable antennas using polymer-embedded conductive fabric IEEE
Trans. Antennas Propag. 66 50–8

[79] Merilampi S, Laine-Ma T and Ruuskanen P 2009 The characterization of electrically
conductive silver ink patterns on flexible substrates Microelectron. Reliab. 49 782–90

[80] Ping J, Wu J, Wang Y and Ying Y 2012 Simultaneous determination of ascorbic acid,
dopamine and uric acid using high-performance screen-printed graphene electrode Biosens.
Bioelectron. 34 70–6

[81] Pardo D A, Jabbour G E and Peyghambarian N 2000 Application of screen printing in the
fabrication of organic light-emitting devices Adv. Mater. 12 1249–52

Printed and Flexible Sensor Technology

https://doi.org/10.1021/bc8001248
https://doi.org/10.1039/c0cc00103a
https://doi.org/10.1039/c3tc31929f
https://doi.org/10.1039/c0cc00674b
https://doi.org/10.1541/ieejsmas.133.272
https://doi.org/10.1103/PhysRevLett.98.148301
https://doi.org/10.1109/JSEN.2015.2496400
https://doi.org/10.1088/0960-1317/15/11/020
https://doi.org/10.1016/j.sna.2007.06.024
https://doi.org/10.1016/j.mser.2004.11.002
https://doi.org/10.1021/acsnano.8b02505
https://doi.org/10.1016/j.jpowsour.2013.02.073
https://doi.org/10.1016/j.microrel.2009.04.004
https://doi.org/10.1016/j.bios.2012.01.016
https://doi.org/10.1002/1521-4095(200009)12:17%3C1249::AID-ADMA1249%3E3.0.CO;2-Y


[82] Locher I and Tröster G 2007 Screen-printed textile transmission lines Textile Res. J. 77
837–42

[83] Siegel A C et al 2010 Foldable printed circuit boards on paper substrates Adv. Funct. Mater.
20 28–35

[84] Nag A, Mukhopadhyay S C and Kosel J 2016 Tactile sensing from laser-ablated metallized
PET films IEEE Sensors J. 17 7–13

[85] Barron J A, Ringeisen B R, Kim H, Spargo B J and Chrisey D B 2004 Application of laser
printing to mammalian cells Thin Solid Films 453 383–7

[86] Birnbaum A J, Kim H, Charipar N A and Piqué A 2010 Laser printing of multi-layered
polymer/metal heterostructures for electronic and MEMS devices Appl. Phys. A 99 711–6

[87] Hossain S Z et al 2009 Development of a bioactive paper sensor for detection of
neurotoxins using piezoelectric inkjet printing of sol−gel-derived bioinks Anal. Chem. 81
5474–83

[88] Homenick C M et al 2016 Fully printed and encapsulated SWCNT-based thin film
transistors via a combination of R2R gravure and inkjet printing ACS Appl. Mater.
Interfaces 8 27900–10

[89] Singh M, Haverinen H M, Dhagat P and Jabbour G E 2010 Inkjet printing—process and
its applications Adv. Mater. 22 673–85

[90] Shen W, Zhang X, Huang Q, Xu Q and Song W 2014 Preparation of solid silver
nanoparticles for inkjet printed flexible electronics with high conductivity Nanoscale 6
1622–8

[91] Wang S et al 2015 Inkjet printing of conductive patterns and supercapacitors using a multi-
walled carbon nanotube/Ag nanoparticle based ink J. Mater. Chem. A 3 2407–13

[92] Farraj Y, Grouchko M and Magdassi S 2015 Self-reduction of a copper complex MOD ink
for inkjet printing conductive patterns on plastics Chem. Commun. 51 1587–90

[93] Zhu H, Lin X, Su Y, Dong H and Wu J 2015 Screen-printed microfluidic dielectrophoresis
chip for cell separation Biosens. Bioelectron. 63 371–8

[94] Eswaraiah V, Balasubramaniam K and Ramaprabhu S 2011 Functionalized graphene
reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring J.
Mater. Chem. 21 12626–8

[95] Lin L et al 2013 Transparent flexible nanogenerator as self-powered sensor for trans-
portation monitoring Nano Energy 2 75–81

[96] Latessa G, Brunetti F, Reale A, Saggio G and Di Carlo A 2009 Piezoresistive behaviour of
flexible PEDOT:PSS based sensors Sens. Actuators B 139 304–9

[97] Bandodkar A J et al 2015 Tattoo-based noninvasive glucose monitoring: a proof-of-concept
study Anal. Chem. 87 394–8

[98] Salinas H R et al 2020 A colorful approach towards developing new nano-based imaging
contrast agents for improved cancer detection Biomater. Sci. 9 482–95

[99] Takamatsu S et al 2011 Flexible fabric keyboard with conductive polymer-coated fibers
IEEE Sensors (Piscataway, NJ: IEEE), pp 659–62

[100] Chen N, Engel J, Pandya S and Liu C 2006 Flexible skin with two-axis bending capability
made using weaving-by-lithography fabrication method 19th IEEE Int. Conf. on Micro
Electro Mechanical Systems (Istanbul) (Piscataway, NJ: IEEE), pp 330–3

[101] Lee J B and Subramanian V 2005 Weave patterned organic transistors on fiber for e-textiles
IEEE Trans. Electron Devices 52 269–75

Printed and Flexible Sensor Technology

https://doi.org/10.1177/0040517507080679
https://doi.org/10.1177/0040517507080679
https://doi.org/10.1002/adfm.200901363
https://doi.org/10.1109/JSEN.2016.2617878
https://doi.org/10.1016/j.tsf.2003.11.161
https://doi.org/10.1007/s00339-010-5743-8
https://doi.org/10.1021/ac900660p
https://doi.org/10.1021/ac900660p
https://doi.org/10.1021/acsami.6b06838
https://doi.org/10.1002/adma.200901141
https://doi.org/10.1039/C3NR05479A
https://doi.org/10.1039/C3NR05479A
https://doi.org/10.1039/C4TA05625F
https://doi.org/10.1039/C4CC08749F
https://doi.org/10.1016/j.bios.2014.07.072
https://doi.org/10.1039/c1jm12302e
https://doi.org/10.1016/j.nanoen.2012.07.019
https://doi.org/10.1016/j.snb.2009.03.063
https://doi.org/10.1021/ac504300n
https://doi.org/10.1109/TED.2004.841331


[102] Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N and Tröster G 2010 Woven
electronic fibers with sensing and display functions for smart textiles Adv. Mater. 22
5178–82

[103] Briedis U, Valisevskis A and Grecka M 2017 Development of a smart garment prototype
with enuresis alarm using an embroidery-machine-based technique for the integration of
electronic components Procedia Comput. Sci. 104 369–74

[104] Hain R, Kähler C J and Tropea C 2007 Comparison of CCD, CMOS and intensified
cameras Exp. Fluids 42 403–11

[105] Nag A, Feng S, Mukhopadhyay S, Kosel J and Inglis D 2018 3D printed mould-based
graphite/PDMS sensor for low-force applications Sens. Actuators A 280 525–34

[106] He S et al 2020 Recent progress in 3D printed mold-based sensors Sensors 20 703
[107] Nag A, Feng S, Afsarimanesh N, Mukhopadhyay S and Kosel J 2018 Development of

novel Gold/PDMS sensors for medical applications 12th Int. Symp. on Medical
Information and Communication Technology (ISMICT) (Piscataway, NJ: IEEE), pp 1–5

[108] Nag A, Feng S, Mukhopadhyay S and Kosel J 2018 Development of printed sensors for
shoe sensing applications 12th Int. Symp. on Medical Information and Communication
Technology (ISMICT) (Piscataway, NJ: IEEE), pp 1–6

[109] Yuan Z et al 2017 Transparent and flexible triboelectric sensing array for touch security
applications ACS Nano. 11 8364–9

[110] Zhang Y et al 2020 Skin-interfaced microfluidic devices with one-opening chambers and
hydrophobic valves for sweat collection and analysis Lab Chip 20 2635–45

[111] Wang M, Hu L and Xu C 2017 Recent advances in the design of polymeric microneedles
for transdermal drug delivery and biosensing Lab Chip 17 1373–87

[112] Lau S, Fei J, Liu H, Chen W and Liu R 2017 Multilayered pyramidal dissolving
microneedle patches with flexible pedestals for improving effective drug delivery J.
Control. Release 265 113–9

[113] Feng S, Clement S, Zhu Y, Goldys E M and Inglis D W 2019 Microfabricated needle for
hydrogen peroxide detection RSC Adv. 9 18176–81

[114] Feng S et al 2017 A microfluidic needle for sampling and delivery of chemical signals by
segmented flows Appl. Phys. Lett. 111 183702

[115] Feng S, Shirani E and Inglis D W 2019 Droplets for sampling and transport of chemical
signals in biosensing: a review Biosensors 9 80

[116] Feng S, Nguyen M N and Inglis D W 2017 Microfluidic droplet extraction by hydrophilic
membrane Micromachines 8 331

[117] Feng S, Skelley A M, Anwer A G, Liu G and Inglis D W 2017 Maximizing particle
concentration in deterministic lateral displacement arrays Biomicrofluidics 11 024121

[118] Inglis D, Vernekar R, Krüger T and Feng S 2020 The fluidic resistance of an array of
obstacles and a method for improving boundaries in deterministic lateral displacement
arrays Microfluid. Nanofluid. 24 1–8

[119] Bandodkar A J, Jeang W J, Ghaffari R and Rogers J A 2019 Wearable sensors for
biochemical sweat analysis Annu. Rev. Anal. Chem. 12 1–22

[120] Nag A, Alahi M E E, Feng S and Mukhopadhyay S C 2019 IoT-based sensing system for
phosphate detection using graphite/PDMS sensors Sens. Actuators, A 286 43–50

[121] Yuan Y et al 2018 Development of an internet of things based electrochemical microfluidic
system for free calcium detection Appl. Sci. 8 1357

Printed and Flexible Sensor Technology

https://doi.org/10.1002/adma.201002159
https://doi.org/10.1002/adma.201002159
https://doi.org/10.1016/j.procs.2017.01.147
https://doi.org/10.1007/s00348-006-0247-1
https://doi.org/10.1016/j.sna.2018.08.028
https://doi.org/10.3390/s20030703
https://doi.org/10.1021/acsnano.7b03680
https://doi.org/10.1039/D0LC00400F
https://doi.org/10.1039/C7LC00016B
https://doi.org/10.1016/j.jconrel.2016.08.031
https://doi.org/10.1039/C9RA03028J
https://doi.org/10.1063/1.4995657
https://doi.org/10.3390/bios9020080
https://doi.org/10.3390/mi8110331
https://doi.org/10.1063/1.4981014
https://doi.org/10.1007/s10404-020-2323-x
https://doi.org/10.1146/annurev-anchem-061318-114910
https://doi.org/10.1016/j.sna.2018.12.020
https://doi.org/10.3390/app8081357


[122] Liu G, Cao C, Ni S, Feng S and Wei H 2019 On-chip structure-switching aptamer-modified
magnetic nanobeads for the continuous monitoring of interferon-gamma ex vivo Microsyst.
Nanoeng. 5 1–11

[123] Bandodkar A J et al 2019 Battery-free, skin-interfaced microfluidic/electronic systems for
simultaneous electrochemical, colorimetric, and volumetric analysis of sweat Sci. Adv. 5
eaav3294

[124] Bandodkar A J et al 2019 Soft, skin-interfaced microfluidic systems with passive galvanic
stopwatches for precise chronometric sampling of sweat Adv. Mater. 1902109

[125] Heikenfeld J 2016 Bioanalytical devices: technological leap for sweat sensing Nature 529
475–6

[126] Choi J, Ghaffari R, Baker L B and Rogers J A 2018 Skin-interfaced systems for sweat
collection and analytics Sci. Adv. 4 eaar3921

[127] Choi J et al 2017 Soft, skin-mounted microfluidic systems for measuring secretory fluidic
pressures generated at the surface of the skin by eccrine sweat glands Lab Chip 17 2572–80

[128] Martín A et al 2017 Epidermal microfluidic electrochemical detection system: enhanced
sweat sampling and metabolite detection ACS Sens. 2 1860–8

[129] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ
perspiration analysis Nature 529 509–14

[130] Emaminejad S et al 2017 Autonomous sweat extraction and analysis applied to cystic
fibrosis and glucose monitoring using a fully integrated wearable platform Proc. Natl Acad.
Sci. USA 114 4625–30

[131] Kim J et al 2016 Noninvasive alcohol monitoring using a wearable tattoo-based iontopho-
retic-biosensing system ACS Sens. 1 1011–9

[132] Yang Y et al 2019 A laser-engraved wearable sensor for sensitive detection of uric acid and
tyrosine in sweat Nat. Biotechnol. 38 217–24

[133] Feng S L and Dong T 2014 Applied technology in diaper-based UTI testing for elder people
by using nitrite ion selective electrode Appl. Mech. Mater. 662 225–28

[134] Feng S and Dong T 2014 Design and characterization of a lab-on-chip for continuous
bioluminescent measurements of ATP IEEE Int. Symp. on Medical Measurements and
Applications (Piscataway, NJ: IEEE), pp 1–4

[135] Feng S, Dong T and Yang Z 2014 Detection of urinary tract infections on lab-on-chip
device by measuring photons emitted from ATP bioluminescence 36th Annual Int. Conf. of
the IEEE Engineering in Medicine and Biology Society (Piscataway, NJ: IEEE), pp 3114–7

[136] Feng S, Roseng L E and Dong T 2015 Quantitative detection of Escherichia coli and
measurement of urinary tract infection diagnosis possibility by use of a portable, handheld
sensor IEEE Int. Symp. on Medical Measurements and Applications (Piscataway, NJ:
IEEE), pp 586–9

[137] Chen C and Dong T 2015 Microfluidic paper-based analytical devices for colorimetric
detection of urinary tract infection biomarkers on adult diapers 37th Annual Int. Conf. of
the IEEE Engineering in Medicine and Biology Society (EMBC) (Piscataway, NJ: IEEE),
pp 5892–5

[138] Chen C, Wu Y and Dong T 2014 Dipsticks integrated on smart diapers for colorimetric
analysis of urinary tract infections in the field Proc. of the 16th Int. Conf. on Mechatronics
(Piscataway, NJ: IEEE), pp 423–7

[139] Song X 2008 Lateral flow device for attachment to an absorbent article Australian patent
AU2008243894B2

Printed and Flexible Sensor Technology

https://doi.org/10.1038/s41378-019-0074-1
https://doi.org/10.1126/sciadv.aav3294
https://doi.org/10.1126/sciadv.aav3294
https://doi.org/10.1038/529475a
https://doi.org/10.1038/529475a
https://doi.org/10.1126/sciadv.aar3921
https://doi.org/10.1039/C7LC00525C
https://doi.org/10.1021/acssensors.7b00729
https://doi.org/10.1038/nature16521
https://doi.org/10.1073/pnas.1701740114
https://doi.org/10.1021/acssensors.6b00356
https://doi.org/10.1038/s41587-019-0321-x


[140] Karlsen H, Dong T and Suo Z 2018 A diaper pad for diaper-based urine collection and
colorimetric screening of urinary biomarkers Ann. Biomed. Eng. 46 717–25

[141] Zhou J and Dong T 2018 Design of a wearable device for real-time screening of urinary
tract infection and kidney disease based on smartphone Analyst 143 2812–8

[142] Birkhahn M et al 2013 A novel precision-engineered microfiltration device for capture and
characterisation of bladder cancer cells in urine Eur. J. Cancer 49 3159–68

[143] Liu J and Duan Y 2012 Saliva: a potential media for disease diagnostics and monitoring
Oral Oncol. 48 569–77

[144] Bhakta S A, Borba R, Taba M Jr, Garcia C D and Carrilho E 2014 Determination of nitrite
in saliva using microfluidic paper-based analytical devices Anal. Chim. Acta 809 117–22

[145] Kim J et al 2014 Non-invasive mouthguard biosensor for continuous salivary monitoring of
metabolites Analyst 139 1632–6

[146] Kim J et al 2015 Wearable salivary uric acid mouthguard biosensor with integrated wireless
electronics Biosens. Bioelectron. 74 1061–8

[147] Arakawa T et al 2016 Mouthguard biosensor with telemetry system for monitoring of saliva
glucose: a novel cavitas sensor Biosens. Bioelectron. 84 106–11

[148] de Castro L F et al 2019 Salivary diagnostics on paper microfluidic devices and their use as
wearable sensors for glucose monitoring Anal. Bioanal.Chem. 411 4919–28

[149] Tseng P, Napier B, Garbarini L, Kaplan D L and Omenetto F G 2018 Functional, RF-
trilayer sensors for tooth-mounted, wireless monitoring of the oral cavity and food
consumption Adv. Mater. 30 1703257

[150] Güder F et al 2016 Paper-based electrical respiration sensor Angew. Chem. Int. Ed. 55
5727–32

[151] de Castro L F et al 2019 Salivary diagnostics on paper microfluidic devices and their use as
wearable sensors for glucose monitoring Anal. Bioanal.Chem. 411 4919–28

[152] Jiang H, Ochoa M, Waimin J F, Rahimi R and Ziaie B 2019 A pH-regulated drug delivery
dermal patch for targeting infected regions in chronic wounds Lab Chip 19 2265–74

[153] Schneider L A, Korber A, Grabbe S and Dissemond J 2007 Influence of pH on wound-
healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298 413–20

[154] Bagherifard S et al 2016 Dermal patch with integrated flexible heater for on demand drug
delivery Adv. Healthcare Mater. 5 175–84

Chapter 7

[1] Forrest S 2004 The path to ubiquitous and low-cost organic electronic appliances on plastic
Nature 428 911–18

[2] Kim S et al 2011 Low-power flexible organic light-emitting diode display device Adv.
Mater. 23 3511–16

[3] Yoon B, Ham D, Yarimaga O, An H, Lee C and Kim J 2011 Inkjet printing of conjugated
polymer precursors on paper substrates for colorimetric sensing and flexible electro-
thermochromic display Adv. Mater. 23 5492–97

[4] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ
perspiration analysis Nature 529 509–14

[5] Chen L, Tee B, Chortos A, Schwartz G, Tse V, Lipomi D J, Wong H, McConnell M and
Bao Z 2014 Continuous wireless pressure monitoring and mapping with ultra-small passive
sensors for health monitoring and critical care Nat. Commun. 5 5028

Printed and Flexible Sensor Technology

https://doi.org/10.1007/s10439-018-1996-8
https://doi.org/10.1039/C8AN00157J
https://doi.org/10.1016/j.ejca.2013.04.033
https://doi.org/10.1016/j.oraloncology.2012.01.021
https://doi.org/10.1016/j.aca.2013.11.044
https://doi.org/10.1039/C3AN02359A
https://doi.org/10.1016/j.bios.2015.07.039
https://doi.org/10.1016/j.bios.2015.12.014
https://doi.org/10.1007/s00216-019-01788-0
https://doi.org/10.1002/adma.201703257
https://doi.org/10.1002/anie.201511805
https://doi.org/10.1002/anie.201511805
https://doi.org/10.1007/s00216-019-01788-0
https://doi.org/10.1039/C9LC00206E
https://doi.org/10.1007/s00403-006-0713-x
https://doi.org/10.1002/adhm.201500357
https://doi.org/10.1038/nature02498
https://doi.org/10.1002/adma.201101066
https://doi.org/10.1002/adma.201103471
https://doi.org/10.1038/nature16521
https://doi.org/10.1038/ncomms6028


[6] Imani S, Bandodkar A, Mohan A, Kumar R, Yu S, Wang J and Mercier P 2016 A
wearable chemical–electrophysiological hybrid biosensing system for real-time health and
fitness monitoring Nat. Commun. 7 11650

[7] Zhang H et al 2015 A flexible and implantable piezoelectric generator harvesting energy
from the pulsation of ascending aorta: in vitro and in vivo studies Nano Energy 12 296–304

[8] Khan Y, Ostfeld A, Lochner C, Pierre A and Arias A 2016 Monitoring of vital signs with
flexible and wearable medical devices Adv. Mater. 28 4373–95

[9] Fang H et al 2017 Capacitively coupled arrays of multiplexed flexible silicon transistors for
long-term cardiac electrophysiology Nat. Biomed. Eng. 1 0055

[10] Arias A, MacKenzie J, McCulloch I, Rivnay J and Salleo A 2010 Materials and
applications for large area electronics: solution-based approaches Chem. Rev. 110 3–24

[11] Singh M, Haverinen H, Dhagat P and Jabbour G 2010 Inkjet printing-process and its
applications Adv. Mater. 22 673–85

[12] Wang C, Takei K, Takahashi T and Javey A 2013 Carbon nanotube electronics—moving
forward Chem. Soc. Rev. 42 2592–609

[13] Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G and Alexander A 2006
Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and
workplace safety Toxicol. Sci. 92 5–22

[14] Cui Z, Zhou C, Qiu S, Chen Z, Lin J, Zhao J, Ma C and Su W 2016 Printed Electronics.
(Singapore: Wiley)

[15] Wang C M, Roy Chowdhury A N, Koh S J A and Zhang Y Y 2014 Molecular dynamics
simulation and continuum shell model for buckling analysis of carbon nanotubes Modeling
of Carbon Nanotubes, Graphene and their Composites Springer Series in Materials Science
ed K Tserpes and N Silvestre vol 188 (Cham: Springer)

[16] Okimoto H, Takenobu T, Yanagi K, Miyata Y, Shimotani H, Kataura H and Iwasa Y
2010 Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing
Adv. Mater. 22 3981–86

[17] Ha M, Xia Y, Green A, Zhang W, Renn M, Kim C, HersamM and Frisbie C 2010 Printed,
sub-3V digital circuits on plastic from aqueous carbon nanotube inks ACS Nano 4 4388–95

[18] Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K and Zhou C 2011 Fully
printed separated carbon nanotube thin film transistor circuits and its application in organic
light emitting diode control Nano Lett. 11 5301–8

[19] Beecher P et al 2007 Ink-jet printing of carbon nanotube thin film transistors J. Appl. Phys.
102 043710

[20] Cao X, Chen H, Gu X, Liu B, Wang W, Cao Y, Wu F and Zhou C 2014 Screen printing as
a scalable and low-cost approach for rigid and flexible thin-film transistors using separated
carbon nanotubes ACS Nano 8 12769–76

[21] Ha M, Seo J, Prabhumirashi P, Zhang W, Geier M, Renn M, Kim C, Hersam M and
Frisbie C 2013 Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring
oscillators with sub-5 μs stage delays Nano Lett. 13 954–60

[22] Jung M et al 2010 All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag
on plastic foils IEEE Trans. Electron Devices 57 571–80

[23] Lau P, Takei K, Wang C, Ju Y, Kim J, Yu Z, Takahashi T, Cho G and Javey A 2013 Fully
printed, high performance carbon nanotube thin-film transistors on flexible substrates Nano
Lett. 13 3864–69

Printed and Flexible Sensor Technology

https://doi.org/10.1038/ncomms11650
https://doi.org/10.1016/j.nanoen.2014.12.038
https://doi.org/10.1002/adma.201504366
https://doi.org/10.1038/s41551-017-0055
https://doi.org/10.1021/cr900150b
https://doi.org/10.1002/adma.200901141
https://doi.org/10.1039/C2CS35325C
https://doi.org/10.1093/toxsci/kfj130
https://doi.org/10.1002/adma.201000889
https://doi.org/10.1021/nn100966s
https://doi.org/10.1021/nl202765b
https://doi.org/10.1063/1.2770835
https://doi.org/10.1021/nn505979j
https://doi.org/10.1021/nl3038773
https://doi.org/10.1109/TED.2009.2039541
https://doi.org/10.1021/nl401934a


[24] Wei B, Vajtai R and Ajayan P 2001 Reliability and current carrying capacity of carbon
nanotubes Appl. Phys. Lett. 79 1172–74

[25] Dürkop T, Getty S, Cobas E and Fuhrer M 2004 Extraordinary mobility in semiconducting
carbon nanotubes Nano Lett. 4 35–9

[26] Zhou X, Park J, Huang S, Liu J and McEuen P 2005 Band structure, phonon
scattering, and the performance limit of single-walled carbon nanotube transistors Phys.
Rev. Lett. 95

[27] Liu B, Wang C, Liu J, Che Y and Zhou C 2013 Aligned carbon nanotubes: from controlled
synthesis to electronic applications Nanoscale 5 9483

[28] Cao Q and Rogers J 2009 Ultrathin films of single-walled carbon nanotubes for electronics
and sensors: a review of fundamental and applied aspects Adv. Mater. 21 29–53
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