interBTC Specification

Interlay

Jan 31, 2022

10

interBTC at a Glance

1.1 Functionality
1.2 Components

Cryptocurrency-backed Assets

2.1 Cryptocurrency-back Assets (CbA)
2.2 DesignPrinciples
2.3 Recommended Background Reading

31 AcCtors. e e
32 Modules
33 Interactions

Architecture
Polkadot

4.1 Substrate

4.2 Substrate Specifics

Bitcoin Data Model

5.1 BlockHeaders
5.2 Transactions
53 Inputs
54 Outputs oL
55 Witness oo

5.6 Witness Stack Item

Accepted Bitcoin Transaction Format
6.1 Case 1: OP_RETURN Transactions
6.2 Case 2: Regular P2PKH / P2WPKH / P2SH / P2WSH Transactions

How to Read This Specification

7.1 External Functions
7.2 Internal Functions

7.3 Preconditions, Postconditions and Invariants

7.4 Errors and Events

81 Overview
8.2 Specification 0oL

9.1 Overview

BTC-Relay
Collateral
Currency

10.1 Overview

INTRODUCTION

17

........................... 17
........................... 17

19

........................... 19
........................... 19
........................... 20
........................... 20
........................... 20
........................... 20

21

................................. 21
................ 22

23

........................... 23
........................... 23
............................ 23
........................... 23

25

........................... 25
........................... 26

61

........................... 61

63

11

12

13

14

15

16

17

18

19

20

10.2 DataModel e e e e e
10.3 Functions 0 o e e e e e e e e e e

Fee

T1.1 OVEIVIEW . . . o o o i e e e e e e e e e e e e e
11.2 DataModel e e e e e
11.3 Functions o e e e e e e e e e e
11.4 Events e e e e e e e

Oracle

12.1 DataModel e e e e e e e e e e e e e e
12.2 Functions i e e e e e e e e e e e e
12.3 EVents e e e e e e e e e e e

Issue

13.1 OVEIVIEW o ot e e e e e e e e e e e e e e
132 DataModel e e e e
13.3 Functions 0 e e e e e e e
13.4 Events e e e e e
135 ErrorCodes o i i e e e e e e

Refund

T4.1 OVEIVIEW . . . o o o e e e e e e s e e e e e e e e e e
142 DataModel e e e e e e e e e e e e e e
14.3 External Functions e e
14.4 Internal Functions e e e e e
145 Events o e e e e

Redeem

I5.1 OVEIVIEW o i e e e e e
152 DataModel e e e e e
153 Functions 0 e e e e e e e e
154 Events e e e e e e e e e e e e e e e
15.5 ErrorCodes. e e e e e

Replace

16.1 OVErVIEW o o e e e e e e e e e
16.2 DataModel e e e e
16.3 Functions e e e e
16.4 EVents o e e e e e
165 ErrorCodes. o i i i e e e e e e e e

Security

I17.1 OVEIVIEW . . . o o v e e e e e e e e e e e e e e e e e
172 DataModel e e e e
173 DataStorage e e e e
17.4 Functions 0 i e e e e e e e e e
17.5 EVeNnts e e e e e e e e e e e e e

Relay

I8.1 OVEIVIEW o o e e e e e e e e e e
18.2 DataStorage o i e e e e e e e e e e e
183 Functions o e e e e e e e
18.4 EVents e e e e e e

Treasury
19.1 OVEIVIEW ot i o et e e e e e e e e e e e e e e e e e e

Vault Registry
20.1 OVEIVIBW . . v v v o e

71
71
71
73
74

75
75
76
78

79
79
81
81
85
86

89
89
90
90
91
92

107
107
109
110
114
116

119
119
119
121
121
123

125
125
125
125
127

129
129

131

21

22

23

24

25

26

27

28

29

20.2 DataModel e e
20.3 External Functions e e e e
20.4 Internal Functions e e e e e e
20.5 EVents e e e e e e e
20.6 ErrorCodes e e e e e e

Vault Nomination

211 OVEIVIEW ot e e e e e e e e e e e e
21.2 Protocol. e e e e e
21.3 DataModel e e
214 Functions i i e e e e e e e
21.5 EVeNts e e e e e e

Reward

22,1 OVEIVIEW . . . o o i o e e e e e e e e e e e e e
222 Invariants e e e e e e e e e e e e e e e e e
223 DataModel e e e e e e
224 Functions i e e e e e e e e e e e
22.5 EBVeNtS e e e e e e e e e e e

Staking

23.1 OVEIVIEW o o e e e e e e e e e e e e e e e e e e
232 DataModel e e
233 Functions i i e e e e e e e e e

Escrow

241 OVEIVIEW . . . o o i e e e e e e e e e e
242 DataModel e e e e
243 External Functions e e e e e e
244 Internal Functions e e e e e e
245 EVENS e e e e e e e e e e

Governance

25.1 OVEIVIEW o o et e e e e e e e e e e e
252 Terminology e e
25.3 PrOCESSES . v v v v v o e e e e e e e e e e e
254 Parameters e e e e e e e e e e e e e e e e

Vault Liquidations

26.1 Safety Failures o e e e e e e e e e e e e
26.2 Crash Failures e
26.3 Liquidations (Safety Failures)

XCLAIM Security Analysis

27.1 Replay Attacks o o e e e e e e e e e
27.2 Counterfeiting e e e e
27.3 Permanent Blockchain Splits L
27.4 Denial-of-Service Attacks
27.5 Fee Model Security: Sybil Attacks and Extortion
27.6 Griefing o e e e e e e e e e e e e
2777 CONCUITENCY '+ . v v v v v e

BTC-Relay Security Analysis

28.1 Security Parameterk e e e e e e e e
28.2 Liveness Failures L e e e e e
28.3 Safety Failures e e e e e
28.4 Hard and Soft forks e e e e e

Performance Analysis
29.1 Estimation of Storage Costs o i e e e

155
155
155
159
159
162

165
165
165
165
166
169

171
171
171
173

181
181
181
183
186
186

187
187
188
188
188

191
191
191
191

195
195
196
197
197
197
198
198

201
201
201
202
202

203
203

30

31

32

33

29.2 BTC-Relay Optimizations v v v i it e e e e e e e e e e e e e e e e e e

Economic Incentives

30.1 CUurrencies o . i e e e e e e e e e e e e e e e e e
30.2 Actors: Roles, Risks, and Economics o o o i e
30.3 Challenges Around Economic Efficiency
30.4 External Economic Risks e

Fee Model

31.1 Payment FIowS o o . o e e e e e e e e e
31.2 interBTC Fee Model e
31.3 Transaction Fee Model e e

License

Interlay

205
205
205
209
209

211
211
211
217

219

221

interBTC Specification

Note: Please note that this specification is a living document. The actual implementation might deviate from the
specification. In case of deviations in the code, the code has priority over the specification.

INTRODUCTION 1

interBTC Specification

2 INTRODUCTION

CHAPTER
ONE

INTERBTC AT A GLANCE

The interBTC bridge connects the Polkadot ecosystem with Bitcoin. It allows the creation of interBTC, a fungible
token that represents Bitcoin in the Polkadot ecosystem. interBTC is backed by Bitcoin 1:1 and allows redeeming
of the equivalent amount of Bitcoins by relying on a collateralized third-party.

Parachain
Polkadot.
Relay Polkadot.
Parachain h i BTC']]
Chain Parachain l CO' n
Polkadot.

\ Parachain

Polkadot.

Polkadot.

Fig. 1.1: The interBTC bridge allows the creation of collateralized 1:1 Bitcoin-backed tokens in Polkadot. These
tokens can be transferred and traded within the Polkadot ecosystem.

interBTC Specification

1.1 Functionality

On a high-level, the BTC Parachain enables the issuing and redeeming of interBTC. The issue process allows a
user to lock Bitcoin on the Bitcoin chain and, in return, issue interBTC on the BTC Parachain. Consequently, the
redeem process allows a user to burn interBTC on the BTC Parachain and redeem previously locked Bitcoins on
Bitcoin. Users can trade interBTC on the BTC Parachain and, through the Relay Chain, in other Parachains as
well. The issue and redeem process can be executed by different users. Typically, this process is augmented by a
collateralized realized third-party, a so-called vault.

Parachain
Polkadot.

transfer to other
Parachains

Polkadot.

issue
Bitcoin-backed tokens
Relay

Chain | »2 | 1 Loy bitcoin

W

Polkadot.

Fig. 1.2: The BTC Parachain includes a protocol to issue interBTC by locking Bitcoin and a protocol to redeem
Bitcoin by burning interBTC tokens.

1.2 Components

The BTC Parachain makes use of two main components to achieve issuing and redeeming of interBTC:

* XCLAIM(BTC,DOT): The XCLAIM(BTC,DOT) component implements four protocols including issue,
transfer, redeem, and replace. It maintains the interBTC tokens, i.e. who owns how many tokens and manages
the vaults as well as the collateral in the system.

e BTC-Relay: The BTC-Relay component is used to verify that certain transactions have happened on the
Bitcoin blockchain. For example, when a user issues a new interBTC an equivalent amount of Bitcoins
needs to be locked on the Bitcoin chain. The user can prove this to the interBTC component by verifying his
transaction in the BTC-Relay component.

The figure below describes the relationships between the components in a high level. Please note that we use a
simplified model here, where users are the ones augmenting the issue and redeem process. In practice, this is
executed by the collateralized vaults.

4 Chapter 1. interBTC at a Glance

interBTC Specification

lock Bitcoin

BTC Parachain

=]

sue PolkaBTC
Users >

L -1

XCLAIM BTCRelay
Issue N store
BlockHeader
Trade/Swap
| verify]
Redeem 4 Transaction

BTC block
header

ock PolkaBTC

redeem Bitcoin

BTC
transactions

Fig. 1.3: The BTC Parachain consists of two logically different components. The XCLAIM(BTC,DOT) component
(in green) maintains the accounts that own interBTC tokens. The BTC-Relay (blue) is repsonible for verifying the
Bitcoin state to verify transactions. Users (in purple) are able to create new interBTC by locking BTC on the
Bitcoin chain and redeeming BTC by burning interBTC. Also, users can trade interBTC on the BTC Parachain and

in the wider Polkadot ecosystem.

1.2. Components

interBTC Specification

6 Chapter 1. interBTC at a Glance

CHAPTER
TWO

CRYPTOCURRENCY-BACKED ASSETS

Building trustless cross-blockchain trading protocols is challenging. Centralized exchanges thus remain the pre-
ferred route to executing transfers across blockchains. However, these services require trust and therefore under-
mine the very nature of the blockchains on which they operate. To overcome this, several decentralized exchanges
have recently emerged which offer support for commit-reveal atomic cross-chain swaps (ACCS).

Commit-reveal ACCS, most notably based on HTCLs, enable the trustless exchange of cryptocurrencies across
blockchains. To this date, this is the only mechanism to have been deployed in production. However, commit-
reveal ACCS face numerous challenges:

* Long waiting times: Each commit-reveal ACCS requires multiple transactions to occur on all involved
blockchains (commitments and revealing of secrets).

 High costs: Publishing multiple transaction per swap results in high fees to maintain such a system.

* Strict online requirements: Both parties must be online during the ACCS. Otherwise, the trade fails or, in
the worst case, loss of funds is possible.

* Out-of-band channels: Secure operation requires users to exchange additional data off-chain (revocation
commitments).

* Race conditions: Commit-reveal ACCS use time-locks to ensure security. Synchronizing time across
blockchains, however, is challenging and opens up risks to race conditions.

* Inefficiency: Finally, commit-reveal ACCS are one-time. That is, all of the above challenges are faced with
each and every trade.

Commit-reveal ACCS have been around since 2012. The practical challenges explain their limited use in practice.

2.1 Cryptocurrency-back Assets (CbA)

The idea of CbAs is that an asset is locked on a backing blockchain and issued 1:1 on an issuing blockchain. CbA
that minimize trust in a third-party are based on the XCLAIM protocol. The third parties in XCLAIM are called
vaults and are required to lock collateral as an insurance against misbehaviour.

XCLAIM introduces three protocols to achieve decentralized, transparent, consistent, atomic, and censorship re-
sistant cross-blockchain swaps:

¢ Issue: Create Bitcoin-backed tokens, so-called interBTC on the BTC Parachain.
¢ Transfer: Transfer interBTC to others within the Polkadot ecosystem.

¢ Redeem: Burn Bitcoin-backed tokens on the BTC Parachain and receive 1:1 of the amount of Bitcoin in
return.

The basic intuition of the protocol is as below:

https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://www.xclaim.io/

interBTC Specification

.................. @3 Witness
1) Lock Transfer ')
= . Collateral ‘ 4) Verify /\ .
> Smart _B
</> < ¥
5) Issue sender (1) 1) Lock 2) Lock Receiver (1) 1) Burn
—_— — D E— 7) Release Collateral
a a L 2 2
3) Swap (atomic) abs ab
Creator (B) Creator (I) Redeemer (I Redeemer (B)
Backing Issuing Issuing Issuing Backing
Blockchain (8) Blockehain (1) Blockchain (I) Blockehain (I) Blockchain (8)
Issue Transfer / Swap Redeem

Fig. 2.1: The issue, transfer/swap, and redeem protocols in XCLAIM.

2.2 Design Principles

XCLAIM guarantees that Bitcoin-backed tokens can be redeemed for the corresponding amount of Bitcoin, or
the equivalent economic value in DOT. Thereby, XCLAIM overcomes the limitations of centralized approaches
through three primary techniques:

¢ Secure audit logs: Logs are constructed to record actions of all users both on Bitcoin and the BTC Parachain.

* Transaction inclusion proofs: Chain relays are used to prove correct behavior on Bitcoin to the BTC
Parachain.

* Proof-or-Punishment: Instead of relying on timely fraud proofs (reactive), XCLAIM requires correct be-
havior to be proven proactively.

¢ Over-collateralization: Non-trusted intermediaries, i.e. vaults, are bound by collateral, with mechanisms
in place to mitigate exchange rate fluctuations.

2.3 Recommended Background Reading

¢ XCLAIM: Trustless, Interoperable, Cryptocurrency-backed Assets. IEEE Security and Privacy (S&P).
Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., & Knottenbelt, W. (2019).

* Enabling Blockchain Innovations with Pegged Sidechains. Back, A., Corallo, M., Dashjr, L., Frieden-
bach, M., Maxwell, G., Miller, A., Poelstra A., Timon J., & Wuille, P. (2014)

* SoK: Communication Across Distributed Ledgers. Cryprology ePrint Archiv, Report 2019/1128. Za-
myatin A, Al-Bassam M, Zindros D, Kokoris-Kogias E, Moreno-Sanchez P, Kiayias A, Knottenbelt W1J.
(2019)

* Proof-of-Work Sidechains. Workshop on Trusted Smart Contracts, Financial Cryptography Kiayias, A., &
Zindros, D. (2018)

8 Chapter 2. Cryptocurrency-backed Assets

CHAPTER
THREE

ARCHITECTURE

interBTC consists of four different actors and eight modules. The component further uses two additional modules,
the BTC-Relay component and the Parachain Governance mechanism.

3.1 Actors

There are four main participant roles in the system. A high-level overview of all modules and actors, as well as
interactions between them, is provided in Fig. 3.1 below.

e Vaults: Vaults are collateralized intermediaries that are active on both the backing blockchain (Bitcoin) and
the issuing blockchain to provide collateral in DOT. They receive and hold BTC from users who wish to
create interBTC tokens. When a user destroys interBTC tokens, a vault releases the corresponding amount
of BTC to the user’s BTC address. Vaults interact with the following modules directly: Vault Registry,
Redeem, and Replace.

— Reporting: Monitors that other Vaults do not move locked BTC on Bitcoin without prior authorization
by the BTC Parachain (i.e., through one of the Redeem, Replace or Refund protocols).

— Relaying: Submits block headers published on Bitcoin to the BTC-Relay.

¢ Users: Users interact with the BTC Parachain to create, use (trade/transfer/. . .), and redeem Bitcoin-backed
interBTC tokens. Since the different protocol phases can be executed by different users, we introduce the
following sub-roles:

— Requester: A user that locks BTC with a vault on Bitcoin and issues interBTC on the BTC Parachain.
Interacts with the /ssue module.

— Sender and Receiver: A user (Sender) that sends interBTC to another user (Receiver) on the BTC
Parachain. Interacts with the Currency module.

— Redeemer: A user that destroys interBTC on the BTC Parachain to receive the corresponding amount
of BTC on the Bitcoin blockchain from a Vault. Interacts with the Redeem module.

* Governance Mechanism: The Parachain Governance Mechanism monitors the correct operation of the
BTC Parachain. Interacts with the Security module and can manually update the parameterization of all
components in the BTC Parachain.

interBTC Specification

3.2 Modules

The eight modules in interBTC plus the BTC-Relay and Governance Mechanism interact with each other, but all
have distinct logical functionalities. The figure below shows them.

The specification clearly separates these modules to ensure that each module can be implemented, tested, and
verified in isolation. The specification follows the principle of abstracting the internal implementation away and
providing a clear interface. This should allow optimization and improvements of a module with minimal impact
on other modules.

BTC Parachain Bitcoin
PolkaBTC BTCRelay
Exchange Treasury Issue [_;_]
Exchanges Rate Oracle SL"efgdbe':’ka
(centralized and N PolkaBTC ownership issue protocol verify ' [;
f t 4
decentralized) emxgngngnrean? transactions

Vault Registry Redeem

7

Exchange rate | = 'PC registry of vaults redeem protocol - =+ Block Header %
Exchange rate }- - (]| C]
) Collateral Replace -
--
collateral handling / replace protocol
stabilization

Staked Relayers and Parachain Status handling

Security ’

maintain correct operation

Governance Mechanism ’

Fig. 3.1: High level overview of the BTC Parachain. interBTC consists of seven modules. The Oracle module
stores the exchange rates based on the input of centralized and decentralized exchanges. The Treasury module
maintains the ownership of interBTC, the VaultRegistry module stores information about the current Vaults in the
system, and the Issue, Redeem and Replace modules expose functions and maintain data related to the respective
sub protocols. The StabilizedCollateral modules handles vault collateralization, stabilization against exchange rate
fluctuations and automatic liquidation. BTC-Relay tracks the Bitcoin main chain and verifies transaction inclusion.
The Parachain Governance maintains correct operation of the BTC Parachain and intervenes / halts operation if
necessary.

3.2.1 BTC-Relay

BTC-Relay is a key component of the BTC Parachain on Polkadot. Its main task is to allow the Parachain to verify
the state of Bitcoin and react to transactions and events. Specifically, BTC-Relay acts as a Bitcoin SPV/light client
on Polkadot, storing only Bitcoin block headers and allowing users to verify transaction inclusion proofs. Further,
it is able to handle forks and follows the chain with the most accumulated Proof-of-Work.

The correct operation of BTC-Relay is crucial: should BTC-Relay cease to operate, the bridge between Polkadot
and Bitcoin is interrupted.

Below, we provide an overview of its components, as well as relevant actors - offering references to the full speci-
fication contained in the rest of this document.

10 Chapter 3. Architecture

https://en.bitcoin.it/wiki/Scalability#Simplified_payment_verification

interBTC Specification

(Exchange rate} - ()

BTC Parachain

(F-»(D)

BTCRelay

Bitcoin

P9

- - {{Block Teader] QS

==+ Transaction

0

Fig. 3.2: BTC-Relay (highlighted in blue) is a key component of the BTC Parachain: it is necessary to verify and
keep track of the state of Bitcoin.

‘ Parser

BTC Relay
© Verification
——Read—t>Ichain
l«—Write verification
Storage Transaction
——Read—>]inclusion
verification
¢ —
Utils

Failure Handling

Parachain
Status

Staked
Relayer
Registry

Block Header

- hashPrevBlock
- target

- timestamp

- merkleRoot

Transaction

Bitcoin

Merkle proof

ANl

o0 -0

Fig. 3.3: Overview of the BTC-Relay architecture. Bitcoin block headers are submitted to the Verification Com-
ponent, which interacts with the Utils, Parser and Failure Handling components, as well as the Parachain Storage.

3.2. Modules

11

interBTC Specification

3.2.2 Oracle

The Oracle module maintains the exchange rate value between the asset that is used to collateralize Vaults (e.g.
DOT) and the wrapped asset (interBTC). Governance authorizes trusted third parties to feed the current exchange
rates into the system for a nominal fee.

3.2.3 Treasury

The Treasury module maintains the ownership and balance of interBTC token holders. It allows respective owners
of interBTC to send their tokens to other entities and to query their balance. Further, it tracks the total supply of
tokens.

3.2.4 Vault Registry

The VaultRegistry module manages the Vaults in the system.It allows Managing the list of active Vaults in the
system and the necessary data (e.g. BTC addresses) to execute the Issue, Redeem, and Replace protocols.

This module also handles the collateralization rates of Vaults and reacts to exchange rate fluctuations. Specifically,
it:

* Stores how much collateral each vault provided and how much of that collateral is allocated to interBTC.

* Triggers, as a last resort, automatic liquidation if a vault falls below the minimum collateralization rate.

3.2.5 Collateral

The Collateral module is the central storage for any collateral that is collected in any other module. It is allows for
three simple operations: locking collateral by a party, releasing collateral back to the original party that locked this
collateral, and last, slashing collateral where the collateral is relocated to a party other than the one that locked the
collateral.

3.2.6 Issue

The Issue module handles the issuing process for interBTC tokens. It tracks issue requests by users, handles the
collateral provided by users as griefing protection and exposes functionality for users to prove correct locking on
BTC with Vaults (interacting with the endpoints in BTC-Relay).

3.2.7 Redeem

The Redeem module handles the redeem process for interBTC tokens. It tracks redeem requests by users, exposes
functionality for Vaults to prove correct release of BTC to users (interacting with the endpoints in BTC-Relay),
and handles the Vault’s collateral in case of success (free) and failure (slash).

3.2.8 Replace

The Replace module handles the replace process for Vaults. It tracks replace requests by existing Vaults, exposes
functionality for to-be-replaced Vaults to prove correct transfer of locked BTC to new vault candidates (interacting
with the endpoints in BTC-Relay), and handles the collateral provided by participating Vaults as griefing protection.

12 Chapter 3. Architecture

interBTC Specification

3.2.9 Security

The Security module is the kernel of the BTC Parachain. It is imported by most modules to ensure that the chain
is running.

3.2.10 Governance Mechanism

The Governance Mechanism handles correct operation of the BTC Parachain.

3.3 Interactions

3.3.1 Dependency Graph

We provide a dependency graph of the different pallets in Fig. 3.4. Note that for clarity, dependencies that are
already implied by transitivity are not displayed. That is, if a -> b, b -> c and a -> b, we do not show a
dependency a -> c even when it is an explicit dependency in the implementation.

‘ Staking | Reward Security Currency

! ! i —

h

-

Fee Oracle Btc-relay

A A

A

Vault-registry

7
[]

Redeem ‘

T ‘))

k Nomination ‘ Issue

Refund ‘

Replace

t

Relay

Fig. 3.4: Pallet dependency graph

3.3. Interactions 13

interBTC Specification

3.3.2 External Interactions

We provide an overview in Fig. 3.5 of the main ways that different actors interact with the parachain. Note that we
only include the function calls that have side effects, i.e., that write to storage. Also, some calls that are not central
to the main protocol are omitted to keep the overview clear. The pallets are displayed in the center column, while
the various actors surround it in yellow.

14 Chapter 3. Architecture

interBTC Specification

request/withdrawReplace,
accept/execute/cancelReplace

o

-

executeRefund

[

Replace

Refund

-

storeBlockHeader,
reportVaultTheft,
reportVaultDoublePayment

e

Relay

!

withdrawRewards

I

Fee

Vault

optinfoutOutOfNomination

withdrawRewards

|

Nomination

-

registerVault,
depositwithdrawCollateral,
registerAddress

-
-

deposit/withdrawCollateral

-

Vault-registry

-

reportUndercollateralizedVault

Off-chain worker

o
-

cancel/executelssue
-

I

-

executeRedeem
»

-

request/executelssue

Root

Oracle

-

setParachainStatus

Yy

feedValues

Issue -t
request/cancelRedeem,
liquidationRedeem
Redeem -t
Security
Oracle

-

Fig. 3.5: Overview of interactions of different actors with the parachain.

3.3. Interactions

15

interBTC Specification

16 Chapter 3. Architecture

CHAPTER
FOUR

POLKADOT

Polkadot is a sharded blockchain that aims to connect multiple different blockchains together. The idea is that each
shard has its custom state transition function. In Polkadot, a shard is called a Parachain. Having different shards
with varying state transition functions offers to build blockchains with various cases in mind.

Each blockchain has to make trade-offs in terms of features it wishes to include. Great examples are Bitcoin which
focusses on the core aspect of asset transfers with limited scripting capabilities. On the other end of the spectrum
is Ethereum that features a (resource-limited) Turing complete execution environment. With Polkadot, the idea is
to allow transfers between these different blockchains using a concept called Bridges.

4.1 Substrate

Polkadot is built using the Substrate framework. Substrate is a blockchain framework that allows to create custom
blockchains. We refer the reader to the detailed introduction on the Substrate website.

4.2 Substrate Specifics

While this specification does not intend to give a general introduction to either Polkadot or Substrate, we want to
highlight several features that are relevant to the implementation.

¢ Account-based model: Substrate uses an account-based model to store user’s and their balances through
the Balances or Generic Asset modules.

¢ DOT to Parachain: Currently, there exists no pre-defined module to maintain DOT, Polkadot’s native cur-
rency, on Substrate. This will be added in the future. For now, we assume such a module exists and model
its functionality via the Generic Assets module.

* Restricting function calls: Functions declared in Substrate can be called by any external party. To restrict
calls to specific modules, each module can have an account (AccountId in Substrate) assigned. Restricting
a function call can then be enforced by limiting calls from pre-defined accounts (i.e. caller Origin must be
equal to the modules AccountId).

¢ Failure handling: Substrate has no implicit failure handling. Errors within a function or errors raised in
other function calls must be handled explicitly in the function implementation. Best practice is to (1) verify
that the function conditions are met, (2) update the state, and (3) emit events and return. Note: It is now
possible to add a transactional attribute to function that ensure that state is only updated if the function
or any of its called functions are not resulting in an error. This prevents partial state update and must be used
on all external functions.

* Concurrency: Substrate does not support concurrent state transitions at the moment.

¢ Generic Rust crates: Substrate does not include the Rust standard library due to non-deterministic behavior.
However, crates can still be used and custom made if they do not depend on the Rust standard library.

17

https://wiki.polkadot.network/docs/en/learn-introduction
https://wiki.polkadot.network/docs/en/learn-parachains
https://wiki.polkadot.network/docs/en/learn-bridges
https://substrate.dev/
https://substrate.dev/docs/en/
https://substrate.dev/rustdocs/master/pallet_balances/index.html
https://substrate.dev/rustdocs/master/pallet_generic_asset/index.html

interBTC Specification

18 Chapter 4. Polkadot

CHAPTER
FIVE

BITCOIN DATA MODEL

This is a high-level overview of Bitcoin’s data model. For the full details, refer to https://bitcoin.org/en/
developer-reference. While the serialized versions of these structs are used in the bridge’s API, they are parsed by
the chain into a more convenient internal representation. See Data Model.

5.1 Block Headers

The 80 bytes block header encodes the following information:

Note: as per bip64, blocks with a version number of less than 4 are rejected. As a consequence, blocks that were
mined before December 2015 will not successfully parse in the bridge. This is acceptable, because the bridge is
not expected to be initialized with such an old block as genesis.

Bytes | Parameter Type Description

4 version i32 The block version to follow.

32 hashPrevBlock | char[32] | The double sha256 hash of the previous block header.

32 merkleRoot char[32] | The double sha256 hash of the Merkle root of all transaction hashes
in this block.

4 timestamp u32 The block timestamp included by the miner.

4 nBits u32 The target difficulty threshold, see also the Bitcoin documentation.

4 nonce u32 The nonce chosen by the miner to meet the target difficulty threshold.

5.2 Transactions

A transaction is broadcasted in a serialized byte format (also called raw format). It consists of a variable size
of bytes and has the following format. Both ‘normal’ transaction and transactions segregated witness data are
supported.

Bytes | Parameter Type Description
4 version i32 Transaction version number.
0/2 flags Op- If present, always 0001, and indicates the presence of witness data
tion<u8[2]>
var tx_in count | uint Number of transaction inputs.
var tx_in Inputs List of transaction inputs.
var tx_out uint The number of transaction outputs.
count
var tx_out Outputs List of transaction outputs.
var tx_witnesses| Witness A list of witnesses, one for each input; omitted if flag is omitted
above.
4 lock_time u32 A Unix timestamp OR block number.

19

https://bitcoin.org/en/developer-reference
https://bitcoin.org/en/developer-reference
https://en.bitcoin.it/wiki/Protocol_documentation#Block_Headers
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#spv-clients
https://bitcoin.org/en/developer-reference#target-nbits
https://en.bitcoin.it/wiki/Protocol_documentation#tx
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

interBTC

Specification

Note: Bitcoin uses the term “CompactSize Unsigned Integers” to refer to variable-length integers, which are used
to indicate the number of bytes representing transaction inputs and outputs. See the Developer Reference for more

details.

5.3 Inputs

Bitcoin’s UTXO model requires a new transaction to spend at least one existing and unspent transaction output as
a transaction input. The txIn type consists of the following bytes. See the reference for further details.

Bytes | Parameter Type Description

36 previous_output | outpoint | The output to be spent consisting of the transaction hash (32
bytes) and the output index (4 bytes).

var script bytes uint Number of bytes in the signature script (max 10,000 bytes).

var signature script | char[] The script satisfying the output’s script.

4 sequence u32 Sequence number (default Oxffffffff).

5.4 Outputs

The transaction output has the following format according to the reference.

Bytes | Parameter Type | Description

8 value i64 Number of satoshis to be spent.
1+ pk_script bytes | uint Number of bytes in the script.
var pk_script char[] | Spending condition as script.

5.5 Witness

Bytes | Parameter Type Description
var count uint The number of witness stack items in this tx_witness.
var witness_stack | Wimess Stack Item | List of witness stack items making up this tx_witness.

5.6 Witness Stack Item

Bytes | Parameter

Type | Description

var count

uint The number of bytes in this witness stack item.

var witness_stack

ug[] The bytes making up the witness stack item.

20

Chapter 5. Bitcoin Data Model

https://bitcoin.org/en/developer-reference#compactsize-unsigned-integers
https://bitcoin.org/en/developer-reference#txin
https://bitcoin.org/en/developer-reference#txout

CHAPTER
SIX

ACCEPTED BITCOIN TRANSACTION FORMAT

The Functions: Parser module of BTC-Relay can in theory be used to parse arbitrary Bitcoin transactions. How-
ever, the interBTC component of the BTC Parachain restricts the format of Bitcoin transactions to ensure consis-
tency and prevent protocol failure due to parsing errors.

As such, Bitcoin transactions for which transaction inclusion proofs are submitted to BTC-Relay as part of the
in the interBTC Issue, Redeem, and Replace protocols must be P2PKH or P2WPKH transactions and follow the
format below.

6.1 Case 1: OP_RETURN Transactions

The OP_RETURN field can be used to store 40 bytes in a given Bitcoin transaction. The transaction output that
includes the OP_RETURN is provably unspendable. We require specific information in the OP_RETURN field to
prevent replay attacks in interBTC.

Many Bitcoin wallets automatically order UTXOs. We require that the transaction contains at most three outputs,
but we do not require any specific ordering of the Payment UTXO and Data UTXO. The reason behind checking
for the first three outputs is that wallets like Electrum might insert the UTXOs returning part of the spent input at
index 1. A merge transaction is allowed to contain any number of outputs, as long as all outputs are registered in
the vault’s wallet.

Note: Please refer to the interBTC specification for more details on the Refund, Redeem and Replace protocols.

Inputs Outputs

Arbitrary number of inputs | Index 0 to 2:

Payment UTXO: P2PKH / P2WPKH output to btcAddress Bitcoin address.
Data UTXO: OP_RETURN containing identifier

Index 3-31:

Any other UTXOs that will not be considered.

The value and recipient address (btcAddress) of the Payment UTXO and the identifier in the Data UTXO
(OP_RETURN) depend on the executed interBTC protocol:

¢ In Refund btcAddress is the Bitcoin address of the user for the refunding process and identifier is the
refundId of the RefundRequest in RefundRequests.

* In Redeem btcAddress is the Bitcoin address of the user who triggered the redeem process and identifier
is the redeemId of the RedeemRequest in RedeemRequests.

e In Replace btcAddress is the Bitcoin address of the new vault, which has agreed to replace the vault
which triggered the replace protocol and identifier is the replaceId of the ReplaceRequest in
ReplaceRequests.

21

https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://en.bitcoin.it/wiki/OP_RETURN
https://bitcoin.stackexchange.com/questions/29554/explanation-of-what-an-op-return-transaction-looks-like

interBTC Specification

6.2 Case 2: Regular P2PKH / P2WPKH / P2SH / P2WSH Transac-
tions

We accept regular P2PKH, P2WPKH, P2SH, and P2WSH transactions. We ensure that the recipient address is
unique via the On-Chain Key Derivation Scheme.

Many Bitcoin wallets automatically order UTXOs. We require that the Payment UTXO is included within the first
three indexes (index O - 2). We do not require any specific ordering of those outputs. The reason behind checking
for the first three outputs is that wallets like Electrum might insert the UTXOs returning part of the spent input at
index 1.

Note: Please refer to the interBTC specification for more details on the Issue protocol.

Inputs Outputs

Arbitrary number of inputs | Index 0 to 2:

Payment UTXO: Output to btcAddress Bitcoin address.
Index 3-31:

Any other UTXOs that will not be considered.

The recipient address (btcAddress) of the Payment UTXO is a address derived from the public key the vault
submitted to the BTC-Parachain.

22 Chapter 6. Accepted Bitcoin Transaction Format

https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://github.com/libbitcoin/libbitcoin-system/wiki/P2SH(P2WSH)-Transactions
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WSH-Transactions

CHAPTER
SEVEN

HOW TO READ THIS SPECIFICATION

This specification is a living document. The actual implementation might deviate from the specification. In case
of deviations in the code, the code has priority over the specification.

7.1 External Functions

Public functions called by users of the platform - most calls are assumed to be signed by an account able to pay the
transaction fees.

7.2 Internal Functions

Private functions called by block construction hooks or other external functions.

7.3 Preconditions, Postconditions and Invariants

Preconditions are condition that must hold before the function is executed. Unless otherwise stated, if the precon-
dition does not hold, the function MUST return an error. If the function is external (i.e. callable by users), then
if the function returns an error, it MUST NOT make any changes to the storage. The postconditions describe the
changes the function MAY make to the storage. Additionally, it describes the return value of the function, if any.
Invariants describe conditions that must hold both before and after the execution, but the function might not check
whether the invariant holds prior to execution if the code assures that it always holds.

7.4 Errors and Events

Error listed in the function specification are not necessarily exhaustive - a function MAY return errors not listed.
Similarly, events listed in the function specification are not necessarily exhaustive - a function MAY emit other
events.

23

interBTC Specification

24

Chapter 7. How to Read This Specification

CHAPTER
EIGHT

BTC-RELAY

8.1 Overview

Below, we provide an overview of the BTC-Relay components - offering references to the full specification con-
tained in the rest of this document.

BTC Relay Bitcoin

/\ . Block Header
\—/ Verification - hashPrevBlock *

_ - target
——Read—>|cnain - =" |- timestamp $
«Write verification - merkleRoot
Storage Transaction *
—Read—>]inclusion :
verification *~ Transaction

v | h Merkle proof \ *
' ! !

Utils ‘ Parser

Failure Handling

— - Staked
Parachain Relayer
Status Registry

Fig. 8.1: Overview of the BTC-Relay architecture. Bitcoin block headers are submitted to the Verification Com-
ponent, which interacts with the Ultils, Parser and Failure Handling components, as well as the Parachain Storage.

25

interBTC Specification

8.1.1 Storage

This component stores the Bitcoin block headers and additional data structures, necessary for operating BTC-Relay.
See Data Model for more details.

8.1.2 Verification

The Verification component offers functionality to verify Bitcoin block headers and transaction inclusion proofs.
See Functions: Storage and Verification for the full function specification.

In more detail, the verification component performs the operations of a Bitcoin SPV client. See this paper (Ap-
pendix D) for a more detailed and formal discussion on the necessary functionality.

* Difficulty Adjustment - check and keep track of Bitcoin’s difficulty adjustment mechanism, so as to be able
to determine when the PoW difficulty target needs to be recomputed.

* PoW Verification - check that, given a 80 byte Bitcoin block header and its block hash, (i) the block header
is indeed the pre-image to the hash and (ii) the PoW hash matches the difficulty target specified in the block
header.

* Chain Verification - check that the block header references an existing block already stored in BTC-Relay.

* Main Chain Detection / Fork Handling - when given two conflicting Bitcoin chains, determine the main
chain, i.e., the chain with the most accumulated PoW (longest chain in Bitcoin, though under consideration
of the difficulty adjustment mechanism).

* Transaction Inclusion Verification - given a transaction, a reference to a block header, the transaction’s index
in that block and a Merkle tree path, determine whether the transaction is indeed included in the specified
block header (which in turn must be already verified and stored in the Bitcoin main chain tracked by BTC-
Relay).

An overview and explanation of the different classes of blockchain state verification in the context of cross-chain
communication, specifically the difference between full validation of transactions and mere verification of their
inclusion in the underlying blockchain, can be found in this paper (Section 5).

8.1.3 Utils

The Utils component provides “helper” functions used by the Storage and Verification components, such as the
calculation of Bitcoin’s double SHA256 hash, or re-construction of Merkle trees. See Functions: Utils for the full
function specification.

8.1.4 Parser

The Parser component offers functions to parse Bitcoin’s block and transaction data structures, e.g. extracting the
Merkle tree root from a block header or the OP_RETURN field from a transaction output. See Functions: Parser
for the full function specification.

8.2 Specification

8.2.1 Data Model

The BTC-Relay, as opposed to Bitcoin SPV clients, only stores a subset of information contained in block headers
and does not store transactions. Specifically, only data that is absolutely necessary to perform correct verification
of block headers and transaction inclusion is stored.

Note that the structs used to represent bitcoin transactions and blocks is slightly different from the Bitcoin Data
Model. For example, no tx_in count is required, since this information is implicitly stored in the vector of inputs.

26 Chapter 8. BTC-Relay

https://bitcoin.org/en/operating-modes-guide#simplified-payment-verification-spv
https://eprint.iacr.org/2018/643.pdf
https://eprint.iacr.org/2018/643.pdf
https://eprint.iacr.org/2019/1128.pdf

interBTC Specification

Types

RawBlockHeader

An 80 bytes long Bitcoin blockchain header, according to the format as specified by the Bitcoin reference.

Constants

DIFFICULTY_ADJUSTMENT_INTERVAL

The interval in number of blocks at which Bitcoin adjusts its difficulty (approx. every 2 weeks = 2016 blocks).

TARGET_TIMESPAN

Expected duration of the different adjustment interval in seconds, 1209600 seconds (two weeks) in the case of
Bitcoin.

TARGET_TIMESPAN_DIVISOR

Auxiliary constant used in Bitcoin’s difficulty re-target mechanism.

UNROUNDED_MAX_TARGET

The maximum difficulty target, 2224 _ 1 in the case of Bitcoin. For more information, see the Bitcoin Wiki.

MAIN_CHAIN_ID

Identifier of the Bitcoin main chain tracked in the ChainsIndex mapping. At any point in time, the BlockChain
with this identifier is considered to be the main chain and will be used to transaction inclusion verification.

STABLE_BITCOIN_CONFIRMATIONS

Global security parameter (typically referred to as k in scientific literature), determining the umber of confirmations
(in blocks) necessary for a transaction to be considered “stable” in Bitcoin. Stable thereby means that the probability
of the transaction being excluded from the blockchain due to a fork is negligible.

STABLE_PARACHAIN_CONFIRMATIONS

Global security parameter (typically referred to as k in scientific literature), determining the umber of confirmations
(in blocks) necessary for a transaction to be considered “stable” in the BTC Parachain. Stable thereby means that
the probability of the transaction being excluded from the blockchain due to a fork is negligible.

Note: We use this to enforce a minimum delay on Bitcoin block header acceptance in the BTC-Parachain in cases
where a (large) number of block headers are submitted as a batch.

8.2. Specification 27

https://developer.bitcoin.org/reference/block_chain.html
https://en.bitcoin.it/wiki/Target

interBTC Specification

Structs

BlockHeader

Representation of a Bitcoin block header, constructed by the parachain from the RawBlockHeader. The main
differences compared to the Block Headers in Bitcoin Data Model is that this contains the unpacked target
constructed from nBits, and an additional hash of the BlockHeader for convenience.

Note: Fields marked as [Optional] are not critical for the secure operation of BTC-Relay, but can be stored anyway,
at the developers discretion. We omit these fields in the rest of this specification.

Parameter Type Description

merkleRoot H256Le Root of the Merkle tree referencing transactions included in the block.

target u256 Difficulty target of this block (converted from nBits, see Bitcoin
documentation.).

timestamp timestamp | UNIX timestamp indicating when this block was mined in Bitcoin.

hashPrevBlock | H256Le Block hash of the predecessor of this block.

hash H256Le Block hash of of this block.

version i32 [Optional] Version of the submitted block.

nonce u32 [Optional] Nonce used to solve the PoW of this block.

RichBlockHeader

Representation of a Bitcoin block header containing additional metadata. This struct is used to store Bitcoin block
headers.

Parameter Type Description

blockHeight | u32 Height of this block in the Bitcoin main chain.

chainRef u32 Pointer to the BlockChain struct in which this block header is contained.

blockHeader | BlockHeader | Associated parsed BlockHeader struct.

paraHeight u32 The activeBlockCount at the time the block header was submitted to the
relay. See the security pallet for more information.

BlockChain

Representation of a Bitcoin blockchain / fork.

Parameter Type | Description

chainld u32 Unique identifier for faster lookup in ChainsIndex

startHeight | u32 Lowest block number in this chain. Used to determine the forking point during
chain reorganizations.

maxHeight u32 Max. block height in this chain.

28 Chapter 8. BTC-Relay

https://bitcoin.org/en/developer-reference#target-nbits
https://bitcoin.org/en/developer-reference#target-nbits

interBTC Specification

Transaction

Representation of a Bitcoin Transaction. It differs from the one specified in Bitcoin Data Model in that it does not
contain in lengths of the input and output vectors, because this data is implicit in the vector. Furthermore, we use
different types for the inputs and outputs. The segregated witnesses and flags, if any, are placed inside the inputs.

Parameter | Type Description

version i32 Transaction version number.

inputs Vec<Transactionlnput> Vector of transaction inputs.

output Vec<TransactionOutput> | Vector of transaction inputs.
lockTime | LockTime A Unix timestamp OR block number.

Transactionlnput

Representation of a Bitcoin transaction input. It differs from the one specified in Bitcoin Data Model in that it
contains flags and the segregated witnesses. Furthermore, it contains dedicated fields for coinbase transactions.

Parameter Type Description

previousHash | H256Le, The hash of the transaction to spend from.

previousIndex | u32, The index of the output within the transaction pointed to by
previousHash to spend from.

coinbase bool, True if the transaction input is the newly mined funds.

height Option<u32>, An optional blockheight used in the coinbase transaction. See
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki

script Vec<u8>, The script satisfying the output’s script.

sequence u32, Sequence number (default Oxffffffff).

flags ug, The flags set in Transaction that indicates a Segrated Witness
transaction. If none were set in the transaction, this value is 0.

witness Vec<Vec<u8>>, | The witness scripts of the transaction. See See
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

TransactionOutput

Representation if a Bitcoin transaction output

Script

Parameter | Type | Description
value 164, The number of satoshis to transfer to this output.
script Script | The spending condition of the output.

Representation if a Bitcoin transaction output

Parameter

Type

Description

bytes

Vec<u8>,

The spending condition of the output.

8.2. Specification

29

https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

interBTC Specification

Enums

LockTime

Represents either a unix timestamp OR a blocknumber. See the Bitcoin source.

Discriminant Description
Time(u32) Lock time interpreted as a unix timestamp.
BlockHeight (u32) | Lock time interpreted as a block number.

Data Structures

BlockHeaders

Mapping of <blockHash, RichBlockHeader>, storing all verified Bitcoin block headers (fork and main chain)
submitted to BTC-Relay.

Chains

Level of indirection over Chainsindex, i.e. the values stored in this map are keys of ChainsIndex. Chains[0]
MUST always be 0, such that ChainsIndex[Chains[0]] is the bitcoin main chain. The remaining items
MUST sort the chains by height, i.e. it MUST hold that for each ® < i < j, ChainsIndex[Chains[i]].
maxHeight >= ChainsIndex[Chains[j]].maxHeight. Furthermore, keys MUST be consecutive, i.e. for
each i, if Chains[i] does not exist, Chains[i+1] MUST NOT exist either.

Note: The assumption for Chains is that, in the majority of cases, block headers will be appended to the main
chain (longest chain), i.e., the BlockChain entry at the most significant position in the queue/heap. Similarly,
transaction inclusion proofs (verifyTransactionlnclusion) are only checked against the main chain. This means, in
the average case lookup complexity will be O(1). Furthermore, block headers can only be appended if they (i) have
a valid PoW and (ii) do not yet exist in BlockHeaders - hence, spamming is very costly and unlikely. Finally,
blockchain forks and re-organizations occur infrequently, especially in Bitcoin. In principle, optimizing lookup
costs should be prioritized, ideally O(1), while inserting of new items and re-balancing can even be O(n).

Chainsindex

The main storage map of BlockChain structs, indexed by a values from the Chains. ChainsIndex[0] MUST
always contain the main chain.

BestBlock

32 byte Bitcoin block hash (double SHA256) identifying the current blockchain tip, i.e., the RichBlockHeader
with the highest blockHeight in the BlockChain entry, which has the most significant height in the Chains
priority queue (topmost position).

Note: Bitcoin uses SHA256 (32 bytes) for its block hashes, transaction identifiers and Merkle trees. In Substrate,
we hence use H256 to represent these hashes.

30 Chapter 8. BTC-Relay

https://github.com/bitcoin/bitcoin/blob/7fcf53f7b4524572d1d0c9a5fdc388e87eb02416/src/script/script.h#L39

interBTC Specification

BestBlockHeight

Integer representing the maximum block height (height) in the Chains priority queue. This is also the
blockHeight of the RichBlockHeader entry pointed to by BestBlock.

ChainCounter

Integer increment-only counter used to track existing BlockChain entries. Initialized with 1 (O is reserved for
MAIN_CHAIN_ID).

8.2.2 Functions: Storage and Verification
initialize

Initializes BTC-Relay with the first Bitcoin block to be tracked and initializes all data structures (see Data Model).

Note: BTC-Relay does not have to be initialized with Bitcoin’s genesis block! The first block to be tracked can
be selected freely.

Warning: Caution when setting the first block in BTC-Relay: only succeeding blocks can be submitted and
predecessors and blocks from other chains will be rejected! Similarly, caution is required with the initial
block height argument, since if an incorrect value is used, all subsequently reported block heights will be
incorrect.

Specification

Function Signature
initialize(relayer, rawBlockHeader, blockHeight)
Parameters
e relayer: the account submitting the block
* rawBlockHeader: 80 byte raw Bitcoin block header, see RawBlockHeader .
* blockHeight: integer Bitcoin block height of the submitted block header
Events

e Initialized(blockHeight, blockHash, relayer): if the first block header was stored successfully,
emit an event with the stored block’s height (blockHeight) and the (PoW) block hash (blockHash).

Errors

e ERR_ALREADY_INITIALIZED = "Already initialized": return error if this function is called after
BTC-Relay has already been initialized.

Preconditions
e This is the first time this function is called, i.e., when BTC-Relay is being deployed.
* The blockheader MUST be parsable.

* blockHeight MUST match the height on the bitcoin chain. Note that the parachain can not check this - it’s
the caller’s responsability!

* rawBlockHeader MUST match a block on the bitcoin main chain. Note that the parachain can not check
this - it’s the caller’s responsability!

8.2. Specification 31

interBTC Specification

¢ rawBlockHeader MUST be a block mined after December 2015 - see Block Headers. This is NOT checked
by the parachain - it’s the caller’s responsibility!

Postconditions
Let blockHeader be the parsed rawBlockHeader. Then:

¢ ChainsIndex[®] MUST be set to a new BlockChain value, where BlockChain.chainId = ®
and™ " BlockChain.startHeight = BlockChain.maxHeight = blockHeight™

* A value block of type RichBlockHeader MUST be added to BlockHeaders, where:

block.basic_block_header = blockHeader

block.chainRef = 0

block.paraHeight is the current activeBlockCount (see the Security module)

block.blockHeight = blockHeight

¢ BestBlockHeight MUST be ChainsIndex[0] .maxHeight
e BestBlock MUST be blockHeader.hash
e StartBlockHeight MUST be set to blockHeight

storeBlockHeader

Method to submit block headers to the BTC-Relay. This function calls verifyBlockHeader to check that the block
header is valid. If so, from the block header and stores the hash, height and Merkle tree root of the given block
header in BlockHeaders. If the block header extends an existing BlockChain entry in Chains, it appends the
block hash to the chains mapping and increments the maxHeight. Otherwise, anew Blockchain entry is created.

Specification

Function Signature
storeBlockHeader(relayer, rawBlockHeader)
Parameters
* relayer: the account submitting the block
* rawBlockHeader: 80 byte raw Bitcoin block header, see RawBlockHeader .
Events

¢ StoreMainChainHeader (blockHeight, blockHash, relayer): if the block header was success-
ful appended to the currently longest chain (main chain) emit an event with the stored block’s height
(blockHeight) and the (PoW) block hash (blockHash).

e StoreForkHeader (forkId, blockHeight, blockHash, relayer): if the block header was success-
ful appended to a new or existing fork, emit an event with the block height (blockHeight) and the (PoW)
block hash (blockHash).

Invariants

¢ The values in Chains MUST be such that for each ® < i < j, ChainsIndex[Chains[i]].maxHeight
>= ChainsIndex[Chains[j]].maxHeight.

* The keys in Chains MUST be consecutive, i.e. for each i, if Chains[i] does not exist, Chains[i+1]
MUST NOT exist either.

e The keys in ChainsIndex MUST be consecutive, i.e. for each i, if ChainsIndex[i] does not exist,
ChainsIndex[i+1] MUST NOT exist either.

e Foralli > O the following MUST hold: ChainsIndex([i].maxHeight < ChainsIndex[0].maxHeight + STA-
BLE_BITCOIN_CONFIRMATIONS.

32 Chapter 8. BTC-Relay

interBTC Specification

For all i, the following MUST hold: ChainsIndex[i].chainRef == i.
BestBlock.chainRef MUST be 0

BestBlock.blockHeight MUST be ChainsIndex[0] .maxHeight

BestBlockHeight MUST be ChainsIndex[0] .maxHeight

Preconditions

The BTC Parachain status MUST NOT be set to SHUTDOWN: 3.

The given rawBlockHeader MUST parse be parsable into blockHeader.

There MUST be a block header prevHeader stored in BlockHeaders with a hash equal to blockHeader.
hashPrevBlock.

A block chain prevBlockchain MUST be stored in ChainsIndex[prevHeader.chainRef].

verifyBlockHeader MUST return Ok when called with blockHeader, prevHeader.blockHeight + 1and
prevHeader.

If prevHeader is the last element a chain (i.e. blockHeader does not create a new fork), then:

— prevBlockChain MUST NOT already contain a block of height prevHeader.blockHeight +
1.

— If prevBlockChain.chain_id is _not_ zero (i.e. the block is being added to a fork rather than
the main chain), and the fork is STABLE_BITCOIN_CONFIRMATIONS blocks ahead of the main
chain, then calling swapMainBlockchain with this fork MUST return Ok.

Postconditions

¢ If prevHeader is the last element a chain (i.e. blockHeader does not create a new fork), then:

ChainsHashes[prevBlockChain.chain_id, prevHeader.blockHeight + 1] MUST be set to
blockHeader.hash.

ChainsIndex[prevBlockChain.chain_id] .max_height MUST be increased by 1.

If prevBlockChain.chain_id is zero (i.e. the a block is being added to the main chain), then:
% BestBlock MUST be set to blockHeader.hash
* BestBlockHeight MUST be set to prevHeader.blockHeight + 1

If prevBlockChain.chain_id is _not_ zero (i.e. the block is being added to a fork rather than the
main chain), then:

* If the fork is STABLE_BITCOIN_CONFIRMATIONS blocks ahead of the
main chain, i.e. prevHeader.blockHeight + 1 >= BestBlockHeight +
STABLE_BITCOIN_CONFIRMATIONS, then the fork is moved to the mainchain. That is,
swapMainBlockchain MUST be called with the fork as argument.

A new RichBlockHeader MUST be stored in BlockHeaders that is constructed as follows:
% RichBlockHeader.blockHeader = blockHeader,
* RichBlockHeader.blockHeight = prevBlock.blockHeight + 1,
% RichBlockHeader.chainRef = prevBlockChain.chainlId,

% RichBlockHeader.paraHeight is set to the current active block count - see the security module
for details

o If prevHeader is not the last element a chain (i.e. blockHeader creates a new fork), then:

ChainCounter MUST be incremented. Let newChainCounter be the incremented value, then

ChainsHashes[newChainCounter, prevHeader.blockHeight + 1] MUST be set to
blockHeader.hash.

8.2. Specification 33

interBTC Specification

— A new blockchain MUST be inserted into ChainsIndex. Let newChain be the newly inserted chain.
Then newChain MUST have the following values:

* newChain.chainId = newChainCounter,
* newChain.startHeight = prevHeader.blockHeight + 1,
* newChain.maxHeight = prevHeader.blockHeight + 1,

— A new value MUST be added to Chains that is equal to newChainCounter in a way that maintains
the invariants specified above.

— A new RichBlockHeader MUST be stored in BlockHeaders that is constructed as follows:
% RichBlockHeader.blockHeader = blockHeader,
% RichBlockHeader.blockHeight = newChain.blockHeight + 1,
* RichBlockHeader.chainRef = prevBlockChain.chainld,

% RichBlockHeader.paraHeight is set to the current active block count - see the security module
for details

* BestBlockHeight MUST be set to Chains[0].max_height
¢ BestBlock MUST be set to ChainsHashes[0, Chains[0].max_height

Warning: The BTC-Relay does not necessarily have the same view of the Bitcoin blockchain as the user’s
local Bitcoin client. This can happen if (i) the BTC-Relay is under attack, (ii) the BTC-Relay is out of sync, or,
similarly, (iii) if the user’s local Bitcoin client is under attack or out of sync (see Security).

Note: The 80 bytes block header can be retrieved from the bitcoin-rpc client by calling the getBlock and setting
verbosity to ® (getBlock <blockHash> 0).

swapMainBlockchain

Specification

Function Signature
swapMainBlockchain(fork)
Parameters
» fork: pointer to a BlockChain entry in Chains.
Preconditions

e fork is STABLE_BITCOIN_CONFIRMATIONS blocks ahead of the main chain, i.e. fork.maxHeight >=
BestBlockHeight + STABLE_BITCOIN_CONFIRMATIONS

Postconditions

Let 1astBlock be the last rich block header in fork, i.e. the blockheader for which lastBlock.blockHeight
== fork.maxHeight and lastBlock.chainRef == fork.chainId holds. Then:

e Each ancestor a of lastBlock MUST move to the main chain, i.e. a.chainRef MUST be set to
MAIN_CHAIN_ID.

¢ ChainsIndex[MAIN_CHAIN_ID] .maxHeight MUST be set to lastBlock.blockHeight.

e Each fork fork except the main chain that contains an ancestor of lastBlock MUST set fork.
startHeight to the lowest blockHeight in the fork that is not an ancestor of lastBlock.

34 Chapter 8. BTC-Relay

https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list
https://bitcoin-rpc.github.io/en/doc/0.17.99/rpc/blockchain/getblock/

interBTC Specification

¢ Each block b in the mainchain that is not an acestor of lastBlock MUST move to prevBlockChain, i.e.

b.chainRef = prevBlockChain.chainId.

e prevBlockChain.startHeight MUST be set to the lowest blockHeight of all blocks b that have b.

chainRef == prevBlockChain.chainId.

* prevBlockChain.maxHeight MUST be set to the highest blockHeight of all blocks b that have b.

chainRef == prevBlockChain.chainId.

The figure below ilustrates an example execution of this function.

Chains
Index

[0]

Chains
Index

(1]

Chains
Index

[2]

Chains
Index

[0]

Chains
Index

(1]

Chains
Index

[2]

y

[E-{El-E-{E-

[&-{El--E-{E {5~

&5l {E =~ {5

&

Before swap_main_blockchain

After swap_main_blockchain

Fig. 8.2: On the left is an example of the state of ChainsIndex prior to calling swapMainBlockchain, and on

the right is the corresponding state after the function returns.

In contrast the the figure about, when looking up the chains through the Chains map, the chains are sorted by

maxHeight, and the same execution would look as follows:

8.2. Specification

35

interBTC Specification

Chains Chains Chains
Index Index Index
[Chains[0]] [Chains[1]] [Chains[2]]

rs
]

[E-{E- B

[&-{E1--El-{E-{E-

Chains
Index

[Chains[0]] [Chains[1]] [Chains[2]]

Chains
Index

Chains
Index

-5l -5

&

Before swap_main_blockchain

After swap_main_blockchain

Fig. 8.3: On the left is an example of the state of Chains prior to calling swapMainBlockchain, and on the right
is the corresponding state after the function returns.

36

Chapter 8. BTC-Relay

interBTC Specification

verifyBlockHeader

The verifyBlockHeader function verifies Bitcoin block headers. It returns Ok if the blockheader is valid, other-
wise an error.

Note: This function does not check whether the submitted block header extends the main chain or a fork. This
check is performed in storeBlockHeader .

Specification

Function Signature
verifyBlockHeader(blockHeader, blockHeight, prevBlockHeader)
Parameters

* blockHeader: the BlockHeader to check.

* blockHeight: height of the block.

» prevBlockHeader: the RichBlockHeader that is the block header’s predecessor.
Returns

* 0k((Q)) if all checks pass successfully, otherwise an error.
Errors

e ERR_DUPLICATE_BLOCK = "Block already stored": return error if the submitted block header is al-
ready stored in BTC-Relay (duplicate PoW blockHash).

e ERR_LOW_DIFF = "PoW hash does not meet difficulty target of header": return error when
the header’s blockHash does not meet the target specified in the block header.

e ERR_DIFF_TARGET_HEADER = "Incorrect difficulty target specified in block header":
return error if the target specified in the block header is incorrect for its block height (difficulty re-target
not executed).

Preconditions
* A block with the blockHeader.hash MUST NOT already have been stored.
¢ blockHeader.hash MUST be be below BlockHeader.target

* blockHeader.target MUST match the expected target, which is calculated based on previous targets and
timestamps. See the Bitcoin Wiki for more information.

Postconditions

¢ 0k(()) MUST be returned.

verifyTransactioninclusion

The verifyTransactionInclusion function is one of the core components of the BTC-Relay: this function
checks if a given transaction was indeed included in a given block (as stored in BlockHeaders and tracked by
Chains), by reconstructing the Merkle tree root (given a Merkle proof). Also checks if sufficient confirmations
have passed since the inclusion of the transaction (considering the current state of the BTC-Relay Chains).

8.2. Specification 37

https://en.bitcoin.it/wiki/Difficulty

interBTC Specification

Specification

Function Signature
verifyTransactionInclusion(txId, merkleProof, confirmations, insecure)
Parameters

» txId: 32 byte hash identifier of the transaction.

* merkleProof: Merkle tree path (concatenated LE sha256 hashes, dynamic sized).

e confirmations: integer number of confirmation required.

Note: The Merkle proof for a Bitcoin transaction can be retrieved using the bitcoin-rpc gettxoutproof method
and dropping the first 170 characters. The Merkle proof thereby consists of a list of SHA256 hashes, as well as an
indicator in which order the hash concatenation is to be applied (left or right).

Returns

* True: if the given txId appears in at the position specified by txIndex in the transaction Merkle tree of the
block at height blockHeight and sufficient confirmations have passed since inclusion.

¢ Error otherwise.
Events

e VerifyTransaction(txId, txBlockHeight, confirmations): if verification was successful, emit
an event specifying the txId, the blockHeight and the requested number of confirmations.

Errors

e ERR_SHUTDOWN = "BTC Parachain has shut down": the BTC Parachain has been shutdown by a man-
ual intervention of the Governance Mechanism.

e ERR_MALFORMED_TXID = "Malformed transaction identifier": return error if the transaction
identifier (txId) is malformed.

e ERR_CONFIRMATIONS = "Transaction has less confirmations than requested": return error
if the block in which the transaction specified by txId was included has less confirmations than requested.

e ERR_INVALID_MERKLE_PROOF = "Invalid Merkle Proof": return error if the Merkle proof is mal-
formed or fails verification (does not hash to Merkle root).

¢ ERR_ONGOING_FORK = "Verification disabled due to ongoing fork": return error if the
mainChain is not at least STABLE_BITCOIN_CONFIRMATIONS ahead of the next best fork.

Preconditions

¢ The BTC Parachain status must not be set to SHUTDOWN: 3. If SHUTDOWN is set, all transaction verification
is disabled.

Function Sequence

1. Check that txId is 32 bytes long. Return ERR_MALFORMED_TXID error if this check fails.

2. Check that the current BestBlockHeight exceeds txBlockHeight by the requested confirmations. Return
ERR_CONFIRMATIONS if this check fails.

a. If insecure == True, check against user-defined confirmations only

b. If insecure == True, check against max(confirmations, STABLE_BITCOIN_CONFIRMATIONS).

38 Chapter 8. BTC-Relay

https://bitcoin-rpc.github.io/en/doc/0.17.99/rpc/blockchain/gettxoutproof/

interBTC Specification

3. Check if the Bitcoin block was stored for a sufficient number of blocks (on the parachain) to ensure
that staked relayers had the time to flag the block as potentially invalid. Check performed against
STABLE_PARACHAIN_CONFIRMATIONS.

4. Extract the block header from BlockHeaders using the blockHash tracked in Chains at the passed
txBlockHeight.

5. Check that the first 32 bytes of merkleProof are equal to the txId and the last 32 bytes are equal to the
merkleRoot of the specified block header. Also check that the merkleProof size is either exactly 32 bytes,
or is 64 bytes or more and a power of 2. Return ERR_INVALID_MERKLE_PROOF if one of these checks fails.

6. Call computeMerkle passing txId, txIndex and merkleProof as parameters.

a. If this call returns the merkleRoot, emit a VerifyTransaction(txId, txBlockHeight,
confirmations) event and return True.

b. Otherwise return ERR_INVALID_MERKLE_PROOF.

validateTransaction

Given a raw Bitcoin transaction, this function
1) Parses and extracts
a. the value and recipient address of the Payment UTXO,
b. [Optionally] the OP_RETURN value of the Data UTXO.

2) Validates the extracted values against the function parameters.

Note: See Bitcoin Data Model for more details on the transaction structure, and Accepted Bitcoin Transaction
Format for the transaction format of Bitcoin transactions validated in this function.

Specification

Function Signature
validateTransaction(rawTx, paymentValue, recipientBtcAddress, opReturnId)
Parameters
* rawTx: raw Bitcoin transaction including the transaction inputs and outputs.
» paymentValue: integer value of BTC sent in the (first) Payment UTXO of transaction.
* recipientBtcAddress: 20 byte Bitcoin address of recipient of the BTC in the (first) Payment UTXO.
* opReturnId: [Optional] 32 byte hash identifier expected in OP_RETURN (see Replay Attacks).
Returns
* True: if the transaction was successfully parsed and validation of the passed values was correct.
* Error otherwise.
Events

e ValidateTransaction(txId, paymentValue, recipientBtcAddress, opReturnId): if pars-
ing and validation was successful, emit an event specifying the txId, the paymentValue, the
recipientBtcAddress and the opReturnId.

Errors

e ERR_INSUFFICIENT_VALUE = "Value of payment below requested amount": return error the
value of the (first) Payment UTXO is lower than paymentValue.

8.2. Specification 39

interBTC Specification

c
3
D
i

BTCRelay

verifyTransaction(txId, txBlockHeight, txIndex, merkleProof, confirmations)

return ERR_INVALID_TXID

Alternative

[txId.length == 32]

A

return ERR_CONFIRMATIONS

Alternative

[BestBlockHeight - txBlockheight
>= confirmations]

|<return ERR_INVALID_MERKLE_PROOF

Alternative

[merkleProof [0:32 bytes] == txId
&& merkleProof[-32 bytes] ==
merkleRoot]

Alternative

[merkleProof.length == 32
|| (merkleProof.length > 64
&& merkleProof.length % 2 == 0)]

<I‘eturn ERR_INVALID_MERKLE_PROOF

A

Alternative

computeMerkle(tx1d, txIndex,

merkleProof) == merkleRoot]

return TRUE

L]

Event:

BlockHeaders ... (storage) hashmap of all
stored block headers

BestBlockHeight ... (storage) block height
of latest block in MainChain

merkleRoot =
BlockHeader(MainChain(txBlockHeight)
.merkleRoot

VerifyTransaction(txId, txBlockHeight,
confirmations)

Fig. 8.4: The steps to verify a transaction in the verifyTransactioninclusion function.

40

Chapter 8. BTC-Relay

interBTC Specification

e ERR_TX_FORMAT = "Transaction has incorrect format": return error if the transaction has an in-

correct format (see Accepted Bitcoin Transaction Format).

e ERR_WRONG_RECIPIENT = "Incorrect recipient Bitcoin address": return error if the recipient

specified in the (first) Payment UTXO does not match the given recipientBtcAddress.

e ERR_INVALID_OPRETURN = "Incorrect identifier in OP_RETURN field": return error if the

OP_RETURN field of the (second) Data UTXO does not match the given opReturnId.

Preconditions

¢ The BTC Parachain status must not be set to SHUTDOWN: 3. If SHUTDOWN is set, all transaction validation is

disabled.

Function Sequence

See the raw Transaction Format section in the Bitcoin Developer Reference for a full specification of Bitcoin’s
transaction format (and how to extract inputs, outputs etc. from the raw transaction format).

1.

a.

Extract the outputs from rawTx using extractOutputs.

Check that the transaction (rawTx) has at least 2 outputs. One output (Payment UTXO) must be a P2PKH or
P2WPKH output. Another output (Data UTXO) must be an OP_RETURN output. Raise ERR_TX_FORMAT
if this check fails.

Extract the value of the Payment UTXO using extractOutputValue and check that it is equal (or greater) than
paymentValue. Return ERR_INSUFFICIENT_VALUE if this check fails.

Extract the Bitcoin address specified as recipient in the Payment UTXO using extractOutputAddress and
check that it matches recipientBtcAddress. Return ERR_WRONG_RECIPIENT if this check fails, or the
error returned by extractOutputAddress (if the output was malformed).

Extract the OP_RETURN value from the Data UTXO using extractOPRETURN and check that it matches
opReturnId. Return ERR_INVALID_OPRETURN error if this check fails, or the error returned by extractO-
PRETURN (if the output was malformed).

verifyAndValidateTransaction

The verifyAndValidateTransaction function is a wrapper around the verifyTransactionInclusion and the val-
idateTransaction functions. It adds an additional check to verify that the validated transaction is the one included
in the specified block.

Specification

Function Signature

verifyAndValidateTransaction(merkleProof, confirmations, rawTx, paymentValue,
recipientBtcAddress, opReturnId)

Parameters

txId: 32 byte hash identifier of the transaction.

merkleProof: Merkle tree path (concatenated LE sha256 hashes, dynamic sized).
confirmations: integer number of confirmation required.

rawTx: raw Bitcoin transaction including the transaction inputs and outputs.
paymentValue: integer value of BTC sent in the (first) Payment UTXO of transaction.

recipientBtcAddress: 20 byte Bitcoin address of recipient of the BTC in the (first) Payment UTXO.

8.2. Specification 41

https://bitcoin.org/en/developer-reference#raw-transaction-format
https://en.bitcoinwiki.org/wiki/Pay-to-Pubkey_Hash
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://bitcoin.org/en/transactions-guide#term-null-data

interBTC Specification

* opReturnId: [Optional] 32 byte hash identifier expected in OP_RETURN (see Replay Attacks).
Returns
e True: If the same transaction has been verified and validated.

¢ Error otherwise.

Function Sequence

1. Parse the rawTx to get the tx id.
2. Call verifyTransactionlnclusion with the applicable parameters.

3. Call validateTransaction with the applicable parameters.

flagBlockError

Flags tracked Bitcoin block headers when Staked Relayers report and agree on a NO_DATA_BTC_RELAY or
INVALID_BTC_RELAY failure.

Attention: This function does not validate the Staked Relayers accusation. Instead, it is put up to a majority
vote among all Staked Relayers in the form of a

Note: This function can only be called from the Security module of interBTC, after Staked Relayers have achieved
a majority vote on a BTC Parachain status update indicating a BTC-Relay failure.

Specification

Function Signature
flagBlockError(blockHash, errors)
Parameters
* blockHash: SHA256 block hash of the block containing the error.

* errors: list of ErrorCode entries which are to be flagged for the block with the given blockHash. Can be
“NO_DATA_BTC_RELAY” or “INVALID_BTC_RELAY”.

Events

e FlagBTCBlockError(blockHash, chainId, errors) - emits an event indicating that a Bitcoin block
hash (identified blockHash) in a BlockChain entry (chainId) was flagged with errors (errors list of
ErrorCode entries).

Errors

e ERR_UNKNOWN_ERRORCODE = "The reported error code is unknown": The reported ErrorCode
can only be NO_DATA_BTC_RELAY or INVALID_BTC_RELAY.

¢ ERR_BLOCK_NOT_FOUND = "No Bitcoin block header found with the given block hash":
No RichBlockHeader entry exists with the given block hash.

e ERR_ALREADY_REPORTED = "This error has already been reported for the given block
hash and is pending confirmation": The error reported for the given block hash is currently
pending a vote by Staked Relayers.

42 Chapter 8. BTC-Relay

interBTC Specification

Function Sequence

1. Check if errors contains NO_DATA_BTC_RELAY or INVALID_BTC_RELAY. If neither match, return
ERR_UNKNOWN_ERRORCODE.

2. Retrieve the RichBlockHeader entry from BlockHeaders using blockHash. Return
ERR_BLOCK_NOT_FOUND if no block header can be found.

3. Retrieve the BlockChain entry for the given RichBlockHeader using ChainsIndex for lookup with the
block header’s chainRef as key.

4. Flag errors in the BlockChain entry:

a. If errors contains NO_DATA_BTC_RELAY, append the RichBlockHeader.blockHeight to
BlockChain.noData

b. If errors contains INVALID_BTC_RELAY, append the RichBlockHeader.blockHeight to
BlockChain.invalid.

5. Emit FlagBTCBlockError(blockHash, chainId, errors) event, with the given blockHash, the
chainId of the flagged BlockChain entry and the given errors as parameters.

6. Return
clearBlockError

Clears ErrorCode entries given as parameters from the status of a RichBlockHeader. Can be
NO_DATA_BTC_RELAY or INVALID_BTC_RELAY failure.

Note: This function can only be called from the Security module of interBTC, after Staked Relayers have achieved
a majority vote on a BTC Parachain status update indicating that a RichBlockHeader entry no longer has the
specified errors.

Specification

Function Signature
flagBlockError(blockHash, errors)
Parameters
* blockHash: SHA256 block hash of the block containing the error.

* errors: list of ErrorCode entries which are to be cleared from the block with the given blockHash. Can
be NO_DATA_BTC_RELAY or INVALID_BTC_RELAY.

Events

e ClearBlockError(blockHash, chainId, errors) -emitsaneventindicating thata Bitcoin block hash
(identified blockHash) in a BlockChain entry (chainId) was cleared from the given errors (errors list
of ErrorCode entries).

Errors

e ERR_UNKNOWN_ERRORCODE = "The reported error code is unknown": The reported ErrorCode
can only be NO_DATA_BTC_RELAY or INVALID_BTC_RELAY.

¢ ERR_BLOCK_NOT_FOUND = "No Bitcoin block header found with the given block hash":
No RichBlockHeader entry exists with the given block hash.

e ERR_ALREADY_REPORTED = "This error has already been reported for the given block
hash and is pending confirmation": The error reported for the given block hash is currently
pending a vote by Staked Relayers.

8.2. Specification 43

interBTC Specification

Function Sequence

1. Check if errors contains NO_DATA_BTC_RELAY or INVALID_BTC_RELAY. If neither match, return

ERR_UNKNOWN_ERRORCODE.

2. Retrieve the RichBlockHeader entry from BlockHeaders using blockHash.

ERR_BLOCK_NOT_FOUND if no block header can be found.

Return

3. Retrieve the BlockChain entry for the given RichBlockHeader using ChainsIndex for lookup with the

block header’s chainRef as key.

4. Un-flag error codes in the BlockChain entry.

a. If errors contains NO_DATA_BTC_RELAY: remove RichBlockHeader.blockHeight from

BlockChain.noData

b. If errors contains INVALID_BTC_RELAY: remove RichBlockHeader.blockHeight from

BlockChain.invalid

5. Emit ClearBlockError(blockHash, chainId, errors) event, with the given blockHash, the

chainId of the flagged BlockChain entry and the given errors as parameters.

6. Return

8.2.3 Functions: Parser

List of functions used to extract data from Bitcoin block headers and transactions. See the Bitcoin Developer

Reference for details on the block header and transaction format.

Note: When comparing byte values, use the hash (e.g. SHA256) to avoid errors.

Block Header

extractHashPrevBlock

Extracts the hashPrevBlock (reference to previous block) from a Bitcoin block header.
Function Signature
extractHashPrevBlock (blockHeaderBytes)
Parameters
* blockHeaderBytes: 80 byte raw Bitcoin block header.
Returns

* hashPrevBlock: the 32 byte block hash reference to the previous block.

Function Sequence

1. Return 32 bytes starting at index 4 of blockHeaderBytes

44 Chapter 8.

BTC-Relay

https://bitcoin.org/en/developer-reference#block-chain
https://bitcoin.org/en/developer-reference#transactions

interBTC Specification

extractMerkleRoot

Extracts the merkleRoot from a Bitcoin block header.
Function Signature
extractMerkleRoot (blockHeaderBytes)
Parameters

* blockHeaderBytes: 80 byte raw Bitcoin block header
Returns

» merkleRoot: the 32 byte Merkle tree root of the block header

Function Sequence

1. Return 32 bytes starting at index 36 of blockHeaderBytes.

extractTimestamp

Extracts the timestamp from the block header.
Function Signature
extractTimestamp(blockHeaderBytes)
Parameters

* blockHeaderBytes: 80 byte raw Bitcoin block header
Returns

* timestamp: timestamp representation of the 4 byte timestamp field of the block header

Function Sequence

1. Return 32 bytes starting at index 68 of blockHeaderBytes.

extractNBits

Extracts the nBits from a Bitcoin block header. This field is necessary to compute that target in

nBitsToTarget.
Function Signature
extractNBits(blockHeaderBytes)
Parameters
* blockHeaderBytes: 80 byte raw Bitcoin block header
Returns

* nBits: the 4 byte nBits field of the block header

8.2. Specification

45

interBTC Specification

Function Sequence

1. Return 4 bytes starting at index 72 of blockHeaderBytes.

parseBlockHeader

Parses a 80 bytes raw Bitcoin block header and, if successful, returns a RichBlockHeader struct.
Function Signature
parseBlockHeader (blockHeaderBytes)
Parameters
* blockHeaderBytes: 80 byte raw Bitcoin block header
Returns
* BlockHeader: the parsed Bitcoin block header
Errors

e ERR_INVALID_HEADER_SIZE = "Invalid block header size": return error if the submitted block
header is not exactly 80 bytes long.

Function Sequence

1. Check that the blockHeaderBytes is 80 bytes long. Return ERR_INVALID_HEADER_SIZE exception and
abort otherwise.

2. Create a new BlockHeader (BlockHeader) struct and initialize as follows:
* BlockHeader.merkleRoot =extractMerkleRoot (blockHeaderBytes)
* BlockHeader.target =nBitsToTarget (extractNBits (blockHeaderBytes))
* BlockHeader.timestamp = extractTimestamp (blockHeaderBytes)
¢ BlockHeader.hashPrevBlock = :ref: extractHashPrevBlock™ (" “blockHeaderBytes)

3. Return BlockHeader

Transactions

extractOutputs

Extracts the outputs from the given (raw) transaction (rawTransaction).

Specification

Function Signature
extractOutputs(rawTransaction) -> u64
Parameters
* rawTransaction: A variable byte size encoded transaction.
Returns

* outputs: A list of variable byte size encoded outputs of the given transaction.

46 Chapter 8. BTC-Relay

interBTC Specification

Function Sequence

1. Determine the start of the output list in the transaction using gerOutputStartindex.

2. Determine the number of outputs (determine Varlnt size using determineVarintDatalLength and extract bytes
indicating the number of outputs accordingly).

3. Loop over the output size, determining the output length for each output (determine Varlnt size using deter-
mineVarintDataLength and extract bytes indicating the output size accordingly). Extract the bytes for each
output and append them to the outputs list.

4. Return outputs.

Note: Optionally, check the output type here and add flag to return list (use tuple of flag and output bytes then).

getOutputStartindex

Extracts the starting index of the outputs in a transaction (i.e., skips over the variable size list of inputs).
Function Signature
getOutputStartIndex(rawTransaction -> u64)
Parameters

* rawTransaction: A variable byte size encoded transaction.
Returns

* outputIndex: integer index indicating the starting point of the list of outputs in the raw transaction.
Errors

e ERR_INVALID_TX_VERSION = "Invalid transaction version": The version of the given transac-
tion is not 1 or 2.

Note: Currently, the transaction version can be 1 or 2. See transaction format details in the Bitcoin Developer
Reference.

Function Sequence

See the Bitcoin transaction format in the Bitcoin Developer Reference.

1. Init position counter pos = 0.

2. Check the version bytes of the transaction (must be 1 or 2). Then skip over: pos = pos + 4.
3. Check if the transaction is a SegWit transaction. If yes, pos = pos + 2.
4

. Parse the VarInt size (:ref:determineVarIntDatalength) and extract the bytes indicating the number of
inputs accordingly. Increment pos accordingly.

5. Tterate over the number of inputs and skip over (incrementing pos). Note: it is necessary to determine the
length of the scriptSig using determineVarintDataLength.

6. Return pos indicating the start of the output list in the raw transaction.

8.2. Specification 47

https://bitcoin.org/en/developer-reference#raw-transaction-format
https://bitcoin.org/en/developer-reference#raw-transaction-format

interBTC Specification

determineVarintDatalLength

Determines the length of the Bitcoin CompactSize Unsigned Integers (other term for Varint) in bytes. See Com-
pactSize Unsigned Integers for details.

Function Signature
getOutputStartIndex(varIntFlag -> u64)
Parameters
e varIntFlag: 1 byte flag indicating size of Bitcoin’s Varlnt
Returns

e varInt: integer length of the VarInt (excluding flag).

Function Sequence

1. Check flag and return accordingly:
o If Ox£ff return 8,

e Else if 0xfe return 4,

Else if 0xfd return 2,

¢ Otherwise return 0

extractOPRETURN

Extracts the OP_RETURN of a given transaction. The OP_RETURN field can be used to store 80 bytes in a given
Bitcoin transaction. The transaction output that includes the OP_RETURN is provably unspendable.

Note: The OP_RETURN field is used to include replay protection data in the interBTC Issue, Redeem, and
Replace protocols.

Function Signature
extractOPRETURN()
Parameters
e rawOutput: raw encoded output
Returns
e opreturn: value of the OP_RETURN data.
Errors

e ERR_NOT_OP_RETURN = "Expecting OP_RETURN output, but got another type.: The given
output was not an OP_RETURN output.

48 Chapter 8. BTC-Relay

https://bitcoin.org/en/developer-reference#compactsize-unsigned-integers
https://bitcoin.org/en/developer-reference#compactsize-unsigned-integers
https://bitcoin.stackexchange.com/questions/29554/explanation-of-what-an-op-return-transaction-looks-like
https://bitcoin.stackexchange.com/questions/29554/explanation-of-what-an-op-return-transaction-looks-like

interBTC Specification

Function Sequence

1. Check that the output is indeed an OP_RETURN output: pk_script[0] == 0x6a. Return
ERR_NOT_OP_RETURN error if this check fails. Note: the pk_script starts at index 9 of the output (neverthe-
less, make sure to check the length of VarInt indicating the output size using determineVarIntDataLength).

2. Determine the length of the OP_RETURN field (pk_script[10]) and return the OP_RETURN value (ex-
cluding the flag and size, i.e., starting at index 11).

extractOutputValue

Extracts the value of the given output.

Note: Needs conversion to Big Endian when converting to integer.

Function Signature
extractOutputValue (rawOutput)
Parameters

e rawOutput: raw encoded output
Returns

* value: value of the output.

Function Sequence

1. Return the first 8 bytes of output, converted from LE to BE.

extractOutputAddress

Extracts the value of the given output.

Note: Please refer to the Bitcoin Developer Reference on Transactions when implementing this function.

Function Signature
extractOutputAddress (rawOQutput)
Parameters

* rawOutput: raw encoded output
Returns

* value: value of the output.
Errors

e ERR_INVALID_OUTPUT_SCRIPT = "Invalid or malformed output script": The script of the
given output is invalid or malformed.

8.2. Specification 49

https://bitcoin.org/en/transactions-guide#introduction

interBTC Specification

Function Sequence

1. Check if output is a SegWit output: output[9] == 0.

a. If SegWit output (P2WPKH or P2ZWSH), check that output [10] equals the length of the output script
(extract from™ output[8]). If this check fails, return ERR_INVALID_OUTPUT_SCRIPT.

b. Return the number of characters specified in output[8] (length of the output script), starting with
output[11]. This will be 20 bytes for P2WPKH and 32 bytes for P2WSH.

2. Otherwise, extract the tag indicating the output type: 3 bytes starting at index 8 in output.

a. If P2PKH output (tag == [0x19, 0x76, 0xa9]). Check that output[11] == [0x14]
or the last two bytes are equal to [0x88, Oxac]. If this check fails, return
" "ERR_INVALID_OUTPUT_SCRIPT. Otherwise, return 20 bytes starting with output[12].

b. If P2WSH output (tag == [0x17, 0xa9, 0x14]). Check that the last byte is equal to [0x87].
If this check fails, return ERR_INVALID_OUTPUT_SCRIPT. Otherwise, return 32 bytes starting with
output[12].

8.2.4 Functions: Utils

There are several helper methods available that abstract Bitcoin internals away in the main function implementation.

sha256d

Bitcoin uses a double SHA256 hash to protect against “length-extension” attacks.

Note: Bitcoin uses little endian representations when sending hashes across the network and for storing values
internally. For more details, see the documentation. The output of the SHA256 function is big endian by default.

Function Signature
sha256d(data)
Parameters

* data: bytes encoded input.
Returns

* hash: the double SHA256 hash encodes as a bytes from data.

Function Sequence

1. Hash data with sha256.
2. Hash the result of step 1 with sha256.
3. Return hash.

50 Chapter 8. BTC-Relay

https://github.com/libbitcoin/libbitcoin-system/wiki/P2WPKH-Transactions
https://github.com/libbitcoin/libbitcoin-system/wiki/P2WSH-Transactions
https://en.wikipedia.org/wiki/Length_extension_attack
https://en.bitcoin.it/wiki/Protocol_documentation#common-structures

interBTC Specification

concatSha256d
A function that computes a parent hash from two child nodes. This function is used in the reconstruction of the
Merkle tree.
Function Signature
concatSha256d(left, right)
Parameters
e left: 32 bytes of input data that are added first.
* right: 32 bytes of input data that are added second.
Returns

* hash: the double sha256 hash encoded as a bytes from left and right.

Function Sequence

1. Concatenate left and right into a 64 bytes.
2. Call the sha256d function to hash the concatenated bytes.
3. Return hash.

nBitsToTarget

This function calculates the PoW difficulty target from a compressed nBits representation. See the Bitcoin docu-
mentation for further details. The computation for the difficulty is as follows:

target = significand * base(Porent—3)

Function Signature
nBitsToTarget(nBits)
Parameters
* nBits: 4 bytes compressed PoW target representation.
Returns

e target: PoW difficulty target computed from nBits.

Function Sequence

1. Extract the exponent by shifting the nBits to the right by 24.
2. Extract the significand by taking the first three bytes of nBits.
3. Calculate the target via the equation above and using 2 as the base (as we use the U256 type).

4. Return target.

8.2. Specification 51

https://bitcoin.org/en/developer-reference#target-nbit
https://bitcoin.org/en/developer-reference#target-nbit

interBTC Specification

checkCorrectTarget

Verifies the currently submitted block header has the correct difficulty target.
Function Signature
checkCorrectTarget (hashPrevBlock, blockHeight, target)
Parameters
* hashPrevBlock: 32 bytes previous block hash (necessary to retrieve previous target).
* blockHeight: height of the current block submission.
e target: PoW difficulty target computed from nBits.
Returns
e True: if the difficulty target is set correctly.

e False: otherwise.

Function Sequence

1. Retrieve the previous block header with the hashPrevBlock from the BlockHeaders storage and the dif-
ficulty target (prevTarget) of this (previous) block.

2. Check if the prevTarget difficulty should be adjusted at this blockHeight.

a. If the difficulty should not be adjusted, check if the target of the submitted block matches the
prevTarget of the previous block and check that prevTarget™ “is not 0. Return false if ei-
ther of these checks fails.

b. The difficulty should be adjusted. Calculate the new expected target by calling the compute-
NewTarget function and passing the timestamp of the previous block (get using hashPrevBlock
key in BlockHeaders), the timestamp of the last re-target (get block hash from Chains using
blockHeight - 2016 as key, then query BlockHeaders) and the target of the previous block (get
using hashPrevBlock key in BlockHeaders) as parameters. Check that the new target matches the
target of the current block (i.e., the block’s target was set correctly).

i. If the newly calculated target difficulty matches target, return True.

ii. Otherwise, return False.

computeNewTarget

Computes the new difficulty target based on the given parameters, as implemented in the Bitcoin core client.
Function Signature
computeNewTarget (prevTime, startTime, prevTarget)
Parameters
e prevTime: timestamp of previous block.
* startTime: timestamp of last re-target.
» prevTarget: PoW difficulty target of the previous block.
Returns

* newTarget: PoW difficulty target of the current block.

52 Chapter 8. BTC-Relay

https://github.com/bitcoin/bitcoin/blob/78dae8caccd82cfbfd76557f1fb7d7557c7b5edb/src/pow.cpp

interBTC Specification

Function Sequence

1. Compute the actual time span between prevTime and startTime.

2. Compare if the actual time span is smaller than the target interval divided by 4 (default target interval in
Bitcoin is two weeks). If true, set the actual time span to the target interval divided by 4.

3. Compare if the actual time span is greater than the target interval multiplied by 4. If true, set the actual time
span to the target interval multiplied by 4.

4. Calculate the newTarget by multiplying the actual time span with the prevTarget and dividing by the
target time span (2 weeks for Bitcoin).

5. If the newTarget is greater than the maximum target in Bitcoin, set the newTarget to the maximum target
(Bitcoin maximum target is 2224 _ 1),

6. Return the newTarget.

computeMerkle
The computeMerkle function calculates the root of the Merkle tree of transactions in a Bitcoin block. Further
details are included in the Bitcoin developer reference.
Function Signature
computeMerkle(txId, txIndex, merkleProof)
Parameters
e txId: the hash identifier of the transaction.
* txIndex: index of transaction in the block’s transaction Merkle tree.
* merkleProof: Merkle tree path (concatenated LE sha256 hashes).
Returns
» merkleRoot: the hash of the Merkle root.
Errors

e ERR_INVALID_MERKLE_PROOF = "Invalid Merkle Proof structure": raise an exception if the
Merkle proof is malformed.

Function Sequence

1. Check if the length of the Merkle proof is 32 bytes long.

a. If true, only the coinbase transaction is included in the block and the Merkle proof is the merkleRoot.
Return the merkleRoot.

b. If false, continue function execution.
2. Check if the length of the Merkle proof is greater or equal to 64 and if it is a power of 2.
a. If true, continue function execution.
b. If false, raise ERR_INVALID_MERKLE_PROOF.
3. Calculate the merkleRoot. For each 32 bytes long hash in the Merkle proof:
a. Determine the position of transaction hash (or the last resulting hash) at either ® or 1.
b. Slice the next 32 bytes from the Merkle proof.

c. Concatenate the transaction hash (or last resulting hash) with the 32 bytes of the Merkle proof in the
right order (depending on the transaction/last calculated hash position).

d. Calculate the double SHA256 hash of the concatenated input with the concatSha256d function.

8.2. Specification 53

https://bitcoin.org/en/developer-reference#parsing-a-merkleblock-message

interBTC Specification

e. Repeat until there are no more hashes in the merkleProof.

4. The last resulting hash from step 3 is the merkleRoot. Return merkleRoot.

Example

Assume we have the following input:
e txId: 330dbbc15169¢c538583073£d0a7708d8de2d3dc155d75b361cbf5c24b73£3586
e txIndex: ®
* merkleProof: 86353fb7245cb£1c365bd755c13d2dded808770afd73305838c56951c1bb0®d33b635£586cf6c4763f3fcS

The computelMerkle function would go past step 1 as our proof is longer than 32 bytes. Next, step 2 would also
be passed as the proof length is equal to 64 bytes and a power of 2. Last, we calculate the Merkle root in step 3 as
shown below.

merkleRaoot
089d180bc9de777183620aeb1c6d114c60020aaf0218426dbd221ba11428113b

concatSha256d
1
| |

resultHash merkleProof[32:64]
b6351586cf6eA763f3fc98b99datBacl4cel146dec775777c2cd2c4290578ef2e

concatSha256d
|
[|
x1d merkleProof[:32]
330dbbc15169¢538583073fd0a7708d8de2d3dc155d75b361cbf5c24b 731358 86353tb7245chf1c365bd755c13d2dded808770afd 73305838c56951¢1bb0d33
txIndex: 0

Fig. 8.5: An example of the computeMerkle function with a transaction from a block that contains two transactions
in total.

calculateDifficulty

Given the target, calculates the Proof-of-Work difficulty value, as defined in the Bitcoin wiki.
Function Signature
calculateDifficulty(target)
Parameters
e target: target as specified in a Bitcoin block header.
Returns

e difficulty: difficulty calculated from given target.

54 Chapter 8. BTC-Relay

https://en.bitcoin.it/wiki/Difficulty

interBTC Specification

Function Sequence

1. Return 0xf££f00 (max. possible target,
also referred to as “difficulty 1) divided by target.

getForkldByBlockHash

Helper function allowing to query the list of tracked forks (Forks) for the identifier of a fork given its last submitted
(“highest”) block hash.

Specification

Function Signature

getForkIdByBlockHash(blockHash)

Parameters
* blockHash: block hash of the last submitted block to a fork.

Returns
e forkId: if there exists a fork with blockHash as latest submitted block in forkHashes.
e ERR_FORK_ID_NOT_FOUND: otherwise.

Errors

e ERR_FORK_ID_NOT_FOUND = Fork ID not found for specified block hash.": return this error
if there exists no forkId for the given blockHash.

Function Sequence

1. Loop over all entries in Forks and check if forkHashes[forkHashes.length -1] == blockhash
a. If True: return the corresponding forkId.

2. Return ERR_FORK_ID_NOT_FOUND otherwise.

incrementChainCounter

Increments the current ChainCounter and returns the new value.

Specification

Function Signature
incrementChainsCounter ()
Returns

e chainCounter: the new integer value of the ChainCounter.

8.2. Specification 55

interBTC Specification

Function Sequence

1. ChainCounter++

2. Return ChainCounter

8.2.5 Events

Initialized
If the first block header was stored successfully, emit an event with the stored block’s height and the (PoW) block
hash.
Event Signature
Initialized(blockHeight, blockHash)
Parameters
* blockHeight: height of the current block submission.
* blockHash: hash of the current block submission.
Functions

e initialize

StoreMainChainHeader

If the block header was stored successfully, emit an event with the stored block’s height and the (PoW) block hash.
Event Signature
StoreMainChainHeader (blockHeight, blockHash)
Parameters
* blockHeight: height of the current block submission.
* blockHash: hash of the current block submission.
Functions

e storeBlockHeader

StoreForkHeader

If the submitted block header is on a fork, emit an event with the fork’s id, block height and the (PoW) block hash.
Event Signature
StoreForkHeader (forkId, blockHeight, blockHash)
Parameters
e forkId: unique identifier of the tracked fork.
* blockHeight: height of the current block submission.
* blockHash: hash of the current block submission.
Functions

e storeBlockHeader

56 Chapter 8. BTC-Relay

interBTC Specification

ChainReorg
If the submitted block header on a fork results in a reorganization (fork longer than current main chain), emit an
event with the block hash of the new highest block, the new maximum block height and the depth of the fork
Event Signature
ChainReorg(newChainTip, blockHeight, forkDepth)
Parameters
* newChainTip: hash of the new highest block.
* blockHeight: new maximum block height (block height of fork tip).
e forkDepth: depth of the fork (number of block after diverging from previous main chain).
Functions

e storeBlockHeader

VerifyTransactioninclusion
If the verification of the transaction inclusion proof was successful, emit an event for the given transaction identifier
(txId), block height (txBlockHeight), and the specified number of confirmations.
Event Signature
VerifyTransaction(txId, blockHeight, confirmations)
Parameters
e txId: the hash of the transaction.
* txBlockHeight: height of block of the transaction.
» confirmations: number of confirmations requested for the transaction verification.
Functions

e verifyTransactionInclusion

ValidateTransaction
If parsing and validation of the given raw transaction was successful, emit an event specifying the txId, the
paymentValue, the recipientBtcAddress and the opReturnId.
Event Signature
ValidateTransaction(txId, paymentValue, recipientBtcAddress, opReturnId)
Parameters

e txId: the hash of the transaction.

e paymentValue: integer value of BTC sent in the transaction.

* recipientBtcAddress: Bitcoin address (hash) of recipient.

* opReturnId: [Optional] 32 byte hash identifier expected in OP_RETURN (replay protection).
Functions

e validateTransaction

8.2. Specification 57

interBTC Specification

8.2.6 Error Codes

A summary of error codes raised in exceptions by BTC-Relay, and their meanings, are provided below.
ERR_ALREADY_INITTALIZED

* Message: “Already initialized.”

* Function: initialize

* Cause: Raised if the initialize function is called when BTC-Relay has already been initialized.
ERR_NOT_MAIN_CHAIN

* Message: “Main chain submission indicated, but submitted block is on a fork”

* Function: storeBlockHeader

* Cause: Raised if the block header submission indicates that it is extending the current longest chain, but is
actually on a (new) fork.

ERR_FORK_PREV_BLOCK
* Message: “Previous block hash does not match last block in fork submission”
* Function: storeBlockHeader

* Cause: Raised if the block header does not reference the highest block in the fork specified by forkId (via
prevBlockHash).

ERR_NOT_FORK
¢ Message: “Indicated fork submission, but block is in main chain”
e Function: storeBlockHeader

* Cause: Raised if raise exception if the submitted block header is actually extending the current longest chain
tracked by BTC-Relay (Chains), instead of a fork.

ERR_INVALID_FORK_ID

* Message: “Incorrect fork identifier.”

* Function: storeBlockHeader

* Cause: Raised if a non-existent fork identifier is passed.
ERR_INVALID_HEADER_SIZE

* Message: “Invalid block header size”:

* Function: parseBlockHeader

* Cause: Raised if the submitted block header is not exactly 80 bytes long.
ERR_DUPLICATE_BLOCK

* Message: “Block already stored”

e Function: verifyBlockHeader

» Cause: Raised if the submitted block header is already stored in the BTC-Relay (duplicate PoW blockHash).
ERR_PREV_BLOCK

* Message: ‘“Previous block hash not found”

e Function: verifyBlockHeader

* Cause: Raised if the submitted block does not reference an already stored block header as predecessor (via
prevBlockHash).

ERR_LOW_DIFF

* Message:"PoW hash does not meet difficulty target of header”

58 Chapter 8. BTC-Relay

interBTC Specification

e Function: verifyBlockHeader

e Cause: Raised if the header’s blockHash does not meet the target specified in the block header.
ERR_DIFF_TARGET_HEADER

* Message: “Incorrect difficulty target specified in block header”

* Function: verifyBlockHeader

¢ Cause: Raised if the target specified in the block header is incorrect for its block height (difficulty re-target
not executed).

ERR_MALFORMED_TXID
* Message: “Malformed transaction identifier”
* Function: verifyTransactionlnclusion
¢ Cause: Raised if the transaction id (txId) is malformed.
ERR_CONFIRMATIONS
* Message: “Transaction has less confirmations than requested”
e Function: verifyTransactionlnclusion
* Cause: Raised if the number of confirmations is less than required.
ERR_INVALID_MERKLE_PROOF
* Message: “Invalid Merkle Proof”
e Function: verifyTransactionlnclusion
» Cause: Exception raised in verifyTransactionInclusion when the Merkle proof is malformed.
ERR_FORK_ID_NOT_FOUND
* Message: “Fork ID not found for specified block hash”
e Function: getForkldByBlockHash
» Cause: Return this error if there exists no forkId for the given blockHash.
ERR_NO_DATA
¢ Message: “BTC-Relay has a NO_DATA failure and the requested block cannot be verified reliably”
e Function: verifyTransactionlnclusion

* Cause: The BTC Parachain has been partially deactivated for all blocks with a higher block height than the
lowest blocked flagged with NO_DATA_BTC_RELAY.

ERR_INVALID

* Message: “BTC-Relay has detected an invalid block in the current main chain, and has been halted”

* Function: verifyTransactionlnclusion

* Cause: The BTC Parachain has been halted because Staked Relayers reported an invalid block.
ERR_SHUTDOWN

e Message: “BTC Parachain has shut down”

* Function: verifyTransactionInclusion | storeBlockHeader | storeBlockHeader

* Cause: The BTC Parachain has been shutdown by a manual intervention of the Governance Mechanism.
ERR_INVALID_TXID

* Message: “Transaction hash does not match given txid”

* Function: validateTransaction

¢ Cause: The transaction identifier (txId) does not match the actual hash of the transaction.

8.2. Specification 59

interBTC Specification

ERR_INSUFFICIENT_VALUE:
* Message: “Value of payment below requested amount”
e Function: validateTransaction

e Cause: The value of the (first) Payment UTXO in the validated transaction is lower than the specified
paymentValue.

ERR_TX_FORMAT:

* Message: “Transaction has incorrect format”

e Function: validateTransaction

* Cause: The parsed transaction has an incorrect format (see Accepted Bitcoin Transaction Format).
ERR_WRONG_RECIPIENT

* Message: “Incorrect recipient Bitcoin address”

* Function: validateTransaction

e Cause: The recipient specified in the (first) Payment UTXO of the validated transaction does not match the
specified recipientBtcAddress.

ERR_INVALID_OPRETURN
¢ Message: “Incorrect identifier in OP_RETURN field”
e Function: validateTransaction

¢ Cause: The OP_RETURN field of the (second) Data UTXO of the validated transaction does not match the
specified opReturnId.

ERR_INVALID_TX_VERSION
* Message: “Invalid transaction version”
e Function: getOutputStartindex

* Cause: : The version of the given transaction is not 1 or 2. See transaction format details in the Bitcoin
Developer Reference.

ERR_NOT_OP_RETURN
* Message: “Expecting OP_RETURN output, but got another type.”
* Function: extractOPRETURN
e Cause: The given output was not an OP_RETURN output.
ERR_ONGOING_FORK
* Message: “Verification disabled due to ongoing fork™
e Function: verifyTransactionlnclusion

¢ Cause: The mainChain is not at least STABLE_BITCOIN_CONFIRMATIONS ahead of the next best fork.

60 Chapter 8. BTC-Relay

https://bitcoin.org/en/developer-reference#raw-transaction-format

CHAPTER
NINE

COLLATERAL

9.1 Overview

There are two different kinds of collateral in use in the bridge. The first is the backing collateral that vaults use as
insurance to issued wrapped tokens. Multiple backing collaterals are supported, see Multi-Collateral, but similarly
to MakerDAO, each vault uses a single currency. If vault operators want to use multiple currencies, they have to
register multiple vaults. It is possible to use key derivation to run multiple vaults using a single mnemonic. When
a vault is registered, they have to explicitly choose the used currency. In contrast, when interacting with vaults, the
used collateral is implicit. For example, when a vault fails to execute a redeem request, the user will receive some
amount of the vault’s backing collateral. As such, the user might want to select a vault that uses their preferred
currency.

The second type of collateral is griefing collateral. The currency used for this type of collateral is fixed and
depends on the used network. This is the currency that is also used to pay transaction fees. For example, in
Kusama transaction fees are by default paid in KINT and on Polkadot transaction fees are paid in INTR.

While collateral management is logically distinct from treasury management, they are both implemented using the
same Currency pallet. This pallet is used to (i) lock, (ii) release, and (iii) slash collateral of either users or vaults.
It can only be accessed by other modules and not directly through external transactions.

9.1.1 Step-by-Step

The protocol has three different “sub-protocols”.
* Lock: Store a certain amount of collateral from a single entity (user or vault).
* Unlock: Transfer a certain amount of collateral back to the entity that paid it.

* Slash: Transfer a certain amount of locked collateral to a party that was damaged by the actions of another
party.

61

https://substrate.dev/docs/en/knowledgebase/integrate/subkey#hd-key-derivation

interBTC Specification

62

Chapter 9. Collateral

CHAPTER
TEN

CURRENCY

10.1 Overview

This currency pallet provides an interface for the other pallets to manage balances of different currencies. Ac-
counts have three balances per currency: they have a free, reserved, and frozen amount. Users are able to
freely transfer free - frozen balances, but only the parachain pallets are able to operate on reserved amounts.
Frozen is used to implement temptorary locks of free balances like vesting schedules.

The external API for dispatchable and RPC functions use ‘thin’ amount types, meaning that the used currency
depends on the context. For example, the currency used in deposit_collateral depends on the vault’s currencyId.
Sometimes, as is for example the case for register_vault, the function takes an additional currencyId argument
to specify the currency to use. In contrast, internally in the parachain amounts are often represented by the Amount
type defined in this pallet, which in addition to the amount, also contains the used currency. The benefit of this type
is two-fold. First, we can guarantee that operations only work on compatible amounts. For example, it prevents
adding DOT amounts to KSM amounts. Second, it allows for a more convenient api.

10.2 Data Model

10.2.1 Structs

Amount

Stores an amount and the used currency.

Parameter | Type Description
balance Balance The amount.
currency | Currencyld | The used currency.

10.3 Functions

10.3.1 from_signed_fixed_point

Constructs an Amount from a signed fixed point number and a currencyId. The fixed point number is truncated.
E.g., a value of 2.5 would return 2.

63

interBTC Specification

Specification

Function Signature
from_signed_fixed_point (amount, currencyId)
Parameters
e amount: The amount as fixed point.
e currencylId: The currency.
Preconditions
» amount MUST be representable as a 128 bit unsigned number.
Postconditions

* An Amount MUST be returned where Amount .amount is the truncated amount argument, and Amount.
currencylId is the currencyId argument.

10.3.2 to_signed_fixed_point

Converts an Amount struct into a fixed-point number.

Specification

Function Signature
to_signed_fixed_point (amount)
Parameters
e amount: The amount struct.
Preconditions
» amount MUST be representable by the signed fixed point type.
Postconditions

e amount . amount MUST be returned as a fixed point number.

10.3.3 convert_to

Converts the given amount into the given currency.

Specification

Function Signature
convert_to(amount, currencyId)
Parameters
e amount: The amount struct.
e currencyld: The currency to convert to.
Preconditions
e convert when called with amount and currencyId MUST return successfully.
Postconditions

* convert MUST be called with amount and currencyId as arguments.

64 Chapter 10. Currency

interBTC Specification

10.3.4 checked_add

Adds two amounts.

Specification

Function Signature
checked_add(amountl, amount2)
Parameters
e amountl: the first amount.
e amount2: the second amount.
Preconditions
e amountl.currencyId MUST be equal to amount2.currencyId
Postconditions

¢ MUST return the sum of both amounts.

10.3.5 checked_sub

Subtracts two amounts.

Specification

Function Signature
checked_sub(amountl, amount2)
Parameters
e amountl: the first amount.
e amount2: the second amount.
Preconditions
e amountl.currencyId MUST be equal to amount2.currencyId
Postconditions

¢ MUST return amountl - amount2.

10.3.6 saturating_sub

Subtracts two amounts, or zero if the result would be negative.

10.3. Functions

65

interBTC Specification

Specification

Function Signature
saturating_sub(amountl, amount2)
Parameters
e amountl: the first amount.
e amount2: the second amount.
Preconditions
e amountl.currencyId MUST be equal to amount2.currencyId
Postconditions
e if amount2 <= amountl, then this function MUST return amountl - amount2.

e if amount2 > amountl, then this function MUST return zero.

10.3.7 checked_fixed_point_mul

Multiplies an amount by a fixed point scalar. The result is rounded down.

Specification

Function Signature
checked_fixed_point_mul (amount, scalar)
Parameters
e amount: the Amount struct.
* scalar: the fixed point scalar.
Preconditions
¢ The multiplied amount MUST be representable by a 128 bit unsigned integer.
Postconditions

* MUST return a copy of amount that is multiplied by the scalar. The result MUST be rounded down.

10.3.8 checked_fixed_point_mul_rounded_up

Like checked_fixed_point_mul, but with a rounded-up result.

Specification

Function Signature
checked_fixed_point_mul_rounded_up(amount, scalar)
Parameters
e amount: the Amount struct.
* scalar: the fixed point scalar.
Preconditions
* The multiplied amount MUST be representable by a 128 bit unsigned integer.

Postconditions

66 Chapter 10. Currency

interBTC Specification

e MUST return a copy of amount that is multiplied by the scalar. The result MUST be rounded up.

10.3.9 rounded_mul

Like checked_fixed_point_mul, but with a rounded result.

Specification

Function Signature
rounded_mul (amount, scalar)
Parameters
e amount: the Amount struct.
e scalar: the fixed point scalar.
Preconditions
¢ The multiplied amount MUST be representable by a 128 bit unsigned integer.
Postconditions

* MUST return a copy of amount that is multiplied by the scalar. The result MUST be rounded to the nearest
integer.

10.3.10 checked div

Divides an amount by a fixed point scalar. The result is rounded down.

Specification

Function Signature
checked_div(amount, scalar)
Parameters
* amount: the Amount struct.
e scalar: the fixed point scalar.
Preconditions
e The multiplied amount MUST be representable by a 128 bit unsigned integer.
Postconditions

e MUST return a copy of amount that is divided by the scalar.

10.3.11 ratio

Returns the fixed point ratio between two amounts.

10.3. Functions 67

interBTC Specification

Specification

Function Signature
ratio(amountl, amount2)
Parameters
e amountl: the first Amount struct.
e amount2: the second Amount struct.
Preconditions
e amountl.currencyId MUST be equal to amount2.currencyId
» The ratio MUST be representable by the fixed point type.
Postconditions

e MUST return the ratio between the two amounts.

10.3.12 Comparisons: It, le, eq, ge, gt

Compares two amounts

Specification

Function Signature
[1t|le|eqlge|gt] (amountl, amount2)
Parameters
e amountl: the first Amount struct.
e amount2: the second Amount struct.
Preconditions
e amountl.currencyId MUST be equal to amount2.currencyld
Postconditions

e MUST return true when the comparison holds.

10.3.13 transfer

Transfers the amount between the given accounts.

Specification

Function Signature
transfer(amount, source, destination)
Parameters

e amount: the Amount struct.

* source: the account to transfer from.

e destination: the account to transfer to.
Preconditions

* source MUST have sufficient unlocked funds in the given currency

68 Chapter 10. Currency

interBTC Specification

Postconditions

* The free balance of source MUST decrease by amount . amount (in the currency determined by amount .
currencyId)

e The free balance of destination MUST increase by amount.amount (in the currency determined by
amount . currencyId)

10.3.14 lock on

Locks the amount on the given account.

Specification

Function Signature
lock_on(amount, accountId)
Parameters
e amount: the Amount struct.
e accountId: the account to lock the amount on.
Preconditions
* The given account MUST have sufficient unlocked funds in the given currency.
Postconditions

e The free balance of accountId MUST decrease by amount.amount (in the currency determined by
amount . currencylId)

* The locked balance of accountId MUST increase by amount.amount (in the currency determined by
amount . currencyId)

10.3.15 unlock _on

Unlocks the amount on the given account.

Specification

Function Signature
unlock_on(amount, accountId)
Parameters
e amount: the Amount struct.
e accountId: the account to unlock the amount on.
Preconditions
* The given account MUST have sufficient locked funds in the given currency.
Postconditions

* The locked balance of accountId MUST decrease by amount.amount (in the currency determined by
amount . currencylId)

e The free balance of accountId MUST increase by amount.amount (in the currency determined by
amount . currencyId)

10.3. Functions 69

interBTC Specification

10.3.16 burn_from

Burns the amount on the given account.

Specification

Function Signature
burn_from(amount, accountId)
Parameters
e amount: the Amount struct.
e accountId: the account to lock the amount on.
Preconditions
* The given account MUST have sufficient locked funds in the given currency.
Postconditions

* The locked balance of accountId MUST decrease by amount.amount (in the currency determined by
amount . currencyld)

10.3.17 mint_to

Mints the amount on the given account.

Specification

Function Signature
mint_to(amount, accountId)
Parameters
e amount: the Amount struct.
e accountId: the account to mint the amount on.
Postconditions

e The free balance of accountId MUST increase by amount.amount (in the currency determined by
amount . currencylId)

70 Chapter 10. Currency

CHAPTER
ELEVEN

FEE

11.1 Overview

The fee model crate implements the fee model outlined in Fee Model.

11.1.1 Step-by-step

1. Fees are paid by Users (e.g., during issue and redeem requests) and forwarded to a reward pool.
Fees are then split between incentivised network participants (i.e. Vaults).
Network participants can claim these rewards from the pool based on their stake.

Stake is determined by their participation in the network - through incentivized actions.

A

Rewards are paid in interBTC.

11.2 Data Model

11.2.1 Scalars (Fees)

IssueFee

Issue fee share (configurable parameter, as percentage) that users need to pay upon issuing interBTC.
* Paid in interBTC

e Initial value: 0.5%

IssueGriefingCollateral

Issue griefing collateral as a percentage of the locked collateral of a Vault a user has to lock to issue interBTC.
* Paid in collateral

e Initial value: 0.005%

7

interBTC Specification

RefundFee

Refund fee (configurable parameter, as percentage) that users need to pay to refund overpaid interBTC.
 Paid in interBTC

e Initial value: 0.5%

RedeemFee

Redeem fee share (configurable parameter, as percentage) that users need to pay upon request redeeming interBTC.
* Paid in interBTC

e Initial value: 0.5%

PremiumRedeemFee
Fee for users to premium redeem (as percentage). If users execute a redeem with a Vault flagged for premium
redeem, they earn a premium slashed from the Vault’s collateral.

* Paid in collateral

¢ Initial value: 5%

PunishmentFee
Fee (as percentage) that a Vault has to pay if it fails to execute redeem requests (for redeem, on top of the slashed
value of the request). The fee is paid in collateral based on the interBTC amount at the current exchange rate.

* Paid in collateral

e Initial value: 10%

TheftFee
Fee (as percentage) that a reporter receives if another Vault commits theft. The fee is paid in collateral taken from
the liquidated Vault.

* Paid in collateral

e Initial value: 5%

TheftFeeMax

Upper bound to the reward that can be payed to a reporter on success. This is expressed in Bitcoin to ensure
consistency between assets.

e Initial value: 0.1 BTC

72 Chapter 11. Fee

interBTC Specification

ReplaceGriefingCollateral

Default griefing collateral as a percentage of the to-be-locked collateral of the new Vault, Vault has to lock to be
replaced by another Vault. This collateral will be slashed and allocated to the replacing Vault if the to-be-replaced
Vault does not transfer BTC on time.

¢ Paid in collateral

e Initial value: 0.005%

11.3 Functions

11.3.1 distributeRewards

Distributes fees among incentivised network participants.

Specification

Function Signature
distributeRewards(amount)
Preconditions
* There MUST be at least one registered Vault OR a treasury account.
Postconditions
« If there are no registered funds, rewards MUST be sent to the treasury account.

¢ Otherwise, rewards MUST be distributed according to distributeReward.

11.3.2 withdrawRewards

A function that allows incentivised network participants to withdraw all earned rewards.

Specification

Function Signature
withdrawRewards (accountId, vaultId)
Parameters
* accountId: the account withdrawing interBTC rewards.
e vaultId: the vault that generated interBTC rewards.
Events
» WithdrawRewards
Preconditions
* The function call MUST be signed by accountId.
e The BTC Parachain status in the Security component MUST NOT be SHUTDOWN: 2.
¢ The accountId MUST have available rewards for interBTC.
Postconditions

* The account’s balance MUST increase by the available rewards.

11.3. Functions 73

interBTC Specification

* The account’s withdrawable rewards MUST decrease by the withdrawn rewards.

11.4 Events

11.4.1 WithdrawRewards

Event Signature
WithdrawRewards (account, amount)
Parameters
e account: the account withdrawing rewards
e amount: the amount of rewards withdrawn
Functions

o withdrawRewards

74 Chapter 11. Fee

CHAPTER
TWELVE

ORACLE

Note: This oracle model relies on trusted oracle sources. Decentralized oracles are a difficult and open research
problem that is outside of the scope of this specification. However, the general interface to get the exchange rate
can remain the same even with different constructions.

The Oracle receives a continuous data feed from off-chain oracles, with information in exchange rates or bitcoin
inclusion estimates. Multiple oracles can be authorized, in which case the ‘median’ of all unexpired values is used
as the actual value. It is not technically the median - when an even number of oracles have submitted values, it
does not average the middle two values. Instead, it arbitrarily picks one of them. This is done because this can be
done in O(n) rather than in O(n log n).

In the implementation, the feed values function does not directly update the aggregate - this is done in the
on_initialize hook, in order to keep the feed_values function weight independent of the number of oracles. Further-
more, for oracle offline detection and for updating the aggregate when a value becomes outdated, the on_initialize
hook was necessary anyway.

The implementation of the oracle client is not part of this specification. InterBTC assumes the oracle operates
correctly and that the received data is reliable.

12.1 Data Model

12.1.1 Enums

OracleKey

Key to indicate a specific value.

Discriminant Description
ExchangeRate(CurrencyId) | Exchange rate against Bitcoin, in e.g. planck per satoshi.
FeeEstimation Estimate of the Bitcoin inclusion fee, in satoshis per byte.

12.1.2 Scalars

MaxDelay

The time after which a reported value will no longer be considered valid.

75

interBTC Specification

12.1.3 Maps

Aggregate

Maps oracle_key to the median of all unexpired values reported by oracles for that key.

AuthorizedOracles

The account(s) of the oracle. Returns true if registered as an oracle.

ValidUntil

Maps oracle_keys to a timestamp that indicates when one of the values expires, at which time a new aggregate
needs to be calculated.

RawValues

Maps oracle_keys and account ids to raw timestamped values.

RawValuesUpdated

Maps oracle_key to a boolean value that indicates that a new value has been received that has not yet been included
in the aggregate.

AuthorizedOracles

Maps oracle accountId to the oracle’s name. The presence of an account id in this map indicates that the account
is authorized to feed values.

12.2 Functions

12.2.1 feed values

The dispatchable function that oracles call to feed new price data into the system.

Specification

Function Signature
feed_values(oracle_id, Vec<oracle_key, value>)
Parameters
* oracle_id: the oracle account calling this function.
e oracle_key: indicated which value is being set
* value: the value being set
Events
» FeedValues
Preconditions

* The function call MUST be signed by oracle_id.

76 Chapter 12. Oracle

interBTC Specification

* The BTC Parachain status in the Security component MUST NOT be SHUTDOWN: 2.
* The oracle MUST be authorized.
Postconditions
For each (oracle_key, value) pair,
e RawValuesUpdated[oracle_key] MUST be set to true
e RawValues[oracle_key] MUST be set to a TimeStamped values, where,
— TimeStamped.timestamp MUST be the current time,

— TimeStamped.value MUST be value.

12.2.2 get_price

Returns the latest medianized value for the given key, as calculated from the received external data sources.

Specification

Function Signature
get_price(oracle_key)
Parameters
* oracle_key: the key for which the value should be returned
Preconditions

e ExchangeRate[oracle_key] MUST NOT be None. That is, sufficient oracles must have submitted unex-
pired values.

Postconditions

e MUST return the fixed point value for the given key.

12.2.3 convert

Converts the given amount to the given currency.

Specification

Function Signature
convert (amount, currencyId)
Parameters
e amount: the amount to convert
e currencyld: the currency to convert to
Preconditions
 Exactly one of amount.currencyId and the currencyId argument MUST be the wrapped currency.
» Exactly one of amount . currencyId and the currencyId argument MUST be a collateral currency.
Postconditions

e MUST return amount converted to currencyId.

12.2. Functions 77

interBTC Specification

12.2.4 on_initialize

This function is called at the start of every block. When new values have been submitted, or when old values expire,
this function update the aggregate value.

Specification

Function Signature
on_initialize()
Postconditions

e If RawValuesUpdated is empty, i.e., feed_values was not yet called since the initialization of the parachain,
then the OracleOffline MUST be set in the Security pallet.

e For each (oracle_key, updated) in RawValuesUpdated, if updated is true, or the current time is
greater than ValidUntil [oracle],

— RawValuesUpdated[oracle_key] MUST be set to false

— ExchangeRate[oracle_key] MUST be set to the middle value of the sorted list of unexpired values
from RawValues[oracle_key]. If there are an even number, one MAY be arbitrarily picked.

— ValidUntil[oracle_key] MUST be set to MaxDelay plus the minimum timestamp from the unex-
pired values in RawValues[oracle_key].

12.3 Events

12.3.1 FeedValues

12.3.2 SetExchangeRate

Emits the new exchange rate when it is updated by the oracle.
Event Signature
FeedValues(oracle_id, Vec<(oracle_key, value)>),
Parameters
e oracle_id: the oracle account calling this function.
» oracle_key: the key indicating which value is being set
* value: the new value
Function

e feed_values

78 Chapter 12. Oracle

CHAPTER
THIRTEEN

ISSUE

13.1 Overview

The Issue module allows as user to create new interBTC tokens. The user needs to request interBTC through
the requestlssue function, then send BTC to a Vault, and finally complete the issuing of interBTC by calling the
executelssue function. If the user does not complete the process in time, the Vault can cancel the issue request and
receive a griefing collateral from the user by invoking the cancellssue function. Below is a high-level step-by-step
description of the protocol.

13.1.1 Step-by-step

The nominal control flow is as follows:

1.
2.

Precondition: a Vault has locked collateral as described in the Vault Registry.

A user executes the requestlssue function to open an issue request. The issue request includes the amount of
interBTC the user wants to issue, the selected Vault, and a small collateral reserve to prevent Griefing.

A user sends the equivalent amount of BTC to issue as interBTC to the Vault on the Bitcoin blockchain.

The user or Vault acting on behalf of the user extracts a transaction inclusion proof of that locking transaction
on the Bitcoin blockchain. The user or a Vault acting on behalf of the user executes the executelssue function
on the BTC Parachain. The issue function requires a reference to the issue request and the transaction
inclusion proof of the Bitcoin locking transaction. If the function completes successfully, the user receives
the requested amount of interBTC into his account.

Optional: If the user is not able to complete the issue request within the predetermined time frame
(IssuePeriod), the Vault is able to call the cancellssue function to cancel the issue request adn will re-
ceive the griefing collateral locked by the user.

User Failsafe

To accommodate for user error, the bridge allows the execution of issue requests even when the user sends an
incorrect BTC amount. Specifically, we distinguish the following cases:

* The user sends less than the expected amount. The user has the option to execute the issue with this amount.

However, it will lose part of its griefing collateral. If it sends e.g. 10% of the expected amount, it loses 90%
of the griefing collateral. It will also receive 10% of the wrapped tokens. Because there is a cost associated
with this choice, automatic execution of this issue request by Vaults is disallowed. The alternative for the
user is to make another Bitcoin transfer, and to execute the issue with that transaction. In this case, however,
it loses the Bitcoin sent in the first transaction.

* The user sends more than the expected amount.

— If the Vault has sufficient collateral to issue wrapped tokens for the sent amount, the size of the issue
request is automatically increased and more collateral of the Vault is reserved. The user receives the
amount corresponding to the received amount of Bitcoin. The issue fee is deducted from the updated
(increased) amount.

79

interBTC Specification

— If the Vault does not have sufficient collateral to issue the additional amount, only the amount that
was originally requested is issued. A refund request is sent to the Vault to return the surplus Bitcoin
(excluding a fee). Note, however, that there is no penalty for the Vault if it does not return the surplus
Bitcoin since this is a user fault rather than a Vault fault.

13.1.2 Security

* Unique identification of Bitcoin payments: On-Chain Key Derivation Scheme

13.1.3 Vault Registry

The data access and state changes to the Vault registry are documented in Fig. 13.1 below.

VaultRegistry

er .
V§ult toBelssuedTokens issuedTokens toBeRedeemedTokens collateral
increase decrease decrease increase
atomically removes an amount
of to-be-issued tokens
adds an amount removes an amount and adds an amount
of to-be-issued tokens of to-be-issued tokens of issued tokens
increaseToBelssuedTokens decreaseToBelssuedTokens issueTokens
requestissue cancellssue executelssue

Fig. 13.1: The issue protocol interacts with three functions in the Vault Registry that handle updating the different
token balances.

13.1.4 Fee Model
* Issue fees are paid by users in interBTC when executing the request. The fees are transferred to the Parachain
Fee Pool.
* If an issue request is executed, the user’s griefing collateral is returned.

« If an issue request is canceled, the Vault assigned to this issue request receives the griefing collateral.

80 Chapter 13. Issue

interBTC Specification

13.2 Data Model

13.2.1 Scalars

IssuePeriod
The time difference between when an issue request is created and required completion time by a user. Concretely,

this period is the amount by which ActiveBlockCount is allowed to increase before the issue is considered to be
expired. The period has an upper limit to prevent griefing of Vault collateral.

IssueBtcDustValue

The minimum amount of BTC that is required for issue requests; lower values would risk the rejection of payment
on Bitcoin.

13.2.2 Maps

IssueRequests

Users create issue requests to issue interBTC. This mapping provides access from a unique hash Issueld to a
Issue struct. <Issueld, IssueRequest>.

13.2.3 Structs

IssueRequest

Stores the status and information about a single issue request.

Parameter Type Description

vault Accountld The address of the Vault responsible for this issue request.
opentime BlockNumber | The ActiveBlockCount when the issue request was created.
period BlockNumber | Value of the IssuePeriod when the request was made.
griefingCollateral | DOT Security deposit provided by a user.

amount interBTC Amount of interBTC to be issued.

fee interBTC Fee charged to the user for issuing.

requester Accountld User account receiving interBTC upon successful issuing.
btcAddress BtcAddress Vault’s P2ZWPKH Bitcoin deposit address.

btcPublicKey BtcPublicKey | Vault’s Bitcoin public key used to generate the deposit address.
btcHeight u32 The highest recorded height of the relay at time of opening.
status Enum Status of the request: Pending, Completed or Cancelled.

13.3 Functions

13.3.1 requestissue

A user opens an issue request to create a specific amount of interBTC. When calling this function, a user provides
their parachain account identifier, the to be issued amount of interBTC, and the Vault to use in this process (account
identifier). Further, they provide some (small) amount of DOT collateral (griefingCollateral) to prevent
griefing.

13.2. Data Model 81

interBTC Specification

Specification

Function Signature

requestIssue(requester, amount, vault, griefingCollateral)

Parameters

e requester: The user’s account identifier.

e amount: The amount of interBTC to be issued.

e vault: The address of the Vault involved in this issue request.

e griefingCollateral: The collateral amount provided by the user as griefing protection.

Events

* Requestlssue

Preconditions

The function call MUST be signed by requester.

The BTC Parachain status in the Security component MUST NOT be SHUTDOWN : 2.

The BTC-Relay MUST be initialized.
The Vault MUST be registered and active.
The Vault MUST NOT be banned.

The amount MUST be greater than or equal to IssueBtcDustValue.

The griefingCollateral MUST exceed or equal the value of request amount at the current exchange-rate,
multiplied by IssueGriefingCollateral.

The griefingCollateral MUST be equal or less than the requester’s free balance in the Griefing Collat-
eral Currency.

The trylncreaseToBelssuedTokens function MUST return a new BTC deposit address for the Vault ensuring
that the Vault’s free collateral is above the SecureCollateralThreshold for the requested amount and that a
unique BTC address is used for depositing BTC.

* A new unique issuedId MUST be generated via the generateSecureld function.

Postconditions

e The Vault’s toBeIssuedTokens MUST increase by amount.

The requester’s free balance in the Griefing Collateral Currency MUST decrease by griefingCollateral.

The

requester’s locked balance in the Griefing Collateral Currency MUST increase by
griefingCollateral.

A new BTC deposit address for the Vault MUST be generated by the trylncreaseToBelssuedTokens.

The new issue request MUST be created as follows:

issue.
issue.
issue
issue
issue
issue.
issue

issue

vault: MUST be the vault.

opentime: MUST be the ActiveBlockCount of the current block of this transaction.

.period: MUST be the current IssuePeriod.
.griefingCollateral: MUST be the griefingCollateral amount passed to the function.

.amount: MUST be amount minus issue. fee.

fee: MUST equal amount multiplied by IssueFee.

.requester: MUST be the requester
.btcAddress: MUST be the BTC address returned from the trylncreaseToBelssuedTokens

82

Chapter 13. Issue

interBTC Specification

— issue.btcPublicKey: MUST be the BTC public key returned from the rrylncreaseToBelssuedTo-
kens

— issue.btcHeight: MUST be the current Bitcoin height as stored in the BTC-Relay.
— issue.status: MUST be Pending.

* The new issue request MUST be inserted into IssueRequests using the generated issueld as the key.

13.3.2 executelssue

An executor completes the issue request by sending a proof of transferring the defined amount of BTC to the vault’s
address.

Specification

Function Signature
executeIssue(executorId, issueld, rawMerkleProof, rawTx)
Parameters
* executor: the account of the user.
* issueld: the unique hash created during the requestIssue function.
e rawMerkleProof: Raw Merkle tree path (concatenated LE SHA256 hashes).
* rawTx: Raw Bitcoin transaction including the transaction inputs and outputs.
Events
e Executelssue

¢ If the amount transferred IS not equal to the issue.amount + issue. fee, the IssueAmountChange MUST
be emitted

Preconditions
* The function call MUST be signed by executor.
e The BTC Parachain status in the Security component MUST NOT be SHUTDOWN : 2.
* The issue request for issueId MUST exist in IssueRequests.
* The issue request for issueId MUST NOT have expired.
* The rawTx MUST be valid and contain a payment to the Vault.
* The rawMerkleProof MUST be valid and prove inclusion to the main chain.

e If the amount transferred is less than issue.amount + issue.fee, then the executor MUST be the
account that made the issue request.

Postconditions
e If the amount transferred IS less than the issue.amount + issue. fee:

— The Vault’'s toBeIssuedTokens MUST decrease by the deficit (issue.amount -
amountTransferred).

— The Vault’s free balance in the Griefing Collateral Currency MUST increase by the
griefingCollateral * (1 - amountTransferred / (issue.amount + issue.fee)).

— The requester’s free balance in the Griefing Collateral Currency MUST increase by the
griefingCollateral * amountTransferred / (issue.amount + issue.fee).

— The issue. fee MUST be updated to the amount transferred multiplied by the IssueFee.

— The issue.amount MUST be set to the amount transferred minus the updated issue. fee.

13.3. Functions 83

interBTC Specification

* If the amount transferred IS NOT less than the expected amount:

— The requester’s free balance in the Griefing Collateral Currency MUST increase by the
griefingCollateral.

— If the amount transferred IS greater than the expected amount:
% If the Vault IS NOT liquidated and has sufficient collateral:

- The Vault’s toBeIssuedTokens MUST increase by the surplus (amountTransferred -
issue.amount).

- The issue.fee MUST be updated to the amount transferred multiplied by the /ssueFee.

- The issue.amount MUST be set to the amount transferred minus the updated issue. fee.
% If the Vault IS NOT liquidated and does not have sufficient collateral:

- There MUST exist a Refund request which references issueld.

e The requester’s locked balance in the Griefing Collateral Currency MUST decrease by issue.
griefingCollateral.

e The issue.status MUST be set to Completed.

e The Vault’s toBeIssuedTokens MUST decrease by issue.amount + issue. fee.
e The Vault’s issuedTokens MUST increase by issue.amount + issue.fee.

* The user MUST receive issue.amount interBTC in its free balance.

* Function distributeReward MUST complete successfully - parameterized by issue. fee.

13.3.3 cancellssue

If an issue request is not completed on time, the issue request can be cancelled.

Specification

Function Signature
cancelIssue(requester, issueld)
Parameters
e requester: The sender of the cancel transaction.
¢ issueld: the unique hash of the issue request.
Events
e Cancellssue
Preconditions
 The function call MUST be signed by requester.
* The BTC Parachain status in the Security component MUST NOT be SHUTDOWN: 2.
* The issue request for issueId MUST exist in IssueRequests.
* The issue request MUST have expired.
Postconditions
e If the vault IS liquidated:

— The requester’s free balance oinf the Griefing Collateral Currency MUST increase by the
griefingCollateral.

* If the Vault IS NOT liquidated:

84 Chapter 13. Issue

interBTC Specification

— The vault’s free balance in the Griefing Collateral Currency MUST increase by the
griefingCollateral.

e The requester’s locked balance in the Griefing Collateral Currency MUST decrease by the
griefingCollateral.

* The vault’s toBeIssuedTokens MUST decrease by issue.amount + issue.fee.

¢ The issue status MUST be set to Cancelled.

13.4 Events

13.4.1 Requestissue

Emit an event if a user successfully open a issue request.
Event Signature

RequestIssue(issueld, requester, amount, fee, griefingCollateral, vault, btcAddress,
btcPublicKey)

Parameters
* issueId: A unique hash identifying the issue request.
¢ requester: The user’s account identifier.
e amount: The amount of interBTC requested.
» fee: The amount of interBTC to mint as fees.
* griefingCollateral: The security deposit provided by the user.
e vault: The address of the Vault involved in this issue request.
* btcAddress: The Bitcoin address of the Vault.
* btcPublicKey: The Bitcoin public key of the Vault.
Functions

* requestlssue

13.4.2 IssueAmountChange

Emit an event if the issue amount changed for any reason.
Event Signature
IssueAmountChange(issueld, amount, fee, griefingCollateral)
Parameters
* issueId: A unique hash identifying the issue request.
e amount: The amount of interBTC requested.
» fee: The amount of interBTC to mint as fees.
* griefingCollateral: Confiscated griefing collateral.
Functions

e executelssue

13.4. Events 85

interBTC Specification

13.4.3 Executelssue

Event Signature
ExecutelIssue(issueld, requester, amount, vault, fee)
Parameters
e issueId: A unique hash identifying the issue request.
e requester: The user’s account identifier.
e amount: The amount of interBTC issued to the user.
e vault: The address of the Vault involved in this issue request.
e fee: The amount of interBTC minted as fees.
Functions

e executelssue

13.4.4 Cancellssue

Event Signature
CancelIssue(issueld, requester, griefingCollateral)
Parameters

* issueld: the unique hash of the issue request.

e requester: The sender of the cancel transaction.

e griefingCollateral: The released griefing collateral.
Functions

e cancellssue

13.5 Error Codes

ERR_VAULT_NOT_FOUND

* Message: “There exists no Vault with the given account id.”

e Function: requestlssue

» Cause: The specified Vault does not exist.
ERR_VAULT_BANNED

e Message: “The selected Vault has been temporarily banned.”

* Function: requestlssue

* Cause: Issue requests are not possible with temporarily banned Vaults
ERR_INSUFFICIENT_COLLATERAL

* Message: “User provided collateral below limit.”

* Function: requestlssue

e Cause: User provided griefingCollateral below IssueGriefingCollateral.
ERR_UNAUTHORIZED_USER

e Message: “Unauthorized: Caller must be associated user”

e Function: executelssue

86 Chapter 13.

Issue

interBTC Specification

¢ Cause: The caller of this function is not the associated user, and hence not authorized to take this action.

ERR_ISSUE_ID_NOT_FOUND

* Message: “Requested issue id not found.”

* Function: executelssue

* Cause: Issue id not found in the IssueRequests mapping.
ERR_COMMIT_PERIOD_EXPIRED

* Message: “Time to issue interBTC expired.”

¢ Function: executelssue

e Cause: The user did not complete the issue request within the block time limit defined by the IssuePeriod.

ERR_TIME_NOT_EXPIRED

e Message: “Time to issue interBTC not yet expired.”

e Function: cancellssue

¢ Cause: Raises an error if the time limit to call executeIssue has not yet passed.
ERR_ISSUE_COMPLETED

* Message: “Issue completed and cannot be cancelled.”

* Function: cancellssue

* Cause: Raises an error if the issue is already completed.

13.5. Error Codes

87

interBTC Specification

88

Chapter 13. Issue

CHAPTER
FOURTEEN

REFUND

14.1 Overview

The Refund module is a user failsafe mechanism. In case a user accidentally locks more Bitcoin than the actual
issue request, the refund mechanism seeks to ensure that either (1) the initial issue request is increased to issue
more interBTC or (2) the BTC are returned to the sending user.

14.1.1 Step-by-step

If a user falsely sends additional BTC (i.e., [BTC| > |interBTC|) during the issue process:

1. Case 1: The originally selected vault has sufficient collateral locked to cover the entire BTC amount sent by the user:

a. Increase the issue request interBTC amount and the fee to reflect the actual BTC amount paid by
the user.

b. As before, issue the interBTC to the user and forward the fees.
c. Emit an event that the issue amount was increased.

2. Case 2: The originally selected vault does NOT have sufficient collateral locked to cover the additional BTC amount se

a. Automatically create a return request from the issue module that includes a return fee (deducted
from the originial BTC payment) paid to the vault returning the BTC.

b. The vault fulfills the return request via a transaction inclusion proof (similar to execute issue).
However, this does not create new interBTC.

Note: Only case 2 is handled in this module. Case 1 is handled directly by the issue module.

Note: Normally, enforcing actions by a vault is achieved by locking collateral of the vault and slashing the vault
in case of misbehavior. In the case where a user sends too many BTC and the vault does not have enough “free”
collateral left, we cannot lock more collateral. However, the original vault cannot move the additional BTC sent
as this would be flagged as theft and the vault would get slashed. The vault can possibly take the overpaid BTC
though if the vault would not be backing any interBTC any longer (e.g. due to redeem/replace).

89

interBTC Specification

14.1.2 Security

* Unique identification of Bitcoin payments: OP_RETURN

14.2 Data Model

14.2.1 Scalars

RefundBtcDustValue

The minimum amount of BTC that is required for refund requests; lower values would risk the rejection of payment

on Bitcoin.

14.2.2 Maps

RefundRequests

Overpaid issue payments create refund requests to return BTC. This mapping provides access from a unique hash
RefundId to a Refund struct. <RefundId, Refund>.

14.2.3 Structs

Refund

Stores the status and information about a single refund request.

Parameter Type Description

vault Accountld | The account of the Vault responsible for this request.
amountWrapped | interBTC Amount of interBTC to be refunded.

fee interBTC Fee charged to the user for refunding.

amountBtc interBTC Total amount that was overpaid.

issuer Accountld | Account that overpaid on issue.

btcAddress BtcAddress | User’s Bitcoin address.

issueld H256 The id of the issue request.

completed bool True if the refund was processed successfully.

14.3 External Functions

14.3.1 executeRefund

This function finalizes a refund, also referred to as a user failsafe. It is typically called by the vault client that

performed the refund.

90

Chapter 14. Refund

interBTC Specification

Specification

Function Signature
executeRefund(caller, refundId, merkleProof, rawTx)
Parameters
e caller: address of the user finalizing the refund. Typically the vault client that performed the refund.
* refundId: the unique hash created during the internal requestRefund function.
* rawMerkleProof: raw Merkle tree path (concatenated LE SHA256 hashes).
» rawTx: raw Bitcoin transaction of the refund payment, including the transaction inputs and outputs.
Events
* ExecuteRefund
Preconditions
* The function call MUST be signed by someone, i.e., not necessarily the Vault that performed the refund.
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.
* A pending RefundRequest MUST exist with an id equal to refundId.
¢ refundRequest.completed MUST be false.

e The rawTx MUST decode to a valid transaction that transfers the amount specified in the RefundRequest
struct. It MUST be a transaction to the correct address, and provide the expected OP_RETURN, based on
the RefundRequest.

* The rawMerkleProof MUST be valid and prove inclusion to the main chain.

e The vault.status MUST be active.

* The refunding vault MUST have enough collateral to mint an amount equal to the refund fee.
Postconditions

e The vault.issuedTokens MUST increase by fee.

* The vault’s free balance in wrapped currency MUST increase by fee.

¢ refundRequest.completed MUST be true.

14.4 Internal Functions

14.4.1 requestRefund

Used to request a refund if too much BTC was sent to a Vault by mistake.

Specification

Function Signature
requestRefund(amount, vault, issuer, btcAddress, issueId)
Parameters

e amount: the amount that the user has overpaid.

e vault: id of the vault the issue was made to.

* issuer: id of the user that made the issue request.

¢ btcAddress: the btc address that should receive the refund.

14.4. Internal Functions 91

interBTC Specification

issueld: corresponding issue request which was overpaid.

Events

* RequestRefund

Preconditions

* The function call MUST only be called by executelssue.

e The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.

e The amount - fee MUST be greater than or equal to RefundBtcDustValue.

* A new unique refundId MUST be generated via the generateSecureld function.

Postconditions

* The new refund request MUST be created as follows:

refund.vault: MUST be the vault.

— refund.amountWrapped: MUST be the amount - fee

— refund. fee: MUST equal amount multiplied by RefundFee.
— refund.amountBtc: MUST be the amount.

— refund.issuer: MUST be the issuer.

— refund.btcAddress: MUST be the btcAddress.

— refund.issueId: MUST be the issueId.
refund.completed: MUST be false.

* The new refund request MUST be inserted into RefundRequests using the generated refundId as the key.

14.5 Events

14.5.1 RequestRefund

Event Signature

RequestRefund(refundId, issuer, amount, vault, btcAddress, issueIld, fee)

Parameters

refundId: A unique hash created via generateSecureld.
issuer: The user’s account identifier.

amount: The amount of interBTC overpaid.

vault: The address of the Vault involved in this refund request.
issueld: The unique hash created during requestissue.

fee: The amount of interBTC to mint as fees.

92

Chapter 14. Refund

interBTC Specification

14.5.2 ExecuteRefund

Event Signature

ExecuteRefund(refundId, issuer, vault, amount, fee)

Parameters

refundId: The unique hash created during via :ref:requestRefund.

issuer: The user’s account identifier.
vault: The address of the Vault involved in this refund request.
amount: The amount of interBTC refunded.

fee: The amount of interBTC to mint as fees.

14.5. Events

93

interBTC Specification

94

Chapter 14. Refund

CHAPTER
FIFTEEN

REDEEM

15.1 Overview

The redeem module allows a user to receive BTC on the Bitcoin chain in return for destroying an equivalent amount
of interBTC on the BTC Parachain. The process is initiated by a user requesting a redeem with a vault. The vault
then needs to send BTC to the user within a given time limit. Next, the vault has to finalize the process by providing
a proof to the BTC Parachain that they have send the right amount of BTC to the user. If the vault fails to deliver a
valid proof within the time limit, the user can claim an equivalent amount of DOT from the vault’s locked collateral
to reimburse him for his loss in BTC.

Moreover, as part of the liquidation procedure, users are able to directly exchange interBTC for DOT. To this end,
a user is able to execute a special liquidation redeem if one or multiple vaults have been liquidated.

15.1.1 Step-by-step

1. Precondition: A user owns interBTC.

2. A user locks an amount of interBTC by calling the requestRedeem function. In this function call, the user
selects a vault to execute the redeem request from the list of vaults. The function creates a redeem request
with a unique hash.

3. The selected vault listens for the RequestRedeem event emitted by the user. The vault then proceeds to
transfer BTC to the address specified by the user in the requestRedeem function including a unique hash in
the OP_RETURN of one output.

4. The vault executes the executeRedeem function by providing the Bitcoin transaction from step 3 together
with the redeem request identifier within the time limit. If the function completes successfully, the locked
interBTC are destroyed and the user received its BTC.

5. Optional: If the user could not receive BTC within the given time (as required in step 4), the user calls
cancelRedeem after the redeem time limit. The user can choose either to reimburse, or to retry. In case of
reimbursement, the user transfer ownership of the tokens to the vault, but receives collateral in exchange. In
case of retry, the user gets back its tokens. In either case, the user is given some part of the vault’s collateral
as compensation for the inconvenience.

a. Optional: If during a cancelRedeem the user selects reimbursement, and as a result the vault becomes
undercollateralized, then vault does not receive the user’s tokens - they are burned, and the vault’s
issuedTokens decreases. When, at some later point, it gets sufficient colalteral, it can call mintTo-
kensForReimbursedRedeem to get the tokens.

95

interBTC Specification

15.1.2 Security

* Unique identification of Bitcoin payments: OP_RETURN

15.1.3 Vault Registry

The data access and state changes to the vault registry are documented in Fig. 15.1 below.

VaultRegistry

per toBeReplacedTokens
Vault & toBelssuedTokens toBeRedeemedTokens issuedTokens collateral
replaceCollateral
A A A A A A A 4
issue
decrease trylncrease decrease Tokens
ToBeReplaced ToBeRedeemed redeem ToBeRedeemed decrease transfer
Tokens Tokens Funds
Tokens Tokens Tokens 4
A A A A A trylncrease
ToBelssued
Tokens
|
requestRedeem executeRedeem cancelRedeem Reirrrggggzzgs:ﬁerem
Redeem

Fig. 15.1: The redeem module interacts through three different functions with the vault registry. The green arrow
indicate an increase, the red arrows a decrease.

15.1.4 Fee Model

When the user makes a redeem request for a certain amount, it will actually not receive that amount of BTC. This
is because there are two types of fees subtracted. First, in order to be able to pay the bitcoin transaction cost, the
vault is given a budget to spend on on the bitcoin inclusion fee, based on RedeemTransactionSize and the inclusion
fee estimates reported by the oracle. The actual amount spent on the inclusion fee is not checked. If the vault
does not spend the whole budget, it can keep the surplus, although it will not be able to spend it without being
liquidated for theft. It may at some point want to withdraw all of its collateral and then to move its bitcoin into a
new account. The second fee that the user pays for is the parachain fee that goes to the fee pool to incentivize the
various participants in the system.

The main accounting changes of a successful redeem is summarized below. See the individual functions for more
details.

¢ redeem.amountBTC bitcoin is transferred to the user.
e redeem.amountBTC + redeem.fee + redeem.transferFeeBTC is burned from the user.
* The vault’s issuedTokens decreases by redeem.amountBTC + redeem.transferFeeBTC.

¢ The fee pool content increases by redeem. fee (if non-zero).

If the vault self-redeems (the redeemer is the vault ID) no fee is paid.

96 Chapter 15. Redeem

interBTC Specification

15.2 Data Model

15.2.1 Scalars

RedeemPeriod

The time difference between when an redeem request is created and required completion time by a vault. Con-
cretely, this period is the amount by which ActiveBlockCount is allowed to increase before the redeem is considered
to be expired. The period has an upper limit to ensure the user gets his BTC in time and to potentially punish a
vault for inactivity or stealing BTC. Each redeem request records the value of this field upon creation, and when

checking the expiry, the maximum of the current RedeemPeriod and the value as recorded in the RedeemRequest
is used. This way, users are not negatively impacted by a change in the value.

RedeemTransactionSize

The expected size in bytes of a redeem. This is used to set the bitcoin inclusion fee budget.

RedeemBtcDustValue

The minimal amount in BTC a vault can be asked to transfer to the user. Note that this is not equal to the amount
requests, since an inclusion fee is deducted from that amount.

15.2.2 Maps

RedeemRequests

Users create redeem requests to receive BTC in return for interBTC. This mapping provides access from a unique
hash redeemId to a Redeem struct. <redeemId, RedeemRequest>.

15.2. Data Model 97

interBTC Specification

15.2.3 Structs

RedeemRequest

Stores the status and information about a single redeem request.

Parameter Type Description

vault Account | The BTC Parachain address of the vault responsible for this redeem request.

opentime u32 The ActiveBlockCount when the redeem request was made. Serves as start
for the countdown until when the vault must transfer the BTC.

period u32 Value of RedeemPeriod when the redeem request was made, in case that
value changes while this redeem is pending.

amountBTC BTC Amount of BTC to be sent to the user.

transferFeeBTC | BTC Budget for the vault to spend in bitcoin inclusion fees.

fee interBTC | Parachain fee: amount to be transferred from the user to the fee pool upon
completion of the redeem.

premium DOT Amount of DOT to be paid as a premium to this user (if the Vault’s
collateral rate was below PremiumRedeemThreshold at the time of
redeeming).

redeemer Account | The BTC Parachain address of the user requesting the redeem.

btcAddress bytes[20] | Base58 encoded Bitcoin public key of the User.

btcHeight u32 Height of newest bitcoin block in the relay at the time the request is
accepted. This is used by the clients upon startup, to determine how many
blocks of the bitcoin chain they need to inspect to know if a payment has
been made already.

status enum The status of the redeem: Pending, Completed, Retried or
Reimbursed(bool), where bool=true indicates that the vault minted
tokens for the amount that the redeemer burned

15.3 Functions

15.3.1 requestRedeem
A user requests to start the redeem procedure. This function checks the BTC Parachain status in Security and
decides how the redeem process is to be executed. The following modes are possible:

¢ Normal Redeem - no errors detected, full BTC value is to be Redeemed.

¢ Premium Redeem - the selected Vault’s collateral rate has fallen below PremiumRedeemThreshold. Full
BTC value is to be redeemed, but the user is allocated a premium in DOT (RedeemPremiumFee), taken from
the Vault’s to-be-released collateral.

Specification

Function Signature
requestRedeem(redeemer, amountWrapped, btcAddress, vault)
Parameters
* redeemer: address of the user triggering the redeem.
e amountWrapped: the amount of interBTC to destroy and BTC to receive.
* btcAddress: the address to receive BTC.
e vault: the vault selected for the redeem request.

Returns

98 Chapter 15. Redeem

interBTC Specification

* redeemId: A unique hash identifying the redeem request.
Events

* RequestRedeem
Preconditions

Let burnedTokens be amountWrapped minus the result of the multiplication of RedeemFee and amountWrapped.
Then:

* The function call MUST be signed by redeemer.

* The BTC Parachain status in the Security component MUST be set to RUNNING: ®.
* The selected vault MUST NOT be banned.

* The selected vault MUST NOT be liquidated.

¢ The redeemer MUST have at least amountWrapped free tokens.

* burnedTokens minus the inclusion fee MUST be above or equal to the RedeemBtcDustValue, where the
inclusion fee is the multiplication of RedeemTransactionSize and the fee rate estimate reported by the oracle.

¢ The vault’s issuedTokens MUST be at least vault.toBeRedeemedTokens + burnedTokens.
Postconditions

Let burnedTokens be amountWrapped minus the result of the multiplication of RedeemFee and amountWrapped.
Then:

* The vault’s toBeRedeemedTokens MUST increase by burnedTokens.
e amountWrapped of the redeemer’s tokens MUST be locked by this transaction.

* decreaseToBeReplacedTokens MUST be called, supplying vault and burnedTokens. The returned
replaceCollateral MUST be released by this function.

* A new RedeemRequest MUST be added to the RedeemRequests map, with the following value:
— redeem.vault MUST be the requested vault
— redeem.opentime MUST be the current ActiveBlockCount

— redeem. fee MUST be RedeemFee multiplied by amountWrapped if redeemer != vault, other-
wise this should be zero.

— redeem.transferFeeBtc MUST be the inclusion fee, which is the multiplication of RedeemTrans-
actionSize and the fee rate estimate reported by the oracle,

— redeem.amountBtc MUST be amountWrapped - redeem.fee - redeem.transferFeeBtc,
— redeem.period MUST be the current value of the RedeemPeriod,

— redeem.redeemer MUST be the redeemer argument,

— redeem.btcAddress MUST be the btcAddress argument,

— redeem.btcHeight MUST be the current height of the btc relay,

— redeem.status MUST be Pending,

— If the vault’s collateralization rate is above the PremiumRedeemThreshold, then redeem.premium
MUST be 0,

— If the vault’s collateralization rate is below the PremiumRedeemThreshold, then redeem.premium
MUST be PremiumRedeemFee multiplied by the worth of redeem. amountBtc,

15.3. Functions 99

interBTC Specification

15.3.2 liquidationRedeem

A user executes a liquidation redeem that exchanges interBTC for collateral from the LiguidationVault. This func-
tion takes a currencyId argument that specifies which currency to the user wishes to receive. Since each currency
uses a separate liquidation vault, the amount of collateral received depends only on the amount of tokens and collat-
eral in that specific liquidation vault. If the user wants to obtain multiple currencies, they have to call this function
multiple times, possibly through off-chain aggregation via batching. Since the 1:1 backing is being recovered in
this function, interBTC is burned without releasing any BTC.

Specification

Function Signature
liquidationRedeem(redeemer, amountWrapped, currencyld)
Parameters

* redeemer: address of the user triggering the redeem.

e amountWrapped: the amount of interBTC to destroy.

* currencyld: the currency id of the funds to be received.
Events

e LiquidationRedeem
Preconditions

e The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.

* The function call MUST be signed.

¢ The redeemer MUST have at least amountWrapped free tokens.
Postconditions

¢ amountWrapped tokens MUST be burned from the user.

e redeemTokensLiquidation MUST be called with currency_id, redeemer and amountWrapped as argu-
ments.

15.3.3 executeRedeem

A vault calls this function after receiving an RequestRedeem event with their public key. Before calling the
function, the vault transfers the specific amount of BTC to the BTC address given in the original redeem request.
The vault completes the redeem with this function.

Specification

Function Signature
executeRedeem(redeemId, rawMerkleProof, rawTx)
Parameters
* redeemId: the unique hash created during the requestRedeem function.
e rawMerkleProof: Merkle tree path (concatenated LE SHA256 hashes).
* rawTx: Raw Bitcoin transaction including the transaction inputs and outputs.
Events
* ExecuteRedeem

Preconditions

100 Chapter 15. Redeem

interBTC Specification

* The function call MUST be signed by someone, i.e. not necessarily the vault.
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.
* A pending RedeemRequest MUST exist with an id equal to redeemId.

e The rawTx MUST decode to a valid transaction that transfers exactly the amount specified in the
RedeemRequest struct. It MUST be a transaction to the correct address, and provide the expected
OP_RETURN, based on the RedeemRequest.

* The rawMerkleProof MUST contain a valid proof of of rawTX.
* The bitcoin payment MUST have been submitted to the relay chain, and MUST have sufficient confirmations.
Postconditions

¢ redeemRequest.amountBtc + redeemRequest.transferFeeBtc of the tokens in the redeemer’s ac-
count MUST be burned.

* The user’s lockedTokens MUST decrease by redeemRequest.amountBtc + redeemRequest.transferFeeBtc.

e The vault’s froBeRedeemedTokens MUST decrease by redeemRequest.amountBtc + redeemRe-
quest.transferFeeBtc.

* The vault’s issuedTokens MUST decrease by redeemRequest.amountBtc + redeemRequest.transferFeeBtc.
¢ redeemRequest.fee MUST be unlocked and transferred from the redeemer’s account to the fee pool.

e redeemTokens MUST be called, supplying redeemRequest.vault, redeemRequest.amountBtc +
redeemRequest.transferFeeBtc, redeemRequest.premium and redeemRequest.redeemer as ar-
guments.

¢ redeemRequest.status MUST be set to Completed.

15.3.4 cancelRedeem

If a redeem request is not completed on time, the redeem request can be cancelled. The user that initially requested
the redeem process calls this function to obtain the Vault’s collateral as compensation for not refunding the BTC
back to his address.

The failed vault is banned from further issue, redeem and replace requests for a pre-defined time period (Punish-
mentDelay as defined in Vault Registry).

The user is able to choose between reimbursement and retrying. If the user chooses the retry, it gets back the tokens,
and a punishment fee is transferred from the vault to the user. If the user chooses reimbursement, then they receive
the equivalent worth of the tokens in collateral, plus a punishment fee. In this case, the tokens are transferred from
the user to the vault. In either case, the vault may also be slashed an additional punishment that goes to the fee
pool.

The punishment fee paid to the user stays constant (i.e., the user always receives the punishment fee of e.g. 10%).

Specification

Function Signature
cancelRedeem(redeemer, redeemId, reimburse)
Parameters
¢ redeemer: account cancelling this redeem request.
* redeemId: the unique hash of the redeem request.

e reimburse: if true, user is reimbursed in collateral (slashed from the vault), else interBTC is returned (to
retry with another vault).

Events

15.3. Functions 101

interBTC Specification

* CancelRedeem
Preconditions
* The function call MUST be signed by redeemer.
e The BTC Parachain status in the Security component MUST be set to RUNNING: ®.
* A pending RedeemRequest MUST exist with an id equal to redeemId.
* The redeemer MUST equal redeemRequest .redeemer.
* The request MUST be expired.
Postconditions

Let amountIncludingParachainFee be equal to the worth in collateral of redeem.amountBtc +
redeem. transferFeeBtc. Let confiscatedCollateral be equal to vault.backingCollateral *
(amountIncludingParachainFee / vault.toBeRedeemedTokens). Then:

« If the vault is liquidated:

— If reimburse is true, an amount of confiscatedCollateral MUST be transferred from the vault
to the redeemer.

— If reimburse is false, an amount of confiscatedCollateral MUST be transferred from the vault
to the liquidation vault.

* If the vault is not liquidated, the following collateral changes are made:

— If reimburse is true, the wuser SHOULD ©be reimbursed the worth of
amountIncludingParachainFee in collateral. The transfer MUST be saturating, i.e. if the
amount is not available, it should transfer whatever amount is available.

— A punishment fee MUST be tranferred from the vault’s backing collateral to the redeemer: Punishment-
Fee. The transfer MUST be saturating, i.e. if the amount is not available, it should transfer whatever
amount is available.

e If reimburse is true:
— redeem. fee MUST be transferred from the vault to the fee pool if non-zero.
— If after the loss of collateral the vault is below the SecureCollateralThreshold:
% amountIncludingParachainFee of the user’s tokens are burned.

% decreaseTokens ~ MUST be called, supplying the vault, the user, and
amountIncludingParachainFee as arguments.

% The redeem.status is set to Reimbursed(false), where the false indicates that the vault has
not yet received the tokens.

— If after the loss of collateral the vault remains above the SecureCollateralThreshold:

% amountIncludingParachainFee of the user’s tokens MUST be unlocked and transferred to the
vault.

% decreaseToBeRedeemedlokens ~ MUST be called, supplying the vault and
amountIncludingParachainFee as arguments.

% The redeem.status is set to Reimbursed(true), where the true indicates that the vault has
received the tokens.

e If reimburse is false:

— All the user’s tokens that were locked in requestRedeemn MUST be unlocked, i.e. an amount of redeem.
amountBtc + redeem.fee + redeem.transferFeeBtc.

— The vault’s toBeRedeemedTokens MUST decrease by amountIncludingParachainFee.

¢ The vault MUST be banned.

102 Chapter 15. Redeem

interBTC Specification

15.3.5 mintTokensForReimbursedRedeem

If a redeemrequest has the status Reimbursed(false), the vault was unable to back the to be received tokens at
the time of the cancelRedeem. After gaining sufficient collateral, the vault can call this function to finally get its
tokens.

Specification

Function Signature
mintTokensForReimbursedRedeem(vault, redeemId)
Parameters
* vault: the vault that was unable to back the tokens.
e redeemId: the unique hash of the redeem request.
Events
* MintTokensForReimbursedRedeem
Preconditions
e The BTC Parachain status in the Security component MUST be set to RUNNING: @.
* A RedeemRequest MUST exist with an id equal to redeemId.
* redeem.status MUST be Reimbursed(false).
e The vault MUST equal redeemRequest.vault.

e The vault MUST have sufficient collateral to remain above the SecureCollateralThreshold after issuing
redeem.amountBtc + redeem.transferFeeBtc tokens.

* The function call MUST be signed by redeem. vault, i.e. this function can only be called by the vault.
Postconditions

e trylncreaseToBelssuedTokens and issueTokens MUST be called, both with the vault and redeem.
amountBtc + redeem.transferFeeBtc as arguments.

e redeem.amountBtc + redeem.transferFeeBtc tokens MUST be minted to the vault.

e The redeem.status MUST be set to Reimbursed(true).

15.4 Events

15.4.1 RequestRedeem

Emit an event when a redeem request is created. This event needs to be monitored by the vault to start the redeem
request.

Event Signature

¢ RequestRedeem(redeemID, redeemer, amountWrapped, feeWrapped, premium, vaultId,
userBtcAddress, transferFeeBtc)

Parameters
* redeemID: the unique identifier of this redeem request.
* redeemer: address of the user triggering the redeem.
e amountWrapped: the amount to be received by the user.

» feelirapped: the fee to be paid to the reward pool.

15.4. Events 103

interBTC Specification

e premium: the premium to be given to the user, if any.

e vaultId: the vault selected for the redeem request.

* userBtcAddress: the address the vault is to transfer the funds to.

* transferFeeBtc: the budget the vault has to spend on bitcoin inclusion fees, paid for by the user.
Functions

* refirequestRedeem

15.4.2 LiquidationRedeem

Emit an event when a user does a liquidation redeem.
Event Signature
LiquidationRedeem(redeemer, amountWrapped)
Parameters
* redeemer: address of the user triggering the redeem.
e amountWrapped: the amount of interBTC to burned.
Functions

* ref:liquidationRedeem

15.4.3 ExecuteRedeem

Emit an event when a redeem request is successfully executed by a vault.
Event Signature
ExecuteRedeem(redeemId, redeemer, amountWrapped, feelWrapped, vault, transferFeeBtc)
Parameters

* redeemId: the unique hash created during the requestRedeem function.

* redeemer: address of the user triggering the redeem.

e amountWrapped: the amount of interBTC to destroy and BTC to receive.

e feellrapped: the amount of interBTC taken for fees.

e vault: the vault responsible for executing this redeem request.

* transferFeeBtc: the budget for the bitcoin inclusion fees, paid for by the user.
Functions

e refiexecuteRedeem

15.4.4 CancelRedeem

Emit an event when a user cancels a redeem request that has not been fulfilled after the RedeemPeriod has passed.
Event Signature
CancelRedeem(redeemId, redeemer, vault, amountSlashed, status)
Parameters
¢ redeemId: the unique hash of the redeem request.

* redeemer: The redeemer starting the redeem process.

104 Chapter 15. Redeem

interBTC Specification

e vault: the vault who failed to execute the redeem.
e amountSlashed: the amount that was slashed from the vault.
* status: the status of the redeem request.

Functions

e ref:cancelRedeem

15.4.5 MintTokensForReimbursedRedeem

Emit an event when a vault minted the tokens corresponding the a cancelled redeem that was reimbursed to the
user, when the vault did not have sufficient collateral at the time of the cancellation to back the tokens.

Event Signature
MintTokensForReimbursedRedeem(vaultId, redeemId, amountMinted)
Parameters
e vault: if of the vault that now mints the tokens.
* redeemId: the unique hash of the redeem request.
e amountMinted: the amount that the vault just minted.
Functions

e ref:mintTokensForReimbursedRedeem

15.5 Error Codes

ERR_VAULT_NOT_FOUND

* Message: “There exists no vault with the given account id.”

e Function: requestRedeem, liquidationRedeem

* Cause: The specified vault does not exist.
ERR_AMOUNT_EXCEEDS_USER_BALANCE

* Message: “The requested amount exceeds the user’s balance.”

e Function: requestRedeem, liquidationRedeem

» Cause: If the user is trying to redeem more BTC than his interBTC balance.
ERR_VAULT_BANNED

* Message: “The selected vault has been temporarily banned.”

¢ Function: requestRedeem

* Cause: Redeem requests are not possible with temporarily banned Vaults
ERR_AMOUNT_EXCEEDS_VAULT_BALANCE

* Message: “The requested amount exceeds the vault’s balance.”

e Function: requestRedeem, liquidationRedeem

* Cause: If the user is trying to redeem from a vault that has less BTC locked than requested for redeem.
ERR_REDEEM_ID_NOT_FOUND

¢ Message: “The redeemId cannot be found.”

¢ Function: executeRedeem

15.5. Error Codes 105

interBTC Specification

* Cause: The redeemId in the RedeemRequests mapping returned None.
ERR_REDEEM_PERIOD_EXPIRED

* Message: “The redeem period expired.”

¢ Function: executeRedeem

* Cause: The time limit as defined by the RedeemPeriod is not met.
ERR_UNAUTHORIZED

¢ Message: “Caller is not authorized to call this function.”

e Function: cancelRedeem | mintTokensForReimbursedRedeem

e Cause: Only the user can call cancelRedeem, and only the vault can call mintTokensForReimbursedRedeem.
ERR_REDEEM_PERIOD_NOT_EXPIRED

* Message: “The period to complete the redeem request is not yet expired.”

* Function: cancelRedeem

¢ Cause: Raises an error if the time limit to call executeRedeem has not yet passed.
ERR_REDEEM_CANCELLED

e Message: “The redeem is in an unexpected cancelled state.”

e Function: cancelRedeem | mintTokensForReimbursedRedeem | executeRedeem

* Cause: The status of the redeem is not as required for this call.
ERR_REDEEM_COMPLETED

* Message: “The redeem is already completed.”

e Function: cancelRedeem | executeRedeem

* Cause: The status of the redeem is not as expected for this call.

106 Chapter 15. Redeem

CHAPTER
SIXTEEN

REPLACE

16.1 Overview

The Replace module allows a Vault (oldVault) to be replaced by transferring the BTC it is holding locked to another
Vault (newVault) which provides the necessary DOT collateral. The DOT collateral of the oldVault, corresponding
to the amount of replaced BTC, is then unlocked. The oldVault must provide griefing collateral for spam protection
which is paid to newVault on failure.

The oldVault is responsible for ensuring that it has sufficient BTC to pay for the transaction fees.

Conceptually, the Replace protocol resembles a SPV atomic cross-chain swap.

16.1.1 Step-by-Step

1. Precondition: a Vault (oldVault) has locked DOT collateral in the Vault Registry and has issued interBTC
tokens - i.e., holds BTC on Bitcoin.

2. oldVault submits a replace request, indicating how much BTC is to be migrated by calling the requestReplace
function.

* oldVault is required to lock some amount of DOT collateral (ReplaceGriefingCollateral) as griefing
protection, to prevent oldVault from holding newVault’s DOT collateral locked in the BTC Parachain
without ever finalizing the redeem protocol (transfer of BTC).

3. Optional: oldVault can withdraw the request by calling the withdrawReplace function with a specified
amount. For example, if oldVault requested a replacement for 10 tokens, and 2 tokens have been accepted
by some newVault, then it can withdraw up to 8 tokens from being replaced.

4. A new candidate Vault (newVault), commits to accepting the replacement by locking up the necessary DOT
collateral to back the to-be-transferred BTC (according to the SecureCollateralThreshold) by calling the
acceptReplace function.

* Note: from the oldVault’s perspective a redeem is very similar to an accepted replace. That is, its goal
is to get rid of tokens, and it is not important if this is achieved by a user redeeming, or by a Vault
accepting the replace request. As such, when a user requests a redeem with a Vault that has requested
a replacement, the oldVault’s toBeReplacedTokens is decreased by the amount of tokens redeemed
by the user.

5. Within a pre-defined delay, oldVault must release the BTC on Bitcoin to newVault’s BTC ad-
dress, and submit a valid transaction inclusion proof by calling the executeReplace function (call to
verifyTransactionInclusion in BTC-Relay). If oldVault releases the BTC to newVault correctly and
submits the transaction inclusion proof to Replace module on time, oldVault’s DOT collateral is released -
newVault has now replaced oldVault.

* Note: as with redeems, to prevent oldVault from trying to re-use old transactions (or other payments
to newVaults on Bitcoin) as fake proofs, we require oldVault to include a nonce in an OP_RETURN
output of the transfer transaction on Bitcoin.

107

interBTC Specification

6. Optional: If oldVault fails to provide the correct transaction inclusion proof on time, the newVault’s
collateral is unlocked and oldVault’s griefingCollateral is sent to the newVault as reimbursement
for the opportunity costs of locking up DOT collateral via the cancelReplace.

16.1.2 Security

* Unique identification of Bitcoin payments: OP_RETURN

16.1.3 Vault Registry

The data access and state changes to the Vault Registry are documented in Fig. 16.1 below.

VaultRegistry

per 1UBEREP|3;95T0|<9"5 newvault oldvault issuedTokens collateral
Vault toBelssuedTokens toBeRedeemedTokens
replaceCollateral
A A A A A A A
Ty S— o ¥y S—
transfer
newVault Funds [+
oldVault newVault
1
trylncrease decrease trylncrease trylncrease .
ToBeReplaced ToBeReplaced ToBelssued ToBeRedeemed tryDeposit replace cancelReplace
Collateral Tokens Tokens
Tokens Tokens Tokens Tokens
A A A [A A
newVault oldvault newVault
oldVault oldVault
requestReplace withdrawReplaceRequest acceptReplace executeReplace cancelReplace

Fig. 16.1: The replace module interacts with functions in the Vault-Registry to handle updating token balances of
vaults. The green lines indicate an increase, the red lines a decrease.

108 Chapter 16. Replace

interBTC Specification

16.1.4 Fee Model

« If a replace request is cancelled, the griefing collateral is transferred to the newVault.

« If a replace request is executed, the griefing collateral is transferred to the oldVault.

16.2 Data Model

16.2.1 Scalars

ReplaceBtcDustValue

The minimum amount a newVault can accept - this is to ensure the oldVault is able to make the Bitcoin transfer.
Furthermore, it puts a limit on the transaction fees that the oldVault needs to pay.

ReplacePeriod

The time difference between a replace request is accepted by another Vault and the transfer of BTC (and submission
of the transaction inclusion proof) by the to-be-replaced Vault. Concretely, this period is the amount by which
ActiveBlockCount is allowed to increase before the redeem is considered to be expired. The replace period has an
upper limit to prevent griefing of Vault collateral. Each accepted replace request records the value of this field upon

creation, and when checking the expiry, the maximum of the current ReplacePeriod and the value as recorded in
the ReplaceRequest is used. This way, vaults are not negatively impacted by a change in the value.

16.2.2 Maps

ReplaceRequests
Vaults create replace requests if they want to have (a part of) their DOT collateral to be replaced by other Vaults.

This mapping provides access from a unique hash ReplaceId to a ReplaceRequest struct. <Replaceld,
Replace>.

16.2.3 Structs

Replace

Stores the status and information about a single replace request.

16.2. Data Model 109

interBTC Specification

Parameter Type Description

oldvault Accountld Account of the oldVault that is to be replaced.

newVault Accountld Account of the newVault, which accepts the replace request.
amount interBTC Amount of BTC / interBTC to be replaced.
griefingCollateral | DOT Griefing protection collateral locked by oldVault.

collateral DOT Collateral locked by the new Vault.

acceptTime BlockNumber | The ActiveBlockCount when the replace request was accepted by

anew Vault. Serves as start for the countdown until when the old
Vault must transfer the BTC.

period BlockNumber | Value of ReplacePeriod when the redeem request was made, in
case that value changes while this replace is pending.

btcAddress BtcAddress Vault’s Bitcoin payment address.

btcHeight u32 Height of newest bitcoin block in the relay at the time the request

is accepted. This is used by the clients upon startup, to determine
how many blocks of the bitcoin chain they need to inspect to
know if a payment has been made already.

status Enum Status of the request: Pending, Completed or Cancelled

16.3 Functions

16.3.1 requestReplace

The oldVault (to-be-replaced) submits a request to be (partially) replaced. If it requests more than it can fulfill
(i.e. the sum of toBeReplacedTokens and toBeRedeemedTokens exceeds its issuedTokens), then the request
amount is reduced such that the sum of toBeReplacedTokens and toBeRedeemedTokens is exactly equal to
issuedTokens.

Specification

Function Signature
requestReplace(oldVault, btcAmount, griefingCollateral)
Parameters
* oldVault: Account identifier of the Vault to be replaced (as tracked in Vaults in Vault Registry).
* btcAmount: Integer amount of BTC / interBTC to be replaced.
» griefingCollateral: collateral locked by the oldVault as griefing protection.
Events
* RequestReplace
Preconditions
* The function call MUST be signed by oldVault.
* The BTC Parachain status in the Security component MUST be set to RUNNING: ®.
* The oldVault MUST be registered.
* The oldVault MUST NOT be banned.
¢ The oldVault MUST NOT be nominated (if Vault Nomination is enabled).

e If the btcAmount is greater than the Vault’'s replacableTokens = issuedTokens -
toBeRedeemTokens - toBeReplaceTokens, set the btcAmount to the replaceableTokens amount.

e The oldVault MUST provide sufficient griefingCollateral such that the ratio of all of its
toBeReplacedTokens and replaceCollateral is above ReplaceGriefingCollateral.

110 Chapter 16. Replace

interBTC Specification

e The oldVault MUST request sufficient btcAmount to be replaced such that its total is above
ReplaceBtcDustValue.

Postconditions

e The oldVault’s toBeReplacedTokens MUST be increased by tokenIncrease = min(btcAmount,
vault.toBeIssuedTokens - vault.toBeRedeemedTokens).

e Anamount of griefingCollateral * (tokenIncrease / btcAmount) MUST be locked in the Grief-
ing Collateral Currency by the oldVault in this transaction.

* The oldVault’s replaceCollateral MUST be increased by the amount of collateral locked in this trans-
action.

16.3.2 withdrawReplace

The oldVault decreases its toBeReplacedTokens.

Specification

Function Signature
withdrawReplace(oldVault, tokens)
Parameters

e oldVault: Account identifier of the Vault withdrawing it’s replace request (as tracked in Vaults in Vaulr
Registry)

¢ tokens: The amount of toBeReplacedTokens to withdraw.
Events
» WithdrawReplace
Preconditions
* The function call MUST be signed by oldVault.
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.
* The oldVault MUST be registered.
¢ The oldVault MUST have a non-zero amount of toBeReplacedTokens.
Postconditions

e The oldVault’s toBeReplacedTokens MUST decrease by an amount of tokenDecrease =
min(toBeReplacedTokens, tokens)

e The oldVault’s replaceCollateral MUST decreased by the amount releasedCollateral
replaceCollateral * (tokenDecrease / toBeReplacedTokens).

e The oldVault’s releasedCollateral MUST be unlocked.

16.3. Functions 111

interBTC Specification

16.3.3 acceptReplace

A newVault accepts an existing replace request. It can optionally lock additional DOT collateral specifically for
this replace. If the replace is cancelled, this amount will be unlocked again.

Specification

Function Signature
acceptReplace(oldVault, newVault, btcAmount, collateral, btcAddress)
Parameters

e oldVault: Account identifier of the oldVault who requested replacement (as tracked in Vaults in Vault
Registry).

* newVault: Account identifier of the new Vault accepting the replace request (as tracked in Vaults in Vaulr
Registry).

* replaceld: The identifier of the replace request in ReplaceRequests.

e collateral: DOT collateral provided to match the replace request (i.e., for backing the locked BTC). Can
be more than the necessary amount.

* btcAddress: The newVault’s Bitcoin payment address for transaction verification.
Events
e AcceptReplace
Preconditions
* The function call MUST be signed by newVault.
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* The oldVault and newVault MUST be registered.
e The oldVault MUST NOT be equal to newVault.
* The newVault MUST NOT be banned.
* The newVault’s free balance MUST be enough to lock collateral.

¢ The newVault MUST have lock sufficient collateral to remain above the SecureCollateralThreshold after
accepting btcAmount.

e The newVault’s btcAddress MUST NOT be registered.
* The replaced tokens MUST be at least™ ReplaceBtcDustValue™.
Postconditions

The actual amount of replaced tokens is calculated to be redeemableTokens =
min(oldVault.toBeReplacedTokens, btcAmount). The amount of griefingCollateral used is
consumedGriefingCollateral = oldVault.replaceCollateral * (redeemableTokens /
oldVault.toBeReplacedTokens).

* The oldVault’s replaceCollateral MUST be decreased by consumedGriefingCollateral.

The oldVault’s toBeReplacedTokens MUST be decreased by redeemableTokens.

The oldVault’s toBeRedeemedTokens MUST be increased by redeemableTokens.
* The newVault’s toBeIssuedTokens MUST be increased by redeemableTokens.

* The newVault locks additional collateral; its backingCollateral MUST be increased by collateral *
(redeemableTokens / oldVault.toBeReplacedTokens).

* A unique replaceld must be generated from generateSecureld.

112 Chapter 16. Replace

interBTC Specification

* A new ReplaceRequest MUST be added to the replace request mapping at the replaceld key.
oldVault: MUST be the oldVault.

— newVault: MUST be the newVault.

— amount: MUST be redeemableTokens.

— griefingCollateral: MUST be consumedGriefingCollateral
— collateral: MUST be collateral.

— accept_time: MUST be the current active block number.

— period: MUST be the current ReplacePeriod.

— btcAddress: MUST be the btcAddress argument.

— btcHeight: UST be the current height of the btc-relay.

— status: MUST be pending.

16.3.4 executeReplace

The to-be-replaced Vault finalizes the replace process by submitting a proof that it transferred the correct amount
of BTC to the BTC address of the new Vault, as specified in the ReplaceRequest. This function calls verifyAnd-
ValidateTransaction in BTC-Relay.

Specification

Function Signature
executeReplace(replaceld, rawMerkleProof, rawTx)
Parameters
e replaceld: The identifier of the replace request in ReplaceRequests.
» rawMerkleProof: Raw Merkle tree path (concatenated LE SHA256 hashes).
* rawTx: Raw Bitcoin transaction including the transaction inputs and outputs.
Events
» ExecuteReplace
Preconditions
e The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.
* Both oldVault and newVault (as specified in the request) MUST be registered in the Vault Registry.
* A pending ReplaceRequest MUST exist with id replaceId.
* The request MUST NOT have expired.

* The rawTx MUST decode to a valid transaction that transfers at least the amount specified in the
ReplaceRequest struct. It MUST be a transaction to the correct address, and provide the expected
OP_RETURN, based on the replaceId.

* The rawMerkleProof MUST contain a valid proof of of rawTx.
* The Bitcoin payment MUST have been submitted to the relay chain, and MUST have sufficient confirmations.
Postconditions

* The replaceTokens function in the Vault Registry MUST have been called, providing the oldVault,
newVault, replaceRequest.amount, and replaceRequest.collateral as arguments.

» The griefing collateral as specifified in the ReplaceRequest MUST be released back to oldVault’s free
balance in the Griefing Collateral Currency.

16.3. Functions 113

interBTC Specification

¢ The replaceRequest.status MUST be set to Completed.

16.3.5 cancelReplace

If a replace request is not executed on time, the replace can be cancelled by the newVault. Since the newVault
provided additional collateral in vain, it can claim the oldVault’s griefing collateral.

Specification

Function Signature
cancelReplace(newVault, replaceId)
Parameters

* newVault: Account identifier of the Vault accepting the replace request (as tracked in Vaults in Vault
Registry).

* replacelId: The identifier of the replace request in ReplaceRequests.
Events

» CancelReplace
Preconditions

* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.
* Both oldVault and newVault (as specified in the request) MUST be registered in the Vault Registry.
* A pending ReplaceRequest MUST exist with id replaceId.
* The newVault MUST be equal to the newVault specified in the ReplaceRequest.
¢ The request MUST have expired.
Postconditions

* The cancelReplaceTokens function in the Vault Registry MUST have been called, providing the oldVault,
newVault, replaceRequest.amount, and replaceRequest.amount as arguments.

e If newVault IS NOT liquidated:

— Ifunlocking replaceRequest.collateral does not put the collateralization rate of the newVault be-
low SecureCollateralThreshold, the collateral MUST be unlocked and its backingCollateral
MUST decrease by the same amount.

* The griefing collateral MUST BE slashed from the oldVault to the newVault’s free balance.

e The replaceRequest.status MUST be set to Cancelled.

16.4 Events

16.4.1 RequestReplace

Emit an event when a replace request is made by an oldVault.

Event Signature * RequestReplace(oldVault, btcAmount, replaceId)

Parameters
e oldVault: Account identifier of the Vault to be replaced (as tracked in Vaults in Vault Registry).
* btcAmount: Integer amount of BTC / interBTC to be replaced.

* replaceld: The unique identified of a replace request.

114 Chapter 16. Replace

interBTC Specification

Functions

* requestReplace

16.4.2 WithdrawReplace

Emits an event stating that a Vault (oldVault) has withdrawn some amount of toBeReplacedTokens.

Event Signature

WithdrawReplace(oldVault, withdrawnTokens, withdrawnGriefingCollateral)

Parameters
e oldVault: Account identifier of the Vault requesting the replace (as tracked in Vaults in Vaulr Registry)
* withdrawnTokens: The amount by which toBeReplacedTokens has decreased.
* withdrawnGriefingCollateral: The amount of griefing collateral unlocked.

Functions

e refiwithdrawReplace

16.4.3 AcceptReplace
Emits an event stating which Vault (newVault) has accepted the ReplaceRequest request (requestId), and how
much collateral in DOT it provided (collateral).
Event Signature
AcceptReplace(replaceld, oldVault, newVault, btcAmount, collateral, btcAddress)
Parameters

* replacelId: The identifier of the replace request in ReplaceRequests.

e oldVault: Account identifier of the Vault being replaced (as tracked in Vaults in Vault Registry)

* newVault: Account identifier of the Vault that accepted the replace request (as tracked in Vaults in Vault
Registry)

* btcAmount: Amount of tokens the newVault just accepted.

e collateral: Amount of collateral the newVault locked for this replace.

* btcAddress: The address that oldVault should transfer the btc to.
Functions

* ref:acceptReplace

16.4.4 ExecuteReplace
Emits an event stating that the old Vault (oldVault) has executed the BTC transfer to the new Vault (newVault),
finalizing the ReplaceRequest request (requestId).
Event Signature
ExecuteReplace(oldVault, newVault, replaceId)
Parameters
* oldVault: Account identifier of the Vault being replaced (as tracked in Vaults in Vault Registry)

* newVault: Account identifier of the Vault that accepted the replace request (as tracked in Vaults in Vault
Registry)

16.4. Events 115

interBTC Specification

* replaceld: The identifier of the replace request in ReplaceRequests.
Functions

* refiexecuteReplace

16.4.5 CancelReplace

Emits an event stating that the old Vault (o/dVault) has not completed the replace request, that the new Vault
(newVault) cancelled the ReplaceRequest request (requestId), and that slashedCollateral has been slashed
from oldVault to newVault.

Event Signature
CancelReplace(replaceld, newVault, oldVault, slashedCollateral)
Parameters
* replaceld: The identifier of the replace request in ReplaceRequests.
e oldVault: Account identifier of the Vault being replaced (as tracked in Vaults in Vault Registry)

* newVault: Account identifier of the Vault that accepted the replace request (as tracked in Vaults in Vaulr
Registry)

* slashedCollateral: Amount of griefingCollateral slashed to newVault.
Functions

e ref:cancelReplace

16.5 Error Codes

ERR_UNAUTHORIZED
* Message: “Unauthorized: Caller must be newVault.”
e Function: cancelReplace

¢ Cause: The caller of this function is not the associated newVault, and hence not authorized to take this
action.

ERR_INSUFFICIENT_COLLATERAL

* Message: “The provided collateral is too low.”

e Function: requestReplace

» Cause: The provided collateral is insufficient to match the amount of tokens requested for replacement.
ERR_REPLACE_PERIOD_EXPIRED

e Message: “The replace period expired.”

e Function: executeReplace

¢ Cause: The time limit as defined by the ReplacePeriod is not met.
ERR_REPLACE_PERIOD_NOT_EXPIRED

* Message: “The period to complete the replace request is not yet expired.”

* Function: cancelReplace

* Cause: A Vault tried to cancel a replace before it expired.
ERR_AMOUNT_BELOW_BTC_DUST_VALUE

* Message: “To be replaced amount is too small.”

116 Chapter 16. Replace

interBTC Specification

e Function: requestReplace, acceptReplace

e Cause: The Vault requests or accepts an insufficient number of tokens.
ERR_NO_PENDING_REQUEST

* Message: “Could not withdraw to-be-replaced tokens because it was already zero.”

* Function: requestReplace | acceptReplace

¢ Cause: The Vault requests or accepts an insufficient number of tokens.
ERR_REPLACE_SELF_NOT_ALLOWED

* Message: “Vaults can not accept replace request created by themselves.”

* Function: acceptReplace

* Cause: A Vault tried to accept a replace that it itself had created.
ERR_REPLACE_COMPLETED

* Message: “Request is already completed.”

* Function: executeReplace | cancelReplace

* Cause: A Vault tried to operate on a request that already completed.
ERR_REPLACE_CANCELLED

* Message: “Request is already cancelled.”

e Function: executeReplace | cancelReplace

» Cause: A Vault tried to operate on a request that already cancelled.
ERR_REPLACE_ID_NOT_FOUND

* Message: “Invalid replace ID”

e Function: executeReplace | cancelReplace

» Cause: An invalid replacelD was given - it is not found in the ReplaceRequests map.
ERR_VAULT_NOT_FOUND

* Message: “The Vault cannot be found.”

e Function: requestReplace | acceptReplace | cancelReplace

* Cause: The Vault was not found in the existing Vaults list in VaultRegistry.

Note: It is possible that functions in this pallet return errors defined in other pallets.

16.5. Error Codes 117

interBTC Specification

118 Chapter 16. Replace

CHAPTER
SEVENTEEN

SECURITY

The Security module is responsible for (1) tracking the status of the BTC Parachain, (2) the “active” blocks of the
BTC Parachain, and (3) generating secure identifiers.

1. Status: The BTC Parachain has three distinct states: Running, Error, and Shutdown which determine
which functions can be used.

2. Active Blocks: When the BTC Parachain is not in the Running state, certain operations are restricted. In
order to prevent impact on the users and Vaults for the core issue, redeem, and replace operations, the BTC
Parachain only considers Active Blocks for the Issue, Redeem, and Replace periods.

3. Secure Identifiers: As part of the OP_RETURN scheme to prevent replay attacks, the security module
generates unique identifiers that are used to identify transactions.

17.1 Overview

17.1.1 Failure Modes
The BTC Parachain can enter into an ERROR and SHUTDOWN state, depending on the occurred error. An
overview is provided in the figure below.

Failure handling methods calls are restricted, i.e., can only be called by pre-determined roles.

17.1.2 Oracle Offline
The Oracle experienced a liveness failure (no up-to-date exchange rate available). The frequency of the oracle
updates is defined in the Oracle module.

Error code: ORACLE_OFFLINE

17.2 Data Model

17.2.1 Enums

StatusCode

Indicates ths status of the BTC Parachain.
e RUNNING: O - BTC Parachain fully operational

e ERROR: 1- an error was detected in the BTC Parachain. See Errors for more details, i.e., the specific error
codes (these determine how to react).

e SHUTDOWN: 2 - BTC Parachain operation fully suspended. This can only be achieved via manual interven-
tion by the Governance Mechanism.

119

interBTC Specification

y e 1
< Governance Mechanism >
T T 1
] I I
< Parachain (automatically)>l Manual I
/ ! set :
: | Manual '
ERROR reset
LY

o

= RUNNING

Q

o Manual

\ - reset
Exchange rate

w o

o w submission

Zwd ORACLE_

T < OFFLINE

ox

ﬁ o ORACLE_OFFLINE

BTC-Relay BTC-Relay BTC-Relay

- submitBlockHeader - submitBlockHeader - submitBlockHeader
- verifyTransaction - validateTransaction - validateTransaction
- verifyTransaction - verifyTransaction
PolkaBTC PolkaBTC PolkaBTC

- VaultRegistry, Issue,
Redeem, Replace

- VaultRegistry, Issue,
Redeem, Replace

BTC-Relay: not affected

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
: BTC Parachain: Disabled
1 Oracle: Exchange rate getter
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

]

BTC Parachain fully operational.
disabled. Exchange rate setter still
available.

PolkaBTC: Vault registration, Issue,
Redeem and Replace partly disabled.
All functions that require the
exchange rate will fail.

Recovery when an exchange rate by
an oracle is submitted. Otherwise,
manual intervention necessary.

Recovery via manual reset
(step-by-step recovery
recommended).

Fig. 17.1: (Informal) State machine showing the operational and failure modes and how to recover from or flag
failures.

120 Chapter 17. Security

interBTC Specification

ErrorCode

Enum specifying error codes tracked in Errors.
* NONE: 0
* ORACLE_OFFLINE: 1

17.3 Data Storage

17.3.1 Scalars

ParachainStatus

Stores the status code (StatusCode) which defines the current state of the BTC Parachain.

Errors

Stores the set of error codes (ErrorCode), indicating the reason for the error.

Nonce

Integer increment-only counter, used to prevent collisions when generating identifiers for e.g., redeem or replace
requests (for OP_RETURN field in Bitcoin).

ActiveBlockCount

A counter variable that increments every block when the parachain status is RUNNING: 8. This variable is used to
keep track of durations, such as issue/redeem/replace expiry. This is used instead of the block number because if
the parachain status is not RUNNING: 0, no payment proofs can be submitted, so it would not be fair towards users
and Vaults to continue counting down the (expiry) periods. This field MUST be set to the current block height on
initialization.

17.4 Functions

17.4.1 generateSecureld

Generates a unique ID using an account identifier, the Nonce and a random seed.

Specification

Function Signature
generateSecureld(account)
Parameters

e account: account identifier (links this identifier to the Accountld associated with the process where this
secure id is to be used, e.g., the user calling requestissue).

Preconditions
* A parent block MUST exist (cannot be called on the parachain genesis block).

Postconditions

17.3. Data Storage 121

interBTC Specification

* Nonce MUST be incremented by one.

e MUST return the 256-bit hash of the account™, " “nonce, and parent_hash (the hash of the previous
block of this transaction).

17.4.2 hasExpired

Checks if the period has expired since the opentime. This calculation is based on the ActiveBlockCount.

Specification

Function Signature
hasExpired(opentime, period)
Parameters
* opentime: the ActiveBlockCount at the time the issue/redeem/replace was opened.
e period: the number of blocks the user or Vault has to complete the action.
Preconditions
* The ActiveBlockCount MUST be greater than 0.
Postconditions

¢ MUST return True if opentime + period < ActiveBlockCount, False otherwise.

17.4.3 setParachainStatus

Governance sets a status code for the BTC Parachain manually.

Specification

Function Signature
setParachainStatus(StatusCode)
Parameters

e StatusCode: the new StatusCode of the BTC-Parachain.

17.4.4 insertParachainError

Governance inserts an error for the BTC Parachain manually.

Specification

Function Signature
insertParachainError (ErrorCode)
Parameters

¢ ErrorCode: the ErrorCode to be added to the set of errors of the BTC-Parachain.

122 Chapter 17. Security

interBTC Specification

17.4.5 removeParachainError

Governance removes an error for the BTC Parachain manually.

Specification

Function Signature
removeParachainError (ErrorCode)
Parameters

e ErrorCode: the ErrorCode to be removed from the set of errors of the BTC-Parachain.

17.5 Events

17.5.1 RecoverFromErrors

Event Signature
RecoverFromErrors(StatusCode, ErrorCode[])
Parameters

* StatusCode: the new StatusCode of the BTC Parachain

e ErrorCode[]: the list of current errors

17.5. Events 123

interBTC Specification

124 Chapter 17. Security

CHAPTER
EIGHTEEN

RELAY

The Relay module is responsible for handling theft reporting and block submission to the BTC-Relay.

18.1 Overview

Relayers are participants whose main role it is to run Bitcoin full nodes and:
1. Submit valid Bitcoin block headers to earn rewards.
2. Check vaults do not move BTC, unless expressly requested during Redeem, Replace or Refund.

In the second case, the module should check the accusation (using a Merkle proof), and liquidate the vault if valid.
It is assumed that there is at least one honest relayer.

The Governance Mechanism votes on critical changes to the architecture or unexpected failures, e.g. hard forks or
detected 51% attacks (if a fork exceeds the specified security parameter k, see Security Parameter k.

18.2 Data Storage

18.2.1 Maps

TheftReports

Mapping of Bitcoin transaction identifiers (SHA256 hashes) to account identifiers of Vaults who have been caught
stealing Bitcoin. Per Bitcoin transaction, multiple Vaults can be accused (multiple inputs can come from multiple
Vaults). This mapping is necessary to prevent duplicate theft reports.

18.3 Functions

18.3.1 report_vault_theft

A relayer reports misbehavior by a vault, providing a fraud proof (malicious Bitcoin transaction and the corre-
sponding transaction inclusion proof).

A vault is not allowed to move BTC from any registered Bitcoin address (as specified by Vault.wallet), except
in the following three cases:

1) The vault is executing a Redeem. In this case, we can link the transaction to a RedeemRequest and check
the correct recipient.

2) The vault is executing a Replace. In this case, we can link the transaction to a ReplaceRequest and check
the correct recipient.

125

interBTC Specification

3) The vault is executing a Refund. In this case, we can link the transaction to a RefundRequest and check
the correct recipient.

4) [Optional] The vault is “merging” multiple UTXOs it controls into a single / multiple UTXOs it controls,
e.g. for maintenance. In this case, the recipient address of all outputs (e.g. P2PKH / P2WPKH) must be the
same Vault.

In all other cases, the vault is considered to have stolen the BTC.

This function checks if the vault actually misbehaved (i.e., makes sure that the provided transaction is not one of
the above valid cases) and automatically liquidates the vault (i.e., triggers Redeem).

Specification

Function Signature
report_vault_theft(vault, raw_merkle_proof, raw_tx)
Parameters
e vaultId: the account of the accused Vault.
* raw_merkle_proof: Raw Merkle tree path (concatenated LE SHA256 hashes).
* raw_tx: Raw Bitcoin transaction including the transaction inputs and outputs.
The txId is obtained as the sha256d() of the raw_tx.
Events
* ReportVaultTheft
Preconditions
* The BTC Parachain status in the Security component MUST NOT be SHUTDOWN: 2.
e A vault with id vaultId MUST be registered.
e The txId MUST NOT be in TheftReports mapping.

e The verifyTransactionInclusion functioninthe BTC-Relay component must return true for the derived
txId.

Postconditions
* The vault MUST be liquidated.
e The vault’s status MUST be set to CommittedTheft.

* All token accounts (issuedTokens, toBeIssuedTokens, etc.) MUST be added to the existing system’s
LiquidationVault.

* TheftReports MUST contain the reported txId.

18.3.2 report_vault_double_payment

A relayer reports a double payment from a vault, this can destabalize the system if the vault holds less BTC than is
reported by the Vault Registry.

Like in report_vault_theft, if the vault actually misbehaved it is automatically liquidated.

126 Chapter 18. Relay

interBTC Specification

Specification

Function Signature

report_vault_double_payment(vault, raw_merkle_proofl, raw_txl, raw_merkle_proof2,

raw_tx2)
Parameters
e vaultId: the account of the accused Vault.
e raw_merkle_proofl: The first raw Merkle tree path.

e raw_tx1: The first raw Bitcoin transaction.

* raw_merkle_proof2: The second raw Merkle tree path.

e raw_tx2: The second raw Bitcoin transaction.
Events
* ReportVaultTheft

Preconditions

e The BTC Parachain status in the Security component MUST NOT be SHUTDOWN : 2.

* A vault with id vaultId MUST be registered.

e raw_merkle_proofl MUST NOT equal raw_merkle_proof2.

e raw_tx1 MUST NOT equal raw_tx2.

e The verifyTransactionInclusion functioninthe BTC-Relay component must return true for the derived

txId.

* Both transactions MUST NOT be in TheftReports mapping.

Postconditions

* The vault MUST be liquidated if both transactions contain the same OP_RETURN value.

¢ The vault’s status MUST be set to CommittedTheft.

* All token accounts (issuedTokens, toBeIssuedTokens, etc.) MUST be added to the existing system’s

LiquidationVault.

* TheftReports MUST contain the reported transactions.

18.4 Events

18.4.1 ReportVaultTheft

Emits an event when a vault has been accused of theft.
Event Signature
ReportVaultTheft (vault)

Parameters

e vault: account identifier of the vault accused of theft.

Functions
* report_vault_theft

e report_vault_double_payment

18.4. Events

127

interBTC Specification

128 Chapter 18. Relay

CHAPTER
NINETEEN

TREASURY

19.1 Overview

Conceptually, the treasury serves as both the central storage for all interBTC and the interface though which to
manage interBTC amount. It is implemented through the Currency pallet.

There are three main operations on interBTC to interact with the user or the Issue and Redeem components.

19.1.1 Step-by-step

e Transfer: A user sends an amount of interBTC to another user by calling the fransfer function.

* Issue: The issue module calls into the treasury when an issue request is completed (via executelssue) and
the user has provided a valid proof that the required amount of BTC was sent to the correct vault. The issue
module calls the mint_to function to create interBTC.

* Redeem: The redeem protocol requires two calls to the treasury module. First, a user requests a redeem
via the requestRedeem function. This invokes a call to the /ock_on function that locks the requested amount
of tokens for this user. Second, when a redeem request is completed (via executeRedeem) and the vault has
provided a valid proof that it transferred the required amount of BTC to the correct user, the redeem module
calls the burn_from function to destroy the previously locked interBTC.

129

interBTC Specification

130 Chapter 19. Treasury

CHAPTER
TWENTY

VAULT REGISTRY

20.1 Overview

The vault registry is the central place to manage vaults. Vaults can register themselves here, update their collateral,
or can be liquidated. Similarly, the issue, redeem, refund, and replace protocols call this module to assign vaults
during issue, redeem, refund, and replace procedures. Moreover, vaults use the registry to register public key for
the On-Chain Key Derivation Scheme and register addresses for the OP_RETURN scheme.

20.1.1 Multi-Collateral

The parachain supports the usage of different currencies for usage as collateral. Which currencies are allowed is
determined by governance - they have to explicitly white-list currencies to be able to be used as collateral. They
also have to set the various safety thresholds for each currency.

Vaults in the system are identified by a Vaultld, which is essentially a (Accountld, CollateralCurrency, Wrapped-
Currency) tuple. Note the distinction between the Accountld and the Vaultld. A vault operator can run multiple
vaults using a the same Accountld but different collateral currencies (and thus Vaultlds). Each vault is isolated
from all others. This means that if vault operator has two running vaults using the same Accountld but different
CollateralCurrencies, then if one of the vaults were to get liquidated, the other vaults remains untouched. The vault
client manages all Vaultlds associated with a given Accountld. Vault operators will be able to register new Vaultlds
through the U, and the vault client will automatically start to manage these.

When a user requests an issue, it selects a single vault to issue with (this choice may be made automatically by the
UI). However, since the wrapped token is fully fungible, it may be redeemed with any vault, even if that vault is
using a different collateral currency. When redeeming, the user again selects a single vault to redeem with. If a
vault fails to execute a redeem request, the user is able to either get back its wrapped token, or to get reimbursed
in the vault’s collateral currency. If the user prefers the latter, the choice of vault becomes relevant because it
determines which currency is received in case of failure.

The WrappedCurrency part of the Vaultld is currently always required to take the same value - in the future support
for different wrapped currencies may be added.

Moreover, the system implements a ceiling for the maximum amount of collateral than can be locked in the system
per collateral and wrapped token pair. Governance is able to update the collateral ceilings.

Note: Please note that multi-collateral is a recent addition to the code, and the spec has not been fully updated .

131

interBTC Specification

20.2 Data Model

20.2.1 Scalars

PunishmentDelay

Time period in which a Vault cannot participate in issue, redeem or replace requests.
¢ Measured in Parachain blocks

¢ Initial value: 1 day (Parachain constant)

LiquidationVaultAccountld

Account identifier of an artificial vault maintained by the VaultRegistry to handle interBTC balances and
DOT collateral of liquidated Vaults. That is, when a vault is liquidated, its balances are transferred to
LiquidationVaultAccountId and claims are later handled via the LiquidationVault.

20.2.2 Maps

LiquidationVault

Mapping from CurrencyId to the account identifier of an artificial vault (see SystemVault) maintained by the
VaultRegistry to handle interBTC balances and collateral of liquidated Vaults that use the given currency. That is,
when a vault is liquidated, its balances are transferred to LiquidationVault and claims are later handled via the
LiquidationVault.

Note: A Vault’s token balances and collateral are transferred to the LiquidationVault as a result of automated
liquidations and report_vault_theft.

MinimumCollateralVault

Mapping from CurrencyId to the minimum collateral a vault needs to provide to register.

Note: This is a protection against spamming the protocol with very small collateral amounts. Vaults are still able
to withdraw the collateral after registration, but at least it requires an additional transaction fee, and it provides
protection against accidental registration with very low amounts of collateral.

SecureCollateralThreshold
Mapping from CurrencyId to to the over-collateralization rate for collateral locked by Vaults, necessary for issuing
tokens.

The Vault can take on issue requests depending on the collateral it provides and under consideration of the
SecureCollateralThreshold. The maximum amount of interBTC a vault is able to support during the issue
process is based on the following equation:

max(interBTC) = collateral * ExchangeRate/SecureCollateral Threshold.
* The Secure Collateral Threshold MUST be greater than the Liquidation Threshold.
* The Secure Collateral Threshold MUST be greater than the Premium Redeem Threshold.

132 Chapter 20. Vault Registry

interBTC Specification

Note: As an example, assume we use DOT as collateral, we issue interBTC and lock BTC on the Bitcoin
side. Let’s assume the BTC/DOT exchange rate is 80, i.e., one has to pay 80 DOT to receive 1 BTC. Further, the
SecureCollateralThreshold is 200%, i.e., a vault has to provide two-times the amount of collateral to back an
issue request. Now let’s say the vault deposits 400 DOT as collateral. Then this vault can back at most 2.5 interBTC
as: 400 x (1/80)/2 = 2.5.

PremiumRedeemThreshold

Mapping from CurrencyId to the the collateral rate of Vaults, at which users receive a premium, allocated from
the Vault’s collateral, when performing a Redeem with this Vault.

e The Premium Redeem Threshold MUST be greater than the Liquidation Threshold.
LiquidationThreshold

Mapping from CurrencyId to the lower bound for the collateral rate in issued tokens. If a Vault’s collateral rate
drops below this, automatic liquidation is triggered.

* The Liquidation Threshold MUST be greater than 100% for any collateral asset.
SystemCollateralCeiling

Mapping from a collateral CurrencyId to a wrapped CurrencyId. Determines the maximum amount of collateral
that Vaults are able to lock for backing a wrapped asset.

Vaults

Mapping from accounts of Vaults to their struct. <Account, Vault>.

20.2. Data Model 133

interBTC Specification

20.2.3 Structs

Vault

Stores the information of a Vault.

Parameter Type Description

wallet Wallet<BtcAddress> | A set of Bitcoin address(es) of this vault, used for theft
detection. Additionally, it contains the btcPublicKey
used for generating deposit addresses in the issue
process.

status VaultStatus Current status of the vault (Active, Liquidated,
CommittedTheft)

bannedUntil BlockNumber Block height until which this vault is banned from being
used for Issue, Redeem (except during automatic
liquidation) and Replace .

toBeIssuedTokens interBTC Number of interBTC tokens currently requested as part
of an uncompleted issue request.

issuedTokens interBTC Number of interBTC tokens actively issued by this Vault.

toBeRedeemedTokens interBTC Number of interBTC tokens reserved by pending redeem
and replace requests.

toBeReplacedTokens interBTC Number of interBTC tokens requested for replacement.

replaceCollateral DOT Griefing collateral to be used for accepted replace
requests.

liquidatedCollateral | DOT Any collateral that is locked for remaining
to_be_redeemed on liquidation.

currencyIld Currencyld The currency the vault uses for collateral

Note: This specification currently assumes for simplicity that a vault will reuse the same BTC address, even

after multiple redeem requests. [Future Extension]: For better security, Vaults may desire to generate new BTC
addresses each time they execute a redeem request. This can be handled by pre-generating multiple BTC addresses
and storing these in a list for each Vault. Caution is necessary for users which execute issue requests with “old”
vault addresses - these BTC must be moved to the latest address by Vaults.

SystemVault

A system vault that keeps track of tokens of liquidated vaults.

Parameter Type Description

toBeIssuedtokens interBTC Number of tokens pending issue
issuedTokens interBTC Number of issued tokens
toBeRedeemedTokens | interBTC Number of tokens pending redeem
currencyId Currencyld | the currency used for collateral

134

Chapter 20. Vault Registry

interBTC Specification

20.3 External Functions

20.3.1 register_vault

Registers a new Vault. The vault locks up some amount of collateral, and provides a public key which is used for
the On-Chain Key Derivation Scheme.

Specification

Function Signature
register_vault(vault, collateral, btcPublicKey)
Parameters
e vault: The account of the vault to be registered.
* collateral: to-be-locked collateral.
* btcPublicKey: public key used to derive deposit keys with the On-Chain Key Derivation Scheme.
e currencyld: the currency that the vault will use as collateral.
Events
* RegisterVault
Preconditions
e The function call MUST be signed by vaultId.
e The BTC Parachain status in the Security component MUST NOT be SHUTDOWN: 2.
* The vault MUST NOT be registered yet
* The vault MUST have sufficient funds to lock the collateral

e collateral > MinimumCollateralVault, i.e., the vault MUST provide sufficient collateral (above the
spam protection threshold).

Postconditions

* The vault’s free balance in the given currency MUST decrease by collateral.
e The vault’s reserved balance MUST in the given currency increase by collateral.
* The new vault MUST be created as follows:

— vault.wallet: MUST be empty.

— vault.status: MUST be set to active=true.

— vault.bannedUntil: MUST be empty.

— vault.toBeIssuedTokens: MUST be zero.

— vault.issuedTokens: MUST be zero.

— vault.toBeRedeemedTokens: MUST be zero.

— vault.toBeReplacedTokens: MUST be zero.

— vault.replaceCollateral: MUST be zero.

— vault.liquidatedCollateral: MUST be zero.

— vault.currencyId: MUST be the supplied currencyId

* The new vault MUST be inserted into Vaults using their account identifier as key.

20.3. External Functions 135

interBTC Specification

20.3.2 registerAddress

Add a new BTC address to the vault’s wallet. Typically this function is called by the vault client to register a
return-to-self address, prior to making redeem/replace payments. If a vault makes a payment to an address that is
not registered, nor is a valid redeem/replace payment, it will be marked as theft.

Specification

Function Signature
registerAddress(vaultld, address)
Parameters
* vaultId: the account of the vault.
* address: a valid BTC address.
Events
* RegisterAddress
Precondition
¢ The function call MUST be signed by vaultId.
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
e A vault with id vaultId MUST NOT be registered.
Postconditions

¢ address MUST be added to the vault’s wallet.

20.3.3 updatePublicKey

Changes a vault’s public key that is used for the On-Chain Key Derivation Scheme.

Specification

Function Signature
updatePublicKey(vaultId, publicKey)
Parameters

e vaultId: the account of the vault.

* publicKey: the new BTC public key of the vault.
Events

* UpdatePublicKey
Preconditions

* The function call MUST be signed by vaultId.

* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.

A vault with id vaultId MUST be registered.
Postconditions

e The vault’s public key MUST be set to publicKey.

136 Chapter 20. Vault Registry

interBTC Specification

20.3.4 deposit_collateral

The vault locks additional collateral as a security against stealing the Bitcoin locked with it.

Specification

Function Signature
deposit_collateral(vaultId, collateral)
Parameters
* vaultId: The account of the vault locking collateral.
* collateral: to-be-locked collateral.
Events

* DepositCollateral

Precondition

* The function call MUST be signed by vaultId.
e The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* A vault with id vaultId MUST be registered.

e The vault MUST have sufficient unlocked collateral in the currency determined by vault.currencyId to
lock.

Postconditions
* Function depositStake MUST complete successfully - parameterized by vaultId and collateral.

e The vault MUST lock an amount of collateral of its collateral, using the currency set in vault.
currencyId.

20.3.5 withdrawCollateral

A vault can withdraw its free collateral at any time, as long as the collateralization ratio remains above the
SecureCollateralThreshold. Collateral that is currently being used to back issued interBTC remains locked
until the vault is used for a redeem request (full release can take multiple redeem requests).

Specification

Function Signature
withdrawCollateral (vaultId, withdrawAmount)
Parameters
e vaultId: The account of the vault withdrawing collateral.
* withdrawAmount: To-be-withdrawn collateral.
Events
» WithdrawCollateral
Preconditions
* The function call MUST be signed by vaultId.
* The BTC Parachain status in the Security component MUST be set to RUNNING: 0.

20.3. External Functions 137

interBTC Specification

* A vault with id vaultId MUST be registered.

¢ The collatalization rate of the vault MUST remain above SecureCollateralThreshold after the with-
drawal of withdrawAmount.

¢ After the withdrawal, the vault’s ratio of nominated collateral to own collateral must remain above the value
returned by getMaxNominationRatio.

Postconditions
* Function withdrawStake MUST complete successfully - parameterized by vaultId and withdrawAmount.

e The vault’s free balance in the currency configured by vault.currencyID MUST increase by
withdrawAmount.

e The vault’s locked balance in the currency configured by vault.currencyID MUST decrease by
withdrawAmount.

20.4 Internal Functions

20.4.1 trylncreaseToBelssuedTokens

During an issue request function (requestlssue), a user must be able to assign a vault to the issue request. As a
vault can be assigned to multiple issue requests, race conditions may occur. To prevent race conditions, a Vault’s
collateral is reserved when an IssueRequest is created - toBeIssuedTokens specifies how much interBTC is
to be issued (and the reserved collateral is then calculated based on get_price).

Specification

Function Signature
tryIncreaseToBeIssuedTokens(vaultId, tokens)
Parameters
e vaultId: The BTC Parachain address of the Vault.
* tokens: The amount of interBTC to be locked.
Events
e IncreaseToBelssuedTokens
Preconditions
* The BTC Parachain status in the Security component MUST be set to RUNNING: ®.
e A vault with id vaultId MUST be registered.

* The vault MUST have sufficient collateral to remain above the SecureCollateralThreshold after issuing
tokens.

¢ The vault status MUST be Active(true)
¢ The vault MUST NOT be banned
Postconditions

e The vault’s toBeIssuedTokens MUST be increased by an amount of tokens.

138 Chapter 20. Vault Registry

interBTC Specification

20.4.2 decreaseToBelssuedTokens

A Vault’s committed tokens are unreserved when an issue request (cancellssue) is cancelled due to a timeout
(failure!). If the vault has been liquidated, the tokens are instead unreserved on the liquidation vault.

Specification

Function Signature
decreaseToBeIssuedTokens(vaultId, tokens)
Parameters
* vaultId: The BTC Parachain address of the Vault.
* tokens: The amount of interBTC to be unreserved.
Events
* DecreaseToBelssuedTokens
Preconditions
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
A vault with id vaultId MUST be registered.
e If the vault is not liquidated, it MUST have at least tokens toBeIssuedTokens.
e If the vault is liquidated, it MUST have at least tokens toBeIssuedTokens.
Postconditions
* If the vault is not liquidated, its toBeIssuedTokens MUST be decreased by an amount of tokens.

* If the vault is liquidated, the liquidation vault’s toBeIssuedTokens MUST be decreased by an amount of
tokens.

20.4.3 issueTokens

The issue process completes when a user calls the executelssue function and provides a valid proof for sending
BTC to the vault. At this point, the toBeIssuedTokens assigned to a vault are decreased and the issuedTokens
balance is increased by the amount of issued tokens.

Specification

Function Signature
issueTokens(vaultId, amount)
Parameters
e vaultId: The BTC Parachain address of the Vault.
* tokens: The amount of interBTC that were just issued.
Events
o IssueTokens
Preconditions
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN : 2.
e A vault with id vaultId MUST be registered.

o If the vault is not liquidated, its toBeIssuedTokens MUST be greater than or equal to tokens.

20.4. Internal Functions 139

interBTC Specification

* If the vault is liquidated, the toBeIssuedTokens of the liquidation vault MUST be greater than or equal to
tokens.

Postconditions

o If the vault is nor liquidated, its toBeIssuedTokens MUST be decreased by tokens, while its
issuedTokens MUST be increased by tokens.

* Ifthe vaultis not liquidated, function depositStake MUST complete successfully - parameterized by vaultId
and tokens.

o If the vault is liquidated, the toBeIssuedTokens of the liquidation vault MUST be decreased by tokens,
while its issuedTokens MUST be increased by tokens.

20.4.4 tryincreaseToBeRedeemedTokens

Add an amount of tokens to the toBeRedeemedTokens balance of a vault. This function serves as a prevention
against race conditions in the redeem and replace procedures. If, for example, a vault would receive two redeem
requests at the same time that have a higher amount of tokens to be issued than his issuedTokens balance, one of
the two redeem requests should be rejected.

Specification

Function Signature
tryIncreaseToBeRedeemedTokens(vaultId, tokens)
Parameters

* vaultId: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC to be redeemed.
Events

* IncreaseToBeRedeemedTokens
Preconditions

¢ The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.

* A vault with id vaultId MUST be registered.

e The vault MUST NOT be liquidated.

* The vault MUST have sufficient tokens to reserve, i.e. tokens must be less than or equal to issuedTokens
- toBeRedeemedTokens.

Postconditions

e The vault’s toBeRedeemedTokens MUST be increased by tokens.

20.4.5 decreaseToBeRedeemedTokens

Subtract an amount tokens from the toBeRedeemedTokens balance of a vault. This function is called from can-
celRedeem.

140 Chapter 20. Vault Registry

interBTC Specification

Specification

Function Signature
decreaseToBeRedeemedTokens (vaultId, tokens)
Parameters
* vaultId: The BTC Parachain address of the Vault.
* tokens: The amount of interBTC not to be redeemed.
Events
* DecreaseToBeRedeemedTokens
Preconditions
* The BTC Parachain status in the Security component must not be set to SHUTDOWN: 2.
* A vault with id vaultId MUST be registered.
* If the vault is not liquidated, its toBeRedeemedTokens MUST be greater than or equal to tokens.

« If the vault is liquidated, the toBeRedeemedTokens of the liquidation vault MUST be greater than or equal
to tokens.

Postconditions
* If the vault is not liquidated, its toBeRedeemedTokens MUST be decreased by tokens.

* If the vault is liquidated, the toBeRedeemedTokens of the liquidation vault MUST be decreased by tokens.

20.4.6 decreaseTokens

Decreases both the toBeRedeemed and issued tokens, effectively burning the tokens. This is called from can-
celRedeem.

Specification

Function Signature

decreaseTokens(vaultId, user, tokens)

Parameters
e vaultId: The BTC Parachain address of the Vault.
* userId: The BTC Parachain address of the user that made the redeem request.
* tokens: The amount of interBTC that were not redeemed.

Events
* DecreaseTokens

Preconditions
* The BTC Parachain status in the Security component must not be set to SHUTDOWN: 2.
e A vault with id vaultId MUST be registered.

* If the vault is not liquidated, its toBeRedeemedTokens and issuedTokens MUST be greater than or equal
to tokens.

* If the vault is liquidated, the toBeRedeemedTokens and issuedTokens of the liquidation vault MUST be
greater than or equal to tokens.

Postconditions

20.4. Internal Functions 141

interBTC Specification

* If the vaultis not liquidated, its toBeRedeemedTokens and issuedTokens MUST be decreased by tokens.

* If the vault is liquidated, the toBeRedeemedTokens and issuedTokens of the liquidation vault MUST be
decreased by tokens.

20.4.7 redeemTokens

Reduces the to-be-redeemed tokens when a redeem request completes

Specification

Function Signature
redeemTokens(vaultId, tokens, premium, redeemerId)
Parameters
e vaultId: the id of the vault from which to redeem tokens
* tokens: the amount of tokens to be decreased
e premium: amount of collateral to be rewarded to the redeemer if the vault is not liquidated yet
e redeemerId: the id of the redeemer
Events
One of:
* RedeemTokens
* RedeemTokensPremium
* RedeemTokensLiquidatedVault
Preconditions
¢ The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* A vault with id vaultId MUST be registered.
e If the vault is not liquidated:
— The vault’s toBeRedeemedTokens must be greater than or equal to tokens.

— If premium > 0, then the vault’s backingCollateral (as calculated via computeStakeAtindex) must
be greater than or equal to premium.

e If the vault is liquidated, then the liquidation vault’s toBeRedeemedTokens must be greater than or equal
to tokens

Postconditions
e If the vault IS NOT liquidated:

— If premium > O, then premium MUST be transferred from the vault’s collateral to the redeemer’s free
balance.

— Function withdrawStake MUST complete successfully - parameterized by vaultId and tokens.
e If the vault IS liquidated:

— The amount toBeReleased is calculated as (vault.liquidatedCollateral * tokens) /
vault.toBeRedeemedTokens.

— The vault’s liquidatedCollateral MUST decrease by toBeReleased.

— Function depositStake MUST complete successfully - parameterized by vaultId, vaultId, and
toBeReleased.

e The vault’s toBeRedeemedTokens MUST decrease by tokens.

142 Chapter 20. Vault Registry

interBTC Specification

* The vault’s issuedTokens MUST decrease by tokens.

20.4.8 redeemTokensLiquidation

Handles redeem requests which are executed against the LiquidationVault in the given currency. Reduces the issued
token of the LiquidationVault and slashes the corresponding amount of collateral.

Specification

Function Signature
redeemTokensLiquidation(redeemerId, tokens, currencyId)
Parameters
e currencyld: The currency of the to be received collateral.
* redeemerId : The account of the user redeeming interBTC.
¢ tokens: The amount of interBTC to be burned, in exchange for collateral.
Events
* RedeemTokensLiquidation
Preconditions
e The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.

* The liquidation vault with the given currencyId MUST have sufficient tokens, i.e. tokens MUST be less
than or equal to its issuedTokens - toBeRedeemedTokens.

Postconditions
* The used liquidation vault MUST be the one with the given currencyId.
* The liquidation vault’s issuedTokens MUST decrease by tokens.

* The redeemer MUST have received an amount of collateral equal to (tokens / liquidationVault.
issuedTokens) * liquidationVault.backingCollateral.

20.4.9 increaseToBeReplacedTokens

Increases the toBeReplaced tokens of a vault, which indicates how many tokens other vaults can replace in total.

Specification

Function Signature
increaseToBeReplacedTokens(oldVault, tokens, collateral)
Parameters

* vaultId: Account identifier of the vault to be replaced.

* tokens: The amount of interBTC replaced.

e collateral: The extra collateral provided by the new vault as griefing collateral for potential accepted
replaces.

Returns
¢ A tuple of the new total toBeReplacedTokens and replaceCollateral.

Events

20.4. Internal Functions 143

interBTC Specification

* IncreaseToBeReplacedTokens
Preconditions
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* A vault with id vaultId MUST be registered.
e The vault MUST NOT be liquidated.

e The vault’s increased toBeReplaceedTokens MUST NOT exceed issuedTokens -
toBeRedeemedTokens.

Postconditions
e The vault’s toBeReplaceTokens MUST be increased by tokens.

e The vault’s replaceCollateral MUST be increased by collateral.

20.4.10 decreaseToBeReplacedTokens

Decreases the toBeReplaced tokens of a vault, which indicates how many tokens other vaults can replace in total.

Specification

Function Signature
decreaseToBeReplacedTokens(oldVault, tokens)
Parameters
e vaultId: Account identifier of the vault to be replaced.
* tokens: The amount of interBTC replaced.
Returns
* A tuple of the new total toBeReplacedTokens and replaceCollateral.
Events
* DecreaseToBeReplacedTokens
Preconditions
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* A vault with id vaultId MUST be registered.
Postconditions

e The vault’s replaceCollateral MUST be decreased by (min(tokens, toBeReplacedTokens) /

1o

toBeReplacedTokens) * replaceCollateral.

* The vault’s toBeReplaceTokens MUST be decreased by min(tokens, toBeReplacedTokens).

Note: the replaceCollateral is not actually unlocked - this is the responsibility of the caller. It is implemented
this way, because in requestRedeem it needs to be unlocked, whereas in requestReplace it must remain locked.

144 Chapter 20. Vault Registry

interBTC Specification

20.4.11 replaceTokens

When a replace request successfully completes, the toBeRedeemedTokens and the issuedToken balance must be
reduced to reflect that removal of interBTC from the o1dVault.Consequently, the issuedTokens of the newVault
need to be increased by the same amount.

Specification

Function Signature
replaceTokens(oldVault, newVault, tokens, collateral)
Parameters
e oldVault: Account identifier of the vault to be replaced.
* newVault: Account identifier of the vault accepting the replace request.
* tokens: The amount of interBTC replaced.
e collateral: The collateral provided by the new vault.
Events
* ReplaceTokens
Preconditions
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* A vault with id o1ldVault MUST be registered.
* A vault with id newVault MUST be registered.

e If oldVault is not liquidated, its toBeRedeemedTokens and issuedTokens MUST be greater than or
equal to tokens.

e If oldVault is liquidated, the liquidation vault’s toBeRedeemedTokens and issuedTokens MUST be
greater than or equal to tokens.

* If newVault is not liquidated, its toBeIssuedTokens MUST be greater than or equal to tokens.

* If newVault is liquidated, the liquidation vault’s toBeIssuedTokens MUST be greater than or equal to
tokens.

Postconditions
e If the oldVault IS liquidated:

— The amount toBeReleased MUST be calculated as (oldVault.liquidatedCollateral *
tokens) / oldVault.toBeRedeemedTokens.

— The oldVault’s liquidatedCollateral MUST decrease by toBeReleased.

— Function depositStake MUST complete successfully - parameterized by oldVault, oldVault and
toBeReleased.

The oldVault’s toBeRedeemed MUST decrease by tokens.

The oldVault’s issuedTokens MUST decrease by tokens.
e The newVault’s toBeIssuedTokens MUST decrease by tokens.

* The newVault’s issuedTokens MUST increase by tokens.

20.4. Internal Functions 145

interBTC Specification

20.4.12 cancelReplaceTokens

Cancels a replace: decrease the old-vault’s to-be-redeemed tokens, and the new-vault’s to-be-issued tokens. If one
or both of the vaults has been liquidated, the change is forwarded to the liquidation vault.

Specification

Function Signature
cancelReplaceTokens(oldVault, newVault, tokens)
Parameters
e oldVault: Account identifier of the vault to be replaced.
* newVault: Account identifier of the vault accepting the replace request.
* tokens: The amount of interBTC replaced.
Preconditions
* The BTC Parachain status in the Security component MUST NOT be set to SHUTDOWN: 2.
* A vault with id o1ldVault MUST be registered.
* A vault with id newVault MUST be registered.
e If oldVault is not liquidated, its toBeRedeemedTokens MUST be greater than or equal to tokens.

 If oldVault is liquidated, the liquidation vault’s toBeRedeemedTokens MUST be greater than or equal to
tokens.

¢ If newVault is not liquidated, its toBeIssuedTokens MUST be greater than or equal to tokens.

* If newVault is liquidated, the liquidation vault’s toBeIssuedTokens MUST be greater than or equal to
tokens.

Postconditions
* If oldVault is not liquidated, its toBeRedeemedTokens MUST be decreased by tokens.
e If oldVault is liquidated, the liquidation vault’s toBeRedeemedTokens MUST be decreased by tokens.
 If newVault is not liquidated, its toBeIssuedTokens MUST be decreased by tokens.

* If newVault is liquidated, the liquidation vault’s toBeIssuedTokens MUST be decreased by tokens.

20.4.13 liquidateVault

Liquidates a vault, transferring token balances to the LiquidationVault, as well as collateral.

Specification

Function Signature
liquidateVault(vault, reporter)
Parameters
e vault: Account identifier of the vault to be liquidated.
* reporter: [Optional] Account that initiated the liquidation (e.g. theft report).
Events

* LiquidateVault

146 Chapter 20. Vault Registry

interBTC Specification

Preconditions
Postconditions

%

e usedCollateral MUST be calculated as exchangeRate * (issuedTokens + toBeIssuedTokens))
* secureCollateralThreshold.

¢ usedCollateral MUST be set to backingCollateral if backingCollateral < usedCollateral.
¢ usedTokens MUST be calculated as issuedTokens + toBeIssuedTokens.

e toBeLiquidated MUST be calculated as (usedCollateral * (usedTokens -
toBeRedeemedTokens)) / usedTokens.

e remainingCollateral MUST be calculated as max (0, usedCollateral - toBeLiquidated).
* Function withdrawStake MUST complete successfully - parameterized by vault and issuedTokens.

e Function withdrawStake MUST complete successfully - parameterized by vault and
remainingCollateral.

e liquidatedCollateral MUST be increased by remainingCollateral.

e toWithdraw MUST be calculated as toBeLiquidated - backingCollateral OR toBeLiquidated if
backingCollateral > toBeLiquidated.

* toSlash MUST be calculated as the remainder of the previous calculation.
* Function withdrawStake MUST complete successfully - parameterized by vault and toWithdraw.
* Function slashStake MUST complete successfully - parameterized by vault and toSlash.
* The liquidation vault MUST be updated as follows:
— liquidationVault.issuedTokens MUST increase by vault.issuedTokens
— liquidationVault.toBeIssuedTokens MUST increase by vault.toBeIssuedTokens
— liquidationVault.toBeRedeemedTokens MUST increase by vault.toBeRedeemedTokens
¢ The vault MUST be updated as follows:
— vault.issuedTokens MUST be set to zero
— vault.toBeIssuedTokens MUST be set to zero

e If reporter 1S specified, min(TheftFee(liquidatedAmountinBTC), TheftFeeMax) MUST be transferred from
the liquidated vault to the reporter.

Note: If a vault successfully executes a replace after having been liquidated, it receives some of its confiscated
collateral back.

20.4.14 getMaxNominationRatio
Returns the nomination ratio, denoting the maximum amount of collateral that can be nominated in a given cur-
rency.

e MaxNominationRatio = (SecureCollateralThreshold / PremiumRedeemThreshold) - 1)
Example

e SecureCollateralThreshold = 1.5 (150%)

e PremiumRedeemThreshold = 1.2 (120%)

e MaxNominationRatio = (1.5 / 1.2) - 1 = 0.25 (25%)

In this example, a Vault with 10 DOT locked as collateral can only receive 2.5 DOT through nomination.

20.4. Internal Functions 147

interBTC Specification

20.5 Events

20.5.1 RegisterVault
Emit an event stating that a new vault (vault) was registered and provide information on the Vault’s collateral
(collateral).
Event Signature
RegisterVault(vault, collateral)
Parameters
e vault: The account of the vault to be registered.
e collateral: the amount of the to-be-locked collateral.
Functions

o register_vault

20.5.2 DepositCollateral
Emit an event stating how much new (newCollateral), total collateral (totalCollateral) and freely available
collateral (freeCollateral) the vault calling this function has locked.
Event Signature
DepositCollateral(vault, newCollateral, totalCollateral, freeCollateral)
Parameters
e vault: The account of the vault locking collateral.
* newCollateral: to-be-locked collateral in DOT.
* totalCollateral: total collateral in DOT.
e freeCollateral: collateral not “occupied” with interBTC in DOT.
Functions

* deposit_collateral

20.5.3 WithdrawCollateral

Emit emit an event stating how much collateral was withdrawn by the vault and total collateral a vault has left.
Event Signature
WithdrawCollateral (vault, withdrawAmount, totalCollateral)
Parameters
e vault: The account of the vault locking collateral.
* withdrawAmount: To-be-withdrawn collateral in DOT.
* totalCollateral: total collateral in DOT.
Functions

e withdrawCollateral

148 Chapter 20. Vault Registry

interBTC Specification

20.5.4 RegisterAddress

Emit an event stating that a vault (vault) registered a new address (address).
Event Signature
RegisterAddress(vault, address)
Parameters
* vault: The account of the vault to be registered.
* address: The added address
Functions

e registerAddress

20.5.5 UpdatePublicKey

Emit an event stating that a vault (vault) registered a new address (address).
Event Signature
UpdatePublicKey(vault, publicKey)
Parameters
e vault: the account of the vault.
e publicKey: the new BTC public key of the vault.
Functions

* updatePublicKey

20.5.6 IncreaseToBelssuedTokens

Emit
Event Signature
IncreaseToBeIssuedTokens(vaultId, tokens)
Parameters
* vault: The BTC Parachain address of the Vault.
* tokens: The amount of interBTC to be locked.
Functions

e trylncreaseToBelssuedTokens

20.5.7 DecreaseToBelssuedTokens

Emit
Event Signature
DecreaseToBeIssuedTokens(vaultId, tokens)
Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC to be unreserved.

Functions

20.5. Events 149

interBTC Specification

e decreaseToBelssuedTokens

20.5.8 IssueTokens

Emit an event when an issue request is executed.
Event Signature

IssueTokens(vault, tokens)

Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC that were just issued.

Functions

e issueTokens

20.5.9 IncreaseToBeRedeemedTokens

Emit an event when a redeem request is requested.
Event Signature
IncreaseToBeRedeemedTokens(vault, tokens)
Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC to be redeemed.
Functions

e trylncreaseToBeRedeemedTokens

20.5.10 DecreaseToBeRedeemedTokens

Emit an event when a replace request cannot be completed because the vault has too little tokens committed.

Event Signature
DecreaseToBeRedeemedTokens(vault, tokens)
Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC not to be redeemed.
Functions

e decreaseToBeRedeemedTokens

150

Chapter 20. Vault Registry

interBTC Specification

20.5.11 IncreaseToBeReplacedTokens

Emit an event when the toBeReplacedTokens is increased.
Event Signature
IncreaseToBeReplacedTokens(vault, tokens)
Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC to be replaced.
Functions

e increaseToBeReplacedTokens

20.5.12 DecreaseToBeReplacedTokens

Emit an event when the toBeReplacedTokens is decreased.
Event Signature
DecreaseToBeReplacedTokens(vault, tokens)
Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC not to be replaced.
Functions

* decreaseToBeReplacedTokens

20.5.13 DecreaseTokens

Emit an event if a redeem request cannot be fulfilled.

Event Signature

DecreaseTokens(vault, user, tokens, collateral)
Parameters

e vault: The BTC Parachain address of the Vault.

* user: The BTC Parachain address of the user that made the redeem request.

¢ tokens: The amount of interBTC that were not redeemed.
e collateral: The amount of collateral assigned to this request.
Functions

e decreaseTokens

20.5. Events

151

interBTC Specification

20.5.14 RedeemTokens

Emit an event when a redeem request successfully completes.
Event Signature
RedeemTokens(vault, tokens)
Parameters

e vault: The BTC Parachain address of the Vault.

* tokens: The amount of interBTC redeemed.
Functions

e redeemTokens

20.5.15 RedeemTokensPremium

Emit an event when a user is executing a redeem request that includes a premium.
Event Signature
RedeemTokensPremium(vault, tokens, premiumDOT, redeemer)
Parameters
* vault: The BTC Parachain address of the Vault.
* tokens: The amount of interBTC redeemed.
* premiumDOT: The amount of DOT to be paid to the user as a premium using the Vault’s released collateral.
e redeemer: The user that redeems at a premium.
Functions

e redeemTokens

20.5.16 RedeemTokensLiquidation

Emit an event when a redeem is executed under the LIQUIDATION status.
Event Signature
RedeemTokensLiquidation(redeemer, redeemDOTinBTC)
Parameters

* redeemer : The account of the user redeeming interBTC.

¢ redeemDOTinBTC: The amount of interBTC to be redeemed in DOT with the LiquidationVault, denom-
inated in BTC.

Functions

* redeemTokensLiquidation

152 Chapter 20. Vault Registry

interBTC Specification

20.5.17 RedeemTokensLiquidatedVault

Emit an event when a redeem is executed on a liquidated vault.
Event Signature
RedeemTokensLiquidation(redeemer, tokens, unlockedCollateral)
Parameters
» redeemer : The account of the user redeeming interBTC.

¢ tokens: The amount of interBTC that have been refeemed.

e unlockedCollateral: The amount of collateral that has been unlocked for the vault for this redeem.

Functions

e redeemTokens

20.5.18 ReplaceTokens

Emit an event when a replace requests is successfully executed.
Event Signature
ReplaceTokens(oldVault, newVault, tokens, collateral)
Parameters
e oldVault: Account identifier of the vault to be replaced.
* newVault: Account identifier of the vault accepting the replace request.
¢ tokens: The amount of interBTC replaced.
e collateral: The collateral provided by the new vault.
Functions

* replaceTokens

20.5.19 LiquidateVault

Emit an event indicating that the vault with vault account identifier has been liquidated.
Event Signature
LiquidateVault(vault)
Parameters
e vault: Account identifier of the vault to be liquidated.
Functions

* liquidateVault

20.5. Events

153

interBTC Specification

20.6 Error Codes

InsufficientVaultCollateralAmount

e Message: “The provided collateral was insufficient - it must be above MinimumCollateralVault.”

e Cause: The vault provided too little collateral, i.e. below the MinimumCollateral Vault limit.
VaultNotFound

e Message: “The specified vault does not exist.”

» Cause: vault could not be found in Vaults mapping.
ERR_INSUFFICIENT_FREE_COLLATERAL

* Message: “Not enough free collateral available.”

* Cause: The vault is trying to withdraw more collateral than is currently free.
ERR_EXCEEDING_VAULT_LIMIT

* Message: “Issue request exceeds vault collateral limit.”

* Cause: The collateral provided by the vault combined with the exchange rate forms an upper limit on how
much interBTC can be issued. The requested amount exceeds this limit.

ERR_INSUFFICIENT_TOKENS_COMMITTED
* Message: “The requested amount of tokens exceeds the amount available to vault.”

* Cause: A user requests a redeem with an amount exceeding the vault’s tokens, or the vault is requesting
replacement for more tokens than it has available.

ERR_VAULT_BANNED

* Message: “Action not allowed on banned vault.”

* Cause: An illegal operation is attempted on a banned vault, e.g. an issue or redeem request.
ERR_ALREADY_REGISTERED

* Message: “A vault with the given accountld is already registered.”

* Cause: A vault tries to register a vault that is already registered.
ERR_RESERVED_DEPOSIT_ADDRESS

* Message: “Deposit address is already registered.”

e Cause: A vault tries to register a deposit address that is already in the system.
ERR_VAULT_NOT_BELOW_LIQUIDATION_THRESHOLD

* Message: “Attempted to liquidate a vault that is not undercollateralized.”

e Cause: A vault has been reported for being undercollateralized, but at the moment of execution, it is no
longer undercollateralized.

ERR_INVALID_PUBLIC_KEY
* Message: “Deposit address could not be generated with the given public key.”

» Cause: An error occurred while attempting to generate a new deposit address for an issue request.

Note: These are the errors defined in this pallet. It is possible that functions in this pallet return errors defined in
other pallets.

154 Chapter 20. Vault Registry

CHAPTER
TWENTYONE

VAULT NOMINATION

21.1 Overview

Nomination is a feature aimed at increasing interBTC issuance capacity by allowing Nominators to back a particular
Vault. Nominators lock their free collateral so that trusted Vaults can issue interBTC backed by the nominated
collateral. Nominators are rewarded a fraction of the fees generated by the Vault, while the remaining fees are
given to the Vault. Vaults are assumed to be trusted by their Nominators not to steal Bitcoin backed by nominated

collateral.

21.1.1 Step-by-step

1. Vaults may opt in to Nomination, expanding the total possible issuance amount.

2. The maximum amount that can be nominated is bounded by the Vault’s locked collateral.

. Nominators select one or more Vaults and lock their collateral balance on the BTC Parachain. The used
currency for each nomination is determined by the vault’s collateral currency. If a nominator is nominating
different vaults, a different currency can be used for each vault, i.e., a nominator is not limited to a single

currency.
4. Nominators can go offline and their nominated collateral will generate rewards passively.

5. Vaults and Nominators can withdraw their collateral at any point subject to
SecureCollateralThreshold.

the

6. Upon liquidation, Nominators are returned some collateral after remaining requests have been executed.

21.2 Protocol

21.2.1 Assumptions

Security Assumptions

1. The operating Vault is trusted by its Nominators not to steal the inferBTC issued with their collateral.

2. There is no transitive trust. If a user trusts Vault A and Vault A trusts Vault B, the user does not trust Vault

B.
Liveness Assumptions
1. Nominators are mostly-offline agents, who are slow to respond to system changes.

2. Vaults are always-online agents, who can promptly react to system updates.

155

interBTC Specification

21.2.2 Vault Nomination Protocol

1. Vaults must choose to opt in to the Nomination protocol.

2. Nominators select a Vault to which they can delegate collateral. They will earn a fraction of any rewards
generated by the Vault.

3. Vault replacement is disallowed with nominated collateral. Otherwise, Security Assumptions 1 and 2 would
be violated.

4. The nominated collateral:
1. Is in the vault’s collateral currency,
2. Cannot be withdrawn by the Vault,
3. Is locked on the parachain,

4. Is capped at a fraction of the Vault’s deposited collateral (Max Nomination Ratio) to bound the risk for
both Vaults and Nominators.

5. Liquidation slashing is handled as follows:

1. Proportional Slashing In case the collateral managed by the Vault falls below the liquidation threshold,
the Vault and its Nominators are slashed proportionally to their collateral.

2. Vault First Slashing In case the Vault steals Bitcoin deposited at its address, its collateral is used to
cover as much of the slashed amount as possible. If the Vault’s collateral was not enough to cover the
entire amount, the Nominators are slashed proportionally for the remaining amount.

6. Vaults may opt out of the Nomination protocol which force refunds Nominators if there is enough collateral
over the SecureCollateralThreshold.

Max Nomination Ratio

This ratio prevents the Vault from withdrawing its entire collateral and only exposing Nominators to economic
risk, or stealing without liquidation consequences. This means that a Vault can only withdraw collateral as long as
the fraction of nominated collateral does not exceed the threshold cap. Capping Nominator collateral also prevents
Vaults being “outnumbered” by Nominators and their relative fee earnings being marginalized. The calculation is
defined in Vault Registry, in the getMaxNominationRatio function.

21.2.3 Security Considerations

The Vault Nomination protocol changes the economic incentive for Vaults to misbehave, i.e., violate the security
of the XCLAIM protocol by stealing BTC.

Economic Security without Vault Nomination

Informally and not considering reputation or rewards, a rational Vault should not steal BTC if the economic value
of the collateral is above the value of the BTC held in custody. The effective collateralization rate at which Vaults
should steal BTC is below 100%. More formally, we can express this as:

C>b

Where C' is the value of the locked collateral (e.g., DOT) and b is the value of the backing asset (e.g., BTC). Note,
that we will add an extension to this model such that we account for the expected value from the perspective of the
Vault for both assets. However, for this simple model, the above should suffice.

As an aside, Vaults are liquidated before reaching 100% collateralization as defined by the LiquidationThreshold.

156 Chapter 21. Vault Nomination

interBTC Specification

Economic Security with Vault Nomination

Introducing Vault Nomination changes the effective collateralization rate at which Vaults have an economic incen-
tive to steal BTC.

In both, the Vault First and Proportional Slashing, the effective collateralization rate at which Vaults should steal
can be calculated by considering that if the value of only the Vault’s collateral is below 100% of the locked BTC,
a Vault has an incentive to steal BTC. We can then calculate the effective collateralization, under the assumption
that a Vault is fully nominated, by taking the 100% collateralization provided by the Vault and adding the Max
Nomination Ratio:

100% + (100% * maxNominationRatio)

Note: If we take DOT as an example and use a secure collateral ratio of 150% and a premium redeem threshold
of 135%, Vaults have an incentive to steal BTC if their collateralization falls below 125%.

Above the effective collateralization rate to steal BTC, the incentives to violate the security of the system (i.e.,
being under-collateralized or steal BTC), are different depending on the slashing strategy.

Proportional Slashing

For the under-collateralization failure, both Nominators and Vaults need to be active to (1) add more collateral
to prevent such a failure, (2) reduce the amount of backed tokens, i.e., the number of backed interBTC, or (3) a
combination of 1 and 2. In this strategy each the Vault and its Nominators are punished proportionally to their
collateral holdings. We visualize this with the example below:

Proportional

Slashing
Combined slashed
collateral
100%
Nominators 20% of total collateral and 100% of

nominator collateral

80% of total collateral and 100% of vault
collateral

\

Collateralization
100% 125% 150% 187.5%

Fig. 21.1: The slashed collateral (in %) in Proportional Slashing of a Vault and its Nominators.

Note: Assume the similar DOT example from above. Effective threshold when Vault has an incentive to steal
Bitcoin: 100% + (100% * 25%) = 125% collateralization. In case of a liquidation, the Vault is slashed all collateral
and the Nominators are slashed all collateral since we slash up to the secure collateral threshold.

Note: Itisnot recommended to use this strategy in case of Vault theft. If the Vault steals Bitcoin at collateralization
of 187.5% (i.e., 150% + (150% * 25%)), the Vault’s and Nominators’ collateral are slashed proportionally such
that 150%/187.5% = 80% of the collateral is slashed from both the Vault and its Nominators. Normally, the vault
should not be motivated to steal but it might be the case if e.g., the DOT/BTC exchange rate drops, the exchange

21.2. Protocol 157

interBTC Specification

rate update is not yet reflected on chain, nominators are offline and cannot react, and the new exchange rate would
bring the combined collateralization below 125% (such that Vault’s future collateral is below 100%)).

Vault First Slashing

Nominators cannot control if Vaults decide to steal BTC. While Nominators trust Vaults (see Security Assumption
1 and 2), the protocol still tries to minimize this case by slashing Vaults first in case of theft. Therefore, in case
of theft all of the Vaults available collateral are slashed before its Nominators. At the lower bound of 100% -+
(100% * maxNominationRatio), both Proportional Slashing and Vault First Slashing slash the same amount of
collateral from a Vault and its Nominators. However, at higher collateralization rates, Vaults are comparatively
more slashed. See the figure below for an illustration using the threshold examples as above:

Vault First Slashing

Combined slashed
collateral

100% 0, 0
Nominators 20% of total collateral and 100% of

nominator collateral

80% of total collateral and 100% of vault
collateral

\/

Collateralization
100% 125% 150% 187.5%

Fig. 21.2: The slashed collateral (in %) in Vault First Slashing of a Vault and its Nominators.

Note: Assume the similar DOT example from above. Effective threshold when Vault has an incentive to steal
Bitcoin: 100% + (100% * 25%) = 125% collateralization. In case of theft, the vault is slashed all collateral, the
nominators are slashed all collateral since we slash up to the secure collateral threshold. However, if the Vault
steals Bitcoin at collateralization of 187.5% (i.e., 150% + (150% * 25%)), all of the vault’s collateral are slashed
and none of the nominators collateral is slashed. Normally, the vault should not be motivated to steal but it might
be the case if e.g., you modify my example from the comment above (exchange rate drops, not yet reflected on
chain, nominators are offline and cannot react, new exchange rate would bring combined collaterealization below
125% (such that vault’s future collateral is below 100%)). In this case, the vault should steal BTC but in this case,
we would only slash the vault for this.

Risk Summary

1. Increased Exchange Rate Risk on Collateral Withdrawal: A Nominator may expose the Vault and the
other Nominators to additional economic risk by withdrawing nominated collateral during an exchange rate
spike. Similarly, the Vault may expose its Nominators to additional economic risk by withdrawing excess
collateral.

2. Vaults Have an Increased Incentive to Commit Theft: The effective collateralization rate at which Vault’s
should steal Bitcoin increases from 100% to :math::700% + (100% * text{maxNominationRatio}).

3. Different Slashing Strategies Reduce the Impact of Theft for Nominators: By applying Vault First Slash-
ing, the impact of the slashed collateral for Nominators is reduced if the collateralization is > 100%4(100%x
maxNominationRatio).

158 Chapter 21. Vault Nomination

interBTC Specification

21.3 Data Model

21.3.1 Scalars

NominationEnabled

Flag indicating whether this feature is enabled.
* If set to True, Vaults MAY opt-in to be nominated.

o If set to False, Vaults MUST NOT be able to opt-in to nomination. Already nominated Vaults MUST
keep being nominated as Vaults may have issued interBTC with nominated collateral when this feature was
enabled.

21.3.2 Maps

Vaults

Set of Vault accounts that have enabled nomination.

21.3.3 Structs

21.4 Functions

21.4.1 setNominationEnabled

Set the feature flag for Vault nomination.

Specification

Function Signature
setNominationEnabled(enabled)
Parameters
¢ enabled: True if nomination should be enabled, False if it should be disabled.
Preconditions
* The calling account MUST be root (system level origin).
Postconditions

e The NominationEnabled scalar MUST be set to the value of the enabled parameter.

21.4.2 optinToNomination

Allow the Vault to receive nominated collateral.

21.3. Data Model 159

interBTC Specification

Specification

Function Signature
optInToNomination(vaultId)
Parameters
* vaultId: the id of the Vault to enable nomination for.
Events
* NominationOptln
Preconditions
* The BTC Parachain status in the Security component MUST be RUNNING: 0.
* NominationEnabled MUST be true.
* A Vault with id vaultId MUST be registered.
e The Vault MUST NOT be opted in.
Postconditions

¢ The Vault MUST be allowed to receive nominated collateral.

21.4.3 optOutOfNomination

Disallow the Vault from receiving nominated collateral and force refund Nominators.

Specification

Function Signature
optOutOfNomination(vaultId)
Parameters
e vaultId: the id of the Vault to deregister from the nomination feature.
Events
* NominationOptQOut
Preconditions
* The BTC Parachain status in the Security component MUST be RUNNING: 0.
e A Vault with id vaultId MUST be registered.
e A Vault with id vaultId MUST exist in the Vaults mapping.
Postconditions
e The Vault MUST be removed from the Vaults mapping.
* The Vault MUST remain above the secure collateralization threshold.
e getTotalNominatedCollateral (vaultId) must return zero.
¢ For all nominators, getNominatorCollateral (vaultId, userId) must return zero.
* Staking pallet nonce must be incremented by one.

e The return value of calling computeRewardAtindex parameterized with (nonce - 1, INTERBTC,
vaultId, userId) must be equal to the user’s nomination just before the vault opted out.

160 Chapter 21. Vault Nomination

interBTC Specification

21.4.4 depositCollateral

Nominate collateral to a selected Vault.

Specification

Function Signature
depositCollateral(vaultId, nominatorId, amount)
Parameters
e vaultId: the id of the Vault to receive the nomination.
e nominatorId: the id of the user nominating collateral.
e amount: the amount of collateral to nominate.
Events
* DepositCollateral
Preconditions
* The BTC Parachain status in the Security component MUST be RUNNING: 0.
e NominationEnabled MUST be true.
e A Vault with id vaultId MUST be registered.
* A Vault with id vaultId MUST exist in the Vaults mapping.
* The nominator’s free balance in the vault’s used currency MUST be at least amount.
* The Vault MUST remain below the max nomination ratio.
Postconditions

* The Vault’s backing collateral MUST increase by the amount nominated.

* The Nominator’s balance in the vault’s currencyId MUST decrease by the amount nominated.

21.4.5 withdrawCollateral

Withdraw collateral from a nominated Vault.

Specification

Function Signature
withdrawCollateral (vaultId, nominatorId, amount)
Parameters
e vaultId: the id of the previously nominated Vault.
* nominatorId: the id of the user who nominated collateral.
* amount: the amount of collateral to withdraw.
Events
» WithdrawCollateral
Preconditions
* The BTC Parachain status in the Security component MUST be RUNNING:@.
e NominationEnabled MUST be true.

21.4. Functions

161

interBTC Specification

* A Vault with id vaultId MUST be registered.
* A Vault with id vaultId MUST exist in the Vaults mapping.

The Vault MUST remain above the secure collateralization threshold.

¢ Nominator MUST have a nomination with the given vault (including slashes) of at least amount.
Postconditions

e The Vault’s collateral MUST decrease by amount.

* The Nominator’s balance in the vault’s currencyId MUST increase by amount.

21.5 Events

21.5.1 NominationOptin

Event Signature
NominationOptIn(vaultId)
Parameters
e vaultId: the id of the Vault who opted in.
Functions

* optInToNomination

21.5.2 NominationOptOut

Event Signature
NominationOptOut (vaultId)
Parameters
e vaultId: the id of the Vault who opted out.
Functions

* optOutOfNomination

21.5.3 DepositCollateral

Event Signature

DepositCollateral (vaultId, nominatorId, amount)

Parameters
e vaultId: the id of the Vault who receives the nomination.
* nominatorId: the id of the nominator who is depositing collateral.
e amount: the amount of nominated collateral.

Functions

* depositCollateral

162 Chapter 21. Vault Nomination

interBTC Specification

21.5.4 WithdrawCollateral

Event Signature
WithdrawCollateral(vaultId, nominatorId, amount)
Parameters

e vaultId: the id of the previously nominated Vault.

* nominatorId: the id of the nominator who is withdrawing collateral.

e amount: the amount of nominated collateral.

Functions

e withdrawCollateral

21.5. Events

163

interBTC Specification

164 Chapter 21. Vault Nomination

CHAPTER
TWENTYTWO

REWARD

22.1 Overview

This pallet provides a way distribute rewards to any number of accounts, proportionally to their stake. It does so
using the Scalable Reward Distribution algorithm. It does not directly transfer any rewards - rather, the stakeholders
have to actively withdraw their accumulated rewards, which they can do at any time. Stakeholders can also change
their stake at any time, without impacting the rewards gained in the past.

22.2 Invariants

¢ For each currencyld,

— TotalStake[currencyId] MUST be equal to the sum of Stake[currencyId, accountId] over
all accounts.

— TotalReward[currencyId] MUST be equal to the sum of Stake[currencyId, accountId] *
RewardPerToken[currencyId] - RewardTally[currencyId, accountId] over all accounts.

— For each accountId,

% RewardTally[currencyId, accountId] MUST be smaller than or equal to
Stake[currencyId, accountId] * RewardPerToken[currencyId]

% Stake[currencyId, accountId] MUST NOT be negative
% RewardTally[currencyId, accountId] MUST NOT be negative

22.3 Data Model

22.3.1 Maps

TotalStake

The total stake deposited to the reward with the given currency.

165

https://solmaz.io/2019/02/24/scalable-reward-changing/

interBTC Specification

TotalRewards

The total unclaimed rewards in the given currency distributed to this reward pool. This value is currently only used
for testing purposes.

RewardPerToken

The amount of reward the stakeholders get for the given currency per unit of stake.

Stake

The stake in the given currency for the given account.

RewardTally

The amount of rewards in the given currency a given account has already withdrawn, plus a compensation that is
added on stake changes.

22.4 Functions

22.4.1 getTotalRewards

This function gets the total amount of rewards distributed in the pool with the given currencyld.

Specification

Function Signature
getTotalRewards(currencyId)
Parameters
* currencylId: Determines of which currency the amount is returned.
Postconditions

* The function MUST return the total amount of rewards that have been distributed in the given currency.

22.4.2 depositStake

Adds a stake for the given account and currency in the reward pool.

Specification

Function Signature
depositStake(currencyId, accountId, amount)
Parameters
e currencyId: The currency for which to add the stake
* accountId: The account for which to add the stake
e amount: The amount by which the stake is to increase

Events

166 Chapter 22. Reward

interBTC Specification

* DepositStake

Preconditions

Postconditions
e Stake[currencyId, accountId] MUST increase by amount
e TotalStake[currencyId] MUST increase by amount

e RewardTally[currencyId, accountId] MUST increase by RewardPerToken[currencyId] *
amount. This ensures the amount of rewards the given accountld can withdraw remains unchanged.

22.4.3 distributeReward

Distributes rewards to the stakeholders.

Specification

Function Signature
distributeReward(currencyld, reward)
Parameters

* currencylId: The currency being distributed

e reward: The amount being distributed
Events

* DistributeReward
Preconditions

e TotalStake[currencyId] MUST NOT be zero.
Postconditions

* RewardPerToken[currencyId] MUST increase by reward / TotalStake[currencyId]

* TotalRewards[currencyId] MUST increase by reward

22.4.4 computeReward

Computes the amount a given account can withdraw in the given currency.

Specification

Function Signature
computeReward(currencyId, accountId)
Parameters
e currencyId: The currency for which the rewards are being calculated
e accountId: Account for which the rewards are being calculated.
Postconditions

e The function MUST return Stake[currencyIld, accountId] * RewardPerToken[currencyId] -
RewardTally[currencyld, accountId].

22.4. Functions 167

interBTC Specification

22.4.5 withdrawStake

Decreases a stake for the given account and currency in the reward pool.

Specification

Function Signature
withdrawStake(currencyId, accountId, amount)
Parameters
e currencyId: The currency for which to decrease the stake
* accountId: The account for which to decrease the stake
e amount: The amount by which the stake is to decrease
Events
o WithdrawStake
Preconditions
e amount MUST NOT be greater than Stake[currencyId, accountId]
Postconditions
e Stake[currencyId, accountId] MUST decrease by amount
* TotalStake[currencyId] MUST decrease by amount

e RewardTally[currencyId, accountId] MUST decrease by RewardPerToken[currencyId] *
amount. This ensures the amount of rewards the given accountld can withdraw remains unchanged.

22.4.6 withdrawReward

Withdraw all available rewards of a given account and currency

Specification

Function Signature
withdrawReward(currencyId, reward)
Parameters
e currencyId: The currency being withdrawn
* accountId: The account for which to withdraw the rewards
Events
» WithdrawReward
Preconditions
e TotalStake[currencyId] MUST NOT be zero.
Postconditions
Let reward be the result computeReward when it is called with currencyId and accountId as arguments. Then:
e TotalRewards[currencyId] MUST decrease by reward

e RewardPerToken[currencyId] MUST be set to RewardPerToken[currencyId] *
Stake[currencyId, accountId]

168 Chapter 22. Reward

interBTC Specification

22.5 Events

22.5.1 DepositStake

Event Signature

DepositStake(currencyld, accountId, amount)

Parameters
e currencyId: the currency for which the stake has been changed
e accountId: the account for which the stake has been changed
e amount: the increase in stake

Functions

* depositStake

22.5.2 WithdrawStake

Event Signature

WithdrawStake(currencyId, accountId, amount)

Parameters
e currencyld: the currency for which the stake has been changed
* accountId: the account for which the stake has been changed
e amount: the decrease in stake

Functions

o withdrawStake

22.5.3 DistributeReward

Event Signature

DistributeReward(currencyId, accountId, amount)

Parameters
e currencyId: the currency for which the reward has been withdrawn
e amount: the distributed amount

Functions

o distributeReward

22.5.4 WithdrawReward

Event Signature

WithdrawReward(currencyId, accountId, amount)

Parameters
e currencylId: the currency for which the reward has been withdrawn
e accountId: the account for which the reward has been withdrawn

e amount: the withdrawn amount

22.5. Events 169

interBTC Specification

Functions

o withdrawReward

170 Chapter 22. Reward

CHAPTER
TWENTYTHREE

STAKING

23.1 Overview

This pallet is very similar to the Reward pallet - it is also based on the Scalable Reward Distribution algorithm. The
reward pallet keeps track of how much rewards vaults have earned. However, when nomination is enabled, there
needs to be a way to relay parts of the vault’s rewards to its nominators. Furthermore, the nominator’s collaterals
can be consumed, e.g., when a redeem is cancelled. This pallet is responsible for both tracking the rewards, and
the current amount of contributed collaterals of vaults and nominators.

The idea is to have one reward pool per vault, where both the vault and all of its nominators have a stake equal
to their contributed collateral. However, when collateral is consumed, either in cancelRedeem or liquidateVault,
the collateral of each of these stakeholders should decrease proportionally to their stake. To be able to achieve this
without iteration, in addition to tracking RewardPerToken, a similar value SlashPerToken is introduced. Simi-
larly, in addition to RewardTally, we now also maintain a SlashTally is for each stakeholder. When calculating
areward for a stakeholder, a compensated stake is calculated, based on Stake, SlashPerToken and SlashTally.

When a vault opts out of nomination, all nominators should receive their collateral back. This is achieved by dis-
tributing all funds from the vault’s shared collateral as rewards. However, a vault is free to opt back into nominator
after having opted out. It is possible for the vault to do this before all nominators have withdrawn their reward. To
ensure that the bookkeeping remains intact for the nominators to get their rewards at a later point, all variables are
additionally indexed by a nonce, which increases every time a vault opts out of nomination. Effectively, this create
a new pool for every nominated period.

Note: Most of the functions in this pallet that have a _at_index also have a version without this suffix that does
not take a nonce argument, and instead uses the value stored in Nonce. For brevity, these functions without the
suffix are omitted in this specification.

23.2 Data Model

23.2.1 Maps
TotalStake

Maps (currencyId, nonce, vaultId) to the total stake deposited by the given vault and its nominators, with
the given nonce and currencyld.

171

https://solmaz.io/2019/02/24/scalable-reward-changing/

interBTC Specification

TotalCurrentStake

Maps (currencyId, nonce, vaultId) to the total stake deposited by the given vault and its nominators, with
the given nonce and currencyld, excluding stake that has been slashed.

TotalRewards

Maps (currencyId, nonce, vaultId) to the total rewards distributed to the vault and its nominators. This
value is currently only used for testing purposes.

RewardPerToken

Maps (currencyId, nonce, vaultId) to the amount of reward the vault and its nominators get per unit of
stake.

RewardTally

Maps (currencyId, nonce, vaultId, nominatorId) to the reward tally the given nominator has for the
given vault’s reward pool, in the given nonce and currency. The tally influences how much the nominator can
withdraw.

Stake

Maps (currencyId, nonce, vaultId, nominatorId) to the stake the given nominator has in the given
vault’s reward pool, in the given nonce and currency. Initially, the stake is equal to its contributed collateral.
However, after a slashing has occurred, the nominator’s collateral must be compensated, using computeStakeAtIn-
dex.

SlashPerToken

Akin to RewardPerToken: maps (currencyId, nonce, vaultId) to the amount the vault and its nominators
got slashed for per unit of stake. It is used for computing the effective stake (or equivalently, its collateral) in
computeStakeAtlndex.

SlashTally

Akin to RewardTally: maps (currencyId, nonce, vaultId, nominatorId) to the slash tally the given nom-
inator has for the given vault’s reward pool, in the given nonce and currency. It is used for computing the effective
stake (or equivalently, its collateral) in computeStakeAtindex.

Nonce

Maps (currencyId, vaultId) current value of the nonce the given vault uses in the given currency. The nonce
is increased every time forceRefund is called, i.e., when a vault opts out of nomination. Since nominators get
their collateral back as a withdrawable reward, the bookkeeping must remain intact when the vault once again
opts into nomination. By incrementing this nonce, effectively a new reward pool is created for the new session.
All externally callable functions use the nonce stored in this map, except for the reward withdrawal function with-
drawRewardAtIndex.

172 Chapter 23. Staking

interBTC Specification

23.3 Functions

23.3.1 depositStake

Adds a stake for the given account and currency in the reward pool.

Specification

Function Signature
depositStake(currencyId, vaultId, nominatorId, amount)
Parameters
e currencyId: The currency for which to add the stake
e vaultId: Account of the vault
e nominatorId: Account of the nominator
e amount: The amount by which the stake is to increase
Events
* DepositStake
Postconditions
e Stake[currencyId, nonce, vaultId, nominatorId] MUST increase by amount
e TotalStake[currencyIld, nonce, vaultId] MUST increase by amount

* TotalCurrentStake[currencyId, nonce, vaultId] MUST increase by amount

e RewardTally[currencyId, nonce, vaultld, nominatorId] MUST increase by
RewardPerToken[currencyIld, nonce, vaultId] * amount.
e SlashTally[currencyId, nonce, vaultId, nominatorId] MUST increase by

SlashPerToken[currencyId, nonce, vaultId] * amount.

23.3.2 withdrawStake

Withdraws the given amount stake for the given nominator or vault. This function also modifies the nominator’s
SlashTally and Stake, such that the Stake is once again equal to its collateral.

Specification

Function Signature
withdrawStake(currencyIld, vaultId, nominatorId, amount)
Parameters
e currencylId: The currency for which to add the stake
e vaultId: Account of the vault
e nominatorId: Account of the nominator
e amount: The amount by which the stake is to decrease
Events
o WithdrawStake

Preconditions

23.3. Functions 173

interBTC Specification

¢ Let nonce be Nonce[currencyId, vaultId], and

Let stake be Stake[nonce, currencylId, vaultId, nominatorId], and

Let slashPerToken be SlashPerToken[currencyId, nonce, vaultId], and

Let slashTally be slashTally[nonce, currencyld, vaultId, nominatorId], and

Let toSlash be stake * slashPerToken - slashTally
Then:
* stake - toSlash MUST be greater than or equal to amount
Postconditions
¢ Let nonce be Nonce[currencyId, vaultId], and
e Let stake be Stake[nonce, currencyId, vaultId, nominatorId], and
e Let slashPerToken be SlashPerToken[currencyId, nonce, vaultId], and
e Let slashTally be slashTally[nonce, currencyId, vaultId, nominatorId], and

e Let toSlash be stake * slashPerToken - slashTally

e Stake[currencyId, nonce, vaultId, nominatorId] MUST decrease by toSlash + amount

e TotalStake[currencyId, nonce, vaultId] MUST decrease by toSlash + amount

* TotalCurrentStake[currencyId, nonce, vaultId] MUST decrease by amount

e SlashTally[nonce, currencyld, vaultId, nominatorId] MUST besetto (stake - toSlash -

amount) * slashPerToken

e RewardTally[nonce, currencyld, vaultId, nominatorId] MUST decrease by rewardPerToken

*

amount

23.3.3 slashStake

Slashes a vault’s stake in the given currency in the reward pool. Conceptually, this decreases the stakes, and thus
the collaterals, of all of the vault’s stakeholders. Indeed, computeStakeAtindex will reflect the stake changes on the

stakeholder.

Specification

Function Signature
slashStake(currencyId, vaultId, amount)
Parameters
e currencylId: The currency for which to add the stake
e vaultId: Account of the vault
e amount: The amount by which the stake is to decrease
Preconditions

e TotalStake[currencyId, Nonce[currencyIld, vaultId], vaultId] MUST NOT be zero

Postconditions
Let nonce be Nonce[currencyId, vaultId], and initialTotalStake be
TotalCurrentStake[currencyId, nonce, vaultId]. Then:

¢ SlashPerToken[currencyId, nonce, vaultId] MUST increase by amount /

TotalStake[currencyId, nonce, vaultId]

174 Chapter 23. Staking

interBTC Specification

* TotalCurrentStake[currencyld, nonce, vaultId] MUST decrease by amount

e if dinitialTotalStake - amount is NOT zero, RewardPerToken[currencylId, nonce,
vaultId] MUST increase by RewardPerToken[currencyId, nonce, vaultId] * amount /
(initialTotalStake - amount)

23.3.4 computeStakeAtindex

Computes a vault’s stakeholder’s effective stake. This is also the amount collateral that belongs to the stakeholder.

Specification

Function Signature
computeStakeAtIndex(nonce, currencyld, vaultId, amount)
Parameters
* nonce: The nonce to compute the stake at
e currencyId: The currency for which to compute the stake
e vaultId: Account of the vault
e nominatorId: Account of the nominator
Postconditions

Let stake be Stake[nonce, currencyld, vaultld, nominatorId], and Let slashPerToken be
SlashPerToken[currencyId, nonce, vaultId], and Let slashTally be slashTally[nonce,
currencyId, vaultId, nominatorId], then

¢ The function MUST return stake - stake * slash_per_token + slash_tally.

23.3.5 distributeReward

Distributes rewards to the vault’s stakeholders.

Specification

Function Signature
distributeReward(currencyId, reward)
Parameters
* currencyld: The currency being distributed
e vaultId: the vault for which distribute rewards
* reward: The amount being distributed
Events
* DistributeReward
Postconditions

Let nonce be Noncel[currencyId, vaultId], and Let initialTotalCurrentStake Dbe
TotalCurrentStake[currencyId, nonce, vaultId], then:

e If initialTotalCurrentStake is zero, or if reward is zero, then:
— The function MUST return zero.

e Otherwise (if initialTotalCurrentStake and reward are not zero), then:

23.3. Functions 175

interBTC Specification

— RewardPerToken[currencyId, nonce, vaultId)] MUST increase by reward /
initialTotalCurrentStake

— TotalRewards[currencyId, nonce, vaultId] MUST increase by reward

— The function MUST return reward.

23.3.6 computeRewardAtindex

Calculates the amount of rewards the vault’s stakeholder can withdraw.

Specification

Function Signature
computeRewardAtIndex(nonce, currencyld, vaultId, amount)
Parameters
* nonce: The nonce to compute the stake at
e currencyId: The currency for which to compute the stake
e vaultId: Account of the vault
e nominatorId: Account of the nominator
Postconditions

Let stake be the result of computeStakeAtIndex(nonce, currencyId, vaultId, nominatorId), then:
Let rewardPerToken be RewardPerToken[currencyId, nonce, vaultId], and Let rewardTally be
rewardTally[nonce, currencyId, vaultId, nominatorId], then

¢ The function MUST return max (0, stake * rewardPerToken - reward_tally)

23.3.7 withdrawRewardAtindex

Withdraws the rewards the given vault’s stakeholder has accumulated.

Specification

Function Signature
withdrawRewardAtIndex(currencyId, vaultId, amount)
Parameters
* nonce: The nonce to compute the stake at
e currencyId: The currency for which to compute the stake
e vaultId: Account of the vault
e nominatorId: Account of the nominator
Events
o WithdrawReward
Preconditions

¢ computeRewardAtIndex(nonce, currencyld, vaultId, nominatorId) MUST NOT return an er-
ror

176 Chapter 23. Staking

interBTC Specification

Postconditions

Let reward be the result of computeRewardAtIndex(nonce, currencyld, vaultId, nominatorId),
then: Let stake be Stake(nonce, currencyId, vaultId, nominatorId), then: Let rewardPerToken be
RewardPerToken[currencyld, nonce, vaultId], and

* TotalRewards[currency_id, nonce, vault_id] MUST decrease by reward

KA

e RewardTally[currencyId, nonce, vaultId, nominatorId] MUST be set to stake
rewardPerToken

¢ The function MUST return reward

23.3.8 forceRefund

This is called when the vault opts out of nomination. All collateral is distributed among the stakeholders, after
which the vault withdraws his part immediately.

Specification

Function Signature
forceRefund(currencyId, vaultId)
Parameters
e currencyId: The currency for which to compute the stake
e vaultId: Account of the vault
Events
* ForceRefund
e IncreaseNonce
Preconditions
Let nonce be Nonce[currencyId, vaultId], then:

e distributeReward(currencyIld, vaultId, TotalCurrentStake[currencyId, nonce,
vaultId]) MUST NOT return an error

¢ withdrawRewardAtIndex(nonce, currencyld, vaultId, vaultId) MUST NOT return an error
¢ depositStake(currencyId, vaultId, vaultId, reward) MUST NOT return an error
e Nonce[currencyId, vaultId] MUST be increased by 1

Postconditions

Let nonce be Nonce[currencyId, vaultId], then:

e distributeReward(currencyId, vaultId, TotalCurrentStake[currencyIld, nonce,
vaultId]) MUST have been called

¢ withdrawRewardAtIndex(nonce, currencyId, vaultId, vaultId) MUST have been called
* Nonce[currencyId, vaultId] MUST be increased by 1

* depositStake(currencyId, vaultId, vaultId, reward) MUST have been called AFTER having
increased the nonce

23.3. Functions 177

interBTC Specification

23.3.9 DepositStake

Event Signature
DepositStake(currencyIld, vaultId, nominatorId, amount)
Parameters

* currencyId: The currency of the reward pool

e vaultId: Account of the vault

e nominatorId: Account of the nominator

e amount: The amount by which the stake is to increase
Functions

* depositStake

23.3.10 WithdrawStake

Event Signature
WithdrawStake(currencyIld, vaultId, nominatorId, amount)
Parameters
e currencyId: The currency of the reward pool
e vaultId: Account of the vault
* nominatorId: Account of the nominator
e amount: The amount by which the stake is to increase
Functions

e withdrawStake

23.3.11 DistributeReward

Event Signature
DistributeReward(currencyIld, vaultId, amount)
Parameters

e currencyId: The currency of the reward pool

e vaultId: Account of the vault

e amount: The amount by which the stake is to increase
Functions

e distributeReward

178 Chapter 23

. Staking

interBTC Specification

23.3.12 WithdrawReward

Event Signature
WithdrawReward(currencyId, vaultIld, nominatorId, amount)
Parameters
* currencyId: The currency of the reward pool
e vaultId: Account of the vault
e nominatorId: Account of the nominator
e amount: The amount by which the stake is to increase
Functions

o withdrawRewardAtIndex

23.3.13 ForceRefund

Event Signature
ForceRefund(currencyId, vaultId)
Parameters
e currencyId: The currency of the reward pool
e vaultId: Account of the vault
Functions

* forceRefund

23.3.14 IncreaseNonce

Event Signature
IncreaseNonce(currencyId, vaultId, nominatorId, amount)
Parameters
e currencyId: The currency of the reward pool
e vaultId: Account of the vault
e amount: The amount by which the stake is to increase
Functions

* forceRefund

23.3. Functions 179

interBTC Specification

180 Chapter 23. Staking

CHAPTER
TWENTYFOUR

ESCROW

24.1 Overview

The Escrow module allows users to lockup tokens in exchange for a non-fungible voting asset. The total “power”
of this asset decays linearly as the lock approaches expiry - calculated based on the block height. Historic points
for the linear function are recorded each time a user’s balance is adjusted which allows us to re-construct voting
power at a particular point in time.

This architecture was adopted from Curve, see: Vote-Escrowed CRV (veCRV).

Note: This specification is still a Work-in-Progress (WIP), some information may be outdated or incomplete.

24.1.1 Step-by-step

1. A user may lock any amount of defined governance currency (KINT on Kintsugi, INTR on Interlay) up to a
maximum lock period.

2. Both the amount and the unlock time may be increased to improve voting power.

3. The user may unlock their fungible asset after the lock has expired.

24.2 Data Model

24.2.1 Constants
Span

The locktime is rounded to weeks to limit checkpoint iteration.

MaxPeriod

The maximum period for lockup.

181

https://curve.readthedocs.io/dao-vecrv.html

interBTC Specification

24.2.2 Scalars

Epoch

The current global epoch for PointHistory.

24.2.3 Maps

Locked

Stores the amount and end block for an account’s lock.

PointHistory

Stores the global bias, slope and height at a particular point in history.

UserPointHistory

Stores the bias, slope and height for an account at a particular point in history.

UserPointEpoch

Stores the current epoch for an account.

SlopeChanges

Stores scheduled changes of slopes for ending locks.

24.2.4 Structs

LockedBalance

The amount and end height for a locked balance.

Parameter | Type Description
amount Balance The amount deposited to receive vote-escrowed tokens.
end BlockNumber | The end height after which the balance can be unlocked.

Point

The bias, slope and height for our linear function.

Parameter | Type Description

bias Balance The bias for the linear function.

slope Balance The slope for the linear function.

height BlockNumber | The current block height when this point was stored.

182

Chapter 24. Escrow

interBTC Specification

24.3 External Functions

24.3.1 create lock

Create a lock on the account’s balance to expire in the future.

Specification

Function Signature

create_lock(who, amount, unlock_height)

Parameters

who: The user’s address.
amount: The amount to be locked.

unlock_height: The height to lock until.

Events

Deposit

Preconditions

The function call MUST be signed by who.

The amount MUST be non-zero.

The account’s 01d_locked.amount MUST be non-zero.

The unlock_height MUST be greater than now.

The unlock_height MUST NOT be greater than now + MaxPeriod.

Postconditions

The account’s LockedBalance MUST be set as follows:
— new_locked.amount: MUST be the amount.
— new_locked.end: MUST be the unlock_height.
The UserPointEpoch MUST increase by one.
A new Point MUST be recorded at this epoch:
— slope = amount / max_period
— bias = slope * (unlock_height - now)
— height = now
Function withdrawStake MUST complete successfully using the account’s total stake.

Function depositStake MUST complete successfully using the current balance (balance_at).

24.3.

External Functions

183

interBTC Specification

24.3.2 increase_amount

Deposit additional tokens for a pre-existing lock to improve voting power.

Specification

Function Signature
increase_amount (who, amount)
Parameters
* who: The user’s address.
* amount: The amount to be locked.
Events
* Deposit
Preconditions
* The function call MUST be signed by who.
e The amount MUST be non-zero.
* The account’s old_locked.amount MUST be non-zero.
* The account’s 01d_locked.end MUST be greater than now.
Postconditions
e The account’s LockedBalance MUST be set as follows:
— new_locked.amount: MUST be old_locked.amount + amount.
— new_locked.end: MUST be the 01d_locked. end.
* The UserPointEpoch MUST increase by one.
* A new Point MUST be recorded at this epoch:
— slope = new_locked.amount / max_period
— bias = slope * (new_locked.end - now)

— height = now

24.3.3 extend_unlock_height

Push back the expiry on a pre-existing lock to retain voting power.

Specification

Function Signature
extend_unlock_height(who, unlock_height)
Parameters

* who: The user’s address.

e unlock_height: The new expiry deadline.
Events

e Deposit

Preconditions

184 Chapter 24. Escrow

interBTC Specification

* The function call MUST be signed by who.
e The amount MUST be non-zero.
* The account’s 01d_locked.amount MUST be non-zero.
* The account’s old_locked.end MUST be greater than now.
e The unlock_height MUST be greater than old_locked.end.
e The unlock_height MUST NOT be greater than now + MaxPeriod.
Postconditions
* The account’s LockedBalance MUST be set as follows:
— new_locked.amount: MUST be old_locked.amount.
— new_locked.end: MUST be the unlock_height.
* The UserPointEpoch MUST increase by one.
* A new Point MUST be recorded at this epoch:
— slope = new_locked.amount / max_period
— bias = slope * (new_locked.end - now)

— height = now

24.3.4 withdraw

Remove the lock on an account to allow access to the account’s funds.

Specification

Function Signature
withdraw(who)
Parameters
e who: The user’s address.
Events
o Withdraw
Preconditions
* The function call MUST be signed by who.
* The account’s old_locked.amount MUST be non-zero.
* The current height (now) MUST be greater than or equal to 01d_locked. end.
Postconditions
* The account’s LockedBalance MUST be removed.

* Function withdrawStake MUST complete successfully using the account’s total stake.

24.3. External Functions 185

interBTC Specification

24.4 Internal Functions

24.4.1 balance_at

Using the Point, we can calculate the current voting power (balance) as follows:

balance = point.bias - (point.slope * (height - point.height))

Specification

Function Signature
balance_at(who, height)
Parameters

* who: The user’s address.

* height: The future height.
Preconditions

e The height MUST be >= point.height.

24.5 Events

24.5.1 Deposit

Emit an event if a user successfully deposited tokens or increased the lock time.
Event Signature
Deposit(who, amount, unlock_height)
Parameters
* who: The user’s account identifier.
e amount: The amount locked.
e unlock_height: The height to unlock after.
Functions

e create_lock

24.5.2 Withdraw

Emit an event if a user withdrew previously locked tokens.
Event Signature
Withdraw(who, amount)
Parameters
* who: The user’s account identifier.
e amount: The amount unlocked.
Functions

o withdraw

186 Chapter 24. Escrow

CHAPTER
TWENTYFIVE

GOVERNANCE

25.1 Overview

On-chain governance is useful for controlling system parameters, authorizing trusted oracles and upgrading the
core protocols. The architecture adopted by interBTC is modelled on Polkadot with some significant changes:

¢ Optimistic Governance

— No Council, only public proposals from community

— Community can elect a Technical Committee to fast-track proposals

— Referenda are Super-Majority Against (Negative Turnout Bias) by default
 Stake-To-Vote

— Adopted from Curve’s governance model

— Users lock the native governance token

— Longer lockups give more voting power

An important distinction is the negative turnout bias (Super-Majority Against) voting threshold. This is best
summarized by the Polkadot docs:

A heavy super-majority of nay votes is required to reject at low turnouts, but as turnout increases towards 100%, it
becomes a simple majority-carries as below.

against approve

Velectorate ~ +/turnout

187

https://wiki.polkadot.network/docs/learn-governance

interBTC Specification

25.2 Terminology

* Proposals are community-supported motions to perform system-level actions.

* Referenda are accepted proposals undergoing voting.

25.3 Processes

25.3.1 Proposals
1. Account submits public proposal with deposit (> MinimumDeposit)
. Account “seconds” proposal with additional deposit
. New referenda are started every LaunchPeriod

2
3
4. Community can vote on referenda for the VotingPeriod
5. Votes are tallied after VotingPeriod expires

6

. System update executed after EnactmentPeriod

25.3.2 Technical Committee

1. Community creates proposal as above
2. TC may fast track before LaunchPeriod
3. The new referendum is started immediately

4. Community can vote on referenda for the FastTrackVotingPeriod

25.4 Parameters

EnactmentPeriod

The period to wait before any approved change is enforced.
LaunchPeriod

The interval after which to start a new referenda from the queue.
VotingPeriod

The period to allow new votes for a referenda.
MinimumDeposit

The minimum deposit required for a proposal.
FastTrackOrigin

Used to fast-track a proposal before the LaunchPeriod.
FastTrackVotingPeriod

The period to allow new votes for a fast-tracked referendum.
CancellationOrigin

Used to cancel a proposal before it is launched.
MaxProposals

The maximum number of public proposals allowed in the queue.

188 Chapter 25. Governance

interBTC Specification

MaxMembers

The maximum number of possible members in the TC.

25.4. Parameters 189

interBTC Specification

190 Chapter 25. Governance

CHAPTER
TWENTYSIX

VAULT LIQUIDATIONS

Vaults are collateralized entities in the system responsible for keeping BTC in custody. If Vaults fail to behave
according to protocol rules, they face punishment through slashing of collateral. There are two types of failures:
safety failures and crash failures.

26.1 Safety Failures

A safety failure occurs in two cases:

1. Theft: a Vault is considered to have committed theft if it moves/spends BTC unauthorized by the interBTC
bridge. Theft is detected and reported by Relayers via an SPV proof.

2. Severe Undercollteralization: a Vaults drops below the LiguidationThreshold.

In both cases, the Vault’s entire BTC holdings are liquidated and its collateral is slashed - up to the SecureCollat-
eralThreshold of the liquidated BTC value.

Consequently, the bridge offers users to burn (“Burn Event”, see liquidationRedeem) their tokens to restore the 1:1
balance between the issued (e.g., interBTC) and locked asset (e.g., BTC).

26.2 Crash Failures

If Vaults go offline and fail to execute redeem, they are:

* Penalized (punishment fee slashed) and

* Temporarily banned for 24 hours from accepting further issue, redeem, and replace requests.
The punishment fee is calculated based on the amount to be redeemed:

¢ Punishment Fee: 10% of the failed redeem value.

26.3 Liquidations (Safety Failures)

When a Vault is liquidated, its issued and toBeIssued tokens are moved to the Liquidation Vault. In contrast,
the Vault’s toBeRedeemed tokens are copied over. The Vault loses access to at least part of its backing collateral:

¢ The Vault loses confiscatedCollateral = min(SECURE_THRESHOLD * (issued + toBelIssued),
backingCollateral), and any leftover amount is released to its free balance.

¢ Of the confiscated collateral, an amount of confiscatedCollateral * (toBeRedeemed / (issued +
toBeIssued)) stays locked in the Vault, and the rest is moved to the Liquidation Vault. This is in antici-
pation of vaults being able to complete ongoing redeem and replace requests. When these requests succeed,
the liquidated Vault’s collateral is returned. When the requests fail (i.e., the cancel calls are being made),
the remaining collateral is slashed to the Liquidation Vault.

191

interBTC Specification

When the Liquidation Vault contains tokens, users can do a liquidation_redeem (“burn event”). Users can call this
function to burn interBTC and receive DOT in return.

e The user receives liquidationVault.collateral * (burnedTokens / (issued + toBeIssued)
in its free balance.

e Atmost liquidationVault.issued - liquidationVault.toBeRedeemed tokens can be burned.
Vault liquidation affects Vault interactions is the following ways:

* Operations that increase toBeIssued or toBeRedeemed are disallowed. This means that no new is-
sue/redeem/replace request can be made.

* Any operation that would decrease toBeIssued or change issued on a user Vault instead changes it on the
Liquidation Vault

* Any operation that would decrease toBeRedeemed tokens on a user Vault additionally decreases it on the
Liquidation Vault

26.3.1 Issue

* requestIssue

— disallowed
* executeIssue

— Overpayment protection is disabled; if a user transfers too many BTC, the user loses it.
* cancelIssue

— User’s griefing collateral is released back to the user, rather than slashed to the Vault.

26.3.2 Redeem

¢ requestRedeem
— disallowed
¢ executeRedeem

— Part of the Vault’s collateral is released. Amount: Vault.backingCollateral * (redeem.
amount / Vault.toBeRedeemed), where toBeRedeemed is read before it is decreased

— The premium, if any, is not transferred to the user.
* cancelRedeem

— Calculates slashedCollateral = Vault.backingCollateral * (redeem.amount /
Vault.toBeRedeemed), where toBeRedeemed is read before it is decreased, and then:

If reimburse:
% transfers slashedCollateral to user.

Else if not reimburse:

% transfers slashedCollateral to Liquidation Vault.

Fee pool does not receive anything.

192 Chapter 26. Vault Liquidations

interBTC Specification

26.3.3 Replace

¢ requestReplace, acceptReplace, withdrawReplace
— disallowed
* executeReplace
— if oldVault is liquidated
% o0ldVVault’s collateral is released as in executeRedeem above
— if newVault is liquidated
newVault’s remaining collateral is slashed as in executeIssue above
¢ cancelReplace
— if oldVault is liquidated
% collateral is slashed to Liquidation Vault, as in cancelRedeem above
— if newVault is liquidated

% griefing collateral is slashed to newVault’s free balance rather than to its backing collateral

26.3.4 Implementation Notes

* In cancelIssue, when the griefing collateral is slashed, it is forwarded to the fee pool.

* In cancelReplace, when the griefing collateral is slashed, it is forwarded to the backing collateral to the
Vault. In case the Vault is liquidated, it is forwarded to the free balance of the Vault.

¢ In premiumRedeem, the griefing collateral is set as 0.

* In executeReplace, the oldVault’s griefing collateral is released, regardless of whether or not it is liqui-
dated.

26.3. Liquidations (Safety Failures) 193

interBTC Specification

194 Chapter 26. Vault Liquidations

CHAPTER
TWENTYSEVEN

XCLAIM SECURITY ANALYSIS

27.1 Replay Attacks

Without adequate protection, inclusion proofs for transactions on Bitcoin can be replayed by: (i) the user to trick
interBTC component into issuing duplicate interBTC tokens and (ii) the vault to reuse a single transaction on
Bitcoin to falsely prove multiple redeem, replace, and refund requests. We employ two different mechanisms to
achieve this:

1. Identification via OP_RETURN: When sending a Bitcoin transaction, the BTC-Parachain requires that a
unique identifier is included as one of the outputs in the transaction.

2. Unique Addresses via On-Chain Key Derivation: The BTC-Parachain generates a new and unique address
that Bitcoin can be transferred to.

The details of the transaction format can be found at the Accepted Bitcoin Transaction Format.

27.1.1 OP_RETURN

Applied in the following protocols:
* Redeem
* Replace
* Refund

A simple and practical mitigation is to introduce unique identifiers for each protocol execution and require trans-
actions on Bitcoin submitted to the BTC-Relay of these protocols to contain the corresponding identifier.

In this specification, we achieve this by requiring that vaults prepare a transaction with at least two outputs. One
output is an OP_RETURN with a unique hash created in the Security module. Vaults are using Bitcoin full-nodes
to send transactions and can easily and programmatically create transactions with an OP_RETURN output.

UX Issues with OP_RETURN

However, OP_RETURN has severe UX problems. Most Bitcoin wallets do not support OP_RETURN. That is, a
user cannot use the Ul to easily create an OP_RETURN transaction. As of this writing, the only wallet that supports
this out of the box is Electrum. Other wallets, such as Samurai, exist but only support mainnet transactions (hence,
have not yet been tested).

In addition, while Bitcoin’s URI format (BIP21) generally supports OP_RETURN, none of the existing wallets
have implemented an interpreter for this “upgraded” URI structure - this would have to be implemented manually
by wallet providers. An alternative solution is to pre-generate the Bitcoin transaction for the user. The problem
with this is that - again - most Bitcoin wallets do not support parsing of raw Bitcoin transactions. That is, a user
cannot easily verify that the raw Bitcoin transaction string provided by interBTC indeed does what it should do
(and does not steal the user’s funds). This approach works with hardware wallets, such as Ledger - but again, not
all users will use interBTC from hardware wallets.

195

https://en.bitcoin.it/wiki/BIP_0021

interBTC Specification

27.1.2 Unique Addresses via On-Chain Key Derivation

Applied in the following protocol:
* [ssue

To avoid the use of OP_RETURN during the issue process, and the significant usability drawbacks incurred by
this approach, we employ the use of an On-chain Key Derivation scheme (OKD) for Bitcoin’s ECDSA (secp256k1
curve). The BTC-Parachain maintains a BTC ‘master’ public key for each registered vault and generates a unique,
ephemeral ‘deposit’ public key (and RIPEMD-160 address) for each issue request, utilizing the unique issue iden-
tifier for replay protection.

This way, each issue request can be linked to a distinct Bitcoin transaction via the receiving (‘deposit’) address,
making it impossible for vaults/users to execute replay attacks. The use of OKD thereby allows to keep the issue
process non-interactive, ensuring vaults cannot censor issue requests.

On-Chain Key Derivation Scheme

We define the full OKD scheme as follows (additive notation):
Preliminaries

A Vault has a private/public keypair (v, V'), where V' = vG and G is the base point of the secp256k1 curve. Upon
registration, the Vault submits public key V' to the BTC-Parachain storage.

Issue protocol via new OKD scheme
1. When a user creates an issue request, the BTC-Parachain

a. Computes ¢ = H (V||id), where id is the unique issue identifier, generated on-chain by the BTC-
Parachain using the user’s Accountld and an internal auto-incrementing nonce as input.

b. Generates a new public key (“deposit public key”) D = V¢ and then the corresponding BTC
RIPEMD-160 hash-based address addr(D) (‘deposit’ address) using D as input.

c. Stores D and addr(D) alongside the id of the Issue request.

2. The user deposits the amount of to-be-issued BTC to addr (D) and submits the Bitcoin transaction inclusion
proof, alongside the raw Bitcoin transaction, to BTC-Relay.

3. The BTC-Relay verifies that the destination address of the Bitcoin transaction is indeed addr(D) (and the
amount, etc.) and mints new interBTC to the user’s Accountld.

4. The Vault knows that the private key of D is cv, where ¢ = H (V'||id) is publicly known (can be computed
by the Vault off-chain, or stored on-chain for convenience). The Vault can now import the private key cv
into its Bitcoin wallet to gain access to the deposited BTC (required for redeem).

27.2 Counterfeiting

A vault which receives lock transaction from a user during /ssue could use these coins to re-execute the issue itself,
creating counterfeit interBTC. This would result in interBTC being issued for the same amount of lock transaction
breaking consistency, i.e., |lockedpTC| < |inter BT'C|. To this end, the interBTC component forbids vaults to
move locked funds lock transaction received during /ssue and considers such cases as theft. This theft is observable
by any user. However, we expect Vaults to report theft of BTC. To restore Consistency, the interBTC component
slashes the vault’s entire collateral and executes automatic liquidation, yielding negative utility for the vault. To
allow economically rational vaults to move funds on the BTC Parachain we use the Replace, a non-interactive
atomic cross-chain swap (ACCS) protocol based on cross-chain state verification.

196 Chapter 27. XCLAIM Security Analysis

interBTC Specification

27.3 Permanent Blockchain Splits

Permanent chain splits or hard forks occur where consensus rules are loosened or conflicting rules are introduced,
resulting in multiple instances of the same blockchain. Thereby, a mechanism to differentiate between the two
resulting chains replay protection is necessary for secure operation.

27.3.1 Backing Chain

If replay protection is provided after a permanent split of Bitcoin, the BTC-Relay must be updated to verify the latter
for Bitcoin (or Bitcoin’ respectively). If no replay protection is implemented, BTC-Relay will behave according
to the protocol rules of Bitcoin for selecting the “main” chain. For example, it will follow the chain with most
accumulated PoW under Nakamoto consensus.

27.3.2 Issuing Chain

A permanent fork on the issuing blockchain results in two chains I and I’ with two instances of the interBTC
component identified by the same public keys. To prevent an adversary exploiting this to execute replay attacks,
both users and vaults must be required to include a unique identifier (or a digest thereof) in the transactions published
on Bitcoin as part of Issue and Redeem (in addition to the identifiers introduces in Replay Attacks).

Next, we identify two possibilities to synchronize Bitcoin balances on I and I': (i) deploy a chain relay for I on I’
and vice-versa to continuously synchronize the interBTC components or (ii) redeploy the interBTC component on
both chains and require users and vaults to re-issue Bitcoin, explicitly selecting I or I.

27.4 Denial-of-Service Attacks

interBTC is decentralized by design, thus making denial-of-service (DoS) attacks difficult. Given that any user
with access to Bitcoin and BTC Parachain can become a vault, an adversary would have to target all vaults simul-
taneously. Where there are a large number of vaults, this attack would be impractical and expensive to perform.
Alternatively, an attacker may try to target the interBTC component. However, performing a DoS attack against
the interBTC component is equivalent to a DoS attack against the entire issuing blockchain or network, which con-
flicts with our assumptions of a resource bounded adversary and the security models of Bitcoin and BTC Parachain.
Moreover, should an adversary perform a Sybil attack and register as a large number of vaults and ignore service
requests to perform a DoS attack, the adversary would be required to lock up a large amount of collateral to be
effective. This would lead to the collateral being slashed by the interBTC component, making this attack expensive
and irrational.

27.5 Fee Model Security: Sybil Attacks and Extortion

While the exact design of the fee model lies beyond the scope of this paper, we outline the following two restrictions,
necessary to protect against attacks by malicious vaults.

27.3. Permanent Blockchain Splits 197

interBTC Specification

27.5.1 Sybil Attacks

To prevent financial gains from Sybil attacks, where a single adversary creates multiple low collateralized vaults,
the interBTC component can enforce (i) a minimum necessary collateral amount and (ii) a fee model based on
issued volume, rather than “pay-per-issue”. In practice, users can in principle easily filter out low-collateral vaults.

27.5.2 Extortion

Without adequate restrictions, vaults could set extreme fees for executing Redeem, making redeeming of Bitcoin
unfeasible. To this end, the interBTC component must enforce that either (i) no fees can be charged for executing
Redeem or (ii) fees for redeeming must be pre-agreed upon during issue.

27.6 Griefing

Griefing describes the act of blocking a vaults collateral by creating “bogus” requests. There are two cases:

1. A user can create an issue request without the intention to issue tokens. The user “blocks” the vault’s col-
lateral for a specific amount of time. if enough users execute this, a legitimate user could possibly not find a
vault with free collateral to start an issue request.

2. A vault can request to be replaced without the intention to be replaced. When another vault accepts the
replace request, that vault needs to lock additional collateral. The requesting vault, however, could never
complete the replace request to e.g. ensure that it will be able to serve more issue requests.

For both cases, we require the requesting parties to lock up a (small) amount of griefing collateral. This makes
such attacks costly for the attacker.

27.7 Concurrency

We need to ensure that concurrent issue, redeem, and replace requests are handled.

27.7.1 Concurrent redeem

We need to make sure that a vault cannot be used in multiple redeem requests in parallel if that would exceed
his amount of locked BTC. Example: If the vault has 5 BTC locked and receives two redeem requests for 5
interBTC/BTC, they can only fulfil one and would lose his collateral with the other.

27.7.2 Concurrent issue and redeem

A vault can be used in parallel for issue and redeem requests. In the issue procedure, the vault’s issuedTokens
are already increased when the issue request is created. However, this is before (!) the BTC is sent to the vault. If
we used these issuedTokens as a basis for redeem requests, we might end up in a case where the vault does not
have enough BTC. Example: The vault already has 3 BTC in custody from previous successful issue procedures.
A user creates an issue request for 2 interBTC. At this point, the issuedTokens by this vault are 5. However, his
BTC balance is only 3. Now, a user could create a redeem request of 5 interBTC and the vault would have to fulfill
those. The user could then cancel the issue request over 2 interBTC. The vault could only send 3 BTC to the user
and would lose his deposit. Or the vault just loses his deposit without sending any BTC.

198 Chapter 27. XCLAIM Security Analysis

interBTC Specification

27.7.3 Solution

We use separate token balances to handle issue, replace, and redeem requests in the Vault Registry.

27.7. Concurrency 199

interBTC Specification

200 Chapter 27. XCLAIM Security Analysis

CHAPTER
TWENTYEIGHT

BTC-RELAY SECURITY ANALYSIS

This section provides an overview of security considerations related to BTC-Relay. We refer the reader to this
paper (Section 7) for more details.

28.1 Security Parameter k

Blockchains using Nakamoto consensus as underlying agreement protocol (i.e., leveraging PoW for random leader
election in a dynamically changing set of consensus participants) exhibit so called stabilizing consensus. Specifi-
cally, finality of transactions included in the blockchain converges with a security parameter k, measured in con-
firmations (i.e., blocks mined on top of a block containing the observed transaction). That is, the probability of a
transaction being reverted in a blockchain reorganization decreases exponentially in k. We refer the reader to this
paper for more details on Nakamoto consensus.

In Bitcoin, this security parameter is often set to k = 6, i.e., transactions are considered “final” after 6 blocks
have been mined on top. However, there is no mathematical reasoning behind this, nor is there a proof that 6
confirmations are sufficient.

In fact, research has shown that when estimating the necessary confirmations before accepting a transaction, the
transaction value itself must also be considered: the higher the value, the more confirmations are necessary to
maintain the same level of security. However, recent analysis suggests that it is insufficient to consider the value of
a single transaction - instead, to estimate the necessary k one must study the value of the entire block. The existence
of bribing attacks, which can even be executed cross-chain, makes the situation worse: in theory, it is impossible
to estimate k reliably, as there can always be a large transaction that is being attacked by a reorg in an older block.

What does this mean for BTC-Relay?

BTC-Relay does not specify a recommended value for k. This task lies with the applications which interact with
the relay. BTC-Relay itself only mirrors the state of Bitcoin to Polkadot, including all forks and failures which may
occur.

28.2 Liveness Failures

The correct operation of BTC-Relay relies on receiving a steady stream of Bitcoin block headers as input. A high
delay between block generation in Bitcoin and submission to BTC-Relay yields the system susceptible to attacks:
an adversary can attempt to poison the relay by submitting a fork, even if the fork was not submitted to Bitcoin
itself (see Relay Poisoning below).

While by design, any user can submit Bitcoin block headers to BTC-Relay, it is recommended to introduce an
explicit set of participants for this task. These can be Staked Relayers, which already run Bitcoin full nodes for
validation purposes, or Vaults which are used for the creation of Bitcoin-backed assets in the interBTC component.

201

https://eprint.iacr.org/2018/643.pdf
https://eprint.iacr.org/2018/643.pdf
https://eprint.iacr.org/2018/400.pdf
https://eprint.iacr.org/2018/400.pdf
https://www.cs.huji.ac.il/~yoni_sompo/pubs/16/security_model.pdf
https://medium.com/@dionyziz/summa-proofs-are-not-composable-57b87825f428
https://www.alexeizamyatin.me/files/Pay-to-Win_slides.pdf
https://www.alexeizamyatin.me/files/Pay-to-Win_slides.pdf

interBTC Specification

28.3 Safety Failures

28.3.1 51% Attack on Bitcoin

One of the major questions that arises in cross-chain communication is: what to do if one of the interlinked chains
fails?

In the case of BTC-Relay, a major chain reorganization in Bitcoin would be accepted, if the new chain exceeds the
tracked Chains in BTC-Relay. If the length of the fork exceeds the security parameter k relied upon by applications
using BTC-Relay, this can have sever impacts, beyond that of users loosing BTC.

However, as BTC-Relay acts only as mirror of the Bitcoin blockchain, the only possible mitigation of a 51% attack
on Bitcoin halting BTC-Relay via manual intervention of Staked Relayers or the Governance Mechanism. See
Failure Handling for more details on BTC-Relay failure modes and recovery procedures.

A major challenge thereby is to ensure the potential financial loss of Staked Relayers and/or participants of the
Governance Mechanism exceeds the potential gains from colluding with an adversary on Bitcoin.

28.3.2 Relay Poisoning

BTC-Relay poisoning is a more subtle way of interfering with correct operation of the system: an adversary submits
a Bitcoin fork to BTC-Relay, but does not broadcast it to the actual Bitcoin network. If Liveness of BTC-Relay is
breached, e.g. Staked Relayers are unavailable, BTC-Relay can be tricked into accepting an alternate Chains than
actually maintained in Bitcoin.

However, as long as a single honest participant is online and capable of submitting Bitcoin block headers from the
Bitcoin main chain to BTC-Relay within k blocks, poisoning attacks can be mitigated.

28.3.3 Replay Attacks

Since BTC-Relay does not store Bitcoin transactions, nor can it be aware of all possible applications using
verifyTransactionInclusion, duplicate submission of transaction inclusion proofs cannot be easily detected
by BTC-Relay.

As such, it lies in the responsibility of each application interacting with BTC-Relay to introduce necessary replay
protection mechanisms (e.g. nonces stored in OP_RETURN outputs of verified transactions) and to check the latter
using the Functions: Parser component of BTC-Relay.

28.4 Hard and Soft forks

Permanent chain splits or hard forks occur where consensus rules are “loosened” or new conflicting rules are
introduced. As a result, multiple instances of the same blockchain are created, e.g. as in the case of Bitcoin and
Bitcoin Cash.

BTC-Relay by default will follow the old consensus rules, and must be updated accordingly if it is to follow the
new version of the system.

Thereby, is it for the Governance Mechanism to determine (i) whether an update will be executed and (ii) if two
parallel blockchains result from the hard fork, whether an additional new instance of BTC-Relay is to be deployed
(and how).

Note: to differentiate between the two resulting chains after a hard fork, replay protection is necessary for secure
operation. While typically accounted for by the developers of the verified blockchain, the absence of replay pro-
tection can lead to undesirable behavior. Specifically, payments made on one fork may be accepted as valid on the
other as well - and propagated to BTC-Relay. To this end, if a fork lacks replay protection, halting of the relay
may be necessary until the matter is resolved.

202 Chapter 28. BTC-Relay Security Analysis

CHAPTER
TWENTYNINE

PERFORMANCE ANALYSIS

Contrary to permissionless blockchains, such as Ethereum, Polkadot’s Parachains can easily implement the cryp-
tographic primitives of the verified blockchains, instead of relying on pre-compiled smart contracts or manual and
costly implementation of primitives. In the case of Bitcoin, the BTC Parachain can provide native support for the
SHA256 and RIPEMD-160 hash functions, as well as for ECDSA using the secp256k1 curve.

Consequently, storage resembles the main cost factor of BTC-Relay on Polkadot.

29.1 Estimation of Storage Costs

BTC-Relay only stores Bitcoin block headers. Transactions are not stored directly in the relay — this responsibility
lies with other components or applications interacting with BTC-Relay.

The size of the necessary storage allocation hence grows linear with the length of the Bitcoin blockchain (tracked
in BTC-Relay) — specifically, the block headers stored in BlockHeaders which are referenced in Chains or in an
entry of Forks.

Recall, for each block header, BTC-Relay merely stores:
* the 32 byte blockHash
* 4 byte blockHeight (twice for better referencing, so 8 bytes in total)
* the 32 byte merkleRoot

¢ the 4 byte timestamp (u32, wrapped in DateTime)

and the 32 byte target (u256 integer)
That is, in total 108 bytes per submitted Bitcoin block header (fork or main chain block).

For example, if we were to sync BTC-Relay from the genesis block all the way to block height 612450, the storage
requirements would amount to around 66 MB — an arguably negligible number. At the current rate and under this
configuration, we would reach 100 MB in about 10 years.

Note: Fork submissions take up additional storage space, depending om the length of the tracked fork. Compared
to the (already negligible) size of the main chain block headers, this overhead is negligible. Furthermore, fork
entries are deleted when a chain reorganization occurs, while old entries (with sufficient confirmations) can be
subject to pruning.

203

https://en.bitcoin.it/wiki/Secp256k1
https://substrate.dev/rustdocs/v1.0/chrono/struct.DateTime.html

interBTC Specification

29.2 BTC-Relay Optimizations

29.2.1 Pruning

Optionally, to further reduce storage requirements (e.g., in case more data is to be stored per block in the future),
pruning of Chains and BlockHeaders can be introduced. While the storage overhead for Bitcoin itself may be
acceptable, Polkadot is expected to connect to numerous blockchains and tracking the entire blockchain history for
each could unnecessarily bloat Parachains (even more so, if Parachains are non-exclusive to specific blockchains).

With pruning activated, Chains would be implemented as a FIFO queue, where sufficiently old block headers are
removed from BlockHeaders (and the references from Chains and Forks accordingly). The pruning depth can be
set to e.g. 10 000 blocks. There is no need to store more block headers, as verification of transactions contained in
older blocks can still be performed by requiring users to re-spend. More detailed analysis of the spending behavior
in Bitcoin, i.e., UTXOs of which age are spent most frequently and at which “depth” the spending behavior declines,
can be considered to optimize the cost reduction.

Warning: If pruning is implemented for BlockHeaders and Chains as performance optimization, it is
important to make sure there are no Forks entries left which reference pruned blocks.

29.2.2 Batch Submissions

Currently, BTC-Relay supports submissions of a single Bitcoin block header per transaction.

To reduce network load on the Parachain, multiple block header submissions can be batched into a single transac-
tion. Note: the improvement in terms of data broadcast to the Parachain depends on the fixed costs per Parachain
transaction (if Parachain transactions are considered a negligible cost, batching may be unnecessary).

The potential improvement can especially be useful for blockchains with higher block generation rates than Bit-
coin’s 1 block / 10 minutes, as in the case of Ethereum.

29.2.3 Outlook on Sub-Linear Verification in Bitcoin

Recently, so called “sub-linear” light clients were proposed for Bitcoin, which use random sampling of blocks to
deter malicious actors from tricking light clients into accepting an invalid chain.

We refer the reader to the Superblock NiPoPoW and the FlyClient papers for more details.

As of this writing, both techniques require soft fork modifications to Bitcoin, if to be deployed in a secure and
useful manner. The design of BTC-Relay as specified in this document (split into storage, verification, parser, etc.
components) thereby allows for introduction of additional verification methods, without major modifications to the
architecture.

204 Chapter 29. Performance Analysis

https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2019/226.pdf

CHAPTER
THIRTY

ECONOMIC INCENTIVES

Incentives are the core of decentralized systems. Fundamentally, actors in decentralized systems participate in a
game where each actor attempts to maximize its utility. Designs of such decentralized systems need to encode
a mechanism that provides clear incentives for actors to adhere to protocol rules while discouraging undesired
behavior. Specifically, actors make risk-based decisions: payoffs associated with the execution of certain actions
are compared against the risk incurred by the action. The BTC Parachain, being an open system with multiple
distinct stakeholders, must hence offer a mechanism to assure honest participation outweighs subversive strategies.

The overall objective of the incentive mechanism is an optimization problem with private information in a dynamic
setting. Users need to pay fees to Vaults in return for their service. On the one hand, user fees should be low enough
to allow them to profit from having interBTC (e.g., if a user stands to gain from earning interest in a stablecoin
system using interBTC, then the fee for issuing interBTC should not outweigh the interest gain).

On the other hand, fees need to be high enough to encourage Vaults to lock their DOT in the system and operate
Vault clients. This problem is amplified as the BTC Parachain does not exist in isolation and Vaults can choose to
participate in other protocols (e.g., staking, stablecoin issuance) as well. In the following, we outline the constraints
we see, a viable incentive model, and pointers to further research questions we plan to solve by getting feedback
from potential Vaults as well as quantitative modeling.

30.1 Currencies

The BTC-Parachain features four asset types:
e BTC - the backing-asset (locked on Bitcoin)
* interBTC - the issued cryptocurrency-backed asset (on Polkadot)
e DOT - the currency used to pay for transaction fees

* COL - the currencies used as collateral (e.g., DOT, KSM, ...)

30.2 Actors: Roles, Risks, and Economics

The main question when designing the fee model for interBTC is: When are fees paid, by whom, and how much?
We can classify four groups of users, or actors, in the interBTC bridge.

Below, we provide an overview of the protocol role, the risks, and the economics of each of the four actors. Specif-
ically, we list the following:

* Protocol role The intended interactions of the actor with the bridge.
* Risks An informal overview of the risks of using the bridge.
* Economics An informal overview of the following economic factors:

— Income: revenue achieved by using the bridge. We differentiate between primary income that is
achieved when the bridge works as intended and secondary income that is available in failure cases
(e.g., misbehavior of Vaults or Users).

205

interBTC Specification

Interest-based Fees
- S (fee in DOT/interBTC per time
’ \ interval)
B >> Currently NOT possible
Issue
(fee in interBTC)

BTC-Parachain

Redeem
(fee in interBTC)

XCMP transfers
(fee in COL/interBTC)

Parachain A Parachain B

Fig. 30.1: High-level overview of fee accrual in the BTC-Parachain (external sources only).

— Internal costs: costs associated directly with the BTC-Parachain (i.e., inflow or internal flow of funds)

— External costs: costs associated with external factors, such as node operation, engineering costs etc.
(i.e., outflow of funds)

— Opportunity costs: lost revenue, if e.g. locked up collateral was to be used in other applications (e.g.
to stake on the Relay chain)

30.2.1 Users

* Protocol role Users lock BTC with Vaults to create interBTC. They hold and/or use interBTC for payments,
lending, or investment in financial products. At some point, users redeem interBTC for BTC by destroying
the backed assets.

* Risks A user gives up custody over their BTC to a Vault. The Vault is over-collateralized in COL, (i.e.,
compared to the USD they will lose when taking away the user’s BTC). However, in a market crisis with sig-
nificant price drops and liquidity shortages, Vaults might choose to steal the BTC. Users will be reimbursed
with COL in that case - not the currency they initially started out with.

* Economics A user holds BTC and has exposure to an exchange rate from BTC to other assets. A user’s
incentives are based on the services (and their rewards) available when issuing interBTC.

— Income
% Primary: Use of interBTC in external applications (outside the bridge)
* Secondary: Slashed collateral of Vaults on failed redeems paid in COL, see cancelRedeem
% Secondary: Slashed collateral of Vaults on premium redeems paid in COL, see requestRedeem
Secondary: Arbitrage interBTC for COL, see liquidationRedeem
— Internal Cost
% Issue and redeem fees paid in interBTC, see requestissue and requestRedeem
% Parachain transaction fees on every transaction with the system paid in DOT

% Optional: Additional BTC fees on refund paid in BTC, see executeRefund

206 Chapter 30. Economic Incentives

interBTC Specification

— External Costs
* None
— Opportunity Cost

Locking BTC with a Vault that could be used in another protocol

30.2.2 Vaults

* Protocol role Vaults lock up collateral in the BTC Parachain and hold users’ BTC (i.e., receive custody).
When users wish to redeem interBTC for BTC, Vaults release BTC to users according to the events received
from the BTC Parachain.

* Risks A Vault backs a set of interBTC with collateral. If the exchange rate of the COL/BTC pair drops the
Vault stands at risk to not be able to keep the required level of over-collateralization. This risk can be elevated
by a shortage of liquidity.

* Economics Vaults hold COL and thus have exposure to the COL price against BTC. Vaults inherently make
a bet that COL will either stay constant or increase in value against BTC — otherwise they would simply
exchange COL against their preferred asset(s). This is a simplified view of the underlying problem. We
assume Vaults to be economically driven, i.e., following a strategy to maximize profits over time. While
there may be altruistic actors, who follow protocol rules independent of the economic impact, we do not
consider these here.

Income
% Primary: Issue and redeem fees paid in interBTC, see requestlssue and requestRedeem
% Secondary: Slashed collateral of Users on failed issues paid in DOT, see cancellssue
% Secondary: Slashed collateral of Vaults on failed replace paid in COL, see cancelReplace
% Secondary: Additional BTC of Users on refund paid in BTC, see executeRefund

Internal Cost

% Parachain transaction fees on every transaction with the system paid in DOT

Optional: Slashed collateral on failed redeems paid in COL, see cancelRedeem
% Optional: Slashed collateral on theft paid in COL, see report_vault_theft

% Optional: Slashed collateral on liquidation paid in COL, see liquidateVault

External Costs

% Vault client operation/maintenance costs

% Bitcoin full node operation/maintenance costs

Opportunity Cost

% Locking COL that could be used in another protocol

30.2.3 Relayers

* Protocol role Relayers run Bitcoin full nodes and submit block headers to BTC-Relay, ensuring it remains
up to date with Bitcoin’s state. They also report misbehaving Vaults who have allegedly stolen BTC (move
BTC outside of BTC Parachain constraints).

 Risks Relayers have no financial stake in the system. Their highest risk is that they do not get sufficient
rewards for submitting transactions (i.e., reporting Vault theft or submitting BTC block headers).

* Economics Relayers are exposed to similar mechanics as Vaults, since they also hold DOT. However, they
have no direct exposure to the BTC/DOT exchange rate, since they (typically, at least as part of the BTC
Parachain) do not hold BTC. As such, Staked Relayers can purely be motivated to earn interest on DOT,

30.2. Actors: Roles, Risks, and Economics 207

interBTC Specification

but can also have the option to earn interest in interBTC and optimize their holdings depending on the best
possible return at any given time.

Income

% Primary: None

% Secondary: Slashed collateral on theft paid in COL, see report_vault_theft

Internal Cost
% Parachain transaction fees on every transaction with the system paid in DOT

External Costs

% Bitcoin full node operation/maintenance costs

% Parachain node operation/maintenance costs

Opportunity Cost

* None

Note: Operating a Vault requires access to a Bitcoin wallet. Currently, the best solution to access a Bitcoin wallet
programmatically is by using the inbuilt wallet of the Bitcoin core full node. Hence, the Vault client is already
running a Bitcoin full node. Therefore, the Relayer and the Vault roles are bundled together in the implementation
of the Vault/Relayer clients.

30.2.4 Collators

* Protocol role Collators are full nodes on both a parachain and the Relay Chain. They collect parachain
transactions and produce state transition proofs for the validators on the Relay Chain. They can also send
and receive messages from other parachains using XCMP. More on collators can be found in the Polkadot
wiki: https://wiki.polkadot.network/docs/en/learn-collator#docsNav

» Risks Collators have no financial stake in the system. Hence running a collator has no inherent risk.

¢ Economics Collators have to run a full node for the parachain incurring external costs. In return, they can
receive fees.

Income

% Primary: Parachain transaction fees on every transaction with the system paid in DOT

Internal Cost

* None

External Costs

% Parachain full node operation/maintenance costs

Opportunity Cost

* None

208 Chapter 30. Economic Incentives

https://wiki.polkadot.network/docs/en/learn-collator#docsNav

interBTC Specification

30.3 Challenges Around Economic Efficiency

To ensure security of interBTC, i.e., that users never face financial damage, XCLAIM relies on collateral. However,
in the current design, this leads to the following economic challenges:

* Over-collateralization. Vaults must lock up significantly (e.g., 150%) more collateral than minted interBTC
to ensure security against exchange rate fluctuations (see SecureCollateralThreshold). Dynamically modi-
fying the secure collateral threshold could only marginally reduce this requirement, at a high computational
overhead. As such, to issue 1 interBTC, one must lock up 1 BTC, as well as the 1.5 BTC worth of collateral
(e.g. in DOT), resulting in a 250% collateralization.

* Non-deterministic Collateral Lockup. When a Vault locks collateral to secure interBTC, it does not know
for how long this collateral will remain locked. As such, it is nearly impossible to determine a fair price for
the premium charged to the user, without putting either the user or the Vault at a disadvantage.

* Limited Chargeable Events. The Vault only has two events during which it can charge fees: (1) fulfillment
of and issue request and (2) fulfillment of a redeem request. Thereby, the fees charged for the redeem request
must be upper-bounded for security reasons (to prevent extortion by the Vault via sky-rocketing redeem
fees).

30.4 External Economic Risks

A range of external factors also have to be considered in the incentives for the actors.

* Exchange rate fluctuations. Vaults have a risk of having their COL liquidated if the COL/BTC exchange
rate drops below the LiquidationThreshold. In this case, the collateral is liquidated as described in Vault
Liquidations. Liquidations describe that users can restore the interBTC to BTC peg by burning interBTC for
COL. However, in a continuous drop of the exchange rate the value of COL will fall below the value of the
burned interBTC. As such, the system relies on actors that execute fast arbitrage trades of interBTC for COL.

* Counterparty risk for BTC in custody. When a user locks BTC with the Vault, they implicitly sell a BTC
call option to the Vault. The Vault can, at any point in time, decide to exercise this option by “stealing”
the user’s BTC. The price for this option is determined by spot_price + punishment_fee (punishment_fee is
essentially the option premium). The main issue here is that we do not know how to price this option, because
it has no expiry date - so this deal between the User and the Vault essentially becomes a BTC perpetual that
can be physically exercised at any point in time (American-style).

* interBTC Liquidity Shortage. Related to the exchange rate fluctuations, arbitrageurs rely on their own
interBTC or a place to buy interBTC for COL to execute an arbitrage trade. In a interBTC liquidity shortage,
simply not enough interBTC might be available. In combination with a severe exchange rate drop (more than
LiquidationThreshold - 100%), there will be no financial incentive to restore the interBTC to BTC peg.

e BTC and COL Liquidity Shortage. interBTC is a “stablecoin” in relation to BTC. Since owning interBTC
gives a claim to redeem BTC, the price of interBTC to BTC should remain roughly the same. However, in
case interBTC demand is much larger than either the COL and/or BTC supply, the price for interBTC might
increase much faster than BTC. In practice, this should not be an issue since the collateral thresholds are
computed based on the BTC to COL exchange rate rather than the interBTC rates.

* Opportunity costs: Each actor might decide to take an alternative path to receive the desired incentives.
For example, users might pick a different platform or bridge to utilize their BTC. Also Vaults and Keepers
might pick other protocols to earn interest on their DOT holdings.

30.3. Challenges Around Economic Efficiency 209

interBTC Specification

210 Chapter 30. Economic Incentives

CHAPTER
THIRTYONE

FEE MODEL

The interBTC bridge uses conceptually three different and independent fee models:

1. interBTC Fee Model. The internal interBTC bridge fee model covers any payments made through the
operation of the bridge, e.g., the issue, redeem, or replace processes. This process concerns Users, Vaults
(and its Nominators), and Relayers.

2. Griefing Fee Model. These are DOT fees paid to the Vault on a failed issue or replace.

3. Transaction Fee Model. The transaction fees are essentially the DOT fees paid on every transaction to the
Collators.

31.1 Payment Flows

We detail the payment flows for both models in the figure below:

31.2 interBTC Fee Model

31.2.1 Issue and Redeem Fee Distribution

The primary fees in interBTC are paid by users during Issue and Redeem as a relative fee on the issued or redeemed
interBTC.

Vaults earn fees based on their currently backed interBTC (i.e., vault.issuedTokens). To reduce variance of
payouts, the interBTC bridge implements a pooled fee model. This means that Vaults earn a share of each fee based
on their share of issued interBTC in the bridge.

If the Vault does not back interBTC then it does not have a stake in the system and it will not receive any rewards,
i.e., its stake is 0. Conversely, if the Vault has any issued interBTC, the Vault will earn rewards. Thus, only Vaults
directly locking Bitcoin in the system will earn rewards from users.

Each time a user issues or redeems interBTC, they pay the following fees to a global fee pool:

* Issue Fee: A relative fee paid based on the requested interBTC paid in interBTC, for the current parameter-
ization see Issuelee

* Redeem Fee: A relative fee paid based on the requested BTC paid in interBTC, for the current parameteri-
zation see RedeemFee

Note: Since redeem fees are backed by the Vault, they must use the Replace protocol to exit the system. To solve
this issue, we allow self-redeems based on the Vault’s account ID which sets the redeem fee to zero.

From this fee pool 100% is distributed among all active Vaults.

211

interBTC Specification

—
Transaction fees (extemal) Collators - Transaction fees (external)
-. - = Transaction fees (external)

Arbitrage trade interBTC for COL

QidationVault
A
Vault fee pool Slashed
collateral
Issue & Redeem fees due to theft
in interBTC interBTC fees based on or
share of interBTC backed liquidation
(continuous)
Punishment fee y
(on retry and reimburse)| Vaults & (optionally) its Nominators
v + premium -_—
(on premium redeem) - _]
in COL | |
Users - vaults | Nominators | ° Relayers
[] Griefing collateral .y] &_ _J—J
— (on cancel issue) - A
+ refund fees
(on refund) :
— | Reward part of slashed
Griefing collateral . collateral due to theft
BTC locked (on cancel replace) 1
ocke Um ot ot e e e m e m e e o=
r A
Ywith Vaults yColateral Legend

Incoming funds (external)

- >
Vault collateral pool

— » Fees paid (internal)
- >

Locked BTC

Fees earned (internal)

_______ » Opportunity costs for
collateral lockup

Fig. 31.1: Detailed overview of fee accrual in the interBTC bridge, showing interBTC Fee Model and Transaction
Fee Model payment flows, as well as opportunity costs.

212 Chapter 31. Fee Model

interBTC Specification

Each Vault is receiving a fair share of this fee pool by considering its stake in the system. The stake in the system is
just the amount of BTC a vault is currently insuring with collateral. Calculating the rewards for a Vault is equivalent
to this formula:

rewards = stake(totalRewards /totalStake)

Eq. 1: Vault reward distribution.

Note: As an example, if we had 1 interBTC to distribute among all Vaults with total stake 200 and assuming the
individual Vault has stake 100, the reward share could be calculated by: 100 * (1 interBTC / 200) = 0.5 interBTC

To be exact, the stake is expressed as the interBTC issued by a Vault. The issued interBTC are the interBTC
currently being backed by the Vault. This shows how much a Vault’s collateral is “occupied” by users:

stake = interBTClssued

Eq. 2: Parameterized stake updates.

Stake Updates

Whenever a Vault is increasing or decreasing the number of issued interBTC it is backing, we MUST update their
stake in the reward pool accordingly. These updates are achieved through the issue, redeem, and replace operations.

Fee Payouts

The Vault fee is paid each time an Issue or Redeem request is executed. Naively speaking, the bridge behaves
as if on each issue and redeem, the bridge would loop through all Vaults to determine their share of stake, i.e.,
vault.issuedTokens / totalSupply, and distribute a percentage of the paid fees to the Vault.

Since a naive implementation would result in unbounded iteration, the fee payout is implemented in a different way.
However, the outcome it is equivalent to the naive approach. The payouts are based on the pull-based Scalable
Reward Distribution with Changing Stake Sizes. This scheme allows rewards to be drawn by each Vault (and
Nominator) individually and at any time without the interBTC bridge having to loop over all Vaults each time
rewards are paid out. Read the Excursion: Scalable Reward Distribution section if you would like to understand
how the payout system works under the hood.

31.2.2 Griefing Fees

Griefing collateral is locked on requestlssue and requestReplace to prevent Griefing. If the requests are indeed
cancelled, the griefing collateral is paid to the free balance of the Vault that locked collateral in vain. On successful
execute, the griefing collateral is refunded to the party making the request.

* Issue Griefing Collateral: A relative collateral locked based on the requested interBTC paid in DOT, for
the current parameterization see IssueGriefingCollateral

* Replace Griefing Collateral: A relative collateral locked based on the request interBTC paid in DOT, for
the current parameterization see ReplaceGriefingCollateral

31.2. interBTC Fee Model 213

https://solmaz.io/2019/02/24/scalable-reward-changing/
https://solmaz.io/2019/02/24/scalable-reward-changing/

interBTC Specification

Griefing Collateral Currency

The currency that is used for griefing collateral used for issue and replace. This value is set to the currency of the
transaction fees, i.e., DOT, regardless of the vault’s configured backing collateral currency.

31.2.3 Premium Redeem Fee

‘When Vaults are below the PremiumRedeemThreshold, users are able to redeem with the Vault and receive an extra
“bonus” slashed from the Vault’s collateral. This mechanism is to ensure that (1) Vaults have a higher incentive
to stay above the PremiumRedeemThreshold and (2) users have an additional incentive to redeem with Vaults that
are close to the LiguidationThreshold.

* Premium Redeem Fee: A relative fee slashed from the Vault’s collateral paid to the user in the vault’'s COL
if a Vault is below the PremiumRedeemThreshold, for the current parameterization see PremiumRedeemFee

31.2.4 Punishment Fees

Punishment fees are slashed from the Vault’s collateral on failed redeems. A user can choose to either retry with
another Vault or reimburse the interBTC amount. In both cases, the a punishment fee is deducted from the Vault’s
collateral to ensure that Vault’s are punished in both cases.

* Punishment Fee: A relative fee slashed from the Vault’s collateral paid to the user in the vault’s COL if a
Vault failed to execute a redeem request, for the current parameterization see PunishmentFee

31.2.5 Theft Fee

Relayers receive a reward for reporting Vaults for committing theft (see report_vault_theft and re-
port_vault_double_payment).

* Theft Fee: A relative fee slashed form the Vault’s collateral paid to the Relayer in the vault’s COL if a Vault
commits theft, for the current parameterization see TheftFee

31.2.6 Arbitrage

Arbitrage trades are executed by anyone that exchanges interBTC for COL against the LiquidationVault. The Liqg-
uidationVault is essentially an AMM with two balances:

* issuedTokens: amount of interBTC that have been liquidated through safety failures, see Vault Liquidations
* lockedCollateral: amount of COL that have been confiscated through safety failures, see Vault Liquidations

Anyone can now burn interBTC for COL at the exchange rate of the issuedTokens/lockedCollateral from
the LiquidationVault. As the LiguidationThreshold is strictly above the current exchange rate of the BTC/COL pair
at the time of liquidation, this should represent an arbitrage opportunity: the value of burned inferBTC should be
lower than the value of received COL.

However, in practice, the arbitrage process might not work as intended. See External Economic Risks for a discus-
sion of related problems. Note that there are no fees being collected to execute trades against the LiquidationVault.

214 Chapter 31. Fee Model

interBTC Specification

31.2.7 Excursion: Scalable Reward Distribution

We recommend reading first the Scalable Reward Distribution paper and then the extension for changing rewards.
Note that this scheme is “just” an efficient equivalent of the Vault distribution outlined above. Last, we extend this
scheme to account for Vault Nomination and Vault Liquidations. The adopted scheme is described in the README
of the implementation.

Notable changes to the Scalable Reward Distribution with Changing Rewards are:

« Staking Pools Fees are forwarded to a Reward Pool and then distributed to a Staking Pool. There is one
Staking Pool for each Vault and all of its Nominators.

* Slashing On liquidation of Vaults, no more fees are forwarded to the Staking Pool of that Vault.

See the figure below for an indication how the Staking Pools are used.

Issue / Redeem Issue / Redeem
Deposit / Withdraw Distribute Rewards
Stake (interBTC issued) (interBTC issue and redeem fees)
Reward Pool

Withdraw Rewards

Staking Pool

Deposit | Withdraw
Collateral

Vault Nominator

Fig. 31.2: Distribution of fees according to Staking Pools. Each Vault and all its Nominators are represented by
a Staking Pool. This allows to distribute the applicable fees based on the global share of issued interBTC based
on the stake of the Staking Pool as well as an individual distribution of fees between the Vault and its Nominators
based on their share in the pool.

In the scalable reward distribution, a single source of truth is used to calculate rewards: the “stake”. The “stake”
can be any numeric representation. In interBTC, stake is defined as: the current amount of issued interBTC. A
Vault’s stake is adjusted based on the change in issued interBTC - for instance we increase the issued interBTC on
successful issues and decrease this on executed redeems.

Note: For example, if a Vault executes issue requests amounting to 2,456,000 interSatoshi (smallest denomination)
being added to the system, its stake would increase by 2,456,000. If the Vault then executes redeem requests, its
rewards are reduced. So if the Vault redeems all 2,456,000 interSatoshi, its stake is O again. On a liquidation, this
is again set to zero since the Vault no longer backs these tokens.

31.2. interBTC Fee Model 215

http://batog.info/papers/scalable-reward-distribution.pdf
https://solmaz.io/2019/02/24/scalable-reward-changing/
https://github.com/interlay/interbtc/tree/master/crates/staking
https://github.com/interlay/interbtc/tree/master/crates/staking

interBTC Specification

Now, each Vault’s rewards are calculated according to the following formula (equivalent to Eq. 1):

deposit(stakeDelta) : rewardTally += rewardPerToken - stakeDelta

stake += stakeDelta
totalStake += stakeDelta
distributeReward(reward) : rewardPerToken += reward/totalStake

computeReward() : return stake - rewardPerToken — rewardTally

Eq. 3: Vault reward distribution using the SRD.
Definitions

» stake: the amount of interBTC issued by this Vault.

e reward_tally: the Vault’s accumulated rewards (can be negative or positive).

« stake_delta: the stake impact based on issuing or redeeming interBTC.

* total_stake: the total amount of interBTC issued by all Vaults.

* reward_per_token: the current reward per current stake (the total_stake).

e reward: the rewards paid from issue and redeem requests.

The reward is influenced by the total of all stakes. So the share of rewards paid to a Vault is determined by how
many other Vaults are in the system and their individual stake.

Example Without Nomination
Current stake
Note: stake is always non-zero.

* Vault Alice has a stake of 250

* Vault Bob has a stake of 30

* Vault Charlie has a stake of 100
The total stake is therefore 380.
Reward claims

Let’s assume there is a total of 1 interBTC in the reward pool based on the accumulated issue and redeem request.
Then the reward_per_token=1 interBTC / 380.

e Vault Alice has a claim of 250 * 1 interBTC/380 = 0.6578947368421052 interBTC

e Vault Bob has a claim of 30 * 1 interBTC/380 = 0.07894736842105263 interBTC

¢ Vault Charlie has a claim of 100 * 1 interBTC/380 = 0.2631578947368421 interBTC
Example With Nomination
Current stake
Note: stake is always non-zero.

 Vault Alice and her Nominators have a stake of 250. Alice is fully nominated such that Alice is backing 200
and her Nominators are backing 50.

* Vault Bob has a stake of 30

* Vault Charlie has a stake of 100
The total stake is therefore 380.
Reward claims

Let’s assume there is a total of 1 interBTC in the reward pool based on the accumulated issue and redeem request.
Then the reward_per_token =1 interBTC / 380.

216 Chapter 31. Fee Model

interBTC Specification

Vault Alice has a claim of 200 * 1 interBTC/380 = 0.526315789 interBTC
¢ Alice’s Nominators have a claim of 50 * 1 interBTC/380 = 0.131578947 interBTC

Vault Bob has a claim of 30 * 1 interBTC/380 = 0.07894736842105263 interBTC

Vault Charlie has a claim of 100 * 1 interBTC/380 = 0.2631578947368421 interBTC

31.3 Transaction Fee Model

The interBTC bridge chain adopts the Polkadot relay chain model with DOT as the native currency for paying
transaction fees. In this model, collators receive 100% of the transaction fees paid by Users, Vaults, and Relayers.
We refer to the official Polkadot documentation for full details.

31.3. Transaction Fee Model 217

https://wiki.polkadot.network/docs/learn-transaction-fees#fee-calculation

interBTC Specification

218 Chapter 31. Fee Model

CHAPTER
THIRTYTWO

LICENSE

Copyright 2021 Interlay Ltd.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

219

http://www.apache.org/licenses/LICENSE-2.0

interBTC Specification

220 Chapter 32. License

CHAPTER
THIRTYTHREE

INTERLAY

Interlay envisions a future where permissioned and permissionless blockchains, regardless of design and pur-
pose, can seamlessly connect and interact. From DeFi loans to decentralized exchanges, from layer-2 protocols
to application-specific ledgers: anyone should use any digital currency on any blockchain platform.

Interlay is co-founded by Imperial College London researchers Alexei Zamyatin and Dominik Harz, who have been
contributing cutting edge research to the blockchain space for multiple years: from identifying centralization issues
in merged mining, over off-chain computations and cross-chain bribing, to attacks against DeFi protocols.

Since the invention of XCLAIM in 2018, the team has been busy making the framework even more secure via more
robust cryptographic primitives, scalable via payment channels and usable by reducing collateral requirements.

INTERLAY

221

https://interlay.io
https://alexeizamyatin.me
https://dominikharz.me

	interBTC at a Glance
	Functionality
	Components

	Cryptocurrency-backed Assets
	Cryptocurrency-back Assets (CbA)
	Design Principles
	Recommended Background Reading

	Architecture
	Actors
	Modules
	BTC-Relay
	Oracle
	Treasury
	Vault Registry
	Collateral
	Issue
	Redeem
	Replace
	Security
	Governance Mechanism

	Interactions
	Dependency Graph
	External Interactions

	Polkadot
	Substrate
	Substrate Specifics

	Bitcoin Data Model
	Block Headers
	Transactions
	Inputs
	Outputs
	Witness
	Witness Stack Item

	Accepted Bitcoin Transaction Format
	Case 1: OP_RETURN Transactions
	Case 2: Regular P2PKH / P2WPKH / P2SH / P2WSH Transactions

	How to Read This Specification
	External Functions
	Internal Functions
	Preconditions, Postconditions and Invariants
	Errors and Events

	BTC-Relay
	Overview
	Storage
	Verification
	Utils
	Parser

	Specification
	Data Model
	Types
	RawBlockHeader

	Constants
	DIFFICULTY_ADJUSTMENT_INTERVAL
	TARGET_TIMESPAN
	TARGET_TIMESPAN_DIVISOR
	UNROUNDED_MAX_TARGET
	MAIN_CHAIN_ID
	STABLE_BITCOIN_CONFIRMATIONS
	STABLE_PARACHAIN_CONFIRMATIONS

	Structs
	BlockHeader
	RichBlockHeader
	BlockChain
	Transaction
	TransactionInput
	TransactionOutput
	Script

	Enums
	LockTime

	Data Structures
	BlockHeaders
	Chains
	ChainsIndex
	BestBlock
	BestBlockHeight
	ChainCounter

	Functions: Storage and Verification
	initialize
	Specification

	storeBlockHeader
	Specification

	swapMainBlockchain
	Specification

	verifyBlockHeader
	Specification

	verifyTransactionInclusion
	Specification
	Preconditions
	Function Sequence

	validateTransaction
	Specification
	Preconditions
	Function Sequence

	verifyAndValidateTransaction
	Specification
	Function Sequence

	flagBlockError
	Specification
	Function Sequence

	clearBlockError
	Specification
	Function Sequence

	Functions: Parser
	Block Header
	extractHashPrevBlock
	Function Sequence

	extractMerkleRoot
	Function Sequence

	extractTimestamp
	Function Sequence

	extractNBits
	Function Sequence

	parseBlockHeader
	Function Sequence

	Transactions
	extractOutputs
	Specification
	Function Sequence

	getOutputStartIndex
	Function Sequence

	determineVarIntDataLength
	Function Sequence

	extractOPRETURN
	Function Sequence

	extractOutputValue
	Function Sequence

	extractOutputAddress
	Function Sequence

	Functions: Utils
	sha256d
	Function Sequence

	concatSha256d
	Function Sequence

	nBitsToTarget
	Function Sequence

	checkCorrectTarget
	Function Sequence

	computeNewTarget
	Function Sequence

	computeMerkle
	Function Sequence
	Example

	calculateDifficulty
	Function Sequence

	getForkIdByBlockHash
	Specification
	Function Sequence

	incrementChainCounter
	Specification
	Function Sequence

	Events
	Initialized
	StoreMainChainHeader
	StoreForkHeader
	ChainReorg
	VerifyTransactionInclusion
	ValidateTransaction

	Error Codes

	Collateral
	Overview
	Step-by-Step

	Currency
	Overview
	Data Model
	Structs
	Amount

	Functions
	from_signed_fixed_point
	Specification

	to_signed_fixed_point
	Specification

	convert_to
	Specification

	checked_add
	Specification

	checked_sub
	Specification

	saturating_sub
	Specification

	checked_fixed_point_mul
	Specification

	checked_fixed_point_mul_rounded_up
	Specification

	rounded_mul
	Specification

	checked_div
	Specification

	ratio
	Specification

	Comparisons: lt, le, eq, ge, gt
	Specification

	transfer
	Specification

	lock_on
	Specification

	unlock_on
	Specification

	burn_from
	Specification

	mint_to
	Specification

	Fee
	Overview
	Step-by-step

	Data Model
	Scalars (Fees)
	IssueFee
	IssueGriefingCollateral
	RefundFee
	RedeemFee
	PremiumRedeemFee
	PunishmentFee
	TheftFee
	TheftFeeMax
	ReplaceGriefingCollateral

	Functions
	distributeRewards
	Specification

	withdrawRewards
	Specification

	Events
	WithdrawRewards

	Oracle
	Data Model
	Enums
	OracleKey

	Scalars
	MaxDelay

	Maps
	Aggregate
	AuthorizedOracles
	ValidUntil
	RawValues
	RawValuesUpdated
	AuthorizedOracles

	Functions
	feed_values
	Specification

	get_price
	Specification

	convert
	Specification

	on_initialize
	Specification

	Events
	FeedValues
	SetExchangeRate

	Issue
	Overview
	Step-by-step
	User Failsafe

	Security
	Vault Registry
	Fee Model

	Data Model
	Scalars
	IssuePeriod
	IssueBtcDustValue

	Maps
	IssueRequests

	Structs
	IssueRequest

	Functions
	requestIssue
	Specification

	executeIssue
	Specification

	cancelIssue
	Specification

	Events
	RequestIssue
	IssueAmountChange
	ExecuteIssue
	CancelIssue

	Error Codes

	Refund
	Overview
	Step-by-step
	Security

	Data Model
	Scalars
	RefundBtcDustValue

	Maps
	RefundRequests

	Structs
	Refund

	External Functions
	executeRefund
	Specification

	Internal Functions
	requestRefund
	Specification

	Events
	RequestRefund
	ExecuteRefund

	Redeem
	Overview
	Step-by-step
	Security
	Vault Registry
	Fee Model

	Data Model
	Scalars
	RedeemPeriod
	RedeemTransactionSize
	RedeemBtcDustValue

	Maps
	RedeemRequests

	Structs
	RedeemRequest

	Functions
	requestRedeem
	Specification

	liquidationRedeem
	Specification

	executeRedeem
	Specification

	cancelRedeem
	Specification

	mintTokensForReimbursedRedeem
	Specification

	Events
	RequestRedeem
	LiquidationRedeem
	ExecuteRedeem
	CancelRedeem
	MintTokensForReimbursedRedeem

	Error Codes

	Replace
	Overview
	Step-by-Step
	Security
	Vault Registry
	Fee Model

	Data Model
	Scalars
	ReplaceBtcDustValue
	ReplacePeriod

	Maps
	ReplaceRequests

	Structs
	Replace

	Functions
	requestReplace
	Specification

	withdrawReplace
	Specification

	acceptReplace
	Specification

	executeReplace
	Specification

	cancelReplace
	Specification

	Events
	RequestReplace
	WithdrawReplace
	AcceptReplace
	ExecuteReplace
	CancelReplace

	Error Codes

	Security
	Overview
	Failure Modes
	Oracle Offline

	Data Model
	Enums
	StatusCode
	ErrorCode

	Data Storage
	Scalars
	ParachainStatus
	Errors
	Nonce
	ActiveBlockCount

	Functions
	generateSecureId
	Specification

	hasExpired
	Specification

	setParachainStatus
	Specification

	insertParachainError
	Specification

	removeParachainError
	Specification

	Events
	RecoverFromErrors

	Relay
	Overview
	Data Storage
	Maps
	TheftReports

	Functions
	report_vault_theft
	Specification

	report_vault_double_payment
	Specification

	Events
	ReportVaultTheft

	Treasury
	Overview
	Step-by-step

	Vault Registry
	Overview
	Multi-Collateral

	Data Model
	Scalars
	PunishmentDelay
	LiquidationVaultAccountId

	Maps
	LiquidationVault
	MinimumCollateralVault
	SecureCollateralThreshold
	PremiumRedeemThreshold
	LiquidationThreshold
	SystemCollateralCeiling
	Vaults

	Structs
	Vault
	SystemVault

	External Functions
	register_vault
	Specification

	registerAddress
	Specification

	updatePublicKey
	Specification

	deposit_collateral
	Specification
	Precondition

	withdrawCollateral
	Specification

	Internal Functions
	tryIncreaseToBeIssuedTokens
	Specification

	decreaseToBeIssuedTokens
	Specification

	issueTokens
	Specification

	tryIncreaseToBeRedeemedTokens
	Specification

	decreaseToBeRedeemedTokens
	Specification

	decreaseTokens
	Specification

	redeemTokens
	Specification

	redeemTokensLiquidation
	Specification

	increaseToBeReplacedTokens
	Specification

	decreaseToBeReplacedTokens
	Specification

	replaceTokens
	Specification

	cancelReplaceTokens
	Specification

	liquidateVault
	Specification

	getMaxNominationRatio

	Events
	RegisterVault
	DepositCollateral
	WithdrawCollateral
	RegisterAddress
	UpdatePublicKey
	IncreaseToBeIssuedTokens
	DecreaseToBeIssuedTokens
	IssueTokens
	IncreaseToBeRedeemedTokens
	DecreaseToBeRedeemedTokens
	IncreaseToBeReplacedTokens
	DecreaseToBeReplacedTokens
	DecreaseTokens
	RedeemTokens
	RedeemTokensPremium
	RedeemTokensLiquidation
	RedeemTokensLiquidatedVault
	ReplaceTokens
	LiquidateVault

	Error Codes

	Vault Nomination
	Overview
	Step-by-step

	Protocol
	Assumptions
	Vault Nomination Protocol
	Max Nomination Ratio

	Security Considerations
	Economic Security without Vault Nomination
	Economic Security with Vault Nomination
	Risk Summary

	Data Model
	Scalars
	NominationEnabled

	Maps
	Vaults

	Structs

	Functions
	setNominationEnabled
	Specification

	optInToNomination
	Specification

	optOutOfNomination
	Specification

	depositCollateral
	Specification

	withdrawCollateral
	Specification

	Events
	NominationOptIn
	NominationOptOut
	DepositCollateral
	WithdrawCollateral

	Reward
	Overview
	Invariants
	Data Model
	Maps
	TotalStake
	TotalRewards
	RewardPerToken
	Stake
	RewardTally

	Functions
	getTotalRewards
	Specification

	depositStake
	Specification

	distributeReward
	Specification

	computeReward
	Specification

	withdrawStake
	Specification

	withdrawReward
	Specification

	Events
	DepositStake
	WithdrawStake
	DistributeReward
	WithdrawReward

	Staking
	Overview
	Data Model
	Maps
	TotalStake
	TotalCurrentStake
	TotalRewards
	RewardPerToken
	RewardTally
	Stake
	SlashPerToken
	SlashTally
	Nonce

	Functions
	depositStake
	Specification

	withdrawStake
	Specification

	slashStake
	Specification

	computeStakeAtIndex
	Specification

	distributeReward
	Specification

	computeRewardAtIndex
	Specification

	withdrawRewardAtIndex
	Specification

	forceRefund
	Specification

	DepositStake
	WithdrawStake
	DistributeReward
	WithdrawReward
	ForceRefund
	IncreaseNonce

	Escrow
	Overview
	Step-by-step

	Data Model
	Constants
	Span
	MaxPeriod

	Scalars
	Epoch

	Maps
	Locked
	PointHistory
	UserPointHistory
	UserPointEpoch
	SlopeChanges

	Structs
	LockedBalance
	Point

	External Functions
	create_lock
	Specification

	increase_amount
	Specification

	extend_unlock_height
	Specification

	withdraw
	Specification

	Internal Functions
	balance_at
	Specification

	Events
	Deposit
	Withdraw

	Governance
	Overview
	Terminology
	Processes
	Proposals
	Technical Committee

	Parameters

	Vault Liquidations
	Safety Failures
	Crash Failures
	Liquidations (Safety Failures)
	Issue
	Redeem
	Replace
	Implementation Notes

	XCLAIM Security Analysis
	Replay Attacks
	OP_RETURN
	Unique Addresses via On-Chain Key Derivation
	On-Chain Key Derivation Scheme

	Counterfeiting
	Permanent Blockchain Splits
	Backing Chain
	Issuing Chain

	Denial-of-Service Attacks
	Fee Model Security: Sybil Attacks and Extortion
	Sybil Attacks
	Extortion

	Griefing
	Concurrency
	Concurrent redeem
	Concurrent issue and redeem
	Solution

	BTC-Relay Security Analysis
	Security Parameter k
	Liveness Failures
	Safety Failures
	51% Attack on Bitcoin
	Relay Poisoning
	Replay Attacks

	Hard and Soft forks

	Performance Analysis
	Estimation of Storage Costs
	BTC-Relay Optimizations
	Pruning
	Batch Submissions
	Outlook on Sub-Linear Verification in Bitcoin

	Economic Incentives
	Currencies
	Actors: Roles, Risks, and Economics
	Users
	Vaults
	Relayers
	Collators

	Challenges Around Economic Efficiency
	External Economic Risks

	Fee Model
	Payment Flows
	interBTC Fee Model
	Issue and Redeem Fee Distribution
	Stake Updates
	Fee Payouts

	Griefing Fees
	Griefing Collateral Currency

	Premium Redeem Fee
	Punishment Fees
	Theft Fee
	Arbitrage
	Excursion: Scalable Reward Distribution

	Transaction Fee Model

	License
	Interlay

