AbstractAbstract
[en] Objective: In our previous work, we found that hypoxia induces apoptosis in oncogenically transformed rodent cells and loss of the p53 tumor suppressor gene significantly reduces hypoxia induced cell death. In this report, we show that transformation of wild-type p53 expressing primary cervical epithelial cells with the E6 and E7 genes from high risk human papillomavirus (HPV) type 16 dramatically enhances their susceptibility to hypoxia induced apoptosis. Materials and Methods: Sub confluent primary normal human cervical epithelial cells and normal human fibroblasts were infected with retroviral vectors containing HPV16 E6 and E7 and the neomycin selectable marker using previously described techniques. Clones were selected and isolated in neomycin containing media. Exponentially growing cells were treated with hypoxia (0.02% O2) using specially designed chambers, irradiated (800 cGy) using a cesium source, or grown under aerobic conditions (20% O2) as a control. After treatment, cells were stained with Hoescht and propidium iodide and viewed with a fluorescent microscope for analysis of apoptotic cells. To determine increase in expression of p53, immuno blots were performed using whole cell extracts. Results: After a 48 hour exposure to hypoxic conditions, 40% of E6 and E7 transformed cervical cells exhibit morphologic features indicative of apoptosis, compared to 5% of untransformed cervical cells. Exposure of HPV E6 and E7 transformed cells to ionizing radiation, however, did not initiate apoptosis. Immunoblot assays show induction of p53 under hypoxic conditions but not by ionizing radiation, indicating that hypoxia is able to induce p53 in the presence of E6 and that hypoxia activates p53 by a pathway which is distinct from that of ionizing radiation. Furthermore, hypoxia did not induce apoptosis in normal human fibroblasts transformed with E6 and E7, suggesting that the cellular response to hypoxia is influenced by the cell type. Conclusion: These results suggest a clinically relevant model for HPV mediated tumorigenesis whereby hypoxia differentially induces apoptosis in minimally transformed cervical epithelial cells based on their apoptotic potential. Thus, cervical cells lacking an apoptotic program may have a survival advantage over cells with an intact apoptotic program, leading to a tumor that may respond poorly to radiotherapy or chemotherapy
Primary Subject
Source
38. annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO); Los Angeles, CA (United States); 27-30 Oct 1996; S0360301697857823; Copyright (c) 1996 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: Argentina
Record Type
Journal Article
Literature Type
Conference
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 36(1); p. 379
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Objective: Low oxygen tension in the tumor microenvironment may have an important role during tumor growth, and is of particular prognostic significance in human cervical carcinoma. Because some human papillomavirus (HPV) infections are associated with cervical neoplasia, the relationship between hypoxia and apoptosis in primary cervical epithelial cells containing HPV16 E6 and E7, intact HPV 16 genome, and HPV positive cervical carcinoma cell lines, was examined. In addition, the relationship between hypoxia and apoptosis in spontaneous human cervical carcinomas was determined in situ. Materials and Methods: Primary normal human cervical epithelial cells were infected with retroviral vectors containing HPV16 E6 and E7 or transfected with a plasmid containing the whole HPV 16 genome. Clones were selected in neomycin containing medium. Exponentially growing cells were incubated under aerobic conditions (20% O2), anaerobic conditions (0.02% O2), or irradiated with 6 Gy. Analysis of apoptotic cells was performed by staining with Hoechst dye and propidium iodide and viewing with a fluorescent microscope. To determine the level of expression of the apoptotic modulators p53 and Bax, immunoblots were performed on whole cell extracts from treated cells. A clinical tumor hypoxia study was conducted at the University of North Carolina utilizing pimonidazole, a 2-nitroimidazole compound which binds irreversibly to cellular macromolecules under low oxygen conditions. Nine patients were enrolled with biopsy proven squamous cell carcinoma of the cervix and no prior treatment. Biopsies of the gross tumor were obtained after pimonidazole infusion. Contiguous histological sections were analyzed for hypoxia using a immunohistochemical technique and for apoptosis using TUNEL. Results: In vitro, hypoxia uncoupled p53 from E6 mediated degradation, and stimulated both p53 induction and apoptosis in primary cervical epithelial cells infected with the HPV E6 and E7 genes. In contrast, ionizing radiation did not stimulate p53 accumulation or apoptosis in these cells. Cervical epithelial cells containing the intact HPV 16 genome also exhibited hypoxia induced apoptosis. Hypoxia stimulated p53 induction but not apoptosis in cell lines derived from human cervical squamous cell carcinomas, indicating that these cell lines have acquired further genetic alterations independent of p53 which reduced their apoptotic sensitivity to hypoxia. Furthermore, E6 and E7 infected cervical epithelial cells subjected to multiple rounds of hypoxia followed by aerobic recovery achieved resistance to hypoxia induced apoptosis, indicating that hypoxia could directly select for cells with diminished apoptotic sensitivity. In situ, hypoxia and apoptosis were found to co-localize in tumors of patients with advanced clinical stage. Conclusion: Expression of viral oncoproteins in human cervical epithelial cells can increase their sensitivity to hypoxia-induced apoptosis. Hypoxia can select for variants that have lost their apoptotic potential and hypoxia correlates spatially with apoptosis in human cervical carcinoma biopsies. Therefore, these results implicate a role for hypoxia-mediated selection in human tumor progression and can in part explain the aggressiveness of cervical carcinomas with low p02 values
Primary Subject
Source
S0360301697807006; Copyright (c) 1997 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 39(2,suppl.1); p. 206
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Malignant melanoma is an aggressive tumor type that often develops drug resistance to targeted therapeutics. The production of colony stimulating factor 1 (CSF-1) in tumors recruits myeloid cells such as M2-polarized macrophages and myeloid derived suppressor cells (MDSC), leading to an immune suppressive tumor milieu. We used the syngeneic mouse model of BRAFV600E-driven melanoma SM1, which secretes CSF-1, to evaluate the ability of the CSF-1 receptor (CSF-1R) inhibitor PLX3397 to improve the antitumor efficacy of the oncogenic BRAF inhibitor vemurafenib. Combined BRAF and CSF-1R inhibition resulted in superior antitumor responses compared with either therapy alone. In mice receiving PLX3397 treatment, a dramatic reduction of tumor-infiltrating myeloid cells (TIM) was observed. In this model, we could not detect a direct effect of TIMs or pro-survival cytokines produced by TIMs that could confer resistance to PLX4032 (vemurafenib). However, the macrophage inhibitory effects of PLX3397 treatment in combination with the paradoxical activation of wild type BRAF-expressing immune cells mediated by PLX4032 resulted in more tumor-infiltrating lymphocytes (TIL). Depletion of CD8+ T-cells abrogated the antitumor response to the combination therapy. Furthermore, TILs isolated from SM1 tumors treated with PLX3397 and PLX4032 displayed higher immune potentiating activity. The combination of BRAF-targeted therapy with CSF-1R blockade resulted in increased CD8 T-cell responses in the SM1 melanoma model, supporting the ongoing evaluation of this therapeutic combination in patients with BRAFV600 mutant metastatic melanoma. The online version of this article (doi:10.1186/s12885-015-1377-8) contains supplementary material, which is available to authorized users
Primary Subject
Secondary Subject
Source
Available from http://dx.doi.org/10.1186/s12885-015-1377-8; Available from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432503; PMCID: PMC4432503; PMID: 25939769; PUBLISHER-ID: 1377; OAI: oai:pubmedcentral.nih.gov:4432503; Copyright (c) Mok et al.; licensee BioMed Central. 2015; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
BMC cancer (Online); ISSN 1471-2407; ; v. 15; [0 p.]
Country of publication
ANIMAL CELLS, ANIMALS, CARCINOMAS, CONNECTIVE TISSUE CELLS, DISEASES, EPITHELIOMAS, GROWTH FACTORS, INTERMEDIATE MASS NUCLEI, ISOTOPES, MAMMALS, MEDICINE, MEMBRANE PROTEINS, MITOGENS, NEOPLASMS, NUCLEI, ODD-ODD NUCLEI, ORGANIC COMPOUNDS, PHAGOCYTES, PROTEINS, RODENTS, SOMATIC CELLS, VANADIUM ISOTOPES, VERTEBRATES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL