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Abstract

Background: Despite successful combined antiretroviral therapy (cART), the risk of non-AIDS defining cancers
(NADCs) remains higher for HIV-infected individuals than the general population. The reason for this increase is
highly disputed. Here, we hypothesized that T-cell receptor (TCR) γδ cells and/or mucosal-associated invariant T
(MAIT) cells might be associated with the increased risk of NADCs. γδ T cells and MAIT cells both serve as a link
between the adaptive and the innate immune system, and also to exert direct anti-viral and anti-tumor activity.

Methods: We performed a longitudinal phenotypic characterization of TCR γδ cells and MAIT cells in HIV-infected
individuals developing Hodgkin’s lymphoma (HL), the most common type of NADCs. Cryopreserved PBMCs of HIV-
infected individuals developing HL, matched HIV-infected controls without (w/o) HL and healthy controls were
used for immunophenotyping by polychromatic flow cytometry, including markers for activation, exhaustion and
chemokine receptors.

Results: We identified significant differences in the CD4+ T cell count between HIV-infected individuals developing
HL and HIV-infected matched controls within 1 year before cancer diagnosis. We observed substantial differences in
the cellular phenotype mainly between healthy controls and HIV infection irrespective of HL. A number of markers
tended to be different in Vδ1 and MAIT cells in HIV+HL+ patients vs. HIV+ w/o HL patients; notably, we observed
significant differences for the expression of CCR5, CCR6 and CD16 between these two groups of HIV+ patients.

Conclusion: TCR Vδ1 and MAIT cells in HIV-infected individuals developing HL show subtle phenotypical
differences as compared to the ones in HIV-infected controls, which may go along with functional impairment and
thereby may be less efficient in detecting and eliminating malignant cells. Further, our results support the potential
of longitudinal CD4+ T cell count analysis for the identification of patients at higher risk to develop HL.

Keywords: HIV, Hodgkin’s lymphoma, MAIT cells, T-cell receptor (TCR) γδ cells

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: roberto.speck@usz.ch
1Department of Infectious Diseases and Hospital Epidemiology, University
Hospital of Zurich, University of Zurich, Zurich, Switzerland
Full list of author information is available at the end of the article

Muller et al. Infectious Agents and Cancer           (2021) 16:24 
https://doi.org/10.1186/s13027-021-00365-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13027-021-00365-4&domain=pdf
http://orcid.org/0000-0002-8453-1137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:roberto.speck@usz.ch


Introduction
Combined antiretroviral therapy (cART) is highly effi-
cient in suppressing HIV replication with life expectan-
cies of HIV-infected individuals nowadays being almost
similar to the general population [1–4]. In particular, a
significant decline of AIDS-defining cancers (ADCs),
such as Kaposi Sarcoma and non-Hodgkin’s lymphoma,
has been observed upon cART [5–7]. Strikingly, the per-
centage of cancer-induced death increased from approxi-
mately 10% in the pre-cART era to 28% in the era of
cART [8, 9]. The increased cancer burden observed is
associated with a higher risk of HIV-infected individuals
to develop non-AIDS defining cancers (NADCs) includ-
ing lung cancer, colorectal cancer, hepatocellular carcin-
oma, anal cancer, and Hodgkin’s lymphoma (HL) [10–
14]. The overall risk of those cancers is three-fold higher
for HIV-infected individuals than for the general popula-
tion and even 5 to 30-fold higher for HL, the most com-
mon type of NADCs [10, 15–17].
NADCs are associated with many factors including

antiretroviral drug toxicity, aging, and known risk factors
such as alcohol and tobacco smoking, but they do not
fully explain the higher risk of HIV-infected people to
suffer from NADCs [18–20]. Moreover, chronic immune
activation, persistent immunodeficiency, as well as co-
infections seem to contribute to this increased risk [10,
21–23]. In HIV-infected individuals, for example, almost
all cases of HL are associated with EBV infection versus
40% in the general population [24]. In addition, they are
also more likely to develop mixed cellular and
lymphocyte-depleted subtypes of HL, which are associ-
ated with a less favorable outcome than the nodular
sclerosis subtype, which is predominant in the general
population [25, 26]. The higher incidence rate and devel-
opment of subtypes with less favorable outcome might
be linked to HIV-associated immune dysfunction such
as the depletion and/or functional impairment of cells
involved in immune surveillance against cancer [24, 27].
Even though the age-specific rates are projected to de-
crease through 2030 for a number of tumor types, most
likely due to the timely treatment of HIV, we are cur-
rently challenged with a still increased incidence rate of
HL [28]. In fact, in a recent study by Cornejo-Juarez
et al., HL figured as the most frequent NADCs in an on-
cology unit [29].
Strong associations of low CD4+ T cell counts and

ADCs are well proven, while associations of CD4+ T cell
counts and NADCs are weaker or not observed for all
NADCs [17, 19, 23, 30–32]. Further, the immediate initi-
ation of cART reduces serious AIDS-related and non-
AIDS related events [33, 34]. The START study, for ex-
ample, showed a reduced risk for cancers (ADCs and
NADCs) when cART was initiated immediately and irre-
spective of CD4+ T cell count but there was no evidence

that this beneficial effect was associated with CD4+ T
cell count or viral load [34, 35]. Thus, the higher risk for
NADCs is not simply an equation of CD4+ T cell counts
but likely involves more complex mechanisms of im-
mune activation and immune surveillance.
TCR γδ cells and mucosal-associated invariant T

(MAIT) cells are innate-like T lymphocytes with import-
ant functions in both innate and adaptive immune re-
sponse [36–39]. TCR γδ cells express an invariant T cell
receptor (TCR), composed of a gamma (γ) and a delta
(δ) chain. They usually comprise 0.5–16% of all CD3+ T
cells in the peripheral blood (PB) but can expand to up
to 60% during bacterial and viral infections [40–42].
Based on their TCR Vδ chain usage, they can be divided
into two major sub-populations; namely, Vδ1- and Vδ2-
expressing cells. A minority of TCR γδ cells instead ex-
press Vδ chains other than these two. Tissue-associated
TCR γδ T cells mostly express the TCR Vδ1 chain,
whereas cells expressing the Vδ2 chain (usually paired
with the Vγ9 chain, and therefore also called Vγ9Vδ2
cells) are the predominant population in the PB [43].
Upon HIV infection, an expansion of Vδ1 cells accom-
panied by a depletion of Vδ2 cells in the PB is observed,
resulting in an inversion of the Vδ1/ Vδ2 ratio [44–47].
TCR γδ cells perform diverse functions and are also in-
volved in anti-viral and anti-tumor activity [48]. They
can rapidly secrete large amounts of IFN-γ, TNF-α, IL-4
and IL-17, and can act as potent cytotoxic effector cells
against virus-infected and malignant cells through the
release of perforin and granzyme-B [49–52]. These cells
may also have a regulatory function via secretion of IL-
10 and TGF-β with potential suppressive effects on anti-
tumor function [53]. The role of TCR γδ cells in tumor
immunity is not fully understood, and further analysis of
individual populations based on the TCR-repertoire and
functional heterogeneity is needed [54].
MAIT cells, which are abundant in the PB, mesenteric

lymph nodes, liver and intestinal mucosa, are also in-
volved in tumor immunity [55–58]. They express the
semi-invariant TCR Vα7.2, paired with a limited Vβ rep-
ertoire and the C-type lectin CD161 [59, 60]. Similar to
TCR γδ cells, MAIT cells can rapidly secrete cytokines,
including IFN-γ, TNF-α, IL-17, and IL-22, and may also
kill target cells [55, 59, 61, 62]. Early during HIV infec-
tion, MAIT cells are depleted and functionally impaired
and like TCR γδ cells, do not fully recover upon long-
term cART [63–65].
As MAIT and TCR γδ cells are involved in antitumor

immunity, we hypothesized that the extent of their de-
pletion and/or their phenotype differ between HIV-
infected patients developing HL (prior to the diagnosis
of HL) and HIV-infected matched controls. Notably, ex-
tensive characterization of immune cells in the PB of
HIV-infected individuals over time may provide detailed
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insight on their immune reconstitution and on the
phenotype of cellular populations with distinct functions,
and could also provide useful predictors of disease pro-
gression. To address this possibility, we performed a de-
tailed phenotypic characterization of TCR γδ and MAIT
cells in the PB of HIV-infected individuals enrolled in
the Swiss HIV Cohort Study (SHCS).

Material and methods
Swiss HIV cohort study (SHCS)
The SHCS (www.shcs.ch) is a prospective cohort study
with ongoing enrollment of HIV-infected adults in
Switzerland since 1988 [66]. It includes 73% of all diag-
nosed HIV-infections in Switzerland [67]. Representa-
tion has remained stable throughout the study duration.
Detailed information on demographics, mode of HIV ac-
quisition, risk behavior, clinical events, co-infections,
and treatment is collected using a standard protocol at
registration and at intervals of 6 months. Plasma samples
are collected every 6–12months in all study participants.
Local ethical committees of all participating study sites
approved the study and written consent was obtained
from all participants.

Samples
Blood was obtained from healthy controls and HIV-
infected patients with and without HL, which were en-
rolled in the Swiss HIV Cohort Study (SHCS). Peripheral
blood mononuclear cells (PBMCs) were isolated using
Lymphoprep gradients and cryopreserved. Within the
SHCS demographic, clinical, laboratory and behavioral
data are recorded at enrolment and at follow-up visits
every 6 months. Samples were selected based on the fol-
lowing inclusion criteria: i) male, ii) ≥ 18 years, iii) Cau-
casian, iv) HIV RNA copies > 400 copies/ml, v) sample
availability before cART, 1–2 years after suppression,
and 0–1 years prior to HL diagnosis, i.e., for the HIV-
patients w/o HL we chose the samples closest to the
times of the corresponding matching HIV+ HL+ patients.
Matching of cancer-free HIV-infected individual was
done according to: i) gender, ii) ethnicity, iii) age, iv)
sample availability, v) CD4+ T cell count (before cART),
vi) HIV RNA copy number (before cART).

Flow Cytometry
Frequencies and cell count of conventional CD4+ and
CD8+ T cells were determined throughout the study and
provided by the SHCS, frequencies of unconventional γδ
T cells and MAIT cells were determined retrospectively.
Samples were analyzed on two consecutive days. To en-
sure comparability of the samples, all time points and
matched control samples were stained and acquired on
the same day. We checked for technical performance by
analyzing one healthy control sample on both days.

Cryopreserved PBMCs were thawed, washed, and resus-
pended in phosphate buffered saline (PBS). Cell number
after thawing was determined with the COULTER® Ac ·
T diff™ Analyzer (Beckman Coulter). Three different
polychromatic flow cytometry panels were used for the
identification and characterization of γδ T cells and
MAIT cells. Each staining step included incubation for
20 min at 4 °C. One million PBMCs were used per panel
and stained with purified anti-TCRγδ (BD Bioscience)
and the Zombie NIR Fixable Viability dye (BioLegend)
in PBS with 2mM. PBMCs were washed 2x and then
stained with anti-mouse IgG (H + L) – Pacific Orange
(Thermo Fisher Scientific) in FACS buffer (PBS contain-
ing 2% FBS and 0.05% sodium azide). PBMCs were
washed 2x, followed by a 20min blocking step with
mouse serum (Thermo Fisher Scientific) at 4 °C. After
blocking, cells were washed and surface staining with
three different panels was performed. Each panel in-
cluded anti-TCRVδ1 - PE-Vio770 (Miltenyi Biotec),
anti-TCRVδ2 - PerCP (BioLegend), anti-CD161 - BV711
(BD Bioscience) and anti-TCRVα7.2 – BV785 (BioLe-
gend), plus, Panel 1: anti-CCR5 – APC, anti-CCR6 – PE,
anti-CXCR3 – PE-Dazzle, anti-CXCR4 – BV421, anti-
CD38 – BV605, and anti-CD69 – FITC (all BioLegend);
Panel 2: anti-NKG2D –BV605 (BD Bioscience), anti-
CD94 – FITC, anti-Tim3 – PE-Dazzle, anti-PD-1 –
BV421, anti-ILT2 – PE, anti-CD158b – APC (all BioLe-
gend); and Panel 3: anti-CD16 – FITC (BD Bioscience),
anti-KLRG1 – PE, anti-CTLA4 – BV421, anti-CD57 –
PE-Dazzle, anti-CD56 – APC (all BioLegend). Before ac-
quisition, cells were fixed with 1% paraformaldehyde.
Samples were acquired on a BD LSR II Fortessa (BD
Bioscience). Ultra Comp eBeads (Thermo Fisher Scien-
tific) were used for compensation, except for anti-CD57
– PE-Dazzle and the Zombie NIR Fixable Viability dye,
for which compensation was done with PBMCs. Anti-
TCRVδ1 - PE-Vio770 was compensated using the
MACS Comp bead Kit, anti REA (Miltenyi Biotec). Data
were analyzed using FlowJo software (TreeStar). All re-
sults shown included gating on lymphocytes, single cells,
and live cells. Detailed subset analysis of γδ T cells was
performed by gating on TCRγδ+/TCRVδ1+ or on
TCRγδ+/TCRVδ2+ cells. MAIT cells gated based on
TCRVα7.2+/CD161+. Subset analysis was only performed
when a threshold of 100 detected events for the parental
population was reached.

Quantification and statistical analysis
Results on frequencies of δγ T cells, Vδ1, Vδ2 cells, and
MAIT cells were extracted from all three panels. The
mean frequency was calculated and used for further ana-
lysis. Data was only plotted when results were available
for four or more patients per group. Statistical data ana-
lyses were performed using GraphPad Prism 8 software
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(GraphPad). The ROUT method was used for the identifi-
cation of outliers. Data were subjected to a Wilcoxon signed-
rank test or Kruskal-Wallis with Dunn’s multiple comparison
test. P values were considered as significant at p < 0.05.
All analysis was performed within the R statistical

computing environment, version 3.6.3 [68]. FACS data
from the three panels (CCR, Exhaustion and NK) and
population (MAIT, Gamma-delta VdX, Vd1 and Vd2)
were analyzed independently, using a common analytical
framework described here. Data was first zero-centered
on gate-values for each marker and arcsin transformed
before dimensional reduction and clustering using Rphe-
nograph [69]. The proportions of HC, HIV+ w/o HL and
HIV+ HL+ cells and median marker expression within
each cluster were calculated and heatmapped to visualize
phenotypic signatures. To train the SVM classifier, a
training set containing equal numbers of cells from each
of the three conditions was obtained by sampling using
the caret package [70]. Training data for each population
(MAIT, Gamma-delta VdX, Vd1 and Vd2) were used to
build separate SVM model using the e1071 package [71]
under default parameters. These models were then used
to predict condition (HC, HIV+ w/o HL or HIV+ HL+) for
each cell in the dataset with probabilities for each condi-
tion. The median predicted condition probability was cal-
culated for each phenograph cluster. Similarly, down-
sampled datasets were presented to the DDRTree and
Slingshot [72, 73] algorithms for pseudotemporal ordering
based on phenotypic markers (i.e., non-lineage) alone.

Results
Patient characteristics
We screened the entire SHCS cohort for cryopreserved
PBMC samples of HIV-infected individuals developing

NADCs and identified a group of 10 patients developing
HL (HIV+ HL+) (Table 1). Even though the SHCS en-
rolls more than 70% of all HIV-infected individuals in
Switzerland [67], the number of patients with other
NADCs and sufficient sample availability was 2 to 3 and
thus did not justify their inclusion in our study. In
addition, we included matched HIV-negative healthy
controls (HC) in this study (n = 10) (Table 1). The iden-
tification of the specimens at the various time points
was only feasible thanks to the biannually biobanking of
specimens from all patients in the SHCS cohort.

Dynamics of T cell populations in HIV-infected patients
with and without HL
We analyzed CD4+ and CD8+ T cell counts and frequen-
cies of TCR γδ and MAIT cells in the PB of HIV-
infected individuals prior to cART, 1–2 years after the
suppression of plasma viremia, 0–1 year before HL
diagnosis.
The CD4+ T-cell counts were similar between HIV-

infected individuals developing HL and their matched
HIV-infected controls prior to cART or 1–2 years after
successful cART. However, we observed a significantly
lower CD4+ T cell count in HIV+ HL+ patients just prior
to its diagnosis than in HIV+ w/o HL patients (Fig. 1a).
The CD8+ T-cell counts were similar between the
groups at all times assessed (data not shown).
Further, we observed a significant decrease of MAIT

cells in HIV-infected patients irrespective of HL, which
did not recover following cART (Fig. 1b). TCR γδ T sub-
set analyses revealed a significant expansion of the Vδ1
cell subset in HIV-infected patients w/o HL under cART
as compared to HCs (Fig. 1c). At the same time, Vδ2
cells in PB were significantly reduced irrespective of HL

Table 1 SHCS Patient Characteristics

HIV+ w/o HL group (n =
10)

HIV+ HL+ group (n =
10)

w/o HL vs. HL+ (p-
value)

Gender

Male 10 10 NA

Ethnicity

Caucasian 10 10 NA

Age at HIV diagnosis, median (IQR) 34.5 (28.75, 38) 31 (26.75, 39) 0.1211

Baseline plasma viral load (copies per ml), median (IQR) 25,865 (11,730, 51,475) 24,092 (14,550, 739,500) 0.1602

Baseline CD4+ T cell count per ul, median (IQR) 523 (368, 602) 448 (310, 526) 0.3750

Years between HIV diagnosis and initiation of cART, median
(IQR)

3 (1.5, 3.25) 2 (0, 2.5) 0.4688

Duration cART in days, median (IQR) 976 (717, 1457) 1382 (568, 2328) 0.3750

cART included EFV (%) 30% 60% 0.3698i

Age at HL diagnosis,
median (IQR)

NA 39 (34, 44.25)

Abbreviations: cART combined antiretroviral therapy, HL Hodgkin’s lymphoma, EFV Efavirenz
Statistical analysis: Wilcoxon signed-rank test and iexact Fisher’s test
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(Fig. 1d). This led to an inversion of the Vδ1/ Vδ2 ratio
in all HIV-infected patients, which differed significantly
from the ratio detected in HCs (Fig. 1e). We did not ob-
serve any differences for TCR VδX cells between HIV+

HL+, HIV+ w/o HL and HC at any time point (Fig. 1f).
In conclusion, the overall frequencies of γδ T or MAIT
cells were similar in HIV-infected patients irrespective of
HL diagnosis whereas the CD4+ T cell counts were sig-
nificantly lower in HIV+ HL+ patients just prior to HL
diagnosis as compared to HIV+ w/o HL patients.

HIV infection leads to an increase in activation and
exhaustion marker expression
Next, we investigated whether TCR γδ and MAIT cells
differ between HIV+ HL+ patients, their HIV+ w/o HL

matched controls and HCs in their activation and ex-
haustion status.
We observed main differences between HIV-infected

patients irrespective of HL vs. HC. Namely, the fre-
quency of Vδ1 cells expressing the activation marker
CD38 increased significantly upon HIV-infection and
decreased upon long-term cART (Fig. 2a). This in-
creased frequency of CD38+ Vδ1 cells was not observed
for MAIT cells (Fig. 2e). Cells expressing the activation
marker CD69 showed a similar trend of higher frequen-
cies in HIV infection but was highly variable with solely
a significant increased frequency of CD69+ MAIT cells
in HIV+ w/o HL patients 0–1 years prior to HL diagnosis
(Fig. 2b and f).
The frequencies of cells expressing the exhaustion

marker PD-1 was highly variable across and within the

Fig. 1 Longitudinal analysis of T cell populations in the PB of HIV-infected individuals with and without HL. a CD4+ T cell count per μl in the PB
of HIV-infected individuals developing HL (HIV+ HL+) and matched controls (HIV+ w/o HL). b-e Distribution of γδ T cells and MAIT cell in the PB of
HIV-infected individuals developing HL (HIV+ HL+), matched controls (HIV+ w/o HL), and healthy controls. b Frequencies of MAIT cells of total
lymphocytes. c Frequencies of Vδ1 cells of γδ T cells. d Frequencies of Vδ2 cells of γδ T cells. e Ratio of Vδ1 cells and Vδ2 cells. f Frequencies of
VδX cells of total lymphocytes. Whiskers represent minimum and maximum. Analysis of HIV+ HL+ group versus HIV+ control group w/o HL by
Wilcoxon signed-rank test, comparison of HIV-infected groups versus HC by Kruskal Wallis with Dunnett’s multiple comparison test. * without
indicating line represent significance compared to healthy control. **** p≤ 0.0001; *** p ≤ 0.001; ** p ≤ 0.01; *p ≤ 0.05. (PB) peripheral blood, (HL)
Hodgkin’s lymphoma, (MAIT) Mucosal associated invariant T cells
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groups at all times assessed with only significant
increases of Vδ1 cells in viremic HIV+ HL+ pa-
tients, and of MAIT cells in HIV+ HL+ patients
just prior to HL diagnosis (Fig. 2c and g). The
frequencies of Vδ1 cells expressing Tim-3 were

overall significantly higher throughout HIV infec-
tion when compared to those detected in HCs
(Fig. 2d). In MAIT cells, no significant differences
in the frequencies of Tim-3+ cells were observed
(Fig. 2h).

Fig. 2 Activation and exhaustion marker analysis on Vδ1 and MAIT cells of HIV-infected individuals with and without HL. a-d Frequency of Vδ1
cells positive for activation marker (CD38 and CD69) and exhaustion maker (PD-1 and Tim3) expression. e-h Frequency of MAIT cells positive for
activation marker (CD38 and CD69) and exhaustion maker (PD-1 and Tim3) expression. Whiskers represent minimum and maximum. Analysis of
HIV+ HL+ group versus HIV+ control group w/o HL by Wilcoxon signed-rank test, comparison of HIV-infected groups versus HC by Kruskal Wallis
with Dunnett’s multiple comparison test. * without indicating line represent significance compared to healthy control. **** p ≤ 0.0001; *** p≤
0.001; ** p ≤ 0.01; *p ≤ 0.05. (PB) peripheral blood, (HL) Hodgkin’s lymphoma, (MAIT) Mucosal associated invariant T cells
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Overall, Vδ1 cells and MAIT cells with an activated
and exhausted phenotype were more frequent upon HIV
infection, which was only partially reverted upon long-
term cART.

Expression of tissue homing receptors on γδ T cells and
MAIT cells is altered upon HIV infection
We also determined the expression of different tissue
homing receptors in our cohort, including CXCR3,
CCR6, as well as CXCR4 and CCR5, with the latter two
serving as viral co-receptors during entry of HIV. Not-
ably, homing is a very critical function for immunosur-
veillance and its dysfunction a potential indication for
insufficient control of infections or tumors.
The frequency of CCR5+ Vδ1 cells was significantly

higher in HIV+ w/o HL vs. HIV+ HL+ 0–1 years prior to
HL diagnosis (Fig. 3a). Instead, a slight but significant
decrease in the frequency of CCR5+ MAIT cells was ob-
served upon infection with HIV irrespective of HL (Fig.
3d).
Overall, the frequencies of CXCR4+ Vδ1 and CXCR4+

MAIT cells were very heterogeneous in HCs and HIV-
infected individuals (Fig. 3b and e). Notably, the frequen-
cies of CXCR4+ MAIT cells tended to be higher in HIV
infection with a significant increase during the viremic
phase and 1–2 years after HIV suppression (Fig. 3e). Fur-
ther, we found a trend towards a decrease of CXCR3+

Vδ1 and MAIT cells in HIV infection (Fig. 3c and data
not shown). CCR6+ Th17-like Vδ1 cells were barely de-
tectable in all groups (data not shown). In MAIT cells,
the majority displayed a CCR6+ Th17-like phenotype,
and the frequency of these cells was significantly re-
duced upon HIV-infection (Fig. 3f).

Characterization of natural killer cell markers expression
The phenotype of TCR γδ and MAIT cells was further
assessed by investigation of different natural killer (NK)
cell-associated receptors. We detected a significantly
higher frequency of CD16+ Vδ1 and Vδ2 cells in the PB
of HIV+ w/o HL as compared to HC and to HIV+ HL+

at various time points (Fig. 4a and Supp. 1E). MAIT cells
did not express CD16 (data not shown).
The NK cell-associated receptors CD94 and ILT-2

were expressed by a substantial fraction of Vδ1 cells
upon HIV infection (Fig. 4b and c). The percentages of
CD94+ Vδ1 cells tended to remain elevated despite long-
term cART (Fig. 4b). The inhibitory ILT2 receptor was
expressed by the majority of TCR Vδ1 cells in HCs and
the frequency of these cells tended to increase further
upon HIV infection (Fig. 4c). In contrast, only a small
fraction of MAIT cells were ILT-2+ (Fig. 4g).
The frequencies of Vδ1 cells expressing inhibitory

killer cell immunoglobulin-like receptor (KIR) CD158b
were significantly increased upon HIV infection.

Frequencies of CD158b+ Vδ1 cells tended to be higher
in HIV+ w/o HL individuals than in HIV+ HL+ patients
(Fig. 4d). CD94 and CD158b expression was barely de-
tectable on MAIT cells (data not shown). KLRG1 and
NKG2D were expressed by the majority of MAIT cells
in HC and HIV+ individuals (Fig. 4f and h), but barely
detectable on Vδ1 cells.
Taken together, these findings showed a long-term im-

pact of HIV-infection on the frequencies of TCR Vδ1
cells expressing particular NK cell markers, and their
frequencies remained even under successful cART.

Analyses of Vδ2 and the VδX cells
Notably, we also extracted the data for the TCR Vδ2
and TCR VδX cells from our flow cytometric analyses
(Suppl. Figures 1 and 2). The overall number of TCR
Vδ2 cells were rather limited, and the expression pattern
of TCR VδX did reveal only for a few significant differ-
ences, thus we only present a subset of the data. Similar
to the data in TCR Vδ1 cells, we observed a higher fre-
quency of TCR Vδ2 cells with an activated phenotype
and with a decrease in the homing molecule CXCR3 in
HIV infection (Suppl. Figure 1A and B). Notably, the
TCR Vδ2 cells in patients w/o HL presented a higher
frequency of CD16+ and KLRG1+ cells as compared to
HIV+ HL+ patients. In synopsis, HIV+ w/o HL have
more terminally differentiated cells (Suppl. Figure 1F
and G) and cells expressing CD16 (Suppl. Figure 1E)
than HIV+ HL+ patients. We also observed similarities
between TCR Vδ1 and VδX cells. Namely, the higher
frequency of CCR5+ cells in HIV+ w/o HL patients 1–2
years suppression and prior to diagnosis and the in-
creased frequencies of CD158b+ cells in viremic HIV+

w/o HL patients (Suppl. Figure 2A and D). Further,
HIV-infected patients irrespective of HL presented lower
frequencies of CCR6+ VδX at all times assessed (Suppl.
Figure 2B) and CXCR4+ VδX cells during the viremic
state compared to healthy controls (Suppl. Figure 2C).
Apart from those findings, the cell frequencies did not
differ significantly between the three groups analyzed.

Clustering and phenotypic signature analysis of FACS
panels
To identify discrete phenotypes within MAIT, TCR Vδx,
Vδ1 or Vδ2 populations that distinguish or predict HL
within HIV+ patients, we used PhenoGraph [74] for
visualization and clustering of high-dimensional FACS
data. We sought to identify clusters containing a high
majority of cells from HIV+ HL+ patients, indicating a
population of cells specific to HIV+ HL+ vs. HIV+ w/o
HL patients or HC. In general, the clustering analysis in-
dicated that MAIT and TCR Vδx, Vδ1 or Vδ2 popula-
tions in both HIV+ HL+ and HIV+ w/o HL patients
shared phenotypes and clustering is most likely driven
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by differences caused by HIV infection and not HL
(Suppl. Figures 3, 4, 5).
Given the complexity of the clustering and difficulty in

identifying populations with phenotypic signatures
unique to HIV+ HL+ patients, we trained support vector
machine (SVM) classifier models to predict whether a
cell comes from HC, HIV+ HL+ or HIV+ w/o HL.
Ideally, the probability distributions for the SVM’s pre-
diction should show discrete peaks of high-probability
for each of the three groups (HIV+ HL+, HIV+ w/o HL
and HC). Instead, we observed that in each population
the probability curves for both HIV+ HL+ and HIV+ w/o
HL predictions overlapped and the models yielded rela-
tively poor predictions overall, suggesting that pheno-
types in both groups were too similar to be
distinguished (Suppl. Figures 6, 7, 8) and no phenotypic

signatures could be attributed to HIV infection with or
without HL.
Since the data contained two time-variables (duration

of infection and duration of treatment), we next
attempted to establish whether there was any time-
dependent effect on phenotypes. Therefore, we per-
formed pseudotime analysis using DDRTree trained on
the expression data [73, 75](Suppl. Figures 9, 10, 11). If
any time-dependent effects on the phenotype were
present, a gradient in infection-duration or treatment-
duration in relation to the predicted trajectories would
have been clearly observed. However, in agreement with
the clustering and SVM classifier, cells from HIV+ HL+

and HIV+ w/o HL patients and HC were generally
evenly distributed across the tree, indicating that the
phenotype of these cell populations in these panels was

Fig. 3 Tissue homing receptor expression on Vδ1 and MAIT cells of HIV-infected individuals with and without HL. a-c Frequencies of Vδ1 cells
expression CCR5, CXCR3, and CXCR4. d-f Frequencies of MAIT cells expression CCR5, CXCR4, and CCR6. Whiskers represent minimum and
maximum. Comparison of HIV-infected groups versus HC by Kruskal Wallis with Dunnett’s multiple comparison test. * without indicating line
represent significance compared to healthy control. **** p≤ 0.0001; *** p≤ 0.001; ** p≤ 0.01; *p≤ 0.05. (PB) peripheral blood, (HL) Hodgkin’s
lymphoma, (MAIT) Mucosal associated invariant T cells
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independent of disease condition. Nevertheless, three popu-
lations in separate FACS panels appear to have
pseudotemporal-dependent distributions in the DDR Trees,
namely MAIT cells in the CCR panel (Fig. 5A), TCR Vδ1
cells in the exhaustion panel, and TCR Vδ2 cells in the NK

panel (Fig. 5B and C). However, there was no correlation be-
tween pseudotime and duration of viral suppression or dis-
ease, indicating that phenotype and therefore,
pseudotemporal ordering is driven by HIV infection and not
Hodgkin’s lymphoma as indicated by the violin plots.

Fig. 4 Characterization of natural killer cell marker and receptor expression on Vδ1 and MAIT cells of HIV-infected individuals with and without
HL. a-d Frequencies of Vδ1 cells being CD16+, CD94+, CD158b+, and ILT2+. e-h Frequencies of MAIT cells expressing CD57, KLRG1, NKG2D, and
ILT2. Whiskers represent minimum and maximum. Analysis of HIV+ HL+ group versus HIV+ control group w/o HL by Wilcoxon signed-rank test,
comparison of HIV-infected groups versus HC by Kruskal Wallis with Dunnett’s multiple comparison test. * without indicating line represent
significance compared to healthy control. **** p ≤ 0.0001; *** p≤ 0.001; ** p≤ 0.01; *p≤ 0.05. (PB) peripheral blood, (HL) Hodgkin’s lymphoma,
(MAIT) Mucosal associated invariant T cells
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Discussion
In the present study, we investigated whether TCR γδ
and MAIT cells differ in HIV-infected individuals devel-
oping HL from HIV-infected individuals, which

otherwise are healthy. The main findings were: i) an as-
sociation of a lower CD4+ T cell count and HL risk 0–1
year before HL diagnosis, and ii) prominent phenotypic
changes between HIV infected patients irrespective of

Fig. 5 Pseudotemporal ordering of MAIT, Vδ1 and Vδ2 populations. Data for each population, down-sampled evenly over patients, conditions
and time-points to 1e4 cells, was used to predict phenotype trajectories using DDRTree and Slingshot. Predicted trajectories, labelled within each
tree, show imbalanced distributions of cells from HC, HIV and HIV HL patients in response to CCR expression in MAIT cells (A), exhaustion marker
expression in Vδ1 (B) and NK marker expression in Vδ2 cells (C). Asterisks indicate significance of permutation tests (*** p < 0.001)
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HL vs. HC. We observed subtle phenotypic changes in
TCR Vδ1 and MAIT cells potentially going along with a
greater functional impairment in HIV-infected individ-
uals developing HL. However, clustering and SVM ana-
lyses of the data did not identify the presence/loss of
unique cell populations associated with HL develop-
ment. In fact the DDRtree algorithm also supported that
the phenotypes observed was driven by HIV infection
and not by HL.
Even though we screened the entire SHCS cohort, we

only identified a limited number of HIV-infected pa-
tients developing HL. For each HIV+ HL+ patient, we
had a matched control.
The CD4+ T-cell count, prior to cART, and its initial

increase in response to cART were similar in both HIV-
infected patient groups. In contrast, the CD4+ T cell
counts 0–1 year prior to HL diagnosis were lower in pa-
tients with HL. This is in line with studies by the French
Hospital Database on HIV and Collaboration of Obser-
vational HIV Epidemiological Research in Europe (CO-
HERE), strengthening the potential of the CD4+ T cell
count as a surrogate marker to identify HIV+ patients
with a high risk to develop HL [17, 76–78]. The decline
in the CD4+ T cell count might be explained by the se-
questration of lymphocytes to the growing tumor, or by
a lack of continuing T-cell recovery, which might result
in a lack of EBV-specific CD4+ T cells, which are im-
portant for the immune surveillance of EBV-infection
[79–83].
In addition to the CD4+ T cell count, Powls et al. iden-

tified an association between the treatment with the
non-nucleoside reverse transcriptase inhibitor efavirenz
and HL risk, whereas more recent investigations did not
identify an association between EFV and HL risk [84–
86]. In our study, 6 out of 10 HIV+ HL+ patients re-
ceived EFV versus 3 out of 10 of HIV-infected matched
controls. However, our sample size did not permit any
reasonable statistical analysis.
We did not observe any difference of the overall frequency

of TCR γδ T or MAIT cells between HIV-infected patients
± HL. The overall effect of HIV infection on γδ T cells in
the PB is in agreement with previous studies, reporting an
expansion of TCR Vδ1 cells and a decline of TCR Vδ2 cells,
resulting in an inverted Vδ1/Vδ2 ratio [42, 44, 46], and lack
of recovery of the altered Vδ1 and Vδ2 distribution upon
cART [45]. Similarly, we found a non-reversible reduction of
MAIT cells in the PB as previously reported [64].
As cell frequencies and total cell counts alone are not

sufficient to determine the involvement of each T cell
population in the disease progression, we performed a
detailed phenotypic analysis of TCR γδ and MAIT cells
in our cohort. The phenotypic analysis comprised im-
mune activation, exhaustion, homing, NK receptor as
well as inhibitory markers.

The longitudinal analysis of TCR Vδ1 cells expressing
the activation marker CD38 showed an HIV-associated
increase similar to what is described for its expression
on TCR αβ cells, and in some studies on total TCR γδ
cells or on the TCR Vγ9Vδ2 population [87–93]. The in-
crease in the frequency of CD69+ MAIT cells was very
subtle and in line with earlier observations [63–65, 94].
The frequencies of TCR Vδ1 cells expressing the inhibi-
tory receptors PD-1 and TIM-3 and of MAIT cells ex-
pressing PD-1 were overall increased in HIV-infected
individuals. Thus, we observed an activated and an
exhausted phenotypic profile of these innate immune
cells in HIV-infected patients. In fact, HIV-associated T
cell activation persists in all kinds of investigated T cell
subsets, even in successfully treated HIV-infected pa-
tients without detectable viremia, and whether it ham-
pers T cell functions and contributes to T cell
immunosenescence remains to be further investigated
[95–97].
We also investigated the homing capacities of TCR γδ

and MAIT cells in the same patient cohort by studying
the expression pattern of CXCR3, CXCR4, CCR5 and
CXCR6. The chemokine receptors CXCR3 and CCR5
guide T cells to sites of infection, inflammation and tu-
mors in response to chemokines released by inflamma-
tory tissue and tumor cells [98–100]. CXCR4 is
important for homing to the bone marrow [101], and
CCR6 is also involved in regulating mucosal immunity,
as well as homing of lymphatic cells to the gut mucosal
lymphoid tissue [102] and correlates with a Th17-like
functional phenotype [55]. TCR γδ cells showed only
minor differences between HIV+ patients and HC. In-
stead, MAIT cells expressing CCR5 and CCR6 showed
lower frequencies in HIV infection as compared to HCs
and their frequencies remained significantly lower even
during cART. These results suggest that MAIT cells in
HIV-infected individuals might be compromised in their
ability to produce IL-17 as well as their homing capacity
to specific tissues and sites of inflammation as compared
to HCs [55, 103]. We noted a higher frequency of TCR
Vδ1 cell and MAIT cells expressing CCR5 and CXCR4,
respectively, in HIV+ patients w/o HL as compared to
HIV+ HL+ patients just prior to the diagnosis of HL.
These findings might point to a particular dysfunction of
those cells in the latter group.
We next determined the frequency of cells expressing

NK markers and co-stimulatory or inhibitory receptors.
A large number of TCR Vδ1 cells expressed CD16 in
HIV+ w/o HL patients and their frequency was higher in
cART treated HIV+ w/o HL patients than in HIV+ HL+

patients. As CD16a is the Fcγ IIIa receptor involved in
antibody dependent cytotoxicity and phagocytosis, the
observed discrepancy could point to a causal role in the
pathogenesis of HL.
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TCR Vδ1 cells expressing the inhibitory KIR molecule
CD158b also showed a higher frequency in HIV+ w/o
HL patients compared to HC. Previous studies showed a
potent inhibitory effect of KIR molecules on antigen
stimulation of TCR γδ cells [104]. Furthermore, in HIV-
infected patients an upregulation of KIR expression on
CD8+ T cells was found, which inhibited their TCR-
dependent stimulation [105].
When we performed clustering of high-dimensional

FACS data, we found a similar distribution in HIV+ w/o
HL and HIV+ HL+ individuals of all TCR γδ populations
and MAIT cells. Notably, different clustering was instead
observed in healthy controls, thus indicating that the ob-
served differences are driven by differences caused by
HIV infection and not HL. The analysis performed with
a support vector machine classifier also showed overlap-
ping probability curves for both HIV+ w/o HL and HIV+

HL+ patients. Clear differences were instead observed
between HIV-infected and HC and only for the TCR
Vδ1 population. Finally, when we analyzed a possible
time-dependent effect on phenotypes, we did not see dif-
ferences between the two groups of HIV+-patients, con-
firming the SVM analysis.
In conclusion, our study provides additional evidence

for the ambiguous lower CD4+ cell counts just prior to
HL as compared to their matched controls even though
patients were treated successfully with cART. Our re-
sults showed subtle differences between populations of
TCR γδ and MAIT cells in HIV+-patients with vs. with-
out HL. To what extent these subtle differences contrib-
ute to the pathogenesis of HL remains unknown. Future
studies need to address their potential role in the devel-
opment of NADCs in HIV-infected individuals, and
whether they might be exploited in novel types of cell
therapy.
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