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Abstract

Chronic Infection of Hepatitis B virus (HBV) is one risk factor of hepatocellular carcinoma (HCC). Much effort has
been made to research the process of HBV-associated HCC, but its molecular mechanisms of carcinogenesis remain
vague. Here, weighted gene co-expression network analysis (WGCNA) was employed to explore the co-expressed
modules and hub/key genes correlated to HBV-associated HCC. We found that genes of the most significant
module related to HBV-associated HCC were enriched in DNA replication, p53 signaling pathway, cell cycle, and
HTLV-1 infection associated pathway; these cellular pathways played critical roles in the initiation and development
of HCC or viral infections. Furthermore, seven hub/key genes were identified based on the topological network
analysis, and their roles in HCC were verified by expression and Kaplan-Meier survival analysis. Protein-protein
interaction and KEGG pathway analysis suggested that these key genes may stimulate cellular proliferation to
promote the HCC progression. This study provides new perspectives to the knowledge of the key pathways and
genes in the carcinogenesis process of HBV-associated HCC, and our findings provided potential therapeutic targets
and clues of the carcinogenesis of HBV-associated HCC.
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Introduction
Hepatocellular carcinoma (HCC), which is also known as
primary liver cancer, is one of the common malignant tu-
mors, and the 2nd leading cause of cancer-related death
worldwide [1, 2]. The risk factors of HCC are chronic in-
fections of hepatitis viruses, diet polluted with aflatoxin,
obesity, type two diabetes, use and abuse of alcohol and
tobacco [3–5]. Among the hepatitis viruses associated
with HCC, hepatitis B virus (HBV) is responsible for about
80% of virus-related HCC cases, particularly in East Asia
and Africa [6]. HBV causes acute and chronic liver infec-
tions, which can then lead to liver cirrhosis and HCC. The

carcinogenesis of HBV-associated HCC is a complex
process, which can be summarized into the following
stages: the host inflammatory reaction against HBV, inter-
action with endogenous mutagens, integration of viral
genome DNA into cellular DNA genome, and alternating
gene expression in multiple ways [7–9]. Studies of the car-
cinogenesis molecular process and comparisons of the dif-
ference of genetic expression between HBV-associated
HCC tissues and adjacent normal tissues, will help us find
interesting and important clues of the carcinogenesis, and
may provide potential therapeutic targets of HBV-
associated HCC. Up to date genomic technologies such as
gene-array or next-generation sequence facilitate the de-
tection of the whole genome expression.
High-throughput hybridization array- and sequencing-

based experiments generate vast amount of data on the
molecular abundance of RNAs (mRNAs, miRNAs,
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lncRNAs, cirRNAs), genomic DNAs, and proteins in abso-
lute or relative terms. Public databases such as GEO and
ArrayExpress store these data and provide information for
the research community to reuse [10–12], and many data
analysis tools and methods have been developed to reana-
lyze or reuse these data in order to get some new interest-
ing results. Among these methods, weighted gene co-
expression network analysis (WGCNA) is a powerful sys-
tems biological method to find co-expressed modules and
hub/key genes in transcriptomics, proteomic and metabo-
lomic studies [13–15]. Gene co-expression network ana-
lysis enables us to systematically analyze large, high-
dimensional data sets. WGCNA groups genes into a mod-
ule/network according to pairwise correlations between
genes of their similar expression profile; furthermore,
these models may correlate to some special clinical traits
of interest, such as tumor stages, ages, gender and other
biological characteristics or traits that we are interested in.
The objective of the present study is to explore novel

genes or pathways relating HBV-related HCC through the
data mining of public databases. In this study, we reana-
lyzed a GEO data set (GSE121248) of the HBV induced
HCC and adjacent normal tissues, and then constructed a
gene co-expression network based on WGCNA and then
identified 21 modules based on the gene expression data
sets. According to the results of WGCNA, there were six
modules significantly correlated to the tumor trait in our
study; especially the turquoise module, which is distin-
guished in WGCNA, is the most significant module corre-
lated to the tumor trait. The co-expression network of
these genes in the turquoise module was analyzed by
Cytoscape network topological analysis tool “cytoHubba”
plugin to get the hub or key genes in the network. Finally,
seven hub/key genes were found correlating to HBV-
associated HCC tumor trait; based on TCGA database
tools, these key genes’ expression levels showed significant
differences between people without HCC and HCC pa-
tients, and the expression levels of these hub/key genes
also influence the survival of HCC patients significantly.
With the help of WGCNA and net topological algorithms,
several new key genes correlating to HBV associated HCC
were found, while these genes have not been paid close at-
tention to in the original paper that the GEO data set
came from; we also predicted the functions of these genes
and hope to provide some useful information to interested
researchers. These genes or other cellular factors associ-
ated to these key genes could be the biomarkers and po-
tential therapeutic targets of HBV-associated HCC.

Material and methods
Data processing
The gene expression data set GSE121248 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121248),
which is provided by Hui KM [16], was downloaded

from the Gene Expression Omnibus (GEO) database
[17]. Briefly, 107 tissue samples included 70 chronic
hepatitis B induced HCC and 37 adjacent normal tissues.
All the tissues were obtained from patients who under-
went partial hepatectomy as a treatment for HCC. To
assess recurrence, all treated HCC patients were moni-
tored by routine clinical follow up once every 3months.
The detailed information of the study population was
provided in supplementary files of Hui KM’s original art-
icle [16] and our supplementary files. The RNAs were
extracted from all tissue samples, and the reversed tran-
scription DNAs were hybridized on the human U133
plus 2.0 arrays (Affymetrix, Santa Clara, CA, USA).
Affyand-related R packages were used to process all the
raw data. Robust Multi-array Average approach was
used to normalize the background of raw data according
to the package instruction. The expression set was proc-
essed through the nsFilter function to filter features
exhibiting little variation or a consistently low signal
across samples [18].

Weighted gene co-expression network analysis (WGCNA)
The freely accessible R package WGCNA (v 1.66) was
taken to co-expression analysis [15]. According to the in-
struction, one-step network construction and module de-
tection was taken; 15,139 annotated genes were used to
construct the network. According to the software instruc-
tion, the module eigengene expression, adjacency matrix
heatmap, Module-Trait relationships, and other related
parameters/results were calculated and visualized. Briefly,
the network type is chosen as an unsigned network, and
the correlation method is Pearson correlation.

GO term and KEGG pathway enrichment analysis
Based on Bioconductor packages “clusterProfiler”, GO
term enrichment analysis including biological process,
cellular component and molecular function, was used to
explore the biologic significance of selected module
genes. With the same Bioconductor packages “cluster-
Profiler”, we also performed the KEGG pathway enrich-
ment analysis of the selected module genes [19].

Key genes identification of the selected module
To identify hub/key genes of the selected module, the
Cytoscape software (3.7.1) was utilized to construct of
the network of the module genes. The important nodes
(key genes) were predicted and explored by “cytoHubba”
plugin [20]. The topological algorithms of “cytoHubba”
consist of Degree, Edge Percolated Component (EPC),
Maximum Neighborhood Component (MNC), Density
of Maximum Neighborhood Component (DMNC), Max-
imal Clique Centrality (MCC) and centralities based on
shortest paths, such as Bottleneck (BN), EcCentricity,
Closeness, Radiality, Betweenness, and Stress, were
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applied to get respective top 20 ranked genes set. Then,
the intersection of nine top 20 ranked genes sets were
identified as the key genes.

Expression on box plots
The website GEPIA (http://gepia.cancer-pku.cn/index.html)
was taken to box plot the expression of the key genes [21].
According to the web tutorial, the liver hepatocellular carcin-
oma (LIHC) dataset was chosen; log2(TPM+1) was used as
log scale; jitter size was 0.4; the normal data for control was
match GTEx data and TCGA normal.

Kaplan-Meier survival analysis
KM-plotter (http://kmplot.com/analysis/) was employed
to perform the survival analysis of the combination and
respective key genes [22]. Briefly, Liver Cancer RNA-seq
data set was selected; patient groups were split by me-
dian expression of the gene (auto select best cutoff);
overall survival was applied.

Prediction of the functions of key genes
The GeneMANIA Cytoscape plugin was used to predict
the functions of key genes [23, 24]. The identified key
genes were inputted as a query gene set. Based on Homo
sapiens database of GeneMANIA, a network of query
genes and result genes was constructed and visualized
by Cytoscape. The distinctive relationships between the
genes, including co-expression, co-localization, genetic
interaction, pathway, physical interaction, shared protein
domains, and predicted relations, were indicated by dis-
tinct color lines. In order to show the KEGG pathways
of the key/hub genes, an R/Bioconductor package named
Pathview was applied to visualize the concerned KEGG
pathways [25].

Results
Data processing
GSE121248 raw files (.CEL format), which contains a
total of 107 tissue sample were downloaded from the
NCBI website (ftp://ftp.ncbi.nlm.nih.gov/geo/series/
GSE121nnn/GSE121248/). The files were then trans-
ferred to expression matrix using the RMA algorithm
based on R language, including background correction,
normalization and summarization. (Supplementary Fig-
ure 1: (A) Box plot of relative log expression (RLE) and
(B) Box plot of normalized unscaled standard errors
(NUSE)). After annotation and nsFilter processing, there
were 15,139 genes from all 54,675 probes for further
WGCNA analysis. In order to give an outline of our
study design, a workflow is shown in Fig. 1.

Weighted gene co-expression network identification of
modules construction
The co-expression network was constructed from the fil-
tered annotated genes, in which 21 modules were identi-
fied. Before the net construction, the samples were
clustered to see if there are any obvious outliers, and it
appears that there was no outlier (see supplementary
Figure 2). As shown in Fig. 2(a) and (b), the soft thresh-
old power 5 was chosen to define the adjacency matrix
based on the criterion of approximate scale-free top-
ology, and the minimum module size was 21. The mod-
ules with different colors were shown in Fig. 2(c); the
module grey (MEgrey) is reserved for genes outside of
all modules. To show the co-expression relationship be-
tween the genes on genome level, 400 genes were ran-
domly selected to plot the network heatmap as shown in
supplementary Figure 3.

Correlation between each module and clinical traits
To figure out the interactions among these 20 co-expressed
modules (except MEgrey, which is reserved for genes outside
of all modules by WGCNA), we analyzed the connectivity of
eigengenes. As shown in Fig. 3(a), a cluster analysis was per-
formed; 20 modules were classified into two clusters, and
each cluster contains two main branches. Figure 3(a) and (c)
showed a significant difference among the 21 modules. There
are multiple modules related to the clinical trait between
tumor samples and adjacent normal samples. The module-
trait heatmap represents the correlations of the module eigen-
genes with traits. When that correlation is positive, it means
the eigengene increases with increasing trait. Generally, in a
signed network, where all genes in a module are positively
correlated with the eigengene, it means that all genes in the
module should follow the same pattern of increasing expres-
sion with increasing trait values; on the contrary, in an un-
signed network, which is actually the case in our study, there
are also some genes that have the opposite behavior com-
pared with the eigengene. It means that we do not know for
sure if the expression of genes in the modules actually in-
creases or decreases, but we know the expression definitely
changes. As shown in Fig. 3, the midnight blue, magenta, tur-
quoise, royal blue modules were positively related to the
tumor trait, especially the turquoise module (MEturquoise)
was the most significantly relative module to the tumor trait
(correlations 0.8, p value 5 × 10−25). On the other hand, the
blue, tan, yellow modules were negatively related to the tumor
trait. There was no module significantly related to the gender
trait, and it is releasable. Interestingly, the salmon module
(MEsalmon) was slightly related to the age trait.

Functional enrichment and pathway analysis of the key
module genes
Because MEturquoise is the most relevant module re-
lated to the tumor trait, we did the further functional
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assay of the genes in turquoise module. As shown in
Fig. 4(a), the higher module membership genes in
MEturquoise are the more significant genes for the
tumor trait; they have a strong positive correlated rela-
tionship. Then, we did GO term enrichment analysis of
MEturquoise genes. As to molecular functions in Fig.
4(b), the MEturquoise genes considerably enriched in
ATPase activity, catalytic activity (acting on RNA or
DNA), helicase activity, macromolecule binding (such as
tubulin, ribonucleoprotein complex, single-stranded
DNA, damaged DNA). For biological process as shown
in Fig. 4(c), the MEturquoise genes significantly enriched
in organelle fission, nuclear division, chromosome func-
tions (such as segregation, organization). With regard to
cellular component in Fig. 4(d), the MEturquoise genes
significantly enriched in a chromosomal and

microtubule region, including normal or condensed
chromosome, centromere, kinetochore, telomere. In
order to get the pathway involved MEturquoise genes,
KEGG pathway analysis was taken. As shown in Fig.
4(e), several significant enriched pathways were found,
including HTLV1 infection, RNA transport, cell cycle,
spliceosome, pyrimidine metabolism, p53 signaling path-
way, DNA replication and so on.

Network analysis of MEturquoise genes
In order to identify the hub genes or key genes of the
module turquoise, the MEturquoise network file was
imported into the Cytoscape. The module net, which
has 3,600,506 edges, is too huge to be analyzed on a per-
sonal computer. The net was firstly cut off by edge
weight (more than 0.1) into 92,188 edges, and then the

Fig. 1 Flowchart of the Study. Abbreviation: GO, Gene Ontology; MF, Molecular Function; BP, Biological Process; CC, Cellular Component; KEGG,
Kyoto Encyclopedia of Genes and Genomes
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cutoff net was analyzed by “cytoHubba” Cytoscape plu-
gin. There are 12 topologic algorithms available in cyto-
Hubba plugin. The top ranking 20 genes’ sets of each
topologic algorithm were all obtained, and then the in-
tersections of all the sets were taken. There were three
sets getting none or too few genes with other sets, so
they were discarded. The sub networks of the top 20
genes of other nine topological algorithms were shown
in Fig. 5. The intersections of all nine genes’ sets were
these seven genes: CCNB1, GINS1, PRC1, KIF20A,
NUSAP1, NEK2, BUB1B. These seven genes were con-
sidered as hub genes or key genes involved in HBV asso-
ciated HCC in our study, and Table 1 showed the detail

information of these genes. The annotation of these 7
key genes was given by GEPIA website [21].

Roles of the key genes in the process of HHC
To analyze the functions of key genes, publicly available
data and tools from TCGA and GTEx databases were
applied to analyze whether these expression levels of 7
key genes were substantially different between healthy
people and HCC patients and whether the expression
levels of 7 key genes may influence the survival of HCC
patient. As showing in Fig. 6(a), the expression levels of
all seven key genes in 369 HCC tumor tissues are signifi-
cantly higher than the respective gene expression level

Fig. 2 Construction of Weighted Gene Co-Expression Network Identification of Modules. a Scale independence of network topology for different soft-
thresholding powers. The approximate scale-free topology can be attained at the soft-thresholding power of 5. b Mean connectivity of network
topology for different soft-thresholding powers. Numbers in the plots indicate the corresponding soft thresholding powers. c DEGs clustering and
module screening based on gene expression pattern. The top was gene dendrogram and the bottom was genes’ modules with different colors. A
total of 21 modules were identified
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in 160 normal tissues. As shown in Fig. 6(b), the patients
who have higher levels of expression of the key genes
show shorter overall survival periods compared with
lower expression patients.

Functional prediction of the key genes involved in HBV
associated HCC
To predicting the functions of 7 key genes, GeneMANIA
plugin (version 3.5.0) was applied to find the result genes
and construct the PPI net. As showing in Fig. 7(a), 20 result
genes were found to relate to the key genes/query genes; they
are CENPF, KIF23, CCNF, CCNA2, CENPE, NDC80,

MKI67, AURKA, TOP2A, AURKB, KIF11, CDK1, CDCA3,
HMMR, ZWINT, KIF4A, DEPDC1, CDC25C, SMC4, ASPM.
Most of the result genes are centromere proteins or involved
in cell cycle processing. GeneMANIA predicts seven differ-
ent relationships between genes/proteins based on published
papers, including co-expression, physical interactions, co-
localization, predicted relations, shared protein domains, gen-
etic interactions and pathway. These relationships were
indicted as distinct colors as shown in Fig. 7(a). From the
Fig. 7(a), the co-expression is the main relationships among
key genes and result genes. The result is intelligible, because
all the key genes are come from the same co-expression

Fig. 3 Gene Modules Identified by Weighted Gene Co-Expression Network Analysis. a Dendrogram of consensus module eigengenes obtained by
WGCNA on the consensus correlation. b Heatmap plot of the adjacencies of modules. Red represents positive correlation and blue represents negative
correlation. c Relationships of consensus module eignegenes and clinical traits. The module name is shown on the left side of each cell. Numbers in
the table report the correlations of the corresponding module eigengenes and traits, with the p values printed below the correlations in parentheses.
The table is color coded by correlation according to the color legend. Intensity and direction of correlations are indicated on the right side of the
heatmap (red, positively correlated; blue, negatively correlated)
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module; besides the co-expression, there are other important
relations predicted for us, such as co-localization, physical in-
teractions, predicted, shared protein domains, genetic inter-
actions; you can get more detailed relations in the
supplementary file (supplementary Tables 1, 2, 3). Interest-
ingly, the predicted relation was based on Stein’s work about
protein interaction network on cancer data analysis, so it in-
dicated these genes played critical roles in a carcinogenesis
process [26].

Key pathway analysis of the genes involved in HBV
associated HCC
Based on the results of key genes’ PPI net as shown in
Fig. 7(a), seven key/hub genes and 20 results genes were
used to search the key KEGG pathways; as the result of
Fig. 7(b), the CELL CYCLE (hsa04110) pathway was
regarded as the key pathway in our study. The genes
BUB1B, CCNB1, CDK1, CDC25C and CCNA2, which
were also in PPI net, take essential places in the CELL

Fig. 4 Functional Enrichment and Pathway Analysis of the Key Module Genes. a Relationship between module membership in turquoise module and gene
significance for tumor. b GO MF molecular function enrichment analysis result of turquoise module genes. c GO BP biological process enrichment analysis
result of turquoise module genes. d GO CC cellular component enrichment analysis result of turquoise module genes. e KEGG enrichment analysis results of
turquoise module genes. Pathway names are shown on the left. The size of the round represented the number of genes enriched in the corresponding
pathway. The color of the round represented the adjusted p value
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CYCLE (hsa04110) pathway. This result implicated that
HBV might influence the cell cycle pathway through
those above-mentioned genes, and eventually effect the
process of HCC. Two genes in PPI net, namely CDK1
and CycA (CCNA2), were also found in the VIRAL
CARCINOGENESIS (hsa05203) KEGG pathways. As we

can see in Fig. 7(c), non-structural proteins of HCV,
EBV or HPV can stimulate the cellular proliferation
through two above genes. The genes in our PPI net were
not found in the VIRAL CARCINOGENESIS pathway of
HBV, but our results implicated that HBV might pro-
mote proliferation of HCC tumor cells in a similar way.

Fig. 5 The Network of Top Ranked Genes through Different Topological Algorithms. a Degree top 20 genes network. b MCC top 20 genes network. c
MNC top 20 genes network. d EPC top 20 genes network. e Radiality top 20 genes network. f Stress top 20 genes network. g Betweenness top 20
genes network. h Bottleneck top 20 genes network. i Closeness top 20 genes network. Different colors represented distinct ranks, and lines between
the genes showed co-expression relationship
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Discussion
In our studies, WGCNA was employed to explore gene
expression alternation between HBV associated HCC tis-
sues and adjacent normal tissues. There are many ad-
vantages of WGCNA over other traditional methods for
differential expression analysis, because it focuses on co-
expression patterns and the functional relevant modules
that consist of related genes will be discovered. Key/hub
genes in the modules related to some specific traits may
serve as clinical detective biomarkers or therapeutic tar-
gets [27–29].
HCC is a common consequence of HBV chronic infec-

tion. HBV‘s prolonged infection can change the expression
of genes of hepatic cells in different ways. HBV-DNA inte-
grations randomly distributed among chromosomes into
host chromosomes, and the integrations of HBV will alter-
nate the expression of cellular genes near the integrating
sites [30]. Noncoding RNAs, such as miRNAs, lncRNAs
and circRNAs, also take parts in the pathogenesis of HBV-
associated HCC [31–33]. Viral protein HBx plays import-
ant roles in hepatocarcinogenesis by interfering with

telomerase activity [34], affecting hepatocellular apoptosis
[35, 36], and up-regulating the transcriptional activation
of human telomerase transcriptase [37]. Interesting, our
GO cellular component enrichment results of genes of
module turquoise, which is the co-expression module
most positively related to the tumor trait, showed that
some genes of this module were enriched in the telomeric
region.
In our study, modules changed significantly between

HBV associated HCC tissues and normal adjacent tis-
sues consisted of the midnight blue, magenta, turquoise,
royal blue modules which were up-regulated in HCC,
whereas the blue, tan, yellow modules which were
down-regulated in HCC. These up-regulated modules
and down-regulated modules mentioned above were
classified into two main groups through eigengene adja-
cency clustering as shown in Fig. 2(a). Among these
modules, the turquoise module is the most significant
module related to the tumor trait. According to the
KEGG results, the turquoise module, enriched in DNA
replication, p53 signaling pathway, cell cycle, especially

Table 1 Key Genes Involved in HBV Associated HCC

Gene Ensembl ID Description Alias Summary

CCNB1 ENSG00000134057.14 cyclin B1 CCNB The protein encoded by this gene is a regulatory protein
involved in mitosis. The gene product complexes with p34(cdc2)
to form the maturation-promoting factor (MPF). Two alternative
transcripts have been found, a constitutively expressed transcript
and a cell cycle-regulated transcript, that is expressed predomin-
antly during G2/M phase. The different transcripts result from the
use of alternate transcription initiation sites.

GINS1 ENSG00000101003.9 GINS complex subunit
1

PSF1 The yeast heterotetrameric GINS complex is made up of Sld5
(GINS4; MIM 610611), Psf1, Psf2 (GINS2; MIM 610609), and Psf3
(GINS3; MIM 610610). The formation of the GINS complex is
essential for the initiation of DNA replication in yeast and
Xenopus egg extracts.

PRC1 ENSG00000198901.13 protein regulator of
cytokinesis 1

ASE1 This gene encodes a protein that is involved in cytokinesis. The
protein is present at high levels during the S and G2/M phases of
mitosis but its levels drop dramatically when the cell exits mitosis
and enters mitosis G1 phase. It is located in the nucleus during
interphase, becomes associated with mitotic spindles in a highly
dynamic manner during mitosis, and localizes to the cell mid-
body during cytokinesis. This protein has been shown to be a
substrate of several cyclin-dependent kinases (CDKs). It is neces-
sary for polarizing parallel microtubules and concentrating the
factors responsible for contractile ring assembly. Alternative spli-
cing results in multiple transcript variants.

KIF20A ENSG00000112984.11 kinesin family
member 20A

MKLP2, RAB6KIFL –

NUSAP1 ENSG00000137804.12 nucleolar and spindle
associated protein 1

ANKT, BM037, LNP,
NUSAP, PRO0310p1,
Q0310, SAPL

NUSAP1 is a nucleolar-spindle-associated protein that plays a role
in spindle microtubule organization.

NEK2 ENSG00000117650.12 – – –

BUB1B ENSG00000156970.12 BUB1 mitotic
checkpoint serine/
threonine kinase B

BUB1beta, BUBR1,
Bub1A, MAD3L, MVA1,
SSK1, hBUBR1

This gene encodes a kinase involved in spindle checkpoint
function. The protein has been localized to the kinetochore and
plays a role in the inhibition of the anaphase-promoting com-
plex/cyclosome (APC/C), delaying the onset of anaphase and en-
suring proper chromosome segregation. Impaired spindle
checkpoint function has been found in many forms of cancer.
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HTLV-1 infection associated pathway, increased in
HBV-associated HCC tissues. These important pro-
cesses, including the acceleration of genome DNA repli-
cation, the misregulation of tumor suppressor p53, and
the abnormal cell cycle-associated pathway, all played
critical roles in the initiation and development of HCC.
Furthermore, the enrichment of HTLV-1 infection asso-
ciated pathway indicated that some signaling pathways
associated with viral infections were also significantly ac-
tivated in HBV-associated HCC tissues.
According to the topological network analysis from

the turquoise model, seven key genes were identified
playing critical roles in the network. They are
CCNB1, GINS1, PRC1, KIF20A, NUSAP1, NEK2, and
BUB1B. CCNB1 is the gene, which encodes a regula-
tory protein involved in mitosis, and it is expressing
predominantly during G2/M phase [38]. It was re-
ported that CDK1-CCNB1 enables MPS1 kinetochore
localization to create a spindle checkpoint-permissive
state [39].GINS1 encodes subunit 1 of the GINS

complex, and the complex is essential for the initi-
ation of DNA replication [40]. It has been reported
that the high expression of KIF20A is associated with
poor prognosis of glioma patients, and KIF20A can be
a potential immunotherapeutic target for glioma [41,
42]. PRC1 encodes a protein involved in the cytokin-
esis process, and the protein maintains a high level
during the S and G2/M phases of mitosis [43].
NUSAP1 encodes a nucleolar-spindle-associated pro-
tein playing a role in spindle microtubule organization
[44]. NEK2 has shown it is involved in some different
cancers: NEK2 promotes aerobic glycolysis in multiple
myeloma [45]; targeting NEK2 attenuates glioblastoma
growth and radioresistance [46]; NEK2 can be a prog-
nostic biomarker of hepatocellular carcinoma [47].
BUB1B encodes a kinase playing a role in spindle
checkpoint function. The kinase localizes to the kin-
etochore and plays a role in the inhibition of the
anaphase-promoting complex/cyclosome (APC/C)
[48]. It has been reported that individuals having

Fig. 6 Roles of the Key Genes in the Process of HBV Associated HCC. a Boxplot of key genes’ expression between HCC tissues and normal tissues.
“*” indicated p value is less than 0.05. b Kaplan-Meier curves of key genes in HCC patients. Red and black curves represent High- and Low-risk
groups, respectively
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Fig. 7 (See legend on next page.)

Liu et al. Infectious Agents and Cancer           (2021) 16:18 Page 11 of 14



biallelic TRIP13 or BUB1B mutations are prone to
having embryonal tumors, and their cells display se-
vere spindle assembly checkpoint (SAC) impairment
[49]. In our expression and survival analyses, all 7
key/hub genes, which were identified in our selected
module, can be the biomarkers and potential thera-
peutic targets of HBV-associated HCC.
According to genes’/proteins’ multifunctional rela-

tions, we constructed a protein-protein interaction net
consisting of 27 genes (our seven key/hub genes as
query genes, and 20 result genes). For total 27 genes,
we search KEGG for their pathway information. Fi-
nally, we focused on CELL CYCLE (hsa04110) path-
way and VIRAL CARCINOGENESIS (hsa05203)
KEGG pathways. Genes BUB1B, CCNB1, CDK1,
CDC25C and CCNA2 play important roles in cell
cycle regulation; HCV, EBV and HPV can stimulate
cell proliferation through CDK1 or CCNA2. These
genes were not found in HBV carcinogenesis path-
ways, but our results implied that there should be an
unknown regulation of cell cycle in HBV-related
HCC. Specially, the function of BUB1B and CCNB1
in HBV-related HCC has attracted the attention of
some researchers in recent years [50–52]; HBV may
regulate these two genes to influence cell cycle pro-
gression promoting the development of HCC.
In summary, we provide a systematic biological in-

terpretation of gene expression data derived from
HBV associated HCC tissues and adjacent normal tis-
sues. Based on WGCNA, there were 21 modules
identified, and the turquoise module which was the
most significant module relating to the tumor trait
was selected to be analyzed in detail. Our results
showed that the turquoise module, enriched in DNA
replication, p53 signaling pathway, cell cycle, and
HTLV-1 infection associated pathway, was activated
in HBV-associated HCC tissues. Seven hub/key genes
were identified; pathway analysis implicates that these
key genes may stimulate cellular proliferation to pro-
mote the HBV-related HCC progression. All of our
findings provide new perspectives to the understand-
ing of pathways and genes underlying HBV-associated
HCC, and experimental verification is needed to val-
idate our predictions.
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