
WLCG Virtual Workshop 19-24.11.2020

EOS on CephFS
friend-or-foe

Andreas-Joachim Peters
Dan van der Ster

 CERN IT-ST

Motivation [1]
• CephFS is part of CEPH, an Open Source storage platform implementing object storage on a single

distributed computing cluster [Wikipedia]

• CephFS client is part of Linux kernel, high-performant, very stable and nearly POSIX compliant

• Ceph is used already in many production sites to provide block storage to virtual infrastructures

• if storage hardware is already optimised or tailored to support Ceph, it is a natural choice to use it also
as Big Data storage in the context of HEP - it is inefficient to use it on very old hardware

• EOS adds as a high-level service additional security features, extended quota and user
management, remote access, token access & TPC for root:// and https:// protocol, CERNBOX for
sync&share and CTA for tape integration

• CephFS adds to EOS the ability to store files of “infinite” size, possibility for ultra-high-bandwidth
access to individual files and a very robust reliability layer for data

Motivation [2]
• EOS + CephFS allows a complete virtualisation of the storage environment

• all services can be deployed in container environments

• most of the HA functionality of EOS can be delegated to an orchestration
service making sure, services are running ‘somewhere’

• HA of data is delegated to CephFS, EOS can be used to provide an additional
redundancy layer over computer centres/sites

• CephFS can also be used only for a fraction of an EOS storage area, which
needs to be tuned for particular IO use cases

MGM

QDB

FST

FS

FST

FS

QDB

MGM

Client Client

QDB

FST

CephFS

MGM

QDB

ROUTER

FS FS FS

MGM
stateful services

with HA
stateless services

without HA

cinder

Container/VM in
orchestration
environment

native EOS deployment fabric deployment with CephFS
physical nodes - native HA virtual nodes + backend - fabric HA

Hybrid
Deployment Model

MGM

QDB

FST

QDB

MGM

Client Client

QDB

FST

CephFS

MGM

QDB

ROUTER

FS FS FS

MGM
stateful services

with HA
stateless services

without HA

cinder

Container/VM in
orchestration
environment

native EOS deployment fabric deployment with CephFS
physical nodes - local or remote FS virtual nodes + backend - fabric HA

EOS+CephFS
Deployment Options

CephFS

FST

FS

FST

MGM

FSTFST

@OpenStack

CephFS

pure virtual
deployment

4xVM 20 core - 58GB

Ceph Leviton SSD cluster

QDB QDB QDB

3 x 600-750 MB/s [IO per FST]
creation @500 Hz 

tested up to 80M files

QDB

Cinder

Deployment Prototype 
Hybrid

2 GB/s storage front-end in four CERN Openstack VMs

Configuration of CephFS in EOS 
Native

• usage of CephFS instead of hard disks was done with the kernel CephFS mount
on FST nodes and a directory for an FST filesystem owned by daemon:daemon

• if IO bw to CephFS should be scaled out, CephFS can be mounted on several
FSTs and each FST manages a subdirectory inside CephFS

Configuration of CephFS in EOS
• in the described deployment model each FST is a point of failure

• EOS4 supports to transparently move a filesystem from one node to another if the
backend is shared

eos fs mv —force 479 st-120hd-100gb010.cern.ch:1095

• currently this functionality is manually, it is straight forward to add this as a convenience
service to the MGM server

• moves can be done without any impact for readers and eosxd clients - xrdcp will
support in a future version to re-iniate a complete upload if an upload is failed during a
transfer instead of retrying the current disk server

• for node maintenance filesystems can be configured to be read-only and the mv can be
done when the last writer has finished

• we have deployed a 6 PB CephFS+EOS cluster with 100GE technology
and evaluated performance with various CephFS erasure coding configurations

• results will be published and presented at vCHEP 2021

• the impact on throughput performance of EOS front-end is small if there are no
network bottlenecks

Experiences with CephFS & EOS

• MDS grants caps to CephFS clients so they can read/write/cache/etc

• each cap requires the inode to be in memory on the MDS, a few kB each

• Caps are granted on demand and recalled according to MDS memory pressure

• MDS has a tunable memory target, 4GB by default, allowing around 1M inodes to be cached  

• EOS fsck needs to stat all files in the FST: roughly equivalent to find /cephfs 

•Problem:

•Caps can be granted at up to 30-40kHz per client, but recall is limited by default to 5kHz per client

•MDS memory usage will quickly exceed the mds_target_memory, going OOM if poorly configured 

•Solution:

• ceph config set mds mds_recall_caps_max 30000
• more aggressive caps recall is now the default: https://github.com/ceph/ceph/pull/38574

Experiences with CephFS & EOS 
EOS fsck vs the CephFS MDS

https://github.com/ceph/ceph/pull/38574

• each client limits its in-flight write op bytes to 100MiB by
default:

• removed this artificial limitation by setting  
objecter_inflight_op_bytes = 1GiB  

Experiences with CephFS & EOS 
CephFS throughput limitations

• in one test write rates dropped from nominal 25GiB/s to below 3GiB/s:

• iperf tests look OK, disks are all ~idle. Where is the bottleneck?

• we found one disk (osd.256) with 40x latency from other drives!

• likely caused by a poor SATA connection

• we marked the drive out of the crush map and 25GiB/s returned immediately

• visible in ceph internal perf metrics, but no HEALTH_WARN for this 
 https://tracker.ceph.com/issues/49505

Experiences with CephFS & EOS 
CephFS throughput limitations

https://tracker.ceph.com/issues/49505

Recommandations
• in such a setup you should use a CephFS EOS area only via EOS

• the namespace in CephFS created by FSTs is not attractive and there is
no original ownership of files visible in the backend

• in principle FSTs could run on OSDs, however there is a certain risk of kernel
deadlocks under memory pressure when CephFS is mounted on OSDs

• a possible optimisation for the future could be a local redirect to a read-only
mount on client side if the data privacy policy allows that

• we have seen a performance bottleneck of approx. 6 GiB/s per 100GE FST and
the network layout has to foresee the additional impact of a front-end layer

Summary
• reasons to use or not use CephFS+EOS can be manifold

• deployment and tuning of CephFS alone can be challenging or not (it was) - same is true for EOS
- once done it is all clear and easy

• the integration and configuration of CephFS inside EOS is trivial

• we can do several small improvements to deal better with shared filesystems
under FSTs - automatic failover mechanism

• it could be an option to run EOS without it’s own namespace and use it mainly as
protocol gateway with real-time configuration options and comfortable user management
• implement a VFS namespace plug-in

• experience so far is quite positive

• to be continued …

eos.web.cern.ch

http://eos.web.cern.ch

