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Motivation [1]
• CephFS is part of CEPH, an Open Source storage platform implementing object storage on a single 

distributed computing cluster [Wikipedia] 

• CephFS client is part of Linux kernel, high-performant, very stable and nearly POSIX compliant 

• Ceph is used already in many production sites to provide block storage to virtual infrastructures  

• if storage hardware is already optimised or tailored to support Ceph, it is a natural choice to use it also 
as Big Data storage in the context of HEP - it is inefficient to use it on very old hardware 

• EOS adds as a high-level service additional security features, extended quota and user 
management, remote access, token access & TPC for root:// and https:// protocol, CERNBOX for 
sync&share and CTA for tape integration 

• CephFS adds to EOS the ability to store files of “infinite” size, possibility for ultra-high-bandwidth 
access to individual files and a very robust reliability layer for data



Motivation [2]
• EOS + CephFS allows a complete virtualisation of the storage environment 

• all services can be deployed in container environments  

• most of the HA functionality of EOS can be delegated to an orchestration 
service making sure, services are running ‘somewhere’  

• HA of data is delegated to CephFS, EOS can be used to provide an additional 
redundancy layer over computer centres/sites 

• CephFS can also be used only for a fraction of an EOS storage area, which 
needs to be tuned for particular IO use cases
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Configuration of CephFS in EOS 
Native

• usage of CephFS instead of hard disks was done with the kernel CephFS mount 
on FST nodes and a directory for an FST filesystem owned by daemon:daemon 

• if IO bw to CephFS should be scaled out, CephFS can be mounted on several 
FSTs and each FST manages a subdirectory inside CephFS



Configuration of CephFS in EOS
• in the described deployment model each FST is a point of failure 

• EOS4 supports to transparently move a filesystem from one node to another if the 
backend is shared 
 
eos fs mv —force 479 st-120hd-100gb010.cern.ch:1095  

• currently this functionality is manually, it is straight forward to add this as a convenience 
service to the MGM server 

• moves can be done without any impact for readers and eosxd clients - xrdcp will 
support in a future version to  re-iniate a complete upload if an upload is failed during a 
transfer instead of retrying the current disk server 

• for node maintenance filesystems can be configured to be read-only and the mv can be 
done when the last writer has finished



• we have deployed a 6 PB CephFS+EOS cluster with 100GE technology 
and evaluated performance with various CephFS erasure coding configurations 

• results will be published and presented at vCHEP 2021 

• the impact on throughput performance of EOS front-end is small if there are no  
network bottlenecks

Experiences with CephFS & EOS



• MDS grants caps to CephFS clients so they can read/write/cache/etc

• each cap requires the inode to be in memory on the MDS, a few kB each 

• Caps are granted on demand and recalled according to MDS memory pressure

• MDS has a tunable memory target, 4GB by default, allowing around 1M inodes to be cached  

• EOS fsck needs to stat all files in the FST: roughly equivalent to find /cephfs 

•Problem:

•Caps can be granted at up to 30-40kHz per client, but recall is limited by default to 5kHz per client

•MDS memory usage will quickly exceed the mds_target_memory, going OOM if poorly configured 

•Solution:

• ceph config set mds mds_recall_caps_max 30000
• more aggressive caps recall is now the default: https://github.com/ceph/ceph/pull/38574 

Experiences with CephFS & EOS 
EOS fsck vs the CephFS MDS 

https://github.com/ceph/ceph/pull/38574


• each client limits its in-flight write op bytes to 100MiB by 
default:

• removed this artificial limitation by setting  
objecter_inflight_op_bytes = 1GiB  

Experiences with CephFS & EOS 
CephFS throughput limitations



• in one test write rates dropped from nominal 25GiB/s to below 3GiB/s:

• iperf tests look OK, disks are all ~idle. Where is the bottleneck?

• we found one disk (osd.256) with 40x latency from other drives!

• likely caused by a poor SATA connection

• we marked the drive out of the crush map and 25GiB/s returned immediately

• visible in ceph internal perf metrics, but no HEALTH_WARN for this 
 https://tracker.ceph.com/issues/49505 

Experiences with CephFS & EOS 
CephFS throughput limitations

https://tracker.ceph.com/issues/49505


Recommandations
• in such a setup you should use a CephFS EOS area only via EOS 

• the namespace in CephFS created by FSTs is not attractive and there is  
no original ownership of files visible in the backend 

• in principle FSTs could run on OSDs, however there is a certain risk of kernel  
deadlocks under memory pressure when CephFS is mounted on OSDs 

• a possible optimisation for the future could be a local redirect to a read-only 
mount on client side if the data privacy policy allows that 

• we have seen a performance bottleneck of approx. 6 GiB/s per 100GE FST and  
the network layout has to foresee the additional impact of a front-end layer



Summary
• reasons to use or not use CephFS+EOS can be manifold 

• deployment and tuning of CephFS alone can be challenging or not ( it was ) - same is true for EOS 
- once done it is all clear and easy 

• the integration and configuration of CephFS inside EOS is trivial 

• we can do several small improvements to deal better with shared filesystems  
under FSTs - automatic failover mechanism 

• it could be an option to run EOS without it’s own namespace and use it mainly as 
protocol gateway with real-time configuration options and comfortable user management 
• implement a VFS namespace plug-in  

• experience so far is quite positive 

• to be continued …
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