CernVM-FS powered container hub

Enrico Bocchi

Jakob Blomer

Simone Mosciatti

Andrea Valenzuela

vCHEP 2021, 19th May

The containers ecosystem

1. Images:

• Immutable units with binaries, dependencies, ...

2. Registries:

Specialized repositories where to store images

3. Runtimes:

Software required to run container images

Build

Develop an app using Docker containers with any language and any toolchain.

Ship

Ship the "Dockerized" app and dependencies anywhere - to QA, teammates, or the cloud - without breaking anything.

Run

Scale to 1000s of nodes, move between data centers and clouds, update with zero downtime and more.

© Docker Inc.

Containers in HEP

1. Reproductibility

- Images freeze software and tools
- Re-run the container to reproduce the analysis

2. Portability and execution at scale

- Run containers on heterogeneous resources
- Take advantage of computational power on WLCG

3. Facilitate exploratory analysis

- Scientists encapsulate analysis code in containers
- Validate on a single machine, then distribute at scale

Container images are a collection of layers

# docker history myimage				
IMAGE	CREATED	CREATED BY	SIZE	
75cc2375258a	4 seconds ago	/bin/sh -c yum -y install php	66.9MB	
e779b8a4024f	9 seconds ago	/bin/sh -c yum -y install nginx	77.8MB	
470671670cac	4 days ago	/bin/sh -c #(nop) CMD ["/bin/bash"]	0B	
<missing></missing>	4 days ago	/bin/sh -c #(nop) LABEL org.label	0B	
<missing></missing>	7 days ago	/bin/sh -c #(nop) ADD file:aa54047	237MB	

Limitations in images distribution

1. Layers reduce deduplication efficiency

Deduplication with coarse, per-layer granularity

2. Network overhead to transfer images

- Big images increase network load
- Longer waiting time to run the container

3. Images are cached on local disk

- Runtimes require access to images to run them
- Local storage can be scarce (e.g., HPC environments)
- Storage space is not reclaimed when image is unused

CVMFS for global software distribution

Container images support in CVMFS

- **DUCC**: Server-side component to ingest existing images
 - Unpacks images into flat filesystem
 - Applies file-based deduplication and hashing
 - Creates directory structure and publishes
- Regulation of ingestion via:
 - Wishlist
 - Webhook notification
 - Traditional registries notify CVMFS via HTTP
 - Integration demonstrated with Harbor

CVMFS integration with container runtimes

Runtime	Type	CVMFS Support
Singularity	Flat (+Layers)	Native
Docker	Layers	via <i>Graph Driver</i> plugin
containerd	Layers	via <i>Snapshotter</i> plugin
Podman	Layers	via Additional image stores

[1] *Graph Driver* to converge on *Snapshotter* plugin soon [2] containerd is supported by Kuberntes

[3] https://www.redhat.com/sysadmin/image-stores-podman

CVMFS-powered container registries

- cvmfs/unpacked.cern.ch
 - 800+ images
 - 3.5 TB, 50 M files
- cvmfs/singularity.opensciencegrid.org
 - 500+ images

Distribution of image sizes

Comparison of deduplication efficiency

Folding@Home

- Example of large-scale deployment
- Runs on the grid off containers served from /cvmfs

Team Monthly

Team

Donor

OS Stats

Team: CERN & LHC Computing

Date of last work unit 2020-10-13 20:13:49

Active CPUs within 50 days 418,716 Team Id 38188

 Grand Score
 81,674,915,475

 Work Unit Count
 16,082,482

 Team Ranking
 17 of 255121

Homepage http://public.web.cern.ch/public/

Fast Teampage URL https://apps.foldingathome.org/teamstats/team38188.html

Conclusions

- Containers are mainstream technology
- Widely used by scientists in HEP
 - Reproducibility
 - Portability on heterogeneous resources
 - Exploratory analysis

Conclusions

- CVMFS is fully compatible with existing resources
 - Ingest and distribute available images
 - Support multiple container runtimes
 - Maintain isolation properties of standard containers
- ... and hugely improves on storage and distribution efficiency
 - More efficient file-based deduplication
 - CVMFS clients cache only required content on-demand
 - Re-use existing CDN and on-site expertise

Backup

Containers in HEP

1. Base Images

- Contain the bare operating system
- Small in size, change rarely

2. Experiment Images

- Contain the software stack of an experiment
- Big (many dependencies) and updated weekly

3. User Images

- Perform one specific task or analysis on data
- Bigger and subject to frequent changes
 - Multiple times a day during development

Regulating ingestion of images

1. Wishlist

- Users express interest in images to be ingested
- DUCC verifies if the repository content is up-to-date

2. Webhook notification

- Traditional registries notify CVMFS via HTTP
- DUCC intercepts the webhook and starts the ingestion
 - Automates publication on registries and CVMFS
 - ✓ Integration demonstrated with Harbor